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ABSTRACT: A general maximum likelihood estimation (MLE) method is given to analyze
experimental data with a power law form with any power exponent which does not break down for

lnizz Inp(x;,60)

a power close to —1. It contrasts thereby with a standard procedure that does. It can be extended to a

power law with an exponential tail and more generally to other distribution forms. Inasmuch as the theoretical value of the power
for dye-sensitized charge recombination in semiconductors systems, and for certain charge injection, is —1 (Chen, W.; Marcus, R.
A, J. Phys. Chem. C, accepted), the present correction to the current MLE method has immediate application to the data in these
systems, but it is equally applicable to other systems, regardless of whether the power is —1.

B INTRODUCTION

Single-molecule spectroscopy (SMS) has been an important
tool in physics, chemistry, and biology.2_6 It allows for
photophysical measurements of individual luminophores,
revealing behavior undetectable in ensemble measurements.
With recent advances in technique,7 room-temperature single-
emitter experiments have provided observations of a
pronounced blinking behavior that is defined as the random
switching on and off of the fluorescence or luminescence
intensity of a single emitter under continuous or pulsed
excitation.® "> A well-known and intensively studied example is
quantum dots blinking.'*~** A unique feature of this blinking
behavior is that the distribution of “on” and “off” duration times
is a power law with broad range of decades duration instead of
an exponential #'>7162%25

Although the power law phenomenon is less intensively
studied in the blinking of single dye molecules than of inorganic
quantum dots, there are a few observations of power law
behavior of organic dye molecules embedded in polymer or on
a glass or inorganic crystal surface,”*® in contrast with the
numerous studies of quantum dots. However, because of the
relatively low fluorescence efficiency and tendency to bleach,
only limited data sets can be collected from experiments with
the dyes. Recently, the maximum likelihood estimator (MLE)
method has been adopted to analyze these power-law
distributed data, especially for the limited data sets.”” '

In a recent analysis of experimental results, the fitting
obtained by MLE did not pass through or near many data
points.*® After a study of the method, we are able to understand
the difficulty with the literature method and provide a solution.

B MLE METHOD AND ALGORITHM

We recall that MLE is a method of estimating the parameters of
a statistical model. Given a statistical model and a set of data
(observations), MLE provides estimates of the model’s
parameters.”” Suppose one makes N independent and
identically distributed (iid) observations (measurements) x,,
Xy ., xy from a distribution with an unknown probability
density function (pdf), po(x). With certain experience, it is then
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conjectured that po(x) belongs to a certain family of
distributions, po(x,0),0 € ©. Here we denote by 0 the
parameters of the pdf and by © the range of 6. py(x) = po(x,0,)
with 6, as the unknown “true value” of the parameters in this
parameter model.

The problem of obtaining the parameter closest to the “true
value” becomes equivalent to selecting the value that produces
a distribution that gives the greatest probability (likelihood) for
the observation.

For an iid sample, the joint density function is*>
p(xy, %3, oy x,, 0) = p(;, O)p(xy, 0)..0(xy, 0) (1)
where x), x,, .., xy are the measurements in the following

discussion. The above joint density function can also be taken
as the likelihood when we consider @ as the variable®>

10, Xy Xy ey %) = play, %5, oy K, 6) (2)

In the method of maximum likelihood, one finds a value of 6,
6, that maximizes the likelihood. The likelihood is a
multiplication, and if we use a monotonic transformation of
it, a logarithm, then we will have a summation, log-likelihood,
which is easier to work with and maximize than the product
form

N
Ini = z In p(x;, 9)
i=1 (©)

B MLE FOR POWER LAW DISTRIBUTION

Method. We indicate the model values as X in comparison
with the experimental data X. In a perylene bisimide dye
molecule fluorescence blinking case, which prompted our
interest,*® the measurements are the “on” or “off” durations s,
corresponding to the above xs. The pdf of power law
distribution is
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pt) =A™ (4)

The probability of an observation at t; is P(t;) = [+ p(¢) dt.
In experiments, P(t;) = (nt‘)/Zle n, and P(t) = P(ti)/At,-.27_30
Each #n; is the number of observations obtained in the time
interval At; around t, and ¥, n; = N and k is the number of
intervals. There are several ways of choosing At;. We adopt the
commonly used one At; = (t,; — t,_;)/2 for 1 < i < k, and for
At; and At; we use the experimental data points at the cited
times ¢. In the model, we use the approximation p(t;) ~ P(t,)/
Ati, and then we have A(m) = (1)/(Zt;,™At;). We now have
the model with parameter m

) = ————t"
==
Zizlt,, At %)

The likelihood function in terms of the model parameter m is
N'TTE, P(t)n;/n,!. We obtain an estimation of m closest to
by maximizing the log-likelihood function

lnlA=InN!+2[”ilnﬁ(ti)_ln"i!] (6)

More generally, if the functional form is p(tm), where we
now denote by m the collective parameters, m,, m,, ..., then for
p(t) we would have instead of eq S

plo) = 2

ZP(%; m)Ati (7)
One can obtain an estimate of the error variance> ¢ of In

p(t) from the residue (the difference between the observation
In p(t,) and the estimation In f’,(t))

k ~
L, X (np(t) —Inp()?
o =
k-2 (8)
Here in the fitting there is one parameter, m, and one
constraint (Ep(t;)At; = 1), and thus the residue sum of squares

has k — 2 degrees of freedom. We may also estimate the
variance of m*

A2
o

z (mo—jm)z ©)

and the standard error is

se(m) = +/Var(m) (10)

Comparison with an Earlier MLE Method. To normalize
the PDF and obtain an expression of A as a function of m, we
avoid the integration of the previous method.”’” Instead, we use
the summation of the probability of all measurements. Unlike
the requirement for the previous method that m, # 1, with the
present method, even when the true value is m, = 1, one can
still fit the experimental data well and get an m close to m,. The
method is applicable regardless of whether m is 1.

Var(m) =

B RESULTS AND DISCUSSION

We next apply the method to the intermittent fluorescence
experimental data of the single perylene bisimide dye molecules
on the Al,O; system.>* Processing the fluorescence data in the
algorithm described by eqs 4—6, we have obtained a power law
distribution with slope around 1 for both off and on times, as in
Figures 1 and 2. These results agree well with the diffusion-
based model of Chen and Marcus."
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Figure 1. “Off’ probability density for 25 molecules observed on
sapphire (0001) using original experimental data in ref 30 from Prof.
Monti. The green line is from the original MLE fitting with P = At™,
where m = 1.19 in ref 30 and the red line is obtained from the present
modified MLE fitting with P = At™™ and where m = 0.91 and se = 0.08.
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Figure 2. “On” probability density for 51 molecules observed on
sapphire (0001) using original experimental data in ref 30 from Prof.
Monti. The green line is from the original MLE fitting with P = At™™,
where m = 1.27 in ref 30. The red line is obtained from the present
modified MLE fitting with P = At™™ and where m = 1.11 and se = 0.06.

We next compare with a previous method of implementing
the MLE. In comparison with the normalization method used
above to obtain the function A(m), one can compare with the
method of approximation used previously in the literature.””
The observation data points are within a range between the
experimental resolution time ., and the time window of the
experiment t,,.. So [ip(t) dt = 1, and under the condition
that my # 1, A(m) = (m — 1)/(ti5™ — £52™) and we have

n m—1 m
() = 55—t
tminm - tmaxm (11)

so that the integral of p(t) from t;, to t,,, is unity. However,
when m approaches unity, p(t) approaches 0/0 and so is
indeterminate.

Taking f,., >> t.;, because the experimental time window
spans several orders of magnitude and presuming m, > 1, eq 11
becomes
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This method was previously adopted to analyze the
fluorescence of tetraphenoxy-perylene diimide dye.”® In that
case, the diffusion process was a “spectral diffusion” rather than
a particle diffusion, and one observed a power exponent m, =
153737 However, in the special case m, & 1, which a}poplies
when a particle diffusion on a 2-D surface is involved,”™ the
condition for the validity of eq 11 is no longer satisfied, and so
we cannot retain the expression in eq 12. Indeed, eqs 11 and 12
do not give a close fit to the data (Figures land 2). For the
single-molecule study of the electron injection from the dye
onto a semiconductor surface, my, = 1 is the theoretically
expected value,' and a treatment of this particular case is
particularly necessary.

In analyzing data with forms other than power law, for
example, power law with an exponential tail, the normalization
demonstrated above can also be applied.

In the “on” plot, the last two points deviate from the power
law. One could fit these with an exponential tail. However, the
two points occur where the error is large (small signal
intensity) and should be given little or no weight. More data in
that region are needed. Because there are only two data points,
one can not decide definitively whether this occurrence is an
exponential cutoff, bleaching of the dye molecule or other.
There is, however, another photoexcited dye-on-surface result
that does show an exponential cutoff.*®

B CONCLUDING REMARKS

A literature method for treating the experimental data with
MLE has a singularity when the data obey a power law with a
slope equal to —1. We have given instead a general MLE
method to analyze experimental data with a distribution of a
power law form having any power exponent, including —1. It
can be extended to many other functional forms such as a
power law with an exponential tail.
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B NOTE ADDED AFTER ASAP PUBLICATION

This paper was published on the Web on June 20, 2012.
Corrections have been made to Reference 1. The correct
version was reposted on June 25, 2012.
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