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The rapid development of the semiclassical theory of Miller and Marcus and its applications in the 1970s was an 
exciting experience. Some of these developments and the issues involved are described in the present overview. 
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The 1970s were heady times when Bill and I were 
developing semiclassical theory [1-20] that would 
sometimes later be known as the theory of Miller and 
Marcus. On this occasion of Bill's 70th birthday some 
40 years later, I would like to recount some of that 
history and its background. These impressions are 
intended as a bird's eye view rather than attempting to 
provide a detailed history. Several reviews appeared at 
the time [8,9,20]. 

This modern version of semiclassical theory has 
several roots. One of them that I believe particularly 
influenced Bill was Feynman's propagator and its 
application by Phil Pechukas in 1969 to collisions [21]. 
My own work was based instead on the short 
wavelength approximation to wave mechanics, the 
Wentzel-Kramers-Brillouin theory developed in 1926. 
This approximation was extensively used to treat the 
many wave mechanical properties in elastic collisions 
[22-24]. 

In both Bill's and my approaches classical action­
angle variables [25,26] played a major role. They too 
have a quantum history, being an essential part of 'old 
quantum theory' in the 1910-1920s [26], and having a 
pre-quantum history in classical mechanics and celes­
tial mechanics. However, after old quantum theory 
gave way to quantum or wave mechanics, those 
variables largely disappeared from the atomic 
literature. 

My students and I used them in the late 1960s to 
treat collisional rotational-translational, vibrational­
translational energy transfer, and reactive collisions 
[27-32]. They provided a way of understanding 
'vibrational adiabaticity' in the classical mechanics of 
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in a H + H2 exchange reaction [30-32]. Both classical 
trajectory and quantum mechanical results for the 
latter on the effect of vibrational energy on the reaction 
probability were shown to be quantitatively under­
stood by a vibrationally adiabatic approximation. 
A rich source of information about action-angle 
variables and their use and implications, I found, was 
in the astronomy library. There is another side to their 
usage, related to the dissociative and other behavior of 
isolated molecules, which we comment on later. 

In the new semiclassical period of the 1970s many 
topics were approached in rapid succession for inelastic 
and reactive collisions. Both a semiclassical stationary 
phase approximation ('primitive semi-classical') and an 
integral formulation, the 'initial value representation' 
[2] were used. They included classically forbidden and 
classically allowed transitions [3, 15], nuclear tunneling, 
electronic transitions [10], Clebsch-Gordan coefficients 
[8], selection rules in rotational-translational energy 
transfer [12], resonances in chemical reactions [18], and 
uniform approximations of the Airy type [2,13] and, 
when the collision was nearly elastic, of the Bessel type 
[17]. Uniform approximations avoided the singularities 
(infinities) of the primitive semiclassical approximation 
at any classical 'turning point' of a trajectory (reflec­
tion from a caustic). Two methods were used to 
introduce a uniform approximation, one being to infer 
it from the primitive semiclassical solution [2] and 
another being to deduce it from an integral representa­
tion [13]. Treatment of the problem starting from the 
primitive semiclassical [2] paved the way for deriving 
them more rigorously from an integral representation 
[13]. They can differ somewhat because a primitive 
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semiclassical expression can be the limit of more than 
one uniform approximation. Numerical results for the 
two Airy uniform approximations were only slightly 
different, however [13]. In any case, for multi­
dimensional systems only an integral representation 
appears to be practical and some form of it is the one in 
use today, including some form of the Herman-Kluk 
integral expression. An attempt to use the primitive 
semiclassical to treat a collisional rotational­
translational energy transfer problem provided an 
interesting nightmare in finding the points of stationary 
phase in the integral and the phases associated with each 
of them to capture the interferences [19]. 

In these articles there are many examples of Bill's 
intuitive feel for a problem and his ingenuity. His 
evaluation of an integral for use in a generating 
function and treating Clebsch-Gordan coefficients was 
a tour de force [8]. In his seminal work on an integral 
representation for the S matrix for collisions he 
recognized that an integral for the S-matrix should 
not have a time-varying integrand. The angle variables 
w; appearing in it often vary with time. He introduced a 
'vibrational phase shift' [2] by subtracting from the w;'s 
at large separation distances R a quantity R v;/ V, 
where Vis dRjdt of the trajectory and vi is a frequency 
dw;/dt. He then obtained an integral expression, the 
'initial value representation', containing a time-inde­
pendent expression for the semiclassical S-matrix in 
this clever and intuitive way. 

Intrigued by this finding I wondered whether there 
was a more rigorous way of obtaining it or indeed 
obtaining some alternative expression. In particular, 
could one start from, say, an exact expression for the 
S-matrix in Goldberger and Watson's admirable 
book [33] in terms of the inner product 
[< IIJE9f((-))mE'ii}Jt((+))nE>8(E-E) of an exact 
ingoing wave in state n I{J(+>(nE) and time-reversed 
wave I}JH(mE) in state m, then introduce a semi­
classical expression for them and obtain the initial 
value representation for the transition n->m. In brief, 
I found that, based on the exact Hamiltonian for the 
system, one could introduce a canonical transforma­
tion that transformed the separation distance R into a 
time variable and any time-varying angle variables into 
constants [14, 16]. Subsequent integration over time 
gave a delta function that cancelled the delta function 
in the other side of the equation [14, 16]. 

For an initial value representation the result turned 
out to be the same as that the one that Bill arrived at 
intuitively. A different canonical transformation, again 
based on the exact Hamiltonian, led to a 'final value 
representation,' and another different transformation 
led to what was termed 'a turning point representation' 

[14] that satisfied microscopic reversibility but was 
discontinuous on the turning point manifold. 

A second active area in the semiclassical field in the 
1970s and somewhat beyond was the quantization of 
the energy levels of a molecule. Because in part of time 
limitations I will simply refer the reader to some of the 
reviews at the time, [8,9,20] and focus on one of the 
central issues for the topic. In 'old quantum theory'. 
quantization was largely for systems permitting 
separation of variables and, using classical mechanical 
perturbation theory, one could treat approximately 
nonseparable systems. However, Einstein raised a 
potential roadblock [34]. He pointed out that in 
principle one could quantize nonseparable systems if 
the action variables existed for those systems. Their 
existence depends on whether the mechanical system is 
quasi-periodic or chaotic, and the famous KAM 
theorem (Kolmogorov, Arnold, Moser) [35] relates to 
this question. The existence of action variables was 
guaranteed when the underlying classical mechanical 
motion was quasiperiodic. For chaotic systems 
Einstein knew there would be a problem. Some 
methods, such as those that rely on locating caustics, 
can be expected to fail in a chaotic system but other 
methods, methods that neglect the multiple over­
lapping avoided crossings of the energy levels in 
chaotic systems, may give approximate answers for 
the eigenvalues, though the individual identity of the 
states may be lost, e.g. [20] and references cited therein. 
Inasmuch as action-angle variables played such a 
major role major in semiclassical theory, an early 
example of their introduction for collision theory [27] is 
shown in Figure 1. 

Although it is a digression from the main theme of 
this brief historical vignette of one active area in the 
1970s, I would like to focus on some implications of 
quasi-periodic versus chaotic behavior. It plays a key 
role in unimolecular reaction statistical theory (e.g. in 
RRKM theory). There can be regions of quasi-periodic 
behaviour and regions of chaotic behaviour in these 
molecular nonlinear mechanical systems. The theory of 
N. B. Slater for unimolecular reactions [36] was based 
on an assumed quasi-periodicity of the vibrational 
motion of the molecule, in the form of a harmonic 
vibrational Hamiltonian. In this model, because of the 
constraint of having N fixed actions, the molecule 
spends its time on an N dimensional vibrational 
subspace, a torus, in a 2N dimensional vibrational 
phase space, and so can be expected to lead to large 
errors in lifetimes, and even if its classical assumptions 
would be converted to quantum ones, it would yield a 
wrong result for typical unimolecular reactions. It was 
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Figure I. Early example of the use of action-angle variables 
in molecular collision theory, here for rotational­
translational energy transfer [27]. 

nevertheless admirable in its elegance and introduced 
novel concepts and terminology. 

Recently in some molecular dynamics calculations 
for ozone dissociation it was estimated that perhaps 
10-20% of trajectories at low excess energies either did 
not dissociate or were slow to do so, and so were 
quasiperiodic or nearly so [37]. It would be interesting 
to undertake pump-dump experiments in which a 
ground electronic state molecule is excited to repulsive 
electronic state but then with a second laser is dumped 
into the ground electronic state but with enough energy 
to dissociate. Do all such isolated molecules dissociate, 
or are there some residual ones that don't? There is the 
problem of detecting a small amount of residual o; in 
the presences of a large excess of 0 3 [38]. However, a 
third laser, this one in the infrared, could dissociate the 
o; and so permit their detection via the 0 atoms 
formed. Because of possible tunneling between tori, 
whose existence is a consequence of a local quasi­
periodicity, and between tori and rest of the phase 
space the quantum and the classical behaviour may be 
different. 

The 1970s were indeed an exciting time in 
semiclassical theory as well as in an increased analysis 
of vibrationally excited molecules, but it is encouraging 
that the search for improved treatments of collisions 
and for improved understanding of dissociating 
molecules continues to this day. 
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