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ABSTRACT: We consider the bimolecular formation and redissociation of complexes
using classical trajectories and the survival probability distribution function P(E,J;t) of
the intermediate complexes at time ¢ as a function of the energy E and total angular
momentum quantum number J. The P(E,J;t) and its deviation from single exponential
behavior is a main focus of the present set of studies. Together with weak deactivating
collisions, the P(E,J,t) and a cumulative reaction probability at the given E and J can also
be used to obtain the recombination rate constant k at low pressures of third bodies.
Both classical and quantum expressions are given for k in terms of P(E,J,t). The initial
conditions for the classical trajectories are sampled for atom—diatom reactions for
various (E,J)’s using action-angle variables. A canonical transformation to a total |
representation reduces the sampling space by permitting analytic integration over
several of the variables. A similar remark applies for the calculation of the density of
states of the intermediate complex p and for the number of states N* of the transition
state as a function of E and J. The present approach complements the usual approach
based on the rate of the reverse reaction, unimolecular dissociation, and the equilibrium
constant. It provides results not necessarily accessible from the unimolecular studies.
The formalism is applied elsewhere to the study of nonstatistical aspects of the
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recombination and redissociation of the resulting ozone molecules and comparison with RRKM theory.

1. INTRODUCTION

The formation and dissociation of vibrationally hot molecules
has been the subject of numerous studies of bimolecular recom-
bination and unimolecular dissociation chemical reaction rates.'
Of particular interest has been the validity and the limitations of a
statistical theory of these reactions, a theory that assumes that all
vibrational —rotational quantum states (or classically all vibrational—
rotational phase space) of the molecule at a given energy E and total
angular momentum quantum number ] are equally accessible by the
long-lived vibrationally excited species. In the latter, some qualifica-
tion on K, the z-component of ] with the smallest moment of inertia
(“adiabatic” or “active”),” is often invoked.

There are many calculations of unimolecular® ® and bimolec-
ular'®™ " reaction rates using classical trajectories. These results have
been compared with experimental data on the rates of these
reactions, usually in the gas phase. Using a sampling of the
trajectories appropriate to the experiments, the bimolecular
results have also been used to compare with differential and total
reaction cross sections studied in molecular beam and other
experiments.>'®

In the case of unimolecular reactions, a microcanonical ensemble of
systems is usually'®>> considered for different E and J. The corre-
sponding E- and J-dependent rate constant k(E]) is then determined
and introduced into a master equation for the pressure-dependent
unimolecular rate constant at the given temperature T.
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Most classical trajectory studies of unimolecular dissociation
and bimolecular recombination reactions have been made on the
former. In a sense, studies of dissociation and recombination are
complementary. When the vibrational/rotational relaxation is
faster than the reaction rate, the recombination rate constant can
be obtained from the dissociation rate constant and the equilib-
rium constant using detailed balance.”* However, under other
conditions, this need not be the case. There is another aspect in
which the unimolecular dissociation and the reverse reaction of a
bimolecular recombination differ, namely, in the depletion of the
state population at low pressures, described later.

More generally, if the results were reported as a function of
each initially sampled part of phase space and to each sampled
part of the final phase space, very detailed information from one
could be used to obtain equally detailed information on the
reverse process (microscopic reversibility). However, just as
time-resolved and spectrally resolved studies are typically com-
plementary due to incomplete information, the same is expected
for recombination and dissociation processes.
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In the present work, we set up expressions for the trajectory
studies for the recombinations, A + BC—ABC*— AB + Cand A +
BC— ABC*— A + BC, at low third-body pressures. The results
can be compared with RRKM theory, and non-RRKM effects can
be examined. Weak collision models are used for stabilization of
the vibrationally excited intermediates. The focus is on the time-
dependent survival probability P(E,J,t) of the energetic inter-
mediate and what can be learned from it in terms of nonstatistical
effects.

In the present treatment of a bimolecular collision of an atom
and a diatomic molecule that forms an intermediate and then
later dissociates or is collisionally deactivated, the overall reaction
rate constant is obtained from the rate of formation of the
intermediate complexes, together with P(E,J,t), and the rate of
stabilizing collisions. A deviation of the collision-free survival
probability from a single exponential decay in time for a given E
and ] provides information on one type of nonstatistical (“non-
RRKM”)* behavior. Even in the single exponential case, a
deviation between its decay rate constant and the RRKM value
can provide information on another non-RRKM effect, namely, if
some of the triatomic phase space is completely inaccessible to
the entrance channels.

There are various ways of selecting the initial conditions for
bimolecular reactions in the relevant ensemble. We use a method
that utilizes action-angle variables. They have been used pre-
viously for treating collisions with rotational —translational en-
ergy transfer’** and in the semiclassical theory of reactive and
nonreactive collisions.”* In exploring directly any nonstatis-
tical behavior, the collisions of the two reactants are studied as a
function of E and J.

In practice, the selection of the initial variables in a micro-
canonical ensemble can be made in various equivalent ways." In
one method, the phase space is selected such that the system lies
in a certain range, (J, J + dJ; E, E + dE),3’5’30732 and sampled.
When divided by dJdE, one obtains a density in (J,E) space.
A second method involves the introduction of delta functions,
O(E — E')and 6(J — J'), in the integrand.33737 A third method,
introduced below, involves a canonical transformation to a total |
representation and a symmetry-based analytic integration over
several of the variables. For comparison, we give in Appendix B a
delta function method that results in conditional probabilities in
the form of a Jacobian. It also provides an independent numerical
check for computing the various properties. The three methods
can be expected to yield equivalent results. For each trajectory,
the initial conditions are sampled at a large separation distance
where the interaction energy is negligible.

As noted earlier, the main focus of the present work is on the
time-dependent survival probability P(E,J,t) of the long-lived
intermediate in a bimolecular recombination, its deviation from
single exponential decay, what it reveals about differences in the
dynamics of the two exit channels, and its comparison with
statistical theory. The paper is organized as follows. In section 2, a
classical expression for the recombination rate constant is given
in the total J-representation, containing a cumulative reaction
flux term W(E,]) for forming an intermediate and P(E,J;t), both
based upon classical trajectories. The phase space sampling of
trajectories of the bimolecular collisions is also given there using
action-angle and other phase space variables. The initialization of
the usual Cartesian and momentum coordinates of the
atom—diatom system for the trajectories is given in terms of
these action-angle variables in Appendix A. In section 3, a formal
quantum version of the low pressure recombination rate constant

and P(E,J,t) using wavepackets is given for a comparison with the
classical results. In section 4, the density of states of the energetic
intermediate and the number of states at the transition state are
discussed and an expression is given for the recombination rate
constant at low pressures. The results are summarized in section 5,
together with concluding remarks. Specific applications of the
classical expressions will be given elsewhere.

2. BIMOLECULAR TRAJECTORIES LEADING TO COLLI-
SION COMPLEXES: CLASSICAL RATE CONSTANT AND
PHASE SPACE SAMPLING

Almost all trajectory studies of long-lived intermediates are
made via the study of the dissociation, and an equilibrium
constant is used to obtain the bimolecular recombination rate
constant. Nevertheless, not all features of the recombination are
captured in this way. For example, in an atom—diatom collision
such as A; + BA, — A;BA,, where A; and A, are identical, one
would not see in a unimolecular study any propensity for the
newly formed bond A;B to dissociate more readily than A,B.
However, it is immediately apparent, we found, in a bimolecular
study. There is another difference. For the recombination rate
constant in the limiting low pressure region, there are two zeroth-
order processes, the formation of the vibrationally excited
intermediate from the collision of the two reactants and the
redissociation of that intermediate prior to any collision with a
third body. The next-order processes are, instead, the collisions
that change the energy of this intermediate. Because the zeroth-
order processes dominate at low pressures, the population of the
energetic intermediate is in equilibrium with the reacting pair for
the dynamically accessible domain at the given energy in zeroth
order. On the other hand, for the unimolecular dissociation
process, the dominant stready-state terms at low pressures
involve energy transfer collisions, one of them leading to dissociation.
Thus, now a depletion appears in the steady-state expression for the
phase-space-dependent dissociating population in the low pres-
sure limit of the unimolecular dissociation rate constant and has
to be included.”®*” In this respect, the study of the dissociation
and recombination reactions can again differ.

In the present work, the initial conditions are selected using
action-angle variables. For simplicity of notation, the action
variables will be given in units of 1, and thus they also represent
quantum numbers. The variables for the atom—diatom system
consist of the action variable j for the angular momentum of the
diatom j/ 2, the z-component m; along a space-fixed z-axis, the
action-variable [ for the orbital angular momentum /27t of the
two colliding partners, the z-component 1, and the action n for
the vibration of the diatom. The angle variables canonically
conjugate to j, |, m;, m;, and n are denoted by w’s. In the center-of-
mass system of coordinates, the remaining momentum of the six
momenta is Pg, the momentum conjugate to the center-to-center
separation distance R of the colliding reactants. These variables
and the associated incident flux term for the phase space of the
atom—diatom system are chosen for both the microcanonical
and canonical systems. Because the action variables are written
here in units of k, a canonically conjugate action-angle pair such
as j and w; that would normally have a phase space volume
element djdw;/h as dimensionless now has djdw; as dimensionless.

For setting up a classical trajectory study for a bimolecular
recombination rate constant in terms of the time-dependent
survival probability, the low pressure third-order rate constant for
an atom—diatom system is given by eq 1 for the case of a weak
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deactivating collision:

dEdE'dIodt
Qelec Qtrans Qrot — vib

(1)

where the step function © (E,I'o) is 1 or 0 according to whether
an intermediate is or is not formed from the trajectory of
the colliding partners, P(E,I'1o,t) is the survival probability for
the intermediate complex at time f, and Q.jeey Qtrans A0d Qiot—vib
are the electronic, translational (per unit concentration) in the
center-of-mass system of coordinates, and the rotational —vibra-
tional partition functions of the colliding partners.*® dI',
denotes dldmdjdm;dndw,dw,, dw; dwm dw,. The limits for the
multlple integrals are (—1[) for my, ( —jyj) for mj, (0,1) for the
w’s, (0,00) for E, |, j, n, and ¢, and, for a successful “three-body
collision”, (—D,0) for E. Here, D is the dissociation energy of the
triatomic species and 0 is the energy of the potential energy
asymptote at large separation distances of the two reactants. The
dE in eq 1 arises from the expression for the incident flux in the
customary way: the number of quantum states dRdPg/h occupy-
ing a phase space volume element dRdPy is divided by dR to yield
an incident probability density per unit R and then multiplied by
avelocity R to yield for the flux RdPg/h. The latter equals d(Pg*/
2u)/h = dEyans/h = dE/h at a fixed value of the other variables.
Here, 1 is the reduced mass of the atom—diatom collision
partners.

The 1/hineq1andthel/ n tacitly present in dI'; cancel the
1/h® present in the QiansQrot—viny SO that eq 1 for the classical
observable k is independent of h. Equation 1 applies to the case
where all electronic states but the lowest one are too shallow to
contribute to the overall recombination rate constant.

The Z(E',E) dE' in eq 1 is the number of collisions per unit
volume per unit time that lead to an energy transfer for the
vibrationally excited intermediate from E to (E,E' + dE'). It is
proportional to the concentration M of third-bodies, and the
three- body low pressure order rate constant k in eq 1 has units
of em®/molecule?/s. Strictly speaking, instead of Z(E',E) we have
Z(E'J E]) for a transition (JE) — (J'E') in a collision when J is the
total angular momentum quantum number of the vibrationally
excited intermediate. However, if for simplicity of presentation
we assume that ] has a thermal distribution after a collision then
Z(E'T E]) = P(J')2(E',E) independently of],lc’ where P(J') is
the thermal equilibrium distribution of J' at the given tempera-
ture. Eventually, the sum over all J' yields unity and what remains
is given by eq 1. It is useful to note therefore that in this
formulation E' — E is the total energy transfer, not just the
vibrational energy transfer. When the deactivating collisions are
weak, a property typically assumed now in dissociation and
recombination reactions*' ~* and supported by experiment,*****’
the collision frequency Z(E',E), is that for a weak collision. Models
for the collision energy transfer progerty Z(E',E) include the
stepladder,42 A9 single exponentlal $39% biexponential,*>**!
singularity,® and near singularity®” models.

In using eq 1, the time ¢ that each classical trajectory, specified
by its values of E and I}, exists as an energetic intermediate is
noted. For that value of E and I';, P(E,T"0,t) equals unity for the
trajectory for times less than this time t and zero thereafter.

To implement eq 1 and study the time-dependent survival
probability of the energetic intermediate as a function of E and J
the total angular momentum quantum number, it is convenient
to introduce a canonical transformation from the variables in I';,

1
=4 / / P(E, Ty, ) Z(E, E)O,(E, Typ)e F/¥T

to a total ] representation with variables that include | and its
space-fixed z-component M:

jlmimmwww, wpw, — jIMnwjwwywyw,

One can also include Py and R in both sides and so make a
canonical transformation of all the variables.

A formal generating function for the transformation has been
given,” but for our purpose, it suffices to know that the Jacobian
of a canonical transformation is unity. We denote the new
variables jlJMnwwwwyw, by I, and thus write d[¥,, = dJjdly
and dI'y = d]dldendw dwdwydwydw,,.

In terms of I”}o, we can write instead of eq 1 an equally valid
expression for the rate constant k

dEdE'dl, dt
/ / P(E, Ty, ) Z(E, E)O.(E, T )e F/*T 10

Quiec Qurans Qot i
(2)

We have used the fact that the Jacobian of the transformations
from T'yo to Ty is unity.

Equations 1 and 2 involve a detailed tracking of each trajectory
in (E,I'yo) or (E, rlo) space, respectively. However, this informa-
tion is for typical purposes excess information and it is useful to
count instead the number of intermediate complexes formed at
t=0atagiven E and ] and the fraction of those that survive at any
time . We thereby introduce a time-dependent survival prob-
ability P(E,Jt) for systems at a given E and J that is the fraction of
intermediate complexes formed at ¢ = 0 that has survived at time

t:
/ / (E, T, )O(E, T’,) dI's
/ /@Enoag

where P(E,Jt), a dimensionless quantit}r equals unity at ¢t = 0.
Since the 1ntegrat10n in eq 3 is over I'y while the integral is a
function of I}, this P is a function of J. It permits a direct and
detailed comparison with the result for RRKM theory for various
Eand].

We denote the denominator in eq 3 by W(E,J), a dimension-
less term related to the incident flux, which serves as a cumulative
reaction term in (E,J) space:

we)) = [ - [ edsry) (4)

Thereby, eq 2 can be written as
Y g
h Q_elec Qtrans th — vib
(5)

where the limits are (0,],,.) for J and the limits given earlier for
the remaining variables. This equation has been written in a
form that parses k into the different contributions from the
various E’sand J’s. In eq S, as already noted, P(E,J,t) and W(E,])
are dimensionless, Z(E',E) dE’ has units of cm®/molecule/s,
Qutec and Q,o¢_vib are dimensionless, 1/Qyrans has units of cm>/
molecule, and dEdt/h is dimensionless. Thus, k has units
of cmé/moleculesz/s, the units of a three-body recombination
reaction rate constant.

Equations 3 and 4 can be simplified further. We consider
first a fixed M, the space-fixed z-component of the total angular

P(E,J,t) (3)

7
(B,))2(E, B)e Fir _ YIEAEd:
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Figure 1. Variables in the reduced rotational —orbital space, depicting
the various action angle variables.

‘Line of nodes

y

Figure 2. Planes describing the variables w; and w), canonically conjugate to
Jand M.

momentum quantum number ], and a fixed wy and wy, the
angle variables conjugate to J and M. Each integral in eqs 3 and
4 over the remaining variables is, one can see on physical
grounds, independent of these three variables and so we can
immediately integrate over M, wy,, and wy, yielding values of 2],
1, and 1. Equations 3 and 4 now become

/ / (E,Ts,t)O.(E,Ts) dls
P(E,J,t) = (6)
/ / ©.(E,T's) drs

W(E,]) = 2]/ / O.(E,T) dl's (7)

where 'y = (j,l,n,wj,wl,wn). The rotational—orbital variables
are depicted in Figure 1, where we have placed the vector
corresponding to ] along the z-axis. The planes of motion
describing J, M, wy;, and w; are depicted in Figure 2. The

Figure 3. Schematic illustration of “phase space” and reaction pathways
for a general atom—diatom collision, A + BC — ABC* — products. The
loose (O) and tight (X) transition states are marked.

relation of the conventional Cartesian coordinates and mo-
menta to the variables in Figure 1 is given in Appendix A.

There is an additional aspect to be considered in a collision
A + BC. The high energy intermediate can dissociate either via
the channel from which it came or via the other channel. This
factor enters into any comparison with RRKM theory. The
collision A + BC can form ABC or ACB. Considering the
former first, we distinguish two sets of reaction products after
the formation of an intermediate ABC, A + BC, and AB + C.
For analyzing any nonstatistical effect, P(E,I'st) is decom-
posed into the contribution from those P, (E,[s,t) that at time
tlater dissociate into the entrance channel (A + BC) and those
P (E,T'4,t) that dissociate into the second channel (AB + C)
(ex for exchange). In the comparison, one also has to distin-
guish the trajectories that form ABC from those that form
ACB, asin Figure 3, where the different regions and the “loose”
and “tight” transition states (TS) are depicted schematically. In
a loose TS, the two reactants rotate freely, and in a tight TS,
they do not. The actual situation is typically somewhere in
between.

3. QUANTUM VERSION OF RECOMBINATION RATE
CONSTANT AT LOW PRESSURES

In a quantum version of eq 1, a direct analogue would be the
use of a wavepacket containing wave functions of a particular (j,/,
mj,ml,n) or (j,l,J,M,n) with a small range AE of translational
energies for the colliding particles. The desired width AE of the
packet is such that its At counterpart, h/AE, is small relative to
the lifetimes of interest. For example, in the low pressure region,
if the pressure of third bodies is of the order of 1 atm at 298 K, the
average time between collisions for deactivation of an energetic
ozone intermediate with a third body, such as N, is about 200 ps.
If AE were selected to be about 0.25 kT, i.e., about 50 cm ™" at
room temperature, then the time resolution would be of the
order of 1 ps.
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For k, we write

k= / //ZP s, v, t)vo (s, v) Z(E, E)v?e B —— —

dE'dvdt
QEIec th —vibly

(8)

where I's now denotes quantum state numbers (j,l,mj,ml,n) and v
is the mean velocity of the wavepacket, o(I'sv) is the total
reactive scattering cross section, P(I's,v,t) denotes the survival
probability that a complex formed from state Fﬁ and v survives at
time ¢, and I, is the integral I, = f e T qy = (7/2)1?
(kT/u)M2 In eq 8, we note that v” is related to E, j, and ninI's by

= 2[E — Ho(jsn)]/u )

where Hy(j,n) is the initial rotational—vibrational energy of the
diatomic molecule.

When comparing with RRKM theory at a given E and J, it is
convenient to introduce an E- and J-dependent cross section
o(I',v), using Clebsch—Gordan coefficients. That is, the Clebsch—
Gordan coefficients are implicitly included in this o(I',v). We then
have for the rate constant

dE'dvdt
k _ , 7E/kT
/// ZP E] E]) (E E) Qelechot—wb
(10)
where
W(E,J]) = ;fo(r,, v)/1, (11)
]

and

Y (T}, v, t)v*o (T}, v)

3}
Z vo(I'y,v)
1y

P(E)]) t) = (12)

Here, I'; denotes collectively the five quantum numbers (J,M,jn).
The o(I'j,v) tacitly includes the Clebsch—Gordan coefficients in
its definition, and the sum is over I';, with an accompanying
choice of v that satisfies the energy condition given in eq 9. The
integration or summation limits in eq 10 for F/, ], and t are the
same as before, and the 1ntegrat10n over vis from 0 to eo. In eq 10,
W(E,]) dv has units of cm®/molecule, Z(E’ E) dF’ agaln has units
of cm’/molecule/s, and k has units of cm®/molecule®/s.

4. CALCULATION OF RECOMBINATION RATE CONSTANT
FROM RRKM LIFETIME DISTRIBUTION

i. RRKM, Lifetime Distribution for Comparison with Clas-
sical Trajectory Results. In eqs 1, 2, and 5, the time-dependent
survival probability of the intermediate in the recombination rate
constant was based on trajectories. In this section, we consider
the recombination rate constant based on the survival probability
Prrxm(E,Jt) for a statistical (RRKM) theory. The comparison
between these two P(E,J;t)’s permits the identification of non-
statistical contributions to the rate.

In the classical limit of the RRKM expression, krrinr = N*(E,J)/
hp(E,]) for a vibrationally excited molecule with s coordinates;
N*(E,J) and N*(E,J)h* " are, respectively, the number of quan-
tum states and the volume of phase space occupied by a transition
state with rovibrational energy equal to or less than E at a given
quantum number ] (per unit J). The p(E,J)k’ is the volume of

phase space per unit energy and per unit ] occupied by the
energetic molecule for the given J. The powers of h cancel in the
classical limit for krrxn(E,J), as they should.

In the case of RRKM theory, we have

Prricm(E, ], t) = e fment (13)

for a triatomic intermediate, and the step function ®. = 1 if N*
(EJ) = 0 and 0 otherwise. For this purpose, eq 1 for the low
pressure three-body recombination rate constant is replaced by

_epurN*(E,J) JJdEE'dt
////PRRKM E]’ E E) (E ]) Q,elecQImnsQ:ot vib

(14)

The step function ©(E,]) in eq 14 is not redundant. Although
this information is contained in N*(E,J), the N* will later cancel
an N*in Prgyym after the integration over t, but the information of
whether or not the collision leads to a vibrationally excited
intermediate does not cancel. A comparison of eqs 5 and 14
reveals that the transition state equivalent of W(E]) is O,
(E))N*(E)).

The integration in eq 14 over ¢ yields
dEdE'd
kf/// (E,])Z(E,E)O.(E,J)e BM ——— 2 J
Qetec Qsrans Qrot — vib
(15)

The 1/h° in p(E,J) cancels the 1/h* from Q.o and the 1/h°
from Qypans- The classical result is seen to be independent of £, as
it should be. The limits of integration in eqs 14 and 15 are the
same as before.

For the quantum version of eq 1S5, one merely uses the
quantum version of p(E,J), now the density of states for a given
J, and uses the quantum version of Qo vib, and requires that
O.(E,) = 1 when N*(E,J) = 2J+1.

ii. Classical Density of States for RRKM Theory in the
Recombination Rate Constant. We consider the density of
states p(E,J) for the triatomic system for a given total angular
momentum quantum number ] and energy E. We use variables
appropriate to an atom—diatom system. In particular, we use
rotational/orbital action-angle variables used in the selection of
the initial conditions, together with p,, r, Pg, and R (Px is later
subsumed in the constant E condition). By not using the usual
body-fixed vibrational —rotational coordinates for the intermedi-
ate complex, it obviates the need for introducing Coriolis and
other rotation—vibration coupling terms for the long-lived
intermediate. On the other hand, care is needed to ensure that
the integration is over the phase space occupied by the
intermediate.

The density of states p (per unit energy for the given J) is given
in terms of these coordinates and momenta for an atom—diatom
system and then j, , m;, and m; are transformed to j, [, ], and M, as
noted earlier. We have

p(E,J) = / / O(E — H) dI',dPxdRdp,dr/h>  (16)

where dI”; = djdldMdw,dw,dw;dwy, (each action here is again in
units of 1) and H is the total energy in terms of these variables
(including a Py %/2u term). After integration over all variables but
M, wyy, and wy, the result is again independent of the three
variables and thus one can immediately integrate over them,
yielding values of 2], 1, and 1, respectively. For eq 16, a canonical
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transformation from variables containing m; and m; to those
containing ] and M has a Jacobian of unity, and this fact was used
in obtaining eq 16. The transformation yielded a dJ, but we can
set dJ = 1 to obtain the density of states per unit ], which also is
equivalent to a density of states at the given J.

After integration over M, wy,, and wy, the p(E)]) is given by

p(E,J) = 2]/ -~-/6(E—H) dr)dPydRdp,dr  (17)

where dI, = djdldw;dw, and the O(E — H) can be replaced by
While the p is determined uniquely by the variables specified
in eq 17, it is necessary to specify additional variables in order to
utilize the expression for the conventional coordinates and
momenta given in Appendix A. In particular, we note that if ]
is placed alon% the z axis, as in Figure 1, we have M = J. Also, m
givenby P =" + J* — 2myJ and my equals | — m;.
For the two remaining variables, there are four cases: (1) w,,
0 and w,, = 0, (2) Wy, = 1/2 and w,, = 1/2, 3) Wy = 1/2 and

Wy, =0, and (4) w,, =0 and w,, —1/2 As seen in eqs A1—A12,
the pair (1) and (2) are related by inversion symmetry (when all
three atoms are the same isotope), and (3) and (4) are similarly
related to each other. Further examination of the angle y
(defined in Appendix C) shows that the members of one pair
are geometric isomers of the other pair, one being ABC and the
other BAC. The relation,** cos y = cos 6 cos 6, + sin 6 sin 6, cos
u, with coordinates defined in Appendix C and related to
variables defined in Appendix A, was used to see if Y corresponds
to the molecule ABC or ACB. For one isomer of the collision
complex, ABC, the angle y lies in (0,77/2), and for the other,
ACB, y lies in (71/2,7). For the transition state, when it is “tight”,
the same remarks apply. When it is loose, the angle y fully
occupies the (0,77) interval.

iii. Transition State for Recombination: Number of States,
N*. For the transition state for the recombination, two limiting
reaction coordinates are sometimes used: (1) R, the distance
between the centers of mass of the two colliding reactants, and
(2) the distance between the two atoms of the newly forming
chemical bond. For a “loose” TS in which AB rotates relatively
freely, the former is the natural choice, and for a “tight” TS, the
latter is more suitable. A linear combination of them for the
microcanonical formalism, given by Klippenstein et al.,** gives an
improved choice, optimized so as to have the least value of N*
(and thus corresponding to a TS having the fewest recrossings of
the TS by trajectories). The role played by the recrossmg
criterion was noted by Wigner in his classic 1937 paper.**

When R can be used as a reaction coordinate, the number of
quantum states at the transition state, N*(E,]), with energy equal
to or less than E, denoted by the step function G, is given by

N*(E,J) = min / ---/@(E—H) dCldp.dr/h  (18)

where drj denotes djdldMdw;dw,dw;dwyy, as before. The H is the
Hamiltonian at the given R and contains the Py */2u. Once the
other coordinates and momenta in H are specified, Pg’/2u is
given by energy conservation. One also had a dJ but set dJ = 1 as
before. Upon integrating over M, wy;, and wj, N*(E)]) is then
given by

N*(E,]) = min 2]/ / O(E — H) dl%dp,dr/h (19)

where dI”} again denotes djdldw;,dw;. The N* Jn egs 18 and 19 is
determined using variational RRKM theory.>® Once again, while
N*(E)J) is determined uniquely by the reduced number of
variables appearing in eq 19, implementation of the equations
for the various coordinates in Appendix A requires the assign-
ment of values for m;, mj, w,,, and w,,,, as discussed for p(E)) in
the previous section.

5. SUMMARY AND CONCLUDING REMARKS

Expressions are given for treating the time-dependent survival
probability P(E,J,t) and an incident flux cumulative reaction flux
term W(E,]) for the intermediate complexes that are formed in
atom—diatom collisions. The low pressure recombination rate
constant is expressed in terms of these quantities and an energy-
dependent collision frequency Z(E',E). A canonical transforma-
tion to the total ] representation served to simplify the expression
by permitting the immediate integration over several variables.
The P(EJ,t) and W(E,J) were expressed in terms of classical
trajectories, quantum mechanical wavepackets, and, for compar-
ison, RRKM theory. Action-angle variables were used for the
sampling of initial conditions for the trajectories and in the
calculation of density of states p(E,J) and number of states N*(E,]).
Nonstatistical effects in the recombination rate constant calcu-
lated by trajectory or wavepackets can be identified in part from
the deviation of the survival probability P(E,Jt) from a single
exponential.

For a collision, A + BC, the recombination rate constant and
the nonstatistical effects for each of the two exit channels from
the intermediate complex can be explored. Any of several weak
collision models, such as those described in refs 38 and 39, are
available for the calculation of the low pressure recombination
rate constant. However, the main focus is instead the study of the
nonstatistical effects, which can have implications for the quan-
tum analogue. In some alternative approaches, the dissociation
behavior has been exgressed instead in terms of average state-
dependent lifetimes."

The formalism involving P(E,J;t) is applied elsewhere to the
study of nonstatistical aspects of ozone formation by a recombi-
nation reaction, and a comparison with RRKM theory. The
changes in K, the component of J along the near-symmetric top z-
axis of ozone, have been implicated by Schinke and co-workers
both in collisional energy transfer of ozone and thereafter
intramolecularly into its vibrations.***” A theory of the phenom-
enon of K diffusion in such near-symmetric top molecules and
dissociation, a source of non-RRKM behavior when the diffusion
is slow, has recently been given in refs 58 and 59. A detailed
discussion of results for RRKM that uses either an adiabatic or an
active K for the limiting behavior is given in ref 60.

B APPENDIX A: INITIAL CARTESIAN AND MOMENTUM
COORDINATES FOR CLASSICAL TRAJECTORIES OF THE
ATOM—DIATOM SYSTEM IN TERMS OF ACTION-ANGLE
VARIABLES

The initial conditions of interest in phase space for the
atom—diatom collision are given here for the action-angle
variables and the diatom internuclear distance r, and its conjugate
momenta p,. Speciﬁcally, the initial conditions can be chosen for
(jymilmy,n,Pr,w; Wi W, mWnR) for the classical trajectories at
an initial center to center distance R; in the noninteraction
region. The values for r and p, are obtained from w, and n.
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In the center-of-mass coordinate system for the collision pair
A + BC, we let (Q1,Q,,Q;) denote the Cartesian coordinates of
C with respect to B and (Q4,Qs,Qs) to be those of A with respect
to the center of mass of the pair (B, C).

The various Cartesian coordinates and their conjugate mo-
menta P’s for the atom—diatom systern are given in terms of the
action-angle variables as follows.”" (For notational brevity, we
write in eqs A1—A12 all of the 27zw’s as w’s.)

Qi = r[cos w; cos w,, — (m;/j) sin w; sin w,, | (Al)
Q, = r[cos w; sin w,, + (m;/j) sin wj cos w,, | (A2)
Q =r[l— (mj/j)z]l/z sin w; (A3)

P, = p,[—(m,-/j) sin wj sin w,, + cos w; cos wmi]

— (mj/r) cos w; sin wy, — (j/r) sin wj cos w,,  (A4)

P, = p[(m;/j) sin w; cos wy, + cos w sin w,, |
+ (mj/r) COS Wj COS Wy, — (j/r) sin wj SN Wy, (AS)

Py = p[L = (m;/j)*]"" sinw; + (i/r)[L = (m/j)?]'/* cos w,

(A6)

Qs = Ri[cos wy cos wy, — (mi/1) sinwsinwy,] (A7)
Qs = Ri[cos wy sin w,,, + (my/1) sin wy cos w,y,] (A8)
Qs = Ri[1 = (m/1)"]"/* sin w; (49)

Py = Pr[—(my/1) sin wy sin w,, + cos w; cos wy,|

— (my/R;) cos wy sin w,,, — (I/R;) sin wj cos wy,,  (A10)

Py = PR[(ml/l) sin w; cos w,,, + cos wj sin wml]

+ (my/R;) cos w; cos w,,, — (I/R;) sin wy sin w,,,  (A1l)

Ps = Pr[l — (ml/l)2]1/2 sin w; + (I/R;)[1 — (ml/l)2]1/2 cos w
(A12)

The Hamiltonian utilizing eqs A1—Al2 can be numerically
integrated in a classical trajectory in conventional Cartesian
coordinates for a reactive scattering for an atom—diatom system.

When the vector corresponding to ] is placed along the space-
fixed z-axis, as in Figure 1, these eqs A1—A12 can be simplified:
we have m; + m; = ], and we can select, as in the text for p and for
N¥, the four cases of the values for Wi and w,,,, the four pairings of
0 and 1/2 for these variables. In samphng the initial conditions
for eqs 6 and 7, the results of a trajectory for these quantities are
uniquely defined by the variables I's. We are left with four
independent rotational—orbital phase space variables (j, I, w;,
and wy), in addition to n and w,,. For a given initial R, the initial Py
is determined by J m and E. If we place | along the z-axis, as in
Figure 1, then I* = /> + J* — myJ, and thus, I can be sampled by
sampling m; in the interval ( —j,j). Therefore, in this particular
procedure, the sampling variables are j, | (via mj) , wj, wy, 1, and w,
while Wi and w,, are selected as above, for sampling initial

conditions. For sampling for N*, one would use r and p, instead.
For sampling for p, one would add R and Py to the latter. The m,
is set equal to ] — m; in using eqs A1—A12.

B APPENDIX B: SURVIVAL PROBABILITY AND REAC-
TION FLUX WITH DELTA FUNCTIONS

We give here for completeness alternative expressions for P(E,
J,t) and W(E,J). With T'} denoting the variables given in the
paragraph following eq 1, we can write the time-dependent
survival probability at a given energy E and total angular
momentum quantum number ] as

/ / E rw, E rw)a(] ]) drlo
P(EJ,t) =
/ /@ E rlo 5(] ]) de

(B1)

where the P(E,J,t) equals unity at t = 0. The J' is expressed in
terms of the I'y variables. The E and the variables in I}, provide
the initial Pr. The 6(J — J') in eq B1 can be replaced by a 6 (P —
P')/(9]'/P), where P’ is a suitable angular momentum variable
in rlo.

We also introduce a term related to the incident flux W(E,])

W) = / / O(ET10)0( — ) dlyy  (B2)

The low pressure recombination rate constant k from eq 1 is now
again given by eq S, with P(E,],t) and W(E,]) now given by eqs B1
and B2.

B APPENDIX C: CLASSICAL DENSITY OF STATES FOR
RRKM THEORY IN THE RECOMBINATION RATE
CONSTANT

We consider the density of states p(E,]) at the given ] for an
atom—diatom complex for a given total angular momentum
quantum number ] and for a given E, using instead of the variables
used in the body of the paper the Jacobi phase space variables. Using
Jacobi variables instead of the usual body-fixed vibrational—
rotational coordinates for the intermediate complex again obviates
the need for introducing Coriolis and other rotation—vibration
coupling terms for the long-lived intermediate. In this appendix, the
total angular momentum is, reverting to the usual units, J7.

In terms of Jacobi coordinates and momenta for an atom —dia-
tom system, we have®*

1 7 4 /
(C1)

where dI'jy = dPydPy dP4dP,, dp,d0d6,d¢pde,dr/ h> and E” is
the total energy related to the Jacobi coordinate Hamiltonian
(eq C3 below). Here, 1, 6, and ¢ are the spherical polar coordinates
for the axis of the diatomic rotor, with conjugate momenta p,, Py,
and Py. R, 0}, and ¢, are the spherical polar coordinates for the
vector R from the atom to the center of mass of the diatom, with
conjugate momenta Py, Py, and Py, . In eq C1, we have

J?H2 = Pg® + Py, 2+ 2PyPy, + Py cs? O + Py 2 csc? 0,

+ 2PgPg, cos(¢p — ¢,) + 2P4Py, cot O cot 0y cos(¢p — ¢;)

5631 dx.doi.org/10.1021/jp111833m [J. Phys. Chem. B 2011, 115, 5625-5633



The Journal of Physical Chemistry B

+ 2Py, Py cot O sin(¢p; — @) + 2PyPy, cot Oy sin(¢p — ¢,)
(C2)
In terms of the above coordinates, the Hamiltonian for the

interaction between the atom and diatom system is given by the
well-known eq C3, written here for later reference

1 1 P2
H=—|p>+=|p? ¢
2u,, b +1’2< 0 +sin2 9)
R YT B PSSR il B R (C3)
2u R TRa\ "0 sin? 6,

where Vis the potential energy function for the triatomic system,
U is the reduced mass of the diatomic molecule, and x again is
the reduced mass of the atom—diatom system.
In eq C1, one can write
o g7y — OB =Pk _ d(Pa—Fy

Integration over Py then yields a Py defined by the remaining
variables in eq C3.>> The 0(J — J') in eq C1 can be written as

0(Py —Py)
d]' /aPy
The second equality in eq C4 applies when J is placed along the
z-axis; we have J# = Py + Py . It is intuitively evident, since when
] is placed along the z-axis we have for the variation in J, 0Jf =
OPg at constant Py, . To show the second equality more formally,

Cartesian components of the angular momenta corresponding to
l'and j can be introduced:

J = (ot L)+ Gy + 1) + G + 1) (Cs)

o0 -J) =

= o(py— 7))  (CH)

Taking variations, 0’s, of both sides at constant j, (constant P, )
and then placing J along the z-axis, i.e., then setting j, + I, = j, +
l,=0and j, 4 I, = ], we have O] = OPy, i.e, 1/(9]1/0Py) = 1,
thus yielding eq C4. The factor 1/(9]'/9P,) in eq C4 also serves
as a conditional probability: the probability that Py lies in (P,Py
+ dPg) given that J lies in (J,] + dJ) is 1/(9]/dPy).

We next introduce into eq C2 a new variable u = ¢ — ¢, and
thus, (1,¢,) are now variables instead of (¢,¢; ). At a fixed u, the
¢, can be integrated to yield 27. Integration over Py yields P,
defined by the remaining variables in eq C2 for the given J. The
remaining integration in eq CIl is over dPsdPydPy dp,-
d0d0,dudrdR. The density of states of the intermediate complex
at a given total energy E and ] is independent of the orientation of J.
If reducing the dimensionality of the integral by one, the vector
corresponding to J is placed along the z-axis, yielding the constraint
P¢ + P ¢1 = ]-”T

The limits of integration for the remaining variables in eq C1
are (0,77) for 6,6, (0,271) for u, and the limits for r, R and the
remaining momenta, subject to the constraints described above,
are selected so as to cover the physical range occupied by the
intermediate. These variables are randomly sampled in accor-
dance with the microcanonical distribution.

In the various equations given earlier for the interaction
region, positive and negative momenta arise. One can use the
symmetry to reduce the size of the integration region and avoid
potential sign problems. There are eight combinations of signs

for POI)P@P(pI: (+)+:+)y (+)7)+); (7)+)+)y (+)+)7)r and the
inverse sign for each. The second four combinations can be
omitted and the final result multiplied by a factor of 2. For
integrating p,, it suffices to use p, = 0 and multiply the final result
by 2. The relation* cos y = cos 0 cos 6, + sin @ sin 6, cos u can
be used to see if y, the angle between r and R, corresponds to the
molecule ABC or ACB.
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