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1. INTRODUCTION

The formation and dissociation of vibrationally hot molecules
has been the subject of numerous studies of bimolecular recom-
bination and unimolecular dissociation chemical reaction rates.1

Of particular interest has been the validity and the limitations of a
statistical theory of these reactions, a theory that assumes that all
vibrational�rotational quantum states (or classically all vibrational�
rotational phase space) of the molecule at a given energy E and total
angular momentum quantum number J are equally accessible by the
long-lived vibrationally excited species. In the latter, some qualifica-
tion onK, the z-component of Jwith the smallest moment of inertia
(“adiabatic” or “active”),2 is often invoked.

There are many calculations of unimolecular3�9 and bimolec-
ular10�12 reaction rates using classical trajectories. These results have
been compared with experimental data on the rates of these
reactions, usually in the gas phase. Using a sampling of the
trajectories appropriate to the experiments, the bimolecular
results have also been used to compare with differential and total
reaction cross sections studied in molecular beam and other
experiments.13�18

In the case of unimolecular reactions, amicrocanonical ensemble of
systems is usually19�22 considered for different E and J. The corre-
sponding E- and J-dependent rate constant k(E,J) is then determined
and introduced into a master equation for the pressure-dependent
unimolecular rate constant at the given temperature T.

Most classical trajectory studies of unimolecular dissociation
and bimolecular recombination reactions have been made on the
former. In a sense, studies of dissociation and recombination are
complementary. When the vibrational/rotational relaxation is
faster than the reaction rate, the recombination rate constant can
be obtained from the dissociation rate constant and the equilib-
rium constant using detailed balance.23 However, under other
conditions, this need not be the case. There is another aspect in
which the unimolecular dissociation and the reverse reaction of a
bimolecular recombination differ, namely, in the depletion of the
state population at low pressures, described later.

More generally, if the results were reported as a function of
each initially sampled part of phase space and to each sampled
part of the final phase space, very detailed information from one
could be used to obtain equally detailed information on the
reverse process (microscopic reversibility). However, just as
time-resolved and spectrally resolved studies are typically com-
plementary due to incomplete information, the same is expected
for recombination and dissociation processes.
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In the present work, we set up expressions for the trajectory
studies for the recombinations, Aþ BCfABC*fABþCandAþ
BCf ABC*f Aþ BC, at low third-body pressures. The results
can be compared with RRKM theory, and non-RRKM effects can
be examined. Weak collision models are used for stabilization of
the vibrationally excited intermediates. The focus is on the time-
dependent survival probability P(E,J,t) of the energetic inter-
mediate and what can be learned from it in terms of nonstatistical
effects.

In the present treatment of a bimolecular collision of an atom
and a diatomic molecule that forms an intermediate and then
later dissociates or is collisionally deactivated, the overall reaction
rate constant is obtained from the rate of formation of the
intermediate complexes, together with P(E,J,t), and the rate of
stabilizing collisions. A deviation of the collision-free survival
probability from a single exponential decay in time for a given E
and J provides information on one type of nonstatistical (“non-
RRKM”)2 behavior. Even in the single exponential case, a
deviation between its decay rate constant and the RRKM value
can provide information on another non-RRKM effect, namely, if
some of the triatomic phase space is completely inaccessible to
the entrance channels.

There are various ways of selecting the initial conditions for
bimolecular reactions in the relevant ensemble. We use a method
that utilizes action-angle variables. They have been used pre-
viously for treating collisions with rotational�translational en-
ergy transfer24,25 and in the semiclassical theory of reactive and
nonreactive collisions.26�29 In exploring directly any nonstatis-
tical behavior, the collisions of the two reactants are studied as a
function of E and J.

In practice, the selection of the initial variables in a micro-
canonical ensemble can be made in various equivalent ways.19 In
one method, the phase space is selected such that the system lies
in a certain range, (J, J þ dJ; E, E þ dE),3,5,30�32 and sampled.
When divided by dJdE, one obtains a density in (J,E) space.
A second method involves the introduction of delta functions,
δ(E � E0) and δ(J� J0), in the integrand.33�37 A third method,
introduced below, involves a canonical transformation to a total J
representation and a symmetry-based analytic integration over
several of the variables. For comparison, we give in Appendix B a
delta function method that results in conditional probabilities in
the form of a Jacobian. It also provides an independent numerical
check for computing the various properties. The three methods
can be expected to yield equivalent results. For each trajectory,
the initial conditions are sampled at a large separation distance
where the interaction energy is negligible.

As noted earlier, the main focus of the present work is on the
time-dependent survival probability P(E,J,t) of the long-lived
intermediate in a bimolecular recombination, its deviation from
single exponential decay, what it reveals about differences in the
dynamics of the two exit channels, and its comparison with
statistical theory. The paper is organized as follows. In section 2, a
classical expression for the recombination rate constant is given
in the total J-representation, containing a cumulative reaction
flux term W(E,J) for forming an intermediate and P(E,J,t), both
based upon classical trajectories. The phase space sampling of
trajectories of the bimolecular collisions is also given there using
action-angle and other phase space variables. The initialization of
the usual Cartesian and momentum coordinates of the
atom�diatom system for the trajectories is given in terms of
these action-angle variables in Appendix A. In section 3, a formal
quantum version of the low pressure recombination rate constant

and P(E,J,t) using wavepackets is given for a comparison with the
classical results. In section 4, the density of states of the energetic
intermediate and the number of states at the transition state are
discussed and an expression is given for the recombination rate
constant at low pressures. The results are summarized in section 5,
together with concluding remarks. Specific applications of the
classical expressions will be given elsewhere.

2. BIMOLECULAR TRAJECTORIES LEADING TO COLLI-
SION COMPLEXES: CLASSICAL RATE CONSTANT AND
PHASE SPACE SAMPLING

Almost all trajectory studies of long-lived intermediates are
made via the study of the dissociation, and an equilibrium
constant is used to obtain the bimolecular recombination rate
constant. Nevertheless, not all features of the recombination are
captured in this way. For example, in an atom�diatom collision
such as A1 þ BA2 f A1BA2, where A1 and A2 are identical, one
would not see in a unimolecular study any propensity for the
newly formed bond A1B to dissociate more readily than A2B.
However, it is immediately apparent, we found, in a bimolecular
study. There is another difference. For the recombination rate
constant in the limiting low pressure region, there are two zeroth-
order processes, the formation of the vibrationally excited
intermediate from the collision of the two reactants and the
redissociation of that intermediate prior to any collision with a
third body. The next-order processes are, instead, the collisions
that change the energy of this intermediate. Because the zeroth-
order processes dominate at low pressures, the population of the
energetic intermediate is in equilibrium with the reacting pair for
the dynamically accessible domain at the given energy in zeroth
order. On the other hand, for the unimolecular dissociation
process, the dominant stready-state terms at low pressures
involve energy transfer collisions, one of them leading to dissociation.
Thus, now a depletion appears in the steady-state expression for the
phase-space-dependent dissociating population in the low pres-
sure limit of the unimolecular dissociation rate constant and has
to be included.38,39 In this respect, the study of the dissociation
and recombination reactions can again differ.

In the present work, the initial conditions are selected using
action-angle variables. For simplicity of notation, the action
variables will be given in units of h, and thus they also represent
quantum numbers. The variables for the atom�diatom system
consist of the action variable j for the angular momentum of the
diatom j/2π, the z-component mj along a space-fixed z-axis, the
action-variable l for the orbital angular momentum l/2π of the
two colliding partners, the z-component ml, and the action n for
the vibration of the diatom. The angle variables canonically
conjugate to j, l,mj,ml, and n are denoted by w’s. In the center-of-
mass system of coordinates, the remaining momentum of the six
momenta is PR, the momentum conjugate to the center-to-center
separation distance R of the colliding reactants. These variables
and the associated incident flux term for the phase space of the
atom�diatom system are chosen for both the microcanonical
and canonical systems. Because the action variables are written
here in units of h, a canonically conjugate action-angle pair such
as j and wj that would normally have a phase space volume
element djdwj/h as dimensionless now has djdwj as dimensionless.

For setting up a classical trajectory study for a bimolecular
recombination rate constant in terms of the time-dependent
survival probability, the low pressure third-order rate constant for
an atom�diatom system is given by eq 1 for the case of a weak
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deactivating collision:

k ¼ 1
h

Z
3 3 3

Z
PðE,Γ10, tÞZðE0, EÞΘcðE,Γ10Þe�E=kT dEdE0dΓ10dt

QelecQtransQrot � vib

ð1Þ
where the step functionΘc(E,Γ10) is 1 or 0 according to whether
an intermediate is or is not formed from the trajectory of
the colliding partners, P(E,Γ10,t) is the survival probability for
the intermediate complex at time t, and Qelec, Qtrans, and Qrot�vib

are the electronic, translational (per unit concentration) in the
center-of-mass system of coordinates, and the rotational�vibra-
tional partition functions of the colliding partners.40 dΓ10

denotes dldmldjdmjdndwldwml
dwjdwmj

dwn. The limits for the
multiple integrals are (�l,l) for ml, (�j,j) for mj, (0,1) for the
w’s, (0,¥) for E, l, j, n, and t, and, for a successful “three-body
collision”, (�D,0) for E0. Here,D is the dissociation energy of the
triatomic species and 0 is the energy of the potential energy
asymptote at large separation distances of the two reactants. The
dE in eq 1 arises from the expression for the incident flux in the
customary way: the number of quantum states dRdPR/h occupy-
ing a phase space volume element dRdPR is divided by dR to yield
an incident probability density per unit R and then multiplied by
a velocity _R to yield for the flux _RdPR/h. The latter equals d(PR

2/
2μ)/h = dEtrans/h = dE/h at a fixed value of the other variables.
Here, μ is the reduced mass of the atom�diatom collision
partners.

The 1/h in eq 1 and the 1/h5 tacitly present in dΓ10 cancel the
1/h6 present in the QtransQrot�vib, so that eq 1 for the classical
observable k is independent of h. Equation 1 applies to the case
where all electronic states but the lowest one are too shallow to
contribute to the overall recombination rate constant.

The Z(E0,E) dE0 in eq 1 is the number of collisions per unit
volume per unit time that lead to an energy transfer for the
vibrationally excited intermediate from E to (E0,E0 þ dE0). It is
proportional to the concentration M of third-bodies, and the
three-body low pressure order rate constant k in eq 1 has units
of cm6/molecule2/s. Strictly speaking, instead ofZ(E0,E) we have
Z(E0J0,EJ) for a transition (JE)f (J0E0) in a collision when J is the
total angular momentum quantum number of the vibrationally
excited intermediate. However, if for simplicity of presentation
we assume that J has a thermal distribution after a collision then
Z(E0J0,EJ) = P(J0)Z(E0,E) independently of J,1c,41 where P(J0) is
the thermal equilibrium distribution of J0 at the given tempera-
ture. Eventually, the sum over all J0 yields unity and what remains
is given by eq 1. It is useful to note therefore that in this
formulation E0 � E is the total energy transfer, not just the
vibrational energy transfer. When the deactivating collisions are
weak, a property typically assumed now in dissociation and
recombination reactions41�45 and supported by experiment,38,46,47

the collision frequency Z(E0,E), is that for a weak collision. Models
for the collision energy transfer property Z(E0,E) include the
stepladder,42,43,48,49 single exponential,38,39,42 biexponential,39,50,51

singularity,39 and near singularity39 models.
In using eq 1, the time t that each classical trajectory, specified

by its values of E and Γ10, exists as an energetic intermediate is
noted. For that value of E and Γ10, P(E,Γ10,t) equals unity for the
trajectory for times less than this time t and zero thereafter.

To implement eq 1 and study the time-dependent survival
probability of the energetic intermediate as a function of E and J,
the total angular momentum quantum number, it is convenient
to introduce a canonical transformation from the variables in Γ10

to a total J representation with variables that include J and its
space-fixed z-component M:

jlmjmlnwjwlwmjwmlwn f jlJMnwjwlwJwMwn

One can also include PR and R in both sides and so make a
canonical transformation of all the variables.

A formal generating function for the transformation has been
given,29 but for our purpose, it suffices to know that the Jacobian
of a canonical transformation is unity. We denote the new
variables jlJMnwjwlwJwMwn by Γ10

J , and thus write dΓ10
J � dJdΓ9

and dΓ9 � djdldMdndwjdwldwJdwMdwn.
In terms of Γ10

J , we can write instead of eq 1 an equally valid
expression for the rate constant k

k ¼ 1
h

Z
3 3 3

Z
PðE,ΓJ

10, tÞZðE0, EÞΘcðE,ΓJ
10Þe�E=kT dEdE0dΓJ

10dt
QelecQtransQrot � vib

ð2Þ
We have used the fact that the Jacobian of the transformations
from Γ10 to Γ10

J is unity.
Equations 1 and 2 involve a detailed tracking of each trajectory

in (E,Γ10) or (E,Γ10
J ) space, respectively. However, this informa-

tion is for typical purposes excess information and it is useful to
count instead the number of intermediate complexes formed at
t = 0 at a given E and J and the fraction of those that survive at any
time t. We thereby introduce a time-dependent survival prob-
ability P(E,J,t) for systems at a given E and J that is the fraction of
intermediate complexes formed at t = 0 that has survived at time
t:

PðE, J, tÞ ¼

Z
3 3 3

Z
PðE,ΓJ

10, tÞΘcðE,ΓJ
10Þ dΓ9Z

3 3 3

Z
ΘcðE,ΓJ

10Þ dΓ9

ð3Þ

where P(E,J,t), a dimensionless quantity, equals unity at t = 0.
Since the integration in eq 3 is over Γ9

J while the integral is a
function of Γ10

J , this P is a function of J. It permits a direct and
detailed comparison with the result for RRKM theory for various
E and J.

We denote the denominator in eq 3 byW(E,J), a dimension-
less term related to the incident flux, which serves as a cumulative
reaction term in (E,J) space:

WðE, JÞ ¼
Z

3 3 3

Z
ΘcðE,ΓJ

10Þ dΓ9 ð4Þ

Thereby, eq 2 can be written as

k ¼ 1
h

Z
3 3 3

Z
PðE, J, tÞWðE, JÞZðE0, EÞe�E=kT dJdEdE0dt

QelecQtransQrot � vib

ð5Þ
where the limits are (0,Jmax) for J and the limits given earlier for
the remaining variables. This equation has been written in a
form that parses k into the different contributions from the
various E’s and J’s. In eq 5, as already noted, P(E,J,t) andW(E,J)
are dimensionless, Z(E0,E) dE0 has units of cm3/molecule/s,
Qelec andQrot�vib are dimensionless, 1/Qtrans has units of cm

3/
molecule, and dEdt/h is dimensionless. Thus, k has units
of cm6/molecules2/s, the units of a three-body recombination
reaction rate constant.

Equations 3 and 4 can be simplified further. We consider
first a fixedM, the space-fixed z-component of the total angular
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momentum quantum number J, and a fixed wM and wJ, the
angle variables conjugate to J andM. Each integral in eqs 3 and
4 over the remaining variables is, one can see on physical
grounds, independent of these three variables and so we can
immediately integrate overM, wM, and wJ, yielding values of 2J,
1, and 1. Equations 3 and 4 now become

PðE, J, tÞ ¼

Z
3 3 3

Z
PðE,Γ6, tÞΘcðE,Γ6Þ dΓ6Z

3 3 3

Z
ΘcðE,Γ6Þ dΓ6

ð6Þ

WðE, JÞ ¼ 2J
Z

3 3 3

Z
ΘcðE,Γ6Þ dΓ6 ð7Þ

where Γ6 � (j,l,n,wj,wl,wn). The rotational�orbital variables
are depicted in Figure 1, where we have placed the vector
corresponding to J along the z-axis. The planes of motion
describing J, M, wM, and wJ are depicted in Figure 2. The

relation of the conventional Cartesian coordinates and mo-
menta to the variables in Figure 1 is given in Appendix A.

There is an additional aspect to be considered in a collision
Aþ BC. The high energy intermediate can dissociate either via
the channel from which it came or via the other channel. This
factor enters into any comparison with RRKM theory. The
collision A þ BC can form ABC or ACB. Considering the
former first, we distinguish two sets of reaction products after
the formation of an intermediate ABC, A þ BC, and AB þ C.
For analyzing any nonstatistical effect, P(E,Γ6,t) is decom-
posed into the contribution from those Pen(E,Γ6,t) that at time
t later dissociate into the entrance channel (Aþ BC) and those
Pex(E,Γ6,t) that dissociate into the second channel (AB þ C)
(ex for exchange). In the comparison, one also has to distin-
guish the trajectories that form ABC from those that form
ACB, as in Figure 3, where the different regions and the “loose”
and “tight” transition states (TS) are depicted schematically. In
a loose TS, the two reactants rotate freely, and in a tight TS,
they do not. The actual situation is typically somewhere in
between.

3. QUANTUM VERSION OF RECOMBINATION RATE
CONSTANT AT LOW PRESSURES

In a quantum version of eq 1, a direct analogue would be the
use of a wavepacket containing wave functions of a particular (j,l,
mj,ml,n) or (j,l,J,M,n) with a small range ΔE of translational
energies for the colliding particles. The desired width ΔE of the
packet is such that its Δt counterpart, h/ΔE, is small relative to
the lifetimes of interest. For example, in the low pressure region,
if the pressure of third bodies is of the order of 1 atm at 298 K, the
average time between collisions for deactivation of an energetic
ozone intermediate with a third body, such as N2, is about 200 ps.
If ΔE were selected to be about 0.25 kT, i.e., about 50 cm�1 at
room temperature, then the time resolution would be of the
order of 1 ps.

Figure 1. Variables in the reduced rotational�orbital space, depicting
the various action angle variables.

Figure 3. Schematic illustration of “phase space” and reaction pathways
for a general atom�diatom collision, Aþ BCfABC*f products. The
loose (O) and tight (X) transition states are marked.

Figure 2. Planes describing the variableswj andwM canonically conjugate to
J andM.
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For k, we write

k ¼
Z Z Z

∑
Γ

PðΓ5, v, tÞvσðΓ5, vÞZðE0, EÞv2e�E=kT dE0dvdt
QelecQrot � vibIv

ð8Þ
where Γ5 now denotes quantum state numbers (j,l,mj,ml,n) and v
is the mean velocity of the wavepacket, σ(Γ5,v) is the total
reactive scattering cross section, P(Γ5,v,t) denotes the survival
probability that a complex formed from state Γ5 and v survives at
time t, and Iv is the integral Iv =

R
0
¥v2e�μv2/2kT dv = (π/2)1/2

(kT/μ)3/2. In eq 8, we note that v2 is related to E, j, and n in Γ5 by

v2 ¼ 2½E�H0ðj, nÞ�=μ ð9Þ
where H0(j,n) is the initial rotational�vibrational energy of the
diatomic molecule.

When comparing with RRKM theory at a given E and J, it is
convenient to introduce an E- and J-dependent cross section
σ(ΓJ,v), using Clebsch�Gordan coefficients. That is, the Clebsch�
Gordan coefficients are implicitly included in this σ(ΓJ,v). We then
have for the rate constant

k ¼
Z Z Z

∑
J
PðE, J, tÞWðE, JÞZðE0, EÞe�E=kT dE0dvdt

QelecQrot � vib

ð10Þ
where

WðE, JÞ ¼ ∑
ΓJ

v3σðΓJ , vÞ=Iv ð11Þ

and

PðE, J, tÞ ¼
∑
ΓJ

PðΓJ , v, tÞv3σðΓJ , vÞ

∑
ΓJ

v3σðΓJ , vÞ ð12Þ

Here, ΓJ denotes collectively the five quantum numbers (J,M,j,l,n).
The σ(ΓJ,v) tacitly includes the Clebsch�Gordan coefficients in
its definition, and the sum is over ΓJ, with an accompanying
choice of v that satisfies the energy condition given in eq 9. The
integration or summation limits in eq 10 for E0, J, and t are the
same as before, and the integration over v is from 0 to¥. In eq 10,
W(E,J) dv has units of cm3/molecule, Z(E0,E) dE0 again has units
of cm3/molecule/s, and k has units of cm6/molecule2/s.

4. CALCULATIONOF RECOMBINATION RATE CONSTANT
FROM RRKM LIFETIME DISTRIBUTION

i. RRKM, Lifetime Distribution for Comparison with Clas-
sical Trajectory Results. In eqs 1, 2, and 5, the time-dependent
survival probability of the intermediate in the recombination rate
constant was based on trajectories. In this section, we consider
the recombination rate constant based on the survival probability
PRRKM(E,J,t) for a statistical (RRKM) theory. The comparison
between these two P(E,J,t)’s permits the identification of non-
statistical contributions to the rate.
In the classical limit of the RRKM expression, kRRKM =N*(E,J)/

hF(E,J) for a vibrationally excited molecule with s coordinates;
N*(E,J) and N*(E,J)hs�1 are, respectively, the number of quan-
tum states and the volume of phase space occupied by a transition
state with rovibrational energy equal to or less than E at a given
quantum number J (per unit J). The F(E,J)hs is the volume of

phase space per unit energy and per unit J occupied by the
energetic molecule for the given J. The powers of h cancel in the
classical limit for kRRKM(E,J), as they should.
In the case of RRKM theory, we have

PRRKMðE, J, tÞ ¼ e�kRRKMt ð13Þ
for a triatomic intermediate, and the step function Θc = 1 if N*
(E,J) g 0 and 0 otherwise. For this purpose, eq 1 for the low
pressure three-body recombination rate constant is replaced by

k ¼ 1
h

Z Z Z Z
PRRKMðE, J, tÞZðE0, EÞΘcðE, JÞe�E=kTN�ðE, JÞ dJdEdE0dt

QelecQtransQrot � vib

ð14Þ
The step function Θc(E,J) in eq 14 is not redundant. Although
this information is contained in N*(E,J), the N* will later cancel
anN* in PRRKM after the integration over t, but the information of
whether or not the collision leads to a vibrationally excited
intermediate does not cancel. A comparison of eqs 5 and 14
reveals that the transition state equivalent of W(E,J) is Θc

(E,J)N*(E,J).
The integration in eq 14 over t yields

k ¼
Z Z Z

FðE, JÞZðE0, EÞΘcðE, JÞe�E=kT dEdE0dJ
QelecQtransQrot � vib

ð15Þ
The 1/h6 in F(E,J) cancels the 1/h3 from Qrot�vib and the 1/h3

from Qtrans. The classical result is seen to be independent of h, as
it should be. The limits of integration in eqs 14 and 15 are the
same as before.
For the quantum version of eq 15, one merely uses the

quantum version of F(E,J), now the density of states for a given
J, and uses the quantum version of Qrot�vib, and requires that
Θc(E,J) = 1 when N*(E,J) g 2Jþ1.
ii. Classical Density of States for RRKM Theory in the

Recombination Rate Constant. We consider the density of
states F(E,J) for the triatomic system for a given total angular
momentum quantum number J and energy E. We use variables
appropriate to an atom�diatom system. In particular, we use
rotational/orbital action-angle variables used in the selection of
the initial conditions, together with pr, r, PR, and R (PR is later
subsumed in the constant E condition). By not using the usual
body-fixed vibrational�rotational coordinates for the intermedi-
ate complex, it obviates the need for introducing Coriolis and
other rotation�vibration coupling terms for the long-lived
intermediate. On the other hand, care is needed to ensure that
the integration is over the phase space occupied by the
intermediate.
The density of states F (per unit energy for the given J) is given

in terms of these coordinates and momenta for an atom�diatom
system and then j, l,mj, andml are transformed to j, l, J, andM, as
noted earlier. We have

FðE, JÞ ¼
Z

3 3 3

Z
δðE�HÞ dΓJ

7dPRdRdprdr=h
2 ð16Þ

where dΓ7
J = djdldMdwjdwldwJdwM (each action here is again in

units of h) and H is the total energy in terms of these variables
(including a PR

2/2μ term). After integration over all variables but
M, wM, and wJ, the result is again independent of the three
variables and thus one can immediately integrate over them,
yielding values of 2J, 1, and 1, respectively. For eq 16, a canonical
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transformation from variables containing mj and ml to those
containing J andM has a Jacobian of unity, and this fact was used
in obtaining eq 16. The transformation yielded a dJ, but we can
set dJ = 1 to obtain the density of states per unit J, which also is
equivalent to a density of states at the given J.
After integration over M, wM, and wJ, the F(E,J) is given by

FðE, JÞ ¼ 2J
Z

3 3 3

Z
δðE�HÞ dΓJ

4dPRdRdprdr ð17Þ

where dΓ4
J = djdldwjdwl and the δ(E � H) can be replaced by

δ(PR � PR0 )/(∂H/∂PR) with ∂H/∂PR = PR/μ.
While the F is determined uniquely by the variables specified

in eq 17, it is necessary to specify additional variables in order to
utilize the expression for the conventional coordinates and
momenta given in Appendix A. In particular, we note that if J
is placed along the z-axis, as in Figure 1, we have M = J. Also, mj is
given by l2 = j2 þ J2 � 2mjJ and ml equals J � mj.
For the two remaining variables, there are four cases: (1) wmj

=
0 and wml

= 0, (2) wmj
= 1/2 and wml

= 1/2, (3) wmj
= 1/2 and

wml
= 0, and (4) wmj

= 0 and wml
= 1/2. As seen in eqs A1�A12,

the pair (1) and (2) are related by inversion symmetry (when all
three atoms are the same isotope), and (3) and (4) are similarly
related to each other. Further examination of the angle γ
(defined in Appendix C) shows that the members of one pair
are geometric isomers of the other pair, one being ABC and the
other BAC. The relation,24 cos γ = cos θ cos θ1þ sin θ sin θ1 cos
u, with coordinates defined in Appendix C and related to
variables defined in Appendix A, was used to see if γ corresponds
to the molecule ABC or ACB. For one isomer of the collision
complex, ABC, the angle γ lies in (0,π/2), and for the other,
ACB, γ lies in (π/2,π). For the transition state, when it is “tight”,
the same remarks apply. When it is loose, the angle γ fully
occupies the (0,π) interval.
iii. Transition State for Recombination: Number of States,

N*. For the transition state for the recombination, two limiting
reaction coordinates are sometimes used: (1) R, the distance
between the centers of mass of the two colliding reactants, and
(2) the distance between the two atoms of the newly forming
chemical bond. For a “loose” TS in which AB rotates relatively
freely, the former is the natural choice, and for a “tight” TS, the
latter is more suitable. A linear combination of them for the
microcanonical formalism, given by Klippenstein et al.,53 gives an
improved choice, optimized so as to have the least value of N*
(and thus corresponding to a TS having the fewest recrossings of
the TS by trajectories). The role played by the recrossing
criterion was noted by Wigner in his classic 1937 paper.54

When R can be used as a reaction coordinate, the number of
quantum states at the transition state,N*(E,J), with energy equal
to or less than E, denoted by the step function Θ, is given by

N�ðE, JÞ ¼ min
R

Z
3 3 3

Z
ΘðE�HÞ dΓJ

7dprdr=h ð18Þ

where dΓ7
J denotes djdldMdwjdwldwJdwM, as before. TheH is the

Hamiltonian at the given R and contains the PR
2/2μ. Once the

other coordinates and momenta in H are specified, PR
2/2μ is

given by energy conservation. One also had a dJ but set dJ = 1 as
before. Upon integrating over M, wM, and wJ, N*(E,J) is then
given by

N�ðE, JÞ ¼ min
R

2J
Z

3 3 3

Z
ΘðE�HÞ dΓJ

4dprdr=h ð19Þ

where dΓ4
J again denotes djdldwjdwl. The N* in eqs 18 and 19 is

determined using variational RRKM theory.55 Once again, while
N*(E,J) is determined uniquely by the reduced number of
variables appearing in eq 19, implementation of the equations
for the various coordinates in Appendix A requires the assign-
ment of values for mj, ml, wmj

, and wml
, as discussed for F(E,J) in

the previous section.

5. SUMMARY AND CONCLUDING REMARKS

Expressions are given for treating the time-dependent survival
probability P(E,J,t) and an incident flux cumulative reaction flux
term W(E,J) for the intermediate complexes that are formed in
atom�diatom collisions. The low pressure recombination rate
constant is expressed in terms of these quantities and an energy-
dependent collision frequency Z(E0,E). A canonical transforma-
tion to the total J representation served to simplify the expression
by permitting the immediate integration over several variables.
The P(E,J,t) and W(E,J) were expressed in terms of classical
trajectories, quantum mechanical wavepackets, and, for compar-
ison, RRKM theory. Action-angle variables were used for the
sampling of initial conditions for the trajectories and in the
calculation of density of states F(E,J) and number of statesN*(E,J).
Nonstatistical effects in the recombination rate constant calcu-
lated by trajectory or wavepackets can be identified in part from
the deviation of the survival probability P(E,J,t) from a single
exponential.

For a collision, A þ BC, the recombination rate constant and
the nonstatistical effects for each of the two exit channels from
the intermediate complex can be explored. Any of several weak
collision models, such as those described in refs 38 and 39, are
available for the calculation of the low pressure recombination
rate constant. However, the main focus is instead the study of the
nonstatistical effects, which can have implications for the quan-
tum analogue. In some alternative approaches, the dissociation
behavior has been expressed instead in terms of average state-
dependent lifetimes.12b

The formalism involving P(E,J,t) is applied elsewhere to the
study of nonstatistical aspects of ozone formation by a recombi-
nation reaction, and a comparison with RRKM theory. The
changes inK, the component of J along the near-symmetric top z-
axis of ozone, have been implicated by Schinke and co-workers
both in collisional energy transfer of ozone and thereafter
intramolecularly into its vibrations.56,57 A theory of the phenom-
enon of K diffusion in such near-symmetric top molecules and
dissociation, a source of non-RRKM behavior when the diffusion
is slow, has recently been given in refs 58 and 59. A detailed
discussion of results for RRKM that uses either an adiabatic or an
active K for the limiting behavior is given in ref 60.

’APPENDIX A: INITIAL CARTESIAN AND MOMENTUM
COORDINATES FOR CLASSICAL TRAJECTORIES OF THE
ATOM�DIATOM SYSTEM IN TERMS OF ACTION-ANGLE
VARIABLES

The initial conditions of interest in phase space for the
atom�diatom collision are given here for the action-angle
variables and the diatom internuclear distance r, and its conjugate
momenta pr. Specifically, the initial conditions can be chosen for
(j,mj,l,ml,n,PR,wj,wmj

,wl,wml
,wn,R) for the classical trajectories at

an initial center-to-center distance Ri in the noninteraction
region. The values for r and pr are obtained from wn and n.



5631 dx.doi.org/10.1021/jp111833m |J. Phys. Chem. B 2011, 115, 5625–5633

The Journal of Physical Chemistry B ARTICLE

In the center-of-mass coordinate system for the collision pair
A þ BC, we let (Q1,Q2,Q3) denote the Cartesian coordinates of
C with respect to B and (Q4,Q5,Q6) to be those of A with respect
to the center of mass of the pair (B, C).

The various Cartesian coordinates and their conjugate mo-
menta P’s for the atom�diatom system are given in terms of the
action-angle variables as follows.61 (For notational brevity, we
write in eqs A1�A12 all of the 2πw’s as w’s.)

Q1 ¼ r½cos wj cos wmj � ðmj=jÞ sin wj sin wmj � ðA1Þ

Q2 ¼ r½cos wj sin wmj þ ðmj=jÞ sin wj cos wmj � ðA2Þ

Q3 ¼ r½1� ðmj=jÞ2�1=2 sin wj ðA3Þ

P1 ¼ pr½�ðmj=jÞ sin wj sin wmj þ cos wj cos wmj �
� ðmj=rÞ cos wj sin wmj � ðj=rÞ sin wj cos wmj ðA4Þ

P2 ¼ pr½ðmj=jÞ sin wj cos wmj þ cos wj sin wmj �
þ ðmj=rÞ cos wj cos wmj � ðj=rÞ sin wj sin wmj ðA5Þ

P3 ¼ pr½1� ðmj=jÞ2�1=2 sin wj þ ðj=rÞ½1� ðmj=jÞ2�1=2 cos wj

ðA6Þ

Q4 ¼ Ri½cos wl cos wml � ðml=lÞ sin wl sin wml � ðA7Þ

Q5 ¼ Ri½cos wl sin wml þ ðml=lÞ sin wl cos wml � ðA8Þ

Q6 ¼ Ri½1� ðml=lÞ2�1=2 sin wl ðA9Þ

P4 ¼ PR½�ðml=lÞ sin wl sin wml þ cos wl cos wml �
� ðml=RiÞ cos wl sin wml � ðl=RiÞ sin wl cos wml ðA10Þ

P5 ¼ PR½ðml=lÞ sin wl cos wml þ cos wl sin wml �
þ ðml=RiÞ cos wl cos wml � ðl=RiÞ sin wl sin wml ðA11Þ

P6 ¼ PR½1� ðml=lÞ2�1=2 sin wl þ ðl=RiÞ½1� ðml=lÞ2�1=2 cos wl

ðA12Þ
The Hamiltonian utilizing eqs A1�A12 can be numerically
integrated in a classical trajectory in conventional Cartesian
coordinates for a reactive scattering for an atom�diatom system.

When the vector corresponding to J is placed along the space-
fixed z-axis, as in Figure 1, these eqs A1�A12 can be simplified:
we havemjþml = J, and we can select, as in the text for F and for
N*, the four cases of the values forwmj

andwml
, the four pairings of

0 and 1/2 for these variables. In sampling the initial conditions
for eqs 6 and 7, the results of a trajectory for these quantities are
uniquely defined by the variables Γ6. We are left with four
independent rotational�orbital phase space variables (j, l, wj,
and wl), in addition to n and wn. For a given initial R, the initial PR
is determined by j, n, and E. If we place J along the z-axis, as in
Figure 1, then l2 = j2 þ J2 � 2mjJ, and thus, l can be sampled by
sampling mj in the interval (�j,j). Therefore, in this particular
procedure, the sampling variables are j, l (viamj), wj, wl, n, and wn,
while wmj

and wml
are selected as above, for sampling initial

conditions. For sampling for N*, one would use r and pr instead.
For sampling for F, one would add R and PR to the latter. The ml

is set equal to J � mj in using eqs A1�A12.

’APPENDIX B: SURVIVAL PROBABILITY AND REAC-
TION FLUX WITH DELTA FUNCTIONS

We give here for completeness alternative expressions for P(E,
J,t) and W(E,J). With Γ10 denoting the variables given in the
paragraph following eq 1, we can write the time-dependent
survival probability at a given energy E and total angular
momentum quantum number J as

PðE, J, tÞ ¼

Z
3 3 3

Z
PðE,Γ10, tÞΘcðE,Γ10ÞδðJ � J0Þ dΓ10Z
3 3 3

Z
ΘcðE,Γ10ÞδðJ � J0Þ dΓ10

ðB1Þ
where the P(E,J,t) equals unity at t = 0. The J0 is expressed in
terms of the Γ10 variables. The E and the variables in Γ10 provide
the initial PR. The δ(J� J0) in eq B1 can be replaced by a δ(P�
P0)/(∂J0/∂P), where P0 is a suitable angular momentum variable
in Γ10.

We also introduce a term related to the incident flux W(E,J)

WðE, JÞ ¼
Z

3 3 3

Z
ΘcðE,Γ10ÞδðJ � J0Þ dΓ10 ðB2Þ

The low pressure recombination rate constant k from eq 1 is now
again given by eq 5, with P(E,J,t) andW(E,J) now given by eqs B1
and B2.

’APPENDIX C: CLASSICAL DENSITY OF STATES FOR
RRKM THEORY IN THE RECOMBINATION RATE
CONSTANT

We consider the density of states F(E,J) at the given J for an
atom�diatom complex for a given total angular momentum
quantum number J and for a given E, using instead of the variables
used in the body of the paper the Jacobi phase space variables. Using
Jacobi variables instead of the usual body-fixed vibrational�
rotational coordinates for the intermediate complex again obviates
the need for introducing Coriolis and other rotation�vibration
coupling terms for the long-lived intermediate. In this appendix, the
total angular momentum is, reverting to the usual units, Jh9.

In terms of Jacobi coordinates andmomenta for an atom�dia-
tom system, we have34

FðE, JÞ ¼ 1
h

Z
3 3 3

Z
δðE� E00ÞδðJ � J0Þ dΓ0

10dPRdR

ðC1Þ
where dΓ10

0 = dPθdPθ1
dPφdPφ1

dprdθdθ1dφdφ1dr/h
5 and E00 is

the total energy related to the Jacobi coordinate Hamiltonian
(eq C3 below). Here, r, θ, and φ are the spherical polar coordinates
for the axis of the diatomic rotor, with conjugate momenta pr, Pθ,
and Pφ. R, θ1, and φ1 are the spherical polar coordinates for the
vector R from the atom to the center of mass of the diatom, with
conjugate momenta PR, Pθ1, and Pφ1

. In eq C1, we have

J02h92 ¼ Pθ
2 þ Pθ1

2 þ 2PφPφ1 þ Pφ
2 csc2 θþ Pφ1

2 csc2 θ1

þ 2PθPθ1 cosðφ� φ1Þ þ 2PφPφ1
cot θ cot θ1 cosðφ� φ1Þ
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þ 2Pθ1Pφ cot θ sinðφ1 � φÞ þ 2PθPφ1 cot θ1 sinðφ� φ1Þ
ðC2Þ

In terms of the above coordinates, the Hamiltonian for the
interaction between the atom and diatom system is given by the
well-known eq C3, written here for later reference

H ¼ 1
2μm

pr
2 þ 1

r2
Pθ

2 þ Pφ2

sin2 θ

 !" #

þ 1
2μ

PR
2 þ 1

R2
Pθ1

2 þ Pφ1
2

sin2 θ1

 !" #
þ V ðC3Þ

where V is the potential energy function for the triatomic system,
μm is the reduced mass of the diatomic molecule, and μ again is
the reduced mass of the atom�diatom system.

In eq C1, one can write

δðE� E00Þ ¼ δðPR � P
0
RÞ

DH=DPR
¼ δðPR � P

0
RÞ

PR=μ

Integration over PR then yields a PR0 defined by the remaining
variables in eq C3.52 The δ(J � J0) in eq C1 can be written as

δðJ � J0Þ ¼ δðPφ � P
0
φÞ

DJ0=DPφ
¼ δðPφ � P

0
φÞ ðC4Þ

The second equality in eq C4 applies when J is placed along the
z-axis; we have Jh9 = Pφþ Pφ1

. It is intuitively evident, since when
J is placed along the z-axis we have for the variation in J, δJh9 =
δPφ at constant Pφ1

. To show the second equality more formally,
Cartesian components of the angular momenta corresponding to
l and j can be introduced:

J2 ¼ ðjx þ lxÞ2 þ ðjy þ lyÞ2 þ ðjz þ lzÞ2 ðC5Þ
Taking variations, δ’s, of both sides at constant jz (constant Pφ1

)
and then placing J along the z-axis, i.e., then setting jxþ lx = jyþ
ly = 0 and jz þ lz = J, we have δJh9 = δPφ, i.e., 1/(∂Jh9/∂Pφ) = 1,
thus yielding eq C4. The factor 1/(∂J0/∂Pφ) in eq C4 also serves
as a conditional probability: the probability that Pφ lies in (Pφ,Pφ
þ dPφ) given that J lies in (J,J þ dJ) is 1/(∂J/∂Pφ).

We next introduce into eq C2 a new variable u = φ� φ1, and
thus, (u,φ1) are now variables instead of (φ,φ1). At a fixed u, the
φ1 can be integrated to yield 2π. Integration over Pφ yields Pφ0 ,
defined by the remaining variables in eq C2 for the given J. The
remaining integration in eq C1 is over dPθdPθ1

dPφ1
dpr-

dθdθ1dudrdR. The density of states of the intermediate complex
at a given total energy E and J is independent of the orientation of J.
If reducing the dimensionality of the integral by one, the vector
corresponding to J is placed along the z-axis, yielding the constraint
Pφ þ Pφ1 = Jh9.

The limits of integration for the remaining variables in eq C1
are (0,π) for θ,θ1, (0,2π) for u, and the limits for r, R and the
remaining momenta, subject to the constraints described above,
are selected so as to cover the physical range occupied by the
intermediate. These variables are randomly sampled in accor-
dance with the microcanonical distribution.

In the various equations given earlier for the interaction
region, positive and negative momenta arise. One can use the
symmetry to reduce the size of the integration region and avoid
potential sign problems. There are eight combinations of signs

for Pθ1
,Pφ,Pφ1

: (þ,þ,þ), (þ,�,þ), (�,þ,þ), (þ,þ,�), and the
inverse sign for each. The second four combinations can be
omitted and the final result multiplied by a factor of 2. For
integrating pr, it suffices to use prg 0 and multiply the final result
by 2. The relation24 cos γ = cos θ cos θ1þ sin θ sin θ1 cos u can
be used to see if γ, the angle between r and R, corresponds to the
molecule ABC or ACB.
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