Molecular Physics
Vol. 110, Nos. 9-10, 10-20 May 2012, 513-516

Taylor & Francis
Taylor & Francis Group

INVITED ARTICLE

At the birth of modern semiclassical theory
Rudolph A. Marcus*

Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena CA 91125, USA
(Received 13 February 2012; final version received 29 February 2012)

The rapid development of the semiclassical theory of Miller and Marcus and its applications in the 1970s was an
exciting experience. Some of these developments and the issues involved are described in the present overview.
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The 1970s were heady times when Bill and I were
developing semiclassical theory [1-20] that would
sometimes later be known as the theory of Miller and
Marcus. On this occasion of Bill’s 70th birthday some
40 years later, I would like to recount some of that
history and its background. These impressions are
intended as a bird’s eye view rather than attempting to
provide a detailed history. Several reviews appeared at
the time [8,9,20].

This modern version of semiclassical theory has
several roots. One of them that I believe particularly
influenced Bill was Feynman’s propagator and its
application by Phil Pechukas in 1969 to collisions [21].
My own work was based instead on the short
wavelength approximation to wave mechanics, the
Wentzel-Kramers—Brillouin theory developed in 1926.
This approximation was extensively used to treat the
many wave mechanical properties in elastic collisions
[22-24].

In both Bill’s and my approaches classical action-
angle variables [25,26] played a major role. They too
have a quantum history, being an essential part of ‘old
quantum theory’ in the 1910-1920s [26], and having a
pre-quantum history in classical mechanics and celes-
tial mechanics. However, after old quantum theory
gave way to quantum or wave mechanics, those
variables largely disappeared from the atomic
literature.

My students and I used them in the late 1960s to
treat collisional rotational-translational, vibrational-
translational energy transfer, and reactive collisions
[27-32]. They provided a way of understanding
‘vibrational adiabaticity’ in the classical mechanics of

in a H + H, exchange reaction [30-32]. Both classical
trajectory and quantum mechanical results for the
latter on the effect of vibrational energy on the reaction
probability were shown to be quantitatively under-
stood by a vibrationally adiabatic approximation.
A rich source of information about action-angle
variables and their use and implications, I found, was
in the astronomy library. There is another side to their
usage, related to the dissociative and other behavior of
isolated molecules, which we comment on later.

In the new semiclassical period of the 1970s many
topics were approached in rapid succession for inelastic
and reactive collistons. Both a semiclassical stationary
phase approximation (‘primitive semi-classical’) and an
integral formulation, the ‘initial value representation’
[2] were used. They included classically forbidden and
classically allowed transitions [3,15], nuclear tunneling,
electronic transitions [10], Clebsch—Gordan coefficients
[8], selection rules in rotational-translational energy
transfer [12], resonances in chemical reactions [18], and
uniform approximations of the Airy type {2,13] and,
when the collision was nearly elastic, of the Bessel type
[17]. Uniform approximations avoided the singularities
(infinities) of the primitive semiclassical approximation
at any classical ‘turning point’ of a trajectory (reflec-
tion from a caustic). Two methods were used to
introduce a uniform approximation, one being to infer
it from the primitive semiclassical solution [2] and
another being to deduce it from an integral representa-
tion [13]. Treatment of the problem starting from the
primitive semiclassical [2] paved the way for deriving
them more rigorously from an integral representation
[13]. They can differ somewhat because a primitive
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semiclassical expression can be the limit of more than
one uniform approximation. Numerical results for the
two Airy uniform approximations were only slightly
different, however [13]. In any case, for multi-
dimensional systems only an integral representation
appears to be practical and some form of it is the one in
use today, including some form of the Herman—Kluk
integral expression. An attempt to use the primitive
semiclassical to treat a collisional rotational-
translational energy transfer problem provided an
interesting nightmare in finding the points of stationary
phase in the integral and the phases associated with each
of them to capture the interferences [19].

In these articles there are many examples of Bill’s
intuitive feel for a problem and his ingenuity. His
evaluation of an integral for use in a generating
function and treating Clebsch-Gordan coefficients was
a tour de force [8]. In his seminal work on an integral
representation for the S matrix for collisions he
recognized that an integral for the S-matrix should
not have a time-varying integrand. The angle variables
w; appearing in it often vary with time. He introduced a
‘vibrational phase shift’ [2] by subtracting from the w;’s
at large separation distances R a quantity R v;/V,
where V is dR/dt of the trajectory and v; is a frequency
dw;/dt. He then obtained an integral expression, the
‘initial value representation’, containing a time-inde-
pendent expression for the semiclassical S-matrix in
this clever and intuitive way.

Intrigued by this finding I wondered whether there
was a more rigorous way of obtaining it or indeed
obtaining some alternative expression. In particular,
could one start from, say, an exact expression for the
S-matrix in Goldberger and Watson’s admirable
book [33] in terms of the inner product
[ < Yo (-)mE W (+)nE > §(E — E) of an exact
ingoing wave in state n W™ (nE) and time-reversed
wave WO)(mE) in state m, then introduce a semi-
classical expression for them and obtain the initial
value representation for the transition n->m. In brief,
I found that, based on the exact Hamiltonian for the
system, one could introduce a canonical transforma-
tion that transformed the separation distance R into a
time variable and any time-varying angle variables into
constants [14,16]. Subsequent integration over time
gave a delta function that cancelled the delta function
in the other side of the equation [14,16].

For an initial value representation the result turned
out to be the same as that the one that Bill arrived at
intuitively. A different canonical transformation, again
based on the exact Hamiltonian, led to a ‘final value
representation,” and another different transformation
led to what was termed ‘a turning point representation’

[14] that satisfied microscopic reversibility but was
discontinuous on the turning point manifold.

A second active area in the semiclassical field in the
1970s and somewhat beyond was the quantization of
the energy levels of a molecule. Because in part of time
limitations I will simply refer the reader to some of the
reviews at the time, [8,9,20] and focus on one of the
central issues for the topic. In ‘old quantum theory’.
quantization was largely for systems permitting
separation of variables and, using classical mechanical
perturbation theory, one could treat approximately
nonseparable systems. However, Einstein raised a
potential roadblock [34]. He pointed out that in
principle one could quantize nonseparable systems if
the action variables existed for those systems. Their
existence depends on whether the mechanical system is
quasi-periodic or chaotic, and the famous KAM
theorem (Kolmogorov, Arnold, Moser) [35] relates to
this question. The existence of action variables was
guaranteed when the underlying classical mechanical
motion was quasiperiodic. For chaotic systems
Einstein knew there would be a problem. Some
methods, such as those that rely on locating caustics,
can be expected to fail in a chaotic system but other
methods, methods that neglect the multiple over-
lapping avoided crossings of the energy levels in
chaotic systems, may give approximate answers for
the eigenvalues, though the individual identity of the
states may be lost, e.g. [20] and references cited therein.
Inasmuch as action-angle variables played such a
major role major in semiclassical theory, an early
example of their introduction for collision theory [27] is
shown in Figure 1.

Although it is a digression from the main theme of
this brief historical vignette of one active area in the
1970s, I would like to focus on some implications of
quasi-periodic versus chaotic behavior. It plays a key
role in unimolecular reaction statistical theory (e.g. in
RRKM theory). There can be regions of quasi-periodic
behaviour and regions of chaotic behaviour in these
molecular nonlinear mechanical systems. The theory of
N. B. Slater for unimolecular reactions [36] was based
on an assumed quasi-periodicity of the vibrational
motion of the molecule, in the form of a harmonic
vibrational Hamiltonian. In this model, because of the
constraint of having N fixed actions, the molecule
spends its time on an N dimensional vibrational
subspace, a torus, in a 2N dimensional vibrational
phase space, and so can be expected to lead to large
errors in lifetimes, and even if its classical assumptions
would be converted to quantum ones, it would yield a
wrong result for typical unimolecular reactions. It was
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Figure 1. Early example of the use of action-angle variables
in molecular collision theory, here for rotational-
translational energy transfer [27].

nevertheless admirable in its elegance and introduced
novel concepts and terminology.

Recently in some molecular dynamics calculations
for ozone dissociation it was estimated that perhaps
10-20% of trajectories at low excess energies either did
not dissociate or were slow to do so, and so were
quasiperiodic or nearly so [37]. It would be interesting
to undertake pump-dump experiments in which a
ground electronic state molecule is excited to repulsive
electronic state but then with a second laser is dumped
into the ground electronic state but with enough energy
to dissociate. Do all such isolated molecules dissociate,
or are there some residual ones that don’t? There is the
problem of detecting a small amount of residual O3 in
the presences of a large excess of O3 [38]. However, a
third laser, this one in the infrared, could dissociate the
O; and so permit their detection via the O atoms
formed. Because of possible tunneling between tori,
whose existence is a consequence of a local quasi-
periodicity, and between tori and rest of the phase
space the quantum and the classical behaviour may be
different.

The 1970s were indeed an exciting time in
semiclassical theory as well as in an increased analysis
of vibrationally excited molecules, but it is encouraging
that the search for improved treatments of collisions
and for improved understanding of dissociating
molecules continues to this day.
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