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A theory that describes the non-RRKM �non-Rice-Ramsperger-Kassel-Marcus� effects in the
lifetime statistics of activated ozone molecules is derived. The non-RRKM effects are shown to
originate due to the diffusive energy exchange between vibrational and rotational degrees of
freedom in ozone molecule. The lifetime statistics is found to be intramolecular diffusion controlled
at long times. The theoretical results are in good agreement with the direct MD simulations of
lifetime statistics. © 2010 American Institute of Physics. �doi:10.1063/1.3430514�

I. INTRODUCTION

In the previous paper1 hereafter referred as Part I, we
have shown that the intramolecular energy exchange be-
tween the rotational and vibrational degrees of freedom in
the vibrationally excited triatomic molecule has a diffusive
behavior. For ozone, this diffusion process is fast enough to
violate the assumption of adiabaticity of rotational degrees of
freedom, yet slow enough to consider these degrees of free-
dom active.1,2 We therefore expect some non-RRKM �non-
Rice-Ramsperger-Kassel-Marcus� effects in the process of
ozone formation. An explicit stochastic differential equation
that governs this intramolecular diffusion was derived in Part
I. In the present paper, we use stochastic analysis to study
analytically the non-RRKM effects caused by diffusive en-
ergy exchange between the rotational and vibrational degrees
of freedom in ozone.

Recent classical molecular dynamics �MD�
simulations3,4 revealed non-RRKM effects in the distribution
of lifetimes of activated ozone molecules. The distribution
functions that were obtained consisted of multiple exponen-
tial decays, some of them had a slow long-time tails while
the others did not have such tails. In the present paper, we
show that the observed nonstatistical behavior of lifetime
distributions is a result of diffusive Coriolis energy exchange
between the rotational and vibrational degrees of freedom.
Using the Fokker–Planck approach, we derive an analytical
expression for the lifetime distribution functions obtained in
numerical simulations.3,4

The paper is organized as follows. In Sec. II a differen-
tial equation for the intramolecular probability distribution
density is derived. In Sec. III an analytical expression for the
dissociation rate appearing in this differential equation is ob-
tained. In Sec. IV the resulting differential equation is solved
numerically and is compared with the results of MD simula-
tions. In Sec. V an approximate analytical solution of this
equation is provided and the analytical expression for the
lifetime distribution function is derived. Results are summa-
rized and discussed in Sec. VI.

II. DIFFERENTIAL EQUATION FOR THE DISTRIBUTION
DENSITY

In Part I we showed that the dynamics of the
K-projection of the total rotational angular momentum J of
vibrationally excited ozone molecule during its lifetime can
be effectively described by a simple stochastic equation

dK

dt
= − �2DcK + �J2 − K2�Dc��t� , �1�

where ��t� is a delta-correlated noise ���t���0��=2��t� and
Dc�K� is a function of K, which for the ozone molecule 48O3

was found in Part I from numerical analysis of the
rate of K-diffusion to be Dc�evib�K��=0.000 04
+0.0015 exp�−15�evib−0.05�2� ps−1, where evib�Evib−Ediss

=E−Erot−Ediss is an excess vibrational energy in eV for a
vibrationally excited ozone molecule with total energy E and
dissociation barrier Ediss.

We consider a vibrationally excited ozone molecule with
the total energy E, which is greater than the dissociation
barrier Ediss. We assume that its total rotational angular mo-
mentum J is such that the total vibrational energy Evib=E
−Erot can be less than Ediss. The rotational energy of ozone
molecule can be written as1

Erot�K� =
J2

2��I2��I3�
+ 	 1

2�I1�
−

1

2��I2��I3�

K2, �2�

where �Ii� are the average principal moments of inertia and K
may take values from −J to J. Let us denote the value of K
that corresponds to the condition E−Erot=Ediss by

Kmax ��2�E − Ediss� − J2/��I2��I3�
�1/�I1�� − �1/��I2��I3��

. �3�

For the values of K such that �K��Kmax, the vibrational en-
ergy of ozone molecule is less than the dissociation barrier
Ediss and so the ozone molecule is not able to dissociate
�these vibrational energies correspond to closed states �or
channels� in Ref. 5�. For the values of K such that �K�
�Kmax, the vibrational energy of ozone molecule is greater
than the dissociation barrier and therefore ozone molecule
can easily dissociate �these vibrational energies corresponda�Electronic mail: ram@caltech.edu.
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to open states in Ref. 5�, as in Fig. 1. One can see that the
possibility of ozone molecule to dissociate is controlled by
the value of K, while the latter is controlled by the diffusion
process in Eq. �1�. Therefore the lifetimes of an excited
ozone molecule is controlled by the process of diffusion �1�,
which means highly nonstatistical �non-Poissonian� distribu-
tion of lifetimes of excited ozone molecules.

For the values of J and E such that E−Erot
max�Ediss the

vibrational energy is always greater than the dissociation
limit and Kmax=J. In this case the effect of a Coriolis driven
intramolecular energy diffusion is small since the dissocia-
tion rate of vibrationally excited ozone is much faster �as
shown in the next section� than the rate of vibrational-
rotational energy exchange. For the same reason these values
of E and J do not result in the slow long time “tails” of
lifetime distribution functions of vibrationally excited ozone
molecules in the numerical MD simulations performed in
Refs. 3 and 4. To illustrate the effect of rotations hereafter in
this paper we consider only the values of E and J that allow
E−Erot

max�Ediss and Kmax�J.
In the present analysis, we do not consider the centrifu-

gal effect on the dissociation barrier and hereafter assume
Ediss to be a constant independent of J. Centrifugal effect is
not essential in our model for the following reason. The ratio
of the maximum I3 and the minimum I1 moments of inertia
in an ozone molecule with C2v symmetry is 10 to 1, as noted
in Part I. The maximal decrease of dissociation barrier of the
O–O bond of length r0 due to the centrifugal effect is
achieved at zero value of the K-component of the total an-
gular momentum J and can be estimated as �Ecf

=m�2r0
2 /2=m�J / I3�2�I3 /2m� /2=J2 /4I3. On the other hand,

the maximum rotational energy of ozone for a given J is
achieved at K=J and equals Erot

max=J2 /2I1, which is 20 times
greater than �Ecf. Thus, in the process of interest, diffusion
of K toward its large values, the centrifugal effect is expected
to contribute only up to 10%. Taken into consideration the
fact that the fluctuation of inertia moments due to the large
amplitude vibration at energies near the dissociation limit is
about 20% �for I3� to 50% �for I1�, as noted in Part I, the
centrifugal effect can be neglected for the present purpose.

To treat quantitatively the diffusion Eq. �1� we utilize a
Fokker–Planck equation technique. We introduce a probabil-
ity distribution density ��K , t� that describes the probability
of K to take values between K� and K�+dK in a time interval
�t , t+dt�. Clearly, ��K , t� should be finite at the boundaries
K= �J and be symmetric on the interval �−J ,J� with respect
to K=0, which implies the boundary condition ���0, t� /�K
=0. The Fokker-Planck equation that corresponds to the dif-
fusion Eq. �1� is6

���K,t�
�t

= −
�

�K
	1

2

�D�K�
�K

− �2KDc
��K,t�

+
�2

�K2D�K���K,t� , �4�

where D�K���J2−K2�Dc�K�. Equation �4� states that the
probability density can be changed only by the process
of diffusion. Yet, we know that on the K interval
�−Kmax,Kmax� the ozone molecule dissociates and thus the
probability density on this interval also decreases with the
rate of dissociation r, which can be a function of K. Thus, the
complete differential equation for the probability density is

���K,t�
�t

= −
�

�K
	1

2

�D�K�
�K

− �2KDc
��K,t�

+
�2

�K2D�K���K,t� − r�K���K,t� �5�

with r�K�=0 for �K��Kmax and initial distribution density
��K ,0�=�0�K�. For the present model we can assume that no
value of K is preferred over the others at time t=0 �at the
moment of formation of an excited ozone molecule�, thus the
initial distribution density can be taken as a uniform step
function

�0�K� = �1/�2Kmax� , �K� � Kmax

0, Kmax � �K� � J .

 �6�

In the following sections, we provide a solution to the Eq. �5�
and then use it to derive the lifetime distribution function of
excited ozone molecules.

III. THE RATE OF DISSOCIATION r„K…

The diffusive nature of K�t� in Eq. �1� suggests that we
can keep K as adiabatic parameter in calculation of the dis-
sociation rate r�K�. The dissociation rate r is then a function
of the total vibrational energy Evib only and one should write
r�Evib�K�� instead. To calculate r�Evib�, one can apply RRKM
theory that includes only vibrational degrees of freedom. For
the purposes of present analysis, the direct numerical com-
putation of r�E� is sufficient. For this purpose, we perform
microcanonical sampling7 of nonrotating ozone molecules
with a fixed total energy E�Ediss, record statistics of their
lifetimes and obtain r�E� as a slope of Poisson distribution in
log-scale, see Figs. 2�a� and 2�b�. The details of the numeri-
cal simulations were described in “Numerical simulations”
section in Part I. As expected, the distribution of lifetimes of
nonrotating ozone molecules is purely statistical and does
not show any non-RRKM behavior. It was shown in Part I

FIG. 1. An effective diffusion of K-projection of rotational angular momen-
tum in ozone molecule. The figure represents a single trajectory of K�t� from
the MD simulation of a molecule of ozone. Point �a� corresponds to the
formation of ozone molecule, point �b� corresponds to the dissociation of
ozone molecule. The dark region corresponds to the energies at which ozone
molecule cannot dissociate �closed states�; the white region corresponds to
open states.
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that the non-RRKM effects appear only if rotation is present.
The best fitted line to the numerical results in Fig. 2�b� is
r�Evib�=kr�Evib−Ediss� ps−1, where kr=5.2 eV−1 ps−1. We
therefore finally obtain

r�K� � r�Evib�K�� = kr�E − Ediss − Erot�K�� = c1 − c2K2,

�7�
�K� � Kmax,

where c1=kr�E−Ediss− �J2 /2��I2��I3��� and c2=kr��1 /2�I1��
− �1 /2��I2��I3��� are constants for given total energy E and
angular momentum J.

MD simulations3,4 also observed another non-RRKM ef-
fect during the first two picoseconds of the formation of vi-
brationally excited ozone molecule in O+O2 collision. This
2 ps time is the time that is required for the vibrational en-
ergy initially localized in the O–O bond of ozone that just
formed to be redistributed among other vibrational degrees
of freedom. In terms of the present model of diffusive energy
exchange between vibrational and rotational degrees of free-
dom, this 2 ps is the time that is required for vibrational
degrees of freedom to reach ergodicity regime from the ini-
tially localized vibration, which allows then to consider vi-
brational chaos as a random noise to rotations. Vibrational
chaos is the key feature of the present model and in both the
present and the previous papers is assumed to have been
established. The non-RRKM effect of initial vibrational en-
ergy redistribution observed in Refs. 3 and 4 is thus not
important for our model and can be disregarded. In addition,
the non-RRKM effect mentioned above is observed only for
the particular method of preparation of the vibrationally ex-
cited ozone molecule, i.e., by an O+O2 collision. If the vi-
brationally excited ozone molecule is prepared from micro-
canonical sampling with random distribution of energies
between all vibrational degrees of freedom, such as done in
the numerical simulations of the present chapter, the above
mentioned non-RRKM effect would not be expected to be
found.

IV. SOLUTION FOR �„K , t…

Since the solution of Eq. �5� is symmetrical with respect
to K=0 we solve this equation on the interval K� �0,J� with

the initial distribution density ��K ,0�=2�0�K� ,K�0. The
differential Eq. �5� can be greatly simplified after the change
of variables from K to y,

y = y�K� = �
0

K dK�
�D�K��

. �8�

The derivatives and distribution density appearing in Eq. �5�
transform as6

	 �

�t



K

=
1

J	 �

�t



y

J ,

�

�K
=

1

J
�

�y
,

�9�
�2

�K2 =
1

J
�2

�y2

1

J
+

1

J
�

�y

�J
�K

1

J ,

�̃�y,t� = J��K,t� ,

where J=�D�K� is the Jacobian of transformation. Using
Eqs. �8� and �10� in Eq. �5� we obtain a simplified differen-
tial equation for the new distribution density �̃�y , t�

� �̃

�t
=

�

�y
	�2K�y�Dc

J�y� 
�̃ +
�2�̃

�y2 − r�K�y���̃ �10�

with the boundary condition ��̃�0, t� /�y=0, zero probability
flux at y=y�J�, i.e., ���2K�y�Dc� /J�y���̃+��̃ /�y=0 and ini-
tial distribution density �̃0�y ,0�=2�D�K��0�K�y�� ,y�0.
Equation �10� is now readily solved numerically. Before do-
ing so we derive the expression for the lifetime statistics that
we are interested in. The distribution of lifetimes of the vi-
brationally excited ozone molecules is given by the expres-
sion for the first exit times8

p�t� = − �
0

J ���K,t�
�t

dK . �11�

If one is interested in the integrated lifetime statistics P�t�
=�t

	p�t��dt�, the survival probability, which was used, for
instance, in Refs. 3 and 4 then its expression is given by

P�t� = �
0

J

��K,t�dK = �
0

y�J�

�̃�y,t�dy . �12�

Clearly, P�0�=1. Results of the numerical solution of the
second order partial differential Eq. �10� are shown in Fig. 3.
One can see that there is good agreement of the theoretical
solution and numerical results taken from Refs. 3 and 4. We
want to emphasize that the lifetime statistics in Eq. �12� and
the one calculated numerically in Refs. 3 and 4 is the statis-
tics of self-dissociation times of isolated vibrationally ex-
cited molecules. If the collisions with other molecules are
present, then the total lifetime statistics is the convolution of
the self-dissociation probability and the probability of
collision.9

FIG. 2. Dissociation rate r�E� of non-rotating ozone molecules as a function
of excess energy above the dissociation barrier. Part �a� presents lifetime
statistics P�t� for the energies E=Ediss+0.04 eV �top line� and E=Ediss

+0.08 eV �bottom line�. Part �b� represents the rates r�E� as a function of
excess energy on the interval from 0 to 0.08 eV.
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V. APPROXIMATE ANALYTICAL SOLUTION
OF EQ. „10…

Equation �10� can be solved analytically with some de-
gree of approximation. First, we disregard weak dependence
of Dc on K and assume that Dc is a constant. In this case we
easily find the analytical form of the parameters defined in
the previous section,

y�K� =
1

�Dc

arcsin	K

J

 ,

�13�
J�y� = �DcJ cos��Dcy� .

Introducing new variable x��Dcy, with x defined on the
interval �−
 /2,
 /2�, the Fokker–Planck Eq. �10� simplifies
to

� �̃

�t
= �2Dc

�

�x
tan�x��̃ + Dc

�2�̃

�x2 − r�x��̃ , �14�

with

r�x� = �c1 − c2J2 sin2 x , �sin x� �
1

J
�c1

c2
,

0, �sin x� �
1

J
�c1

c2
,� �15�

initial distribution density

�̃0�x� = �
J

2
�c2

c1
cos x , �sin x� �

1

J
�c1

c2
,

0, �sin x� �
1

J
�c1

c2
,� �16�

and boundary conditions

� �̃�0,t�
�x

= 0, �17a�

	�2 tan x +
�

�x

�̃�x=
/2 = 0, �17b�

which correspond to the requirement of the symmetry of the
distribution density with respect to x=0 and the restriction of
zero probability flux at x=
 /2, respectively. One can notice
the divergence of tan�x� in the boundary condition �17b� at
x=
 /2, which also results in zero probability density at x
=
 /2, i.e., �̃�
 /2, t�=0, in addition to zero probability flux
at the boundary.6

In the following two subsections, we obtain eigenfunc-
tions �̃n�x� and eigenvalues 
̃n of the diffusion Eq. �14�. One
can bypass the mathematical derivations of subsections A
and B, if one is mainly interested in the final results and
proceed directly to subsection C, where the results are pre-
sented.

A. The case of r„x…=0

First, we note that in the absence of dissociation rate
r�x�, i.e., in case of total energies of ozone molecules lower
than the dissociation threshold, the Fokker–Planck Eq. �14�

� �̃

�t
= LFP�̃ , �18�

with the Fokker–Planck operator LFP

LFP � Dc
�

�x
	�2 tan x +

�

�x

 , �19�

has a stationary solution

�̃st�x� = N cos�2�x� , �20�

where N is a normalization constant. Representing the sta-
tionary solution in the form �̃st�x�=N exp�−��x��, we define
a function ��x�, which is necessary for further discussion

��x� = − �2 ln�cos x� . �21�

In particular, the probability flux current S�x , t� can now be
expressed as6

FIG. 3. Lifetime statistics P�t� of excited ozone molecules. Solid lines are the results of MD simulations taken from Refs. 3 and 4. Dashed lines are the
corresponding theoretical results obtained from solution of the differential Eq. �10�. Curves �i� represent results for the total energy E=Ediss+0.2 kT and
J=5.6�; curves �ii� represent results for E=Ediss+0.2 kT and J=0; curves �iii� represent results for E=Ediss+3 kT and J=22�, where kT=0.025 eV is room
temperature. �a� represents the time interval from 0 to 80 ps; �b� represents the time interval from 0 to 1000 ps.
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S�x,t� = − Dc	���x� +
�

�x

�̃�x,t� . �22�

To find the eigenfunctions and the eigenvalues of the
non-Hermitian operator LFP it is convenient to consider a
transformed Fokker–Planck Hermitian operator6

L = e�/2LFPe−�/2. �23�

Both operators LFP and L have the same eigenvalues 
n and
their corresponding eigenfunctions �n and �n, respectively,
are related as �n�x�=exp���x� /2��n�x�.6 Transformation
�23� transforms operator LFP into the form similar to the
negative single-particle Hamilton operator in quantum
mechanics,6 i.e.,

L = Dc
�2

�x2 − V�x� �24�

with

V�x� =
Dc

4
����x�2 − 2���x�� , �25�

thus eigenfunctions �n�x� and eigenvalues 
n of the operator
L are the solutions of the stationary Schrodinger equation of
a particle in the potential V�x�=Dc�sin2 x−�2� /2 cos2 x.

We need to add a few comments on the form of the
potential V�x�. It is clear that the function �sin2 x
−�2� /2 cos2 x has second derivative that is always negative,
i.e., the latter function does not resemble a potential well but
instead a hill, as in Fig. 4. However, boundary conditions of
zero flux current at x= �
 /2 in the Fokker–Planck Eq. �18�
according to Eq. �22� give Dc����x�+ �� / ��x����̃�x , t� �x→
/2
=0. Representing �̃�x , t� in the form �̃�x , t�=��x�exp�−
t� we
get the boundary conditions for eigenfunctions
�n�x� :Dc����x�+ �� / ��x����n�x� �x→
/2=0, which after inte-
gration in the vicinity of x=
 /2 gives the behavior of �n�x�
at the boundary, i.e.,

lim
x→
/2

�n�x� = Cn lim
x→
/2

e−��x� = Cn� lim
x→
/2

cos�2 x = 0,

�26�

The boundary condition for the eigenfunctions �n�x� of the
operator L is therefore

lim
x→
/2

�n�x� = lim
x→
/2

e��x�/2�n�x�

= Cn lim
x→
/2

e−��x�/2

= Cn� lim
x→
/2

cos1/�2 x = 0. �27�

Therefore, x=
 /2 corresponds to the nonpenetrable wall at
which all eigenfunctions �n�x� become zero �the same is
clearly true for x=−
 /2�. Thus the Schrodinger potential
that corresponds to the Hamiltonian �24� is the one shown in
Fig. 4 and has a nontrivial form of an infinite potential well
with double divergence at the boundaries V�x→ �
 /2�
→−	 and V�x= �
 /2�=+	. By direct substitution into Eq.
�24� one can easily check that �0=exp���x� /2��̃st�x� is the
ground state in this potential with the corresponding eigen-
value 
0=0 �all other eigenvalues 
n are positive, as proved
in Ref. 6�.

B. The case of r„x…Å0

The case r�x��0 corresponds to vibrationally activated
ozone molecules with total energy above the dissociation
threshold, which we are interested in. Using the definitions
of the previous subsection, Eq. �14� reads

� �̃

�t
= �LFP − r�x���̃ . �28�

The transformation exp���x� /2��LFP−r�x��exp�−��x� /2�,
with ��x� from Eq. �21�, transforms a non-Hermitian

operator L̃FP�LFP−r�x� into a Hermitian operator L̃

�exp���x� /2�L̃FP exp�−��x� /2�, as seen in Appendix A,
given explicitly by

L̃ = Dc
�2

�x2 − �V�x� + r�x�� , �29�

where V�x� is the same function as in the previous subsec-
tion. The Schrodinger potential �V�x�+r�x�� is shown in Fig.

5�a�. It follows from Appendix A that the operators L̃FP and

L̃ have the same eigenvalues 
̃n and their eigenfunctions

�̃n and �̃n, respectively, are related by �̃n�x�
=exp���x� /2��̃n�x�. The boundary conditions for �̃n�x� are
the same as in Eq. �27�. The appearance of the barrier r�x� in
addition to V�x� �seen in comparing Figs. 4 and 5�a�� clearly
shifts all the eigenvalues of the potential V�x� upwards. Since
the lowest eigenvalue in V�x� was 
=0 all eigenvalues in the
potential V�x�+r�x� will be positive and therefore no station-
ary solution exists for the diffusion process in Eq. �28�.

The Schrodinger equation with potential V�x�+r�x� in
Fig. 5�a� cannot be solved analytically, but can be solved
approximately. Indeed, on the interval �x��xmax, where
xmax�x�Kmax�=arcsin�1 /J�c1 /c2�, we can represent the bar-

FIG. 4. Schrodinger potential V�x� for the operator L in Eq. �24�.
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rier r�x� with a step function of the average height r0

��0
xmaxr�x��0�x�dx−Dc /�2= �c1−c2Kmax

2 /3�−Dc /�2, while
on the interval xmax� �x��
 /2 we can approximate 1 /cos2 x
with its leading divergent term 1 / ��x�− �
 /2��2. The approxi-
mate Schrodinger potential is then

V�0��x� =�
+ 	 , �x� =




2
,

−
Dc

2 �1 +
�2 − 1

	�x� −



2

2� ,

xmax � �x� �



2
,

r0, �x� � xmax,

�
�30�

and is illustrated in Fig. 5�b�. For the eigenstates below the
barrier r0, i.e., with the corresponding eigenvalues 
̃n�r0,
the potential given by Eq. �30� results in eigenfunctions of
the form given in Eq. �31� as shown in Appendix B,

�̃n�x�

= �C1�


2
�k	


2
− �x�
Jq�k	


2
− �x�
� , xmax� �x��




2
,

C2 sinh��x� + C3 cosh��x� , �x� � xmax,
�

�31�

where Jq�x� is a Bessel function of the first kind,
q= ��2−1� /2, k=��
̃n /Dc�+ �1 /2�, �=��r0− 
̃n� /Dc and 
̃n is
the corresponding eigenvalue. The coefficients C1 ,C2 and C3

are found from continuity and normalization conditions. For
large values of x the asymptotic approximation holds, Jq�x�
��2 /
xcos�x− ��q
� /2�− �
 /4��. Therefore since the mini-
mum value of the expression k��
 /2�−xmax� is approxi-
mately 
 �as seen in the analysis below� we can use the
above approximation at the connection points at �x�=xmax to
find 
̃n and the corresponding C1 ,C2 and C3. We thus obtain

�C1� �
1

�


2
− xmax

C2 = �0, for even states,

k
�k2 + �2

C1

sinh��xmax�
, for odd states, � �32�

C3 = � k

�k2 + �2

C1

cosh��xmax�
, for even states,

0, for odd states,
�

and the equation to find 
̃n is

cot�k	


2
− xmax
 −


q

2
−




4
� =

k

�
. �33�

We can find an approximate expression for 
̃n retaining the
first-order term in the expansion of arccot�x�=arccot�0�−x,


̃n = Dc�� 
	n +
3

4
+

q

2



�
/2� − xmax +�Dc

r0

�
2

−
1

2� . �34�

In particular, the lowest eigenvalue is


̃0 = Dc�� 
	3

4
+

q

2



�
/2� − xmax +�Dc

r0

�
2

−
1

2� , �35�

and, as we show below, determines the long-time decay of
the lifetime distribution in Fig. 3.

For the eigenstates with 
̃n�r0 we find by analogy

FIG. 5. Effective potential well in Eq. �29�. �a� original potential; �b� approximate potential.
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�̃n�x�

= �C1�


2
�k	


2
−x
Jq�k	


2
−x
� , xmax � �x� �




2
.

C2 sin��x� + C3 cos��x� , �x� � xmax,
�

�36�

with

�C1� = �


2
+

�k2 − �2�xmax

k2 cot2��xmax� + �2�−1/2

,

C2 = �0, for even states,

k
�k2 + �2 cot��xmax�2

C1

sin��xmax�
, for odd states, �

�37�

C3 = � k
�k2 + �2 tan��xmax�2

C1

cos��xmax�
, for even states,

0, for odd states,
�

and the equation to determine 
̃n is

tan�k	


2
− xmax
 −


q

2
−




4
� = −

�

k
tan��xmax� . �38�

C. Analytical expression of the lifetime distribution
function

The eigenfunctions �̃n�x� and eigenvalues 
̃n of the op-

erator L̃FP, found in the previous section, allow one to derive
an approximate analytical expression for the lifetime distri-
bution function of vibrationally excited ozone molecules.
Representing a �-function in terms of eigenfunctions �̃n�x�,
as in Appendix A, we obtain the following expression for the
transition probability p�x , t �x�t��, see Ref. 6,

p�x,t�x�t�� = eL̃FP�x��t−t����x − x��

= e��x���
n

eL̃FP�x��t−t���̃n�x��̃n�x��

= e��x���
n

�̃n�x��̃n�x��e−
̃n�t−t��

= e��x��/2−��x�/2�
n

�̃n�x��̃n�x��e−
̃n�t−t�� �39�

where the quantities appearing in Eq. �39� are given by Eqs.
�21� and �31�–�37�. Given the initial distribution density
�̃0�x� in Eq. �16�, the distribution density �̃�x , t� at arbitrary
time is

�̃�x,t� =� p�x,t�x�0��̃0�x��dx�

= e−��x�/2�
n

�̃n�x�e−
̃nt�
−
/2


/2

�̃n�x��e��x��/2�̃0�x��dx�.

�40�

Clearly, only even eigenfunctions �̃n�x�� result in nonzero

integral in Eq. �40�, since both ��x�� and �̃0�x�� are even.
The lifetime distribution function P�t�=��̃�x , t�dx is then
given by

P�t� = �
−
/2


/2

�̃�x,t�dx = �
n

e−
̃nt��
−
/2


/2

e−��x�/2�̃n�x�dx�
���

−
/2


/2

�̃n�x��e��x��/2�̃0�x��dx��
� P
�r�t� + P
�r�t� , �41�

where we define the sum over those eigenstates that lie be-
low the barrier r0, i.e., 
̃n�r0, by P
�r�t� and the sum of
terms with 
̃n�r0 by P
�r�t�.

For P
�r�t�, the first integral in Eq. �41� is determined by

behavior of �̃n�x� on the interval xmax� �x��
 /2 since on
the interval �x��xmax it is exponentially small, as seen in Eq.

�31�. Yet, on the interval xmax� �x��
 /2 functions �̃n�x� os-
cillate and therefore the first integral in Eq. �41� is significant

only for the �̃n�x� that have even number of nodes, which
means that in addition to the requirement of even functions

�̃n�x� only the eigenfunctions with n=0,2 ,4 , . . . will make
dominant contribution. Using Eqs. �21�, �31�, and �32� we
therefore obtain

P
�r�t� �
4Dc

	


2
− xmax
sin�xmax�

�
n=2k


̃n�r0 1

�r0�r0 − 
̃n�
e−
̃nt,

�42�

where 
̃n is given by Eq. �34� and r0 is approximately
the average rate �r�x�� at a given total energy E
and total angular momentum J :r0��r�x��−Dc /�2
=kr�E−Ediss− �J2 /2��I2��I3���−kr��1 /2�I1��− �1 /2��I2��I3���
�Kmax

2 /3−Dc /�2, see Eq. �7�.
In the derivation of Eq. �42� and further analytical ex-

pressions in this section we use several approximations
based on physical grounds: we assume Dc�r0 which means
that rotational-vibrational energy exchange is much slower
than the dissociation rate r0; and we consider xmax such that it
is neither too close to its minimum value 0 nor it is too close
to its maximum value 
 /2. In this way we have competitive
contributions of both processes: the process of dissociation
and the process of rotational-vibrational energy exchange.
�Otherwise for small xmax rotational-vibrational energy ex-
change dominates dissociation and for xmax close to 
 /2 the
effect of Coriolis rotational-vibrational energy transfer is
small.�

For P
�r�t�, we note that �̃n�x� now oscillates every-
where, including the interval �x��xmax, see Eq. �36�. Due to

the oscillatory nature of �̃n�x� for �x��xmax, the second inte-

gral in Eq. �41� is dominated by those �̃n�x� that have nodes

near x= �xmax, i.e., �̃n��xmax��0 �in this case the number
of positive and negative half-periods of cos��x� differs by
one and do not compensate each other in the integral�. The
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condition �̃n��xmax��0 means cos��xmax��0, the latter
gives eigenvalues of the states which are dominant in sum-
mation P
�r�t�:


̃n� = r0 + Dc	 


xmax

2	n +

1

2

2

,n = 0,1,2, . . . . �43�

Retaining only these states in summation P
�r�t�, we obtain

P
�r�t� � �
n


̃n�r0 2Dc

�
̃n� − r0�sin�xmax�xmax

e−
̃nt �44�

in derivation of which we used cot��xmax�=0 and 
̃n� /r0

�1 for the states right above the barrier r0. Introducing Eqs.
�42� and �44� into Eq. �41� we finally obtain

P�t� =
2Dc

sin�xmax�� 1

	


2
− xmax
 �

n=2k


̃n�r0 2

�r0�r0 − 
̃n�
e−
̃nt

+
1

xmax
�

n


̃n�r0 1

�
̃n� − r0�
e−
̃n�t� , �45�

where 
̃n and 
̃n� are given by Eqs. �34� and �43�. Equation
�45� is the central result of the present paper. It gives the
survival probability of an energetically activated ozone mol-
ecule to remain undissociated by time t, or in other words the
probability of an activated ozone molecule to dissociate by
time t is 1− P�t�. One can check that the obvious requirement
of P�0�=1 is satisfied by analytical result �45�. Indeed, sub-
stituting expressions �34� and �43� for 
̃n and 
̃n� we get

P�0� =
2

sin�xmax�� 2Dc

r0	


2
− xmax
 �

n=2k


̃n�r0 1
�a − b�n + c�2

+
xmax


2 �
n=0

	
1

	n +
1

2

2� , �46�

where a=1+Dc /2r0, b= �Dc /r0��
 / �
 /2−xmax+�Dc /r0��2,
and c=3 /4+q /2. The second sum in Eq. �46� can be calcu-
lated exactly and equals 
2 /2. The first sum in Eq. �46� can
be approximated via the integral over 2dn and results in
�2 /�b�arctan��b�n+c�2 / �a−b�n+c�2�� �0

nmax��2 /�b��
 /2�
in our regular approximation Dc�r0. Expression �46� thus
results in

P�0� =
2

sin�xmax��4�Dc

r0 �1 +�Dc

r0

1

	


2
− xmax
� +

xmax

2 �
�

xmax

sin�xmax�
� 1. �47�

From the Eq. �45� several interesting conclusions can be
drawn. First, we notice that the coefficients 1 /�r0− 
̃n and
1 / �
̃n−r0� in Eq. �45� make an exponential term with 
̃n

�r0 dominant at initial times. This result means that at initial
times the lifetime statistics is governed by the purely vibra-

tional dissociation rate r0 as if there were no rotations of
ozone molecules at all. The effects of rotations slowly comes
in at later times and becomes dominant at long times result-
ing in the decay rate 
̃0, given by the expression �35�. One
can see from Eq. �35� that exponent 
̃0 is directly propor-
tional to the Coriolis coupling parameter Dc and thus, clearly,
it is the slow diffusive vibrational-rotational energy exchange
that determines long-time behavior of the self-dissociation
lifetime statistics.

The analytical expression �45� agrees with the exact nu-

FIG. 6. Comparison of exact and analytical �45� results for potential �30�
shown in Fig. 5�b�. Solid lines stand for P�t� obtained using exact eigen-
functions of the model �30�. Dashed lines represent the approximate analyti-
cal expression �45�. Curves �i� represent results for the total energy
E=Ediss+kT, J=20�, Dc=0.0005 ps−1, and r0=0.125 ps−1; curves �ii� rep-
resent results for the total energy E=Ediss+kT, J=20�, Dc=0.003 ps−1 and
r0=0.125 ps−1.

FIG. 7. Comparison between analytical results from Eq. �45� and numerical
results of MD simulations from Refs. 3 and 4. The notations used are the
same as in Fig. 3. Constant parameter Dc was taken as Dc�Evib�J��. �In case
�i� the analytical result �45� is normalized by P�0� and plotted as P�t� / P�0�
since in this case the approximation Dc�r0 that is necessary for Eq. �45� is
not well satisfied�.

224305-8 M. Kryvohuz and R. A. Marcus J. Chem. Phys. 132, 224305 �2010�

Downloaded 17 Sep 2010 to 131.215.21.85. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



merical simulation of the model �30�, shown in Fig. 6, and
describes well the results of the full three-dimensional MD
simulations in Refs. 3 and 4, as seen in Fig. 7.

VI. DISCUSSION

In the present paper, we have shown that the non-RRKM
effects observed in the lifetime statistics of the vibrationally
excited ozone molecules in Refs. 3 and 4 are the result of the
diffusive energy exchange between the vibrational and rota-
tional degrees of freedom. If the total energy E and the total
angular momentum J are such that Kmax�J, the
K-component of J may diffuse into the region �K��Kmax

where the total vibrational energy of ozone molecule Evib

=E−Erot is less than the dissociation energy Ediss. Once K
has diffused to this region, the ozone molecule cannot
dissociate and waits until K diffuses back to the region
K� �Kmax� where dissociation is allowed, as seen in Fig. 1.
Therefore, at long times the statistics of ozone self-
dissociation lifetimes is governed by the rate of diffusion of
K as shown by the analytical expression in Eq. �35�. As
discussed in Part I, the interval between the molecular colli-

sions at the relevant �atmospheric� pressure conditions of real
experiments is long enough for the observed diffusive energy
exchange to take place and thus to result in the non-RRKM
behavior of ozone dissociation.

We have also derived an approximate analytical expres-
sion for the lifetime distribution functions P�t�. It follows
from the analytical expression, that the rate of decay of P�t�
at initial times is governed by the rate of dissociation r�K�,
i.e., the rate of dissociation which does not include rotational
degrees of freedom, while at longer times the effect of
Coriolis diffusion becomes dominant and P�t� decays as 
̃0,
given by Eq. �35�, which is proportional to the Coriolis cou-
pling strength Dc.

In cases when the values of the total energy E and rota-
tional angular momentum J do not allow Kmax�J, i.e., all
possible values of K result in vibrational energies that lie
above the barrier of dissociation Ediss, the diffusive regime is
not reachable and the rate of decay of P�t� is governed
mostly by the dissociation rate r�K�. The latter result pro-
vides the reason why some curves P�t� in Refs. 3 and 4 have
slow long-time tails while others are “tailless.”

APPENDIX A: PROPERTIES OF L̃ OPERATOR

In this appendix, we discuss the properties of operator L̃�exp���x� /2�L̃FP exp�−��x� /2�, where L̃FP=LFP−r�x�
=Dc�� / ��x������x�+ �� / ��x���−r�x�=Dc�� / ��x��exp�−��x���� / ��x��exp���x��−r�x� and ��x� given by Eq. �21�. Only the
case of interest, x�Kmax��x�J�, is considered. Our derivations follow those in Ref. 6.

�a� L̃ is Hermitian. For any two functions W1�x� and W2�x� satisfying zero flux condition ����x�+ �� / ��x���W=0 at
x= �
 /2 we have

�
−
/2


/2

W1L̃W2dx = �
−
/2


/2

W1e��x�/2	Dc
�

�x
e−��x� �

�x
e��x� − r�x�
e−��x�/2W2dx

= Dc�
−
/2


/2

W1e��x�/2 �

�x
�e−��x� �

�x
e��x�/2W2�dx − �

−
/2


/2

W2r�x�W1dx

= − Dc�
−
/2


/2 � �

�x
W1e��x�/2�e−��x�� �

�x
e��x�/2W2�dx − �

−
/2


/2

W2r�x�W1dx

= Dc�
−
/2


/2

W2e��x�/2 �

�x
e−��x� �

�x
e��x�e−��x�/2W1dx − �

−
/2


/2

W2r�x�W1dx

= �
−
/2


/2

W2e��x�/2	Dc
�

�x
e−��x� �

�x
e��x� − r�x�
e−��x�/2W1dx = �

−
/2


/2

W2L̃W1dx , �A1�

where we have used integration by parts twice along with zero-flux boundary conditions.

�b� If �̃n�x� are the eigenfunctions of L̃FP with the eigenvalues 
̃n then �̃n�x�=exp���x� /2��̃n�x� are eigenfunctions of L̃ with
the same eigenvalues 
̃n

Indeed

L̃�e��x�/2�̃n�x�� = e��x�/2L̃FP�̃n�x� = e��x�/2�− 
̃n�̃n�x�� = − 
̃n�e��x�/2�̃n�x�� . �A2�

�c� Completeness relations: Since L̃ is Hermitian, its eigenfunctions form a complete basis set, therefore

��x − x�� = �
n

�̃n�x��̃n�x�� = e��x���
n

�̃n�x��̃n�x�� . �A3�
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APPENDIX B: SCHRODINGER EQUATION WITH
POTENTIAL IN EQ. „30…

In this appendix, we solve stationary Schrodinger equa-
tion −Dc��2 / ��x�2��+V�x��=
� in the potential �30�

V�x� =�
+ 	 , �x� =




2
,

−
Dc

2 �1 +
�2 − 1

	�x� −



2

2� ,

xmax � �x� �



2
,

r0, �x� � xmax,

�
�B1�

For �x��xmax, the solution for � is trivial

��x� = C1 cos	�
 − r0

Dc
x
 + C2 sin	�
 − r0

Dc
x
 . �B2�

For xmax�x�
 /2 the Schrodinger equation reads

�2

�x2� + �	1

2
+




Dc

 +

�2 − 1

2

1

	x −



2

2�� = 0. �B3�

After substitution z=
 /2−x Eq. �B3� takes the form of the
transformed Bessel equation

z2d2�

dz2 + �2p + 1�z
d�

dz
+ ��2z2r + �2�� = 0. �B4�

with p=−1 /2, �2= �1 /2+
 /Dc�, r=1 and �2= ��2−1� /2.
The solution of Bessel Eq. �B4� is

��z� = z−p�C1Jq/r	�

r
zr
 + C2Yq/r	�

r
zr
� , �B5�

where Jn�z� and Yn�z� are the Bessel functions of the first and
second kinds, respectively, and q=�p2−�2= ��2−1� /2 in
our case. The solution of the original Eq. �B3� is therefore

��x� =�


2
− x�C1Jq	�1

2
+




Dc
	


2
− x



+ C2Yq	�1

2
+




Dc
	


2
− x


 . �B6�

We now recall the necessary boundary condition �27� for
��x�: near x=
 /2��x� should behave as ��
 /2�−x�1/�2. Us-
ing the lowest order terms of Taylor expansion of the Bessel
functions of small argument, i.e., Jq�x��xq and Yq�x��x−q

we find that the solution �B6� near x=
 /2 behaves as

lim
x→
/2

��x� � C1	


2
− x
1/�2

+ C2	


2
− x
1−�1/�2�

, �B7�

obviously we should have C2=0 to satisfy the boundary con-
dition mentioned above. This means that only the Bessel
function of the first kind satisfy boundary conditions �27�,
and thus for ��x� on the interval xmax�x�
 /2 we finally
have

��x� = C1�


2
− xJq	�1

2
+




Dc
	


2
− x

 . �B8�

The solution on the interval −
 /2�x�−xmax can be found
by analogy

��x� = C1��


2
+ xJq	�1

2
+




Dc
	


2
+ x

 . �B9�
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