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Coriolis coupling as a source of non-RRKM effects in triatomic
near-symmetric top molecules: Diffusive intramolecular energy
exchange between rotational and vibrational degrees of freedom
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A classical theory is proposed to describe the non-RRKM effects in activated asymmetric top
triatomic molecules observed numerically in classical molecular dynamics simulations of ozone.
The Coriolis coupling is shown to result in an effective diffusive energy exchange between the
rotational and vibrational degrees of freedom. A stochastic differential equation is obtained for the
K-component of the rotational angular momentum that governs the diffusion. © 2010 American

Institute of Physics. [doi:10.1063/1.3430508]

I. INTRODUCTION

It was shown'™ that the unusual mass-independent iso-
tope effect in ozone formation*® can be explained by assum-
ing some non-RRKM (non-Rice-Ramsperger-Kassel-
Marcus) behavior of energetic ozone molecules. The reader
can find a review of literature on the ozone isotope effect and
the current status of theoretical investigations in Ref. 7. The
non-RRKM behavior of vibrationally excited ozone mol-
ecules was suggested in several classical mechanical numeri-
cal studies and an important role of the coupling of the rota-
tional degrees of freedom to the vibrations was
emphasized.7’8 Recently, the classical molecular dynamics
(MD) simulations”!® of collisional ozone formation 0+0,
—Oj showed a nonstatistical distribution of lifetimes of the
vibrationally excited ozone molecules. In a series of two pa-
pers we show analytically that the observed non-RRKM ef-
fects are indeed governed by the Coriolis coupling between
the rotational and vibrational degrees of freedom, which can-
not be accounted for by the standard RRKM theory.11

The RRKM theory assumes that any degree of freedom
can be treated as active or adiabatic.'” The former partici-
pates in the fast energy redistribution between the other de-
grees of freedom, while the latter remains in the same quan-
tum state during the reaction and does not randomly
exchange its energy with active states.”> The RRKM theory
cannot describe the situation when the exchange of energy
during the time of reaction is neither fast nor slow. An ex-
ample of such process can be energy diffusion, when energy
slowly diffuses from one degree of freedom to another. The
reason for such slow diffusion can be in a moderate coupling
between the corresponding states.

Rotational degrees of freedom are usually considered to
be coupled either strongly or weakly to vibrational degrees
of freedom and thus rotational degrees of freedom are con-
sidered as either active or adiabatic. Yet, in ozone molecule,
the Coriolis coupling turns out to be strong enough to violate
the assumption of adiabaticity and weak enough to consider
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rotational degrees of freedom as active.® The slow energy
exchange between the vibrational and rotational degrees of
freedom in ozone molecule was observed in the classical
numerical simulations in Ref. 8. There it was indicated that
the basic assumptions of the RRKM theory of the microca-
nonical energy redistribution between the vibrational and ro-
tational degrees of freedom fail for ozone.

In the present paper we apply a classical analysis and
show that the energy exchange between the rotational and
vibrational degrees of freedom in an activated triatomic mol-
ecule such as ozone can be described by the process of en-
ergy diffusion. We start with exact equations for the soft-
body rotational dynamics and derive an effective stochastic
differential equation that analytically describes the process of
energy diffusion. The diffusion is shown to be fast enough to
cause significant non-RRKM effects observed in Refs. 7-10.
The derived theory is general for the wide class of triatomic
molecules rotational dynamics of which can be described
within the symmetric top approximation.

This paper is organized as follows. In Sec. II we review
the standard approach to the treatment of molecular rotations
as rigid body rotations. In Sec. III we derive equations for
the soft-body rotational dynamics. In Secs. IV-VI we sim-
plify the dynamics of soft-body rotations to the process of
one-dimensional diffusion. We derive corrections to the sym-
metric top approximation in Sec. VII. In Sec. VIII we discuss
the main effects of the observed diffusion. We indicate the
effect of molecular symmetry on the Coriolis coupling in
Sec. IX. The numerical algorithms used in the paper are de-
scribed in Sec. X. In Sec. XI we conclude summarizing the
main results of the work.

Il. RIGID BODY DYNAMICS

In this section we review the general approach to the
treatment of rotations of a triatomic molecule representing it
as a rigid rotor. The equations of motion of a rigid body have
the simplest form in its principal axes of inertia."* For a
nonlinear triatomic molecule such as ozone, axes &, and &,
lie in the plane of the molecule, while axis &; is orthogonal to
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FIG. 1. Principal axes of inertia for a nonlinear three-atomic molecule.

the plane, Fig. 1. We denote by J;, J,, and J5 the projections
of angular momentum J to these axes and introduce the prin-
cipal moments of inertia Iy, /5, and I3 which correspond to
these axes, respectively. Hereafter in the present paper the
numeration of principal axes and corresponding principal
values are chosen in such a way that /; <I,<<I;. The rota-
tional energy of a molecule then reads
N S

= + +—. 1
) AR) AR ) M

The equilibrium geometry of the molecule has a valence
bond angle which, in the case of ozone, is equal to 120°. This
gives the ratio of the principal inertia moments /;:/,:1;
=1:9:10. Since I;<<I, and for the planar molecule /3=1;
+1,=1,, then such a molec_ule is often considered as a sym-
metric top with I;=I;=VI,I5. This approximation converts
expression (1) into

J? 11
Erot:_,+<___,)K2, (2)
21, \21, 21
where we used J2=J7+J3+J; and defined K=J,. The mini-
mum rotational energy for a given value of J corresponds to
E™"=J%/2I, and the maximum rotational energy corre-

rot

sponds to E™*=[(1/21,)—(1/21})]J?, which in the case of

rot . .
ozone molecule results in Ep*=[(I,—1,)/1,]Eq"~ 10EL"

rot rot rot *

The value of K for such molecules therefore significantly
controls the amount of rotational energy for a given J. This
simple observation plays an important role in the theory of
non-RRKM effects developed in sections II-IX.

From the Euler equations14 we also know that

K, MM =0. 3)

dt L1
An approximation I, = I3 produces therefore an extra integral
of motion dK/dt=0, which makes K an adiabatic parameter.
Yet, this additional integral of motion comes as a result of
the rigid body approximation. The later may not be valid in
the general case of vibrating molecule especially at the en-
ergies close to the dissociation limit when the geometry of
the molecule is significantly distorted. The basic RRKM
theory discriminates the cases when K can be considered
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adiabatic and the cases when K can be considered active, i.e.,
rapidly varying. The time scale of variation in K for the case
of molecules, such as ozone at energies near dissociation, is
the subject of study in the present paper.

lll. SOFT BODY DYNAMICS

As discussed in Sec. II, we are interested in the time
dependence of the K component of the total angular momen-
tum of a triatomic molecule. We now allow the molecule to
vibrate and thus consider its rotational dynamics as a soft-
body dynamics. We assume that at any given time the orien-
tation of the principal axes of inertia of a triatomic molecule
are known. Let us denote F' as the body-fixed frame of
reference, i.e., the frame of reference in which the principal
axes of inertia constitute orthogonal system of coordinates.
We denote by F a stationary reference frame. The direction
of the total angular momentum J is fixed in the F frame,
while it changes in the F' frame. If the angular velocity of
the frame F' with respect to F is €)(z) then the evolution of
the total angular momentum dJ/dt in the frame F is related
to its evolution d'J/dr in the frame F’ as'*

22 laxy. (4)
1 t

Since dJ/dt=0, for the components of vector J={J;,J5,J3}
we get

dJ,
=L =0, - Qols,

dt 3J2 273

dJ,

—=0,J;-03J4, 5
dt 1¥3 3J1 ()
dJs

== 0,0, - O,

dt 2J1 1Y2

Here we replaced d'/dt with d/dt and from now on assume
that differentiation with respect to time is given in the rotated
F' frame.

The relation between the velocities v=dr/dt and v’
=d'r/dt of the atoms in the frames F and F’, respectively,
has a form similar to Eq. (4),

v=v' +Q Xr. (6)

By definition, an angular momentum of a system of particles
is J=2mr X v, which with Eq. (6) gives

J=2mr X QXr+X2mrXv'. (7

The first term in this expression is the angular momen-
tum due to the rigid body rotation with an instantaneous
geometry and instantaneous angular frequency of rotation.
The second term represents the Coriolis coupling between
the rotation of the F' frame and the vibrational motion within
the F’ frame. Given an instantaneous geometry of the mol-
ecule one can find the instantaneous principal axes, i.e.,
frame F’, and the instantaneous principal inertia moments
I1,(2), I,(1), and I5(r). With these principal inertia moments the
first term in the right hand side of Eq. (7) is a vector with
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coordinates {I,(1)Q;(2),1,(£)Q,(2),15(£)Q5(2)}, where Q,(),
Q,(1), and Q4(r) are the projections of €2() on the instanta-
neous principal axes of inertia [or in other words coordinates
of Q(¢) in F’ frame].

If the coordinate of the center of mass is set at r=0 then
the second term in Eq. (7) is a vector orthogonal to the plane
of the triatomic molecule, which means that Coriolis term
contributes only to the J; projection of the angular momen-
tum. We denote this contribution as &8/.=Zmrv’ sin(rv’).
The coordinates of the vector J in the F’ frame are therefore

Jl =IIQI’
Jzzlzﬂz, (8)

J3 :I3Q3 + 5‘]6

Expressing the instantaneous angular frequencies from
Eq. (8) and substituting them into Eq. (5) we get

dJ, 1 1 oJ.

—Q =\ aSs-— o, (9a)
dt I; I 15

dJ, 1 1 oJ.

=\ - ]lJ3+_J1, (9b)
dt I, L I3

dJ 1 1

—3=(———)J,J2. (9¢)
dt L, I,

These are equations for the “soft-body” rotational dynamics
of a triatomic molecule. The evolution of J,, J,, and J3 is
modulated by the time dependent I,(t), I,(t), I5(t), and 8J.(z).
So far Egs. (9a)—(9¢) are exact. In chapters [IV-VI we will
provide an approximate solution to these equations. The
main idea for the simplification of Eq. (9) is the possibility of
separating the time scales of vibrations and rotations and
thus treat variations in 1,(z), I,(z), I5(¢), and &J,(¢) as a noise
to the evolution of J,, J,, and J5.

IV. DIFFERENTIAL EQUATION FOR K(t)

Although I, I,, and I3 are functions of time, they vary
around their equilibrium values (I,), {I,), and (I5). For a
near-symmetric top molecule such as ozone, where
(1) :{Iy):{I5)=1:9:10, we may neglect 1/I, and 1/I; with
respect to 1/1; in Egs. (9b) and (9¢). In that case we write

dl, I, &I,
—2 ="+ =,
dt I Iy
(10)
dls __h
d I, "

Omission of I; with respect to I,, I3 and equating I, with
I; constitutes the basis of the symmetric top approximation.
The present theory is therefore generally valid for any tri-
atomic molecule rotational dynamics of which is known to
be well described in the symmetric top approximation. Fur-
ther in the paper we consider ozone molecule of C,, symme-
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try as a particular example of such triatomic molecules. To
simplify Eq. (9a) we note that for a flat molecule I3=1,+1,
and thus we have

@ __[(n)(5), o
5= {<12)<13>+13 }Jz. (11)

The ratio J3/15 is related to the &;-projection of the rotational
frequency, which is explicitly given by Eq. (8), thus

dJ I L\ &
oo (e ()5

~_J(h e
~_{<12)Q3+ I, }Jz. (12)

As we will show in section V, the noise dJ,./I; for these
molecules is of the order of the characteristic vibrational fre-
quency ,;, of the molecule. Yet, ()5 is of the order of the
characteristic rotational frequency (),.. Typically rotational
frequencies are much lower than the vibrational frequencies
Q. <Q,;. For a molecule such as ozone **05, we can esti-
mate (), that corresponds to the most /M)able angular mo-
mentum at room temperatures Jr=\kTl3=17#h, ie., Q.
=Jy/13=15 cm™!, which is 60 times smaller than the typical
vibrational frequency of ozone ~1000 cm™'. The coefficient
I,/1,~0.1 makes the first term in Eq. (12) even smaller; we
therefore can omit the first term. The resulting simplified
system of Eq. (9) for such molecules is thus

oy __al,

=——<],, (13a)
dt I3
al, J al,
—2 ="+ =, (13b)
dt 1 Iz
dl, I,
=Sy 13
dt I 2 (13¢c)

One can check that Egs. (13) conserve the total angular mo-
mentum, i.e., (d/dt)(J;+J5+J3)=0. Since J3+J3=J>-K> we
search for solutions of J, and J; in the form

Jo(t) = \J* = K(1)* cos(e(1)), (14a)
J3(t) = VJ? = K(1)* sin(e(t)), (14b)

where we introduced K(¢) =J,(r) and ¢(z) is some unknown
function of time. It should be noted that the analytical solu-
tion for J,(¢) and J5(¢) for the general constant-energy rigid
asymmetric top is expressed in terms of Jacobi elliptic func-
tions cn(7) and sn(7)."* Yet, for the molecules with L <l I4
Jacobi elliptic functions transform into trigonometric func-
tions sn(7)=sin(7) and cn(7)=cos(7), which physically cor-
respond to the motion of a symmetric top. The latter approxi-
mation has already been incorporated in deriving Eq. (13).
Substituting Eq. (14) into Eq. (13) we get
dK ol

J—
- -K? coso,

= 15
dt L3 (152)

Downloaded 17 Sep 2010 to 131.215.21.85. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



224304-4 M. Kryvohuz and R. A. Marcus

de K &. K

R Rl N oy (1)
We then integrate both parts of Eq. (15b) to yield
@(1) =y - f Rar - f %L—sm edt’ . (16)
o/ o Iz NP -K?

The Coriolis term 8J,.(r) rapidly oscillates about zero, while
K(¢) is expected to change slowly (since in the rigid body
symmetric top approximation it would have been constant)
and their corresponding time scales are given in Sec. V.
Therefore, the time integral of the first term in Eq. (15b)
becomes much greater than the time integral of the second
term in Eq. (15b) already after couple periods of oscillation
of 8J.(t). Equation (16) can be therefore solved iteratively by
inserting it into itself and truncating it at the first order of
[187,, this iteration yields

(1) ( J K ) Ve K
p) =\~ | “di'+@ |~ | -~ FF——
oy 0 o Ii NJP-K?

'K
Xsin —f I—dt”+<p0 dr’. (17)

0 71

In expression (17), the first term is a slow and monotonic
function of time, representing linear growth of phase ¢(z)
with time, while the second term represents phase fluctua-
tions. Preservation of phase fluctuation term is important
since, as it will be shown below, it correlates with amplitude
fluctuations resulting in additional drift coefficient. On sub-
stitution of the Eq. (17) into Eq. (15a) we get a self-
consistent equation for the K-projection of the angular mo-
mentum,

dK 8, 57— 'K
— == 2= K?cos f—dt’—goo
I ol
e ([ K
- —\J°—=K*sin —dt' — ¢,
I3 o i

xfl o__K__ (f Kdt” )dl' (18)
—f——sin —dt" - ¢ ,
o Iz NV -K? o N 0

where we have also used the Taylor expansion cos(xy+Ax)
=cos(xy) —sin(xy)Ax, with Ax being the phase fluctuation
term in Eq. (17). This equation is the central result of the
present section. Given the time dependence of the vibrational
variation in 7,(r), I5(¢), and 8J.(¢), it provides an explicit
expression for the dynamics of the K-projection of angular
momentum. One can see that since dK/dt is proportional to
the Coriolis term 8J,(r), the dynamics of K(r) is governed by
Coriolis coupling.

V. CHARACTERISTIC TIME SCALES

Before we further simplify Eq. (18) let us consider the
characteristic time scales of the parameters 1,(1), I5(z), 87.(1),
and K(7) in Eq. (18). We again consider ozone molecule as
an example.

J. Chem. Phys. 132, 224304 (2010)
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FIG. 2. Characteristic dynamics of (a) 1,(7), (b) I3(7), and (c) &J.(¢).

The variation in the principal moments of inertia /,(r)
and I5(r) is governed by vibrational dynamics of a triatomic
molecule. At the energies of dissociation, both 7,(¢) and I5(¢)
show oscillatory dynamics around their equilibrium values
with randomly varying frequencies and amplitudes, as in Fig.
2, given for an ozone molecule. One can see that the fre-
quency of oscillations of 7,(r) randomly switches between
the bending oscillation frequency at w,=~700 cm™' and the
normal mode stretching frequency at w,~ 1100 cm~' due to
vibrational chaos. The instantaneous equilibrium of 7,(z), as
well as the amplitude of its oscillations, depends on the in-
stantaneous geometry of the ozone molecule and its instan-
taneous dynamical regime. Since 7,(¢) exhibits random oscil-
lations with the characteristic time scale T,=2m/ w,=~60 fs,
we can treat /; on the time scale > T, as a random variable.
The same analysis is valid for the variation in I5(z), except
that it mainly participates in oscillations with bending fre-
quency w,, since normal mode stretching oscillations do not
significantly change the moment of inertia around the axis
orthogonal to the plane of ozone molecule.

We now consider the variation in the most important
term, Coriolis term, 8J.(r). As one can see from Fig. 2, this
quantity is the only variable that changes its sign. The origin
of Coriolis term &/,(z) is illustrated in Fig. 3: it is an instan-
taneous “internal” angular momentum of ozone molecule
with respect to the principal axes of inertia. It is given by the
explicit expression (see notations in Fig. 4)
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§Ju(t) = 0 §J.(t) =0 8Je(t) #£0

FIG. 3. Coriolis angular momentum term &J.. for different types of vibra-
tional modes in isotopically symmetric ozone molecule. Orthogonal lines
represent & and &, principal axes of inertia.
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¢ > LS 22 e

(19)

The Coriolis term &/, does not appear in symmetric oscilla-
tions of isotopically symmetric molecules; we discuss this in
detail in Sec. IX. For the purpose of simplicity, in the present
paper we consider only an isotopically symmetric ozone
molecule **0; and therefore the characteristic time scale of
&J.(1) is that of the antisymmetric normal mode with the
frequency dg;/di = wyymm= 1100 cm™!, ie., 30 fs. At time
steps At>30 fs one can therefore consider 6/, as a random
variable evenly distributed around zero.

Yet, the change in K(¢) is much slower. Indeed, the char-
acteristic time scale of any dynamical physical parameter is
inversely proportional to the strength of its driving force.
Obviously, the interatomic forces in ozone molecule are
much stronger than the strength of Coriolis coupling. The
driving forces for I,(z), I,(), and I;(¢) are interatomic forces,
while the driving force for K(¢) is the Coriolis coupling, as
seen from Eq. (18). This result leads to the conclusion that
the characteristic time scale Tx of K(z) should be much
greater than the characteristic time scales 7;~60 fs of 1,(z),
I,(7), and I5(¢). This result is confirmed by numerical simu-
lations shown in Fig. 5, giving T~ 10007;.

The analysis of the present section suggests that we can
treat vibrational motion of ozone molecule as a random noise
in the evolution of K(z) due to the presence of vibrational
chaos at high vibrational energies and due to the difference
in characteristic time scales of K(z) and I,(r), I;(¢), and

FIG. 4. Ozone molecule in the &-&, plane.
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FIG. 5. An effective diffusion of K-projection of rotational angular momen-
tum in ozone molecule. The figure represents a single trajectory of K(r) from
the MD simulation of a molecule of ozone. Point (a) corresponds to the
formation of ozone molecule and point (b) corresponds to the dissociation of
ozone molecule. The dark region corresponds to the energies at which ozone
molecule cannot dissociate (closed states); the white region corresponds to
open states.

8J (t). Under the influence of such a noise [given by Egq.
(18)] K(r) exhibits a diffusionlike (Brownian) motion shown
in Fig. 5. This result leads us to the conclusion that Eq. (18)
can be equivalent to some sort of diffusion equation, the
form of which is obtained in Sec. VI.

VI. EFFECTIVE DIFFUSION EQUATION FOR K{(?)

In Sec. IV we obtained the differential equation for K(z)
in the form

LS =V(@)+ U(1), (20)
dt

where V(z) and U(r) are rapidly fluctuating terms,

t

o, 5—— K
V() =— —<\J? - K? cos(f —dt' - (po) ,
I oy

(21a)

. 55— 'K
Ut)=- I—C\r’J2 -K? sin(f I—dt’ - qoo>

3 01

XJI 2/ S (ft Kdt” )dl' (21b)
———=—=sin —dt" - ¢ .
o I N -K? o hi !

Since U(r) contains an integral over the sign-alternating
function &7,(r) we expect that V(z) plays dominant effect on
the time evolution of K(¢), while U(¢) contributes minor cor-
rection. While both V and U terms are treated by us explic-
itly in this section, we found it simpler to present analysis
first for the major V() term and then to introduce the U(r)
term into the discussion. Therefore, in the first part of this
section, we analyze the effect of the V() term on the evolu-
tion of K(r), while in the second part we analyze the effect of
both V(¢) and U(z) terms on K(¢). Yet, the main physics is
captured by the V(r) term and the next section reveals the
central idea of the paper.

A. Diffusion of K under the influence of V(f)

Let us find how K(¢) behaves under the action of the V(r)
term, which is the dominant term in Eq. (20),
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dK
o V(). (22)

The right side of Eq. (22) serves as a generalized velocity of
K(z). Since V rapidly and randomly changes, Eq. (22) is ex-
plicitly an equation for an overdamped one-dimensional
Brownian motion with coordinate K. The key quantity that
describes Brownian motion is its velocity-velocity correla-
tion function

Cy(1) =(V(1)V(0)). (23)

Below we study Cy(¢) in detail. As discussed in Sec. V, since
the time scale of K(¢) is three orders of magnitude greater
than the time scales of I,(z), I,(z), and &J.(f), the average
over K(¢) in Eq. (23) can be taken independently of the av-
erages over I,(1), I,(t), and 87,.(z). The parameter I5(f) can be
considered independent of 8J.(z) since the fluctuations of the
former mostly depend on the bending oscillation (as dis-
cussed in Sec. V) and the fluctuations of the latter mostly
depend on the antisymmetric stretch oscillation. Finally, the
characteristic time scale of the variable cos(["(K/1,)dt"), due
to the presence of integral, is 27/ (K/{I,)), which is approxi-
mately a characteristic period of ozone rotation about the &
principal axis of inertia. In Sec. V we estimated this period to
be one order of magnitude larger than the vibrational period
and therefore two orders of magnitude smaller than the char-
acteristic time of K(r); therefore cos(f*(K/I,)dt") can be con-
sidered independent of other terms such as K(z) and I5(z),
6J.(¢) in taking the average in Eq. (23). These simple con-
siderations greatly simplify expression (23),

Colt) = (72 = K(0Y)——( 8.0 87.(0))
)

><<cos<ft Edt’ - goo)cos(cp0)>. (24)
ol

Here we wrote (J2—K(0)?) instead of its correlation function
(VJ2=K2(1)\[J2-K(0)%) since obviously it is a constant on
the time scale of the correlation time of (&7.(¢)87,.(0));
we also simplified (1/15(2)15(0))=(1/(I5)+Al;(2))({I3)
+AL3(0))) = (1/(13)*) = (AL (1)) [ {I3)*) = ((AL;(0)) /{I3)*)
=1/{I;)*, AI(t)=1,—(I,). Performing averaging over the ini-
tial phase ¢, in the last term of Eq. (24) we simplify C\(z)
further

_ 2 -K(0?) ‘K,
Cyln) = %m2<wﬁmum<w{ﬁhm)>

(25)

The correlation time scale of (8J.(r)8/,.(0)) is expected,
for ozone, to be of the order a few vibrational periods of the
molecule due to the vibrational chaos at the energies near
dissociation, while the time scale of a characteristic oscilla-
tion of (cos(f((K/I,)dt")) (rotational period), as discussed
above, is one order of magnitude greater than that, therefore

J. Chem. Phys. 132, 224304 (2010)
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Cy ()
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FIG. 6. Correlation functions governed by vibrational chaos: (a) normalized
correlation function C,(1)=(J,(1)J5(0)), (b) normalized correlation function
C.()=(8J(1)8](0)), and (c) normalized correlation function C(z)
=(J,(¢) 81 (t)J5(0)87.(0)) (black line) compared to C.(z) (color line).

the decay of the whole correlation function Cy(r) is defined
by the decay of (8J.(t) 8J.(0)). The latter is illustrated in Fig.
6. Interestingly enough, the correlation time of Cy(¢) is of the
order of several vibrational periods, which in terms of physi-
cal numbers constitutes 7., =~ 0.1 ps. Yet, the mean life time
of ozone molecule at room temperatures obtained from ex-
periment is 200 ps, which means that intramolecular dynam-
ics occurs on the time scale much larger than the correlation
time 7., of Cy(r). At these times the effect of noise Vi(r)
will be the same as ifft\/he noise was delta ,_S)Jrrelated with the
correlation function 8(¢) defined as 2f6°5(t)dt:f§CV(t)dt.15
The last integral stands for the definition of the diffusion
coefficient D of a Brownian motion,15
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D= fw Cy(t)dt. (26)

0

We therefore arrive at the conclusion that during the lifetime
of the ozone molecule the behavior of K(f) can be described
by a simple diffusion law

o =D, 27)
with
(D E0)) = 250). (28)

The only remaining step is to find the expression for the
diffusion coefficient D. Substituting Eq. (25) into Eq. (26)
we get

_(P-K©0» (” ‘K
D= 2Ly fo <5Jc(t)5fc(0)><COS<L Ildt >>dt.

(29)

For any two functions f(z), g(¢) such that f(z) decays to zero
much faster than g(r) we can write [(f(r)g(r)dt
~g(0) [f(t)dt. Equation (29) can be thus simplified,

(J? = K(0)?

_ P -KO?) [~
D= fo (87,(1)81.(0))dr. (30)

This is the final expression for the diffusion coefficient. One
can see that the diffusion coefficient depends on the correla-
tion function (8J,.(t) 87,.(0)), which behavior is defined by the
vibrational chaos. We cannot treat vibrational chaos analyti-
cally. Yet, a great simplification comes from the fact this
correlation function depends only on vibrational energy E.;,,
therefore any combination of the total energy E of the mol-
ecule and the rotational energy E,, of the molecule that re-
sult in the same vibrational energy, i.e., E;,=E—E,,=const,
should give the same value of [((&J.(t)6J.(0))dt. We there-
fore define D (Ey;,) = (1/2(I3)%) [5{8.(1)87.(0))dt and find
D.(x) numerically. This calculation is given in Sec. X, where
the numerical simulations are discussed. It is found that
D (E.;,) is a very slow function of E.4, in the range of vibra-
tional energies of interest near the dissociation limit. Com-
bining Egs. (27) and (30) we arrive at the stochastic equation
that describes the dynamics of K(¢) in the molecule of a total
energy E and total angular momentum J on the time scale
t>t., where t. is 0.1 ps for ozone,

dK —_—
= W KADEa)€0), 31)
where

E.(K)=E - —L - (L— —1—>£2 (32)
T iy \ Y iy 2

&(1) is a standard delta-correlated noise (&(1)€(0))=24(¢) and
D.(x) is given by Eq. (43). In the derivation of Eq. (31) we
did not introduce any special differentiation rules, i.e., no Ito

rules, and so the stochastic Eq. (31) should be understood in
the Stratanovich form."

J. Chem. Phys. 132, 224304 (2010)

The K-dependence of the diffusion coefficient in Eq.
(31) has an interesting effect: while the slope of the average
((K-K(0))?) is always positive, the slope of (K>-K(0)%)
may be positive as well as negative. In particular, this behav-
jor of (K*—K(0)?) has been observed in numerical simula-
tions on vibrational-rotational intramolecular energy ex-
change in ozone in Ref. 8. In Fig. 2 of the latter paper8 the
change in rotational energy with time AE,.(¢) has a linear
form on the time scale of 400 ps with positive or negative
slopes depending on the values of K(0). In the Appendix we
show that this behavior follows directly from the solution of
the Eq. (31). Indeed, since the rotational energy is propor-
tional to K*(¢) [as in Eq. (2)], it follows from the Appendix
that (AE,(t)) ~(K(t)>—~K(0)*)~ (J>=2K(0)?)¢. For the val-
ues of K(0) such that K(0)<J/ \E the slope of (AE,(1)) is
positive, while for K(0)>J/ \6 it is negative. These results
are in agreement with the observed numerical results in Ref.
8 as well as the critical value of K(0) at which the slope of
(AE, (1)) changes its sign. For J=20 this critical value is
JI\2= 14, while in Ref. 8 it lies somewhere between K(0)
=10 and K(0)=14. The slight gifference between the “crude”
analytical value of K(0)=J/V2 and the results of MD simu-
lations is due to the dependence of D, on E,;, (while in the
Appendix we assumed it constant) and due to the additional
drift coefficient induced by the U(z) term in Eq. (20), which
we discuss in Sec. VI B.

B. Diffusion of K under the influence of both V(#) and
U

We now include the second term, U(¢), in our discussion.
While in general its contribution to the behavior of K(7) is
small, it becomes dominant when the effect of the V(¢) term
becomes small or zero: in particular, at points K= =*J, at
which Eq. (31) gives zero diffusion coefficient.

Using the same arguments as in Sec. VI A, we can easily
find the first two moments of U(r),

U@)=- Lfdt’K(t’)<5Jc(t)5Jc(t’)>

1)),
X . Jt Kd ’ 3 ft’ Ed /"
sin o t' — @q |sin o =@ .
- 2’2;)2 fo (81(DST.(0)dr=—KD,,  (33)

where we have used the property of invariance of correlation
function under the time shift, ie., (&8/.(t+7)8/.(1))
=(8J (1) 87.(0)), and the subscript ¢, denotes averaging over
initial phases ¢,. One can see that U(r) contributes additional
drift coefficient of =D K to the evolution of K(z), which has
maximum effect at K=+ J.

To find the second moment of U(r) we first derive an
expression for [{dt, [(dt,(U(t,)U(t,)). For the four-point av-
erage of O&J. we may use the approximate relation
(1002034) = (0 X0 )(X030) + (0 X3 ) 00X04) + (X1 x4 )(XX3),  in  the
case of the Gaussian stochastic process this approximation is
exact."”” We thus have
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FIG. 7. Long-time behavior of mean squared value and mean square deviation of K. Solid lines represent results of MD simulations for ozone molecule with
total angular momentum J, initial value of K-projection K(0) and total energy E in eV; dashed lines are obtained from integration of stochastic Eq. (36) for
the corresponding parameters J, K(0), and E. Inset (a): (i) J=30, K(0)=8, and E=-0.01; (ii) /=20, K(0)=18, and E=-0.025; (iii) J=20, K(0)=8, and
E=-0.025; (iv) J=10, K(0)=8, and E=-0.01. Inset (b): /=20 and E=-0.025; (i) K(0)=4; (ii) K(0)=8; (iii) K(0)=15; (iv) K(0)=18. The star indicates that

correction (41) has been used in case (b)(i).

fdtlf di(U(t))U(1,)) = = >4 fdtlf dtzj dtfd”
3

X(OI(t") ST 1)) + (ST (1) AT (t") 8T (12) ST (1)) + (U .1,) T (¢

K(t')?

K(t))? \"/Jz— K(t,)?

O T KOS 310

")NX6I (1) 87 (1))}

2 t 1
f dt, f ( I Ko )K(t’)ch(tl)DC(t’H f dt, J dt,K(t,)K(t,)D(t,)D(1,)
0 0

+f dtlf dt,K(t))K(t,)D(t,)D(t,) = 3f dﬁf dt,(K(1)D (1)) (K(t,)D (1,)). (34)
0 0 0 0

From Eq. (34) one can see that the second moment of U(z) is
(U(0)?) = 3K(1)°D(0)*. (35)

One can see from Eq. (34) that since K(¢) and D.(K(z)) are
slow functions of time then the average ((J'U(¢')dt')*) grows
as O(¢%), while from Eq. (33) it follows that the average
J'U(t")dt"y grows as O(t). The effect of U(z) on the behav-
ior of K(¢) is then similar to an additional “constant” term,
which gives linear growth in time after a single integration
over time and quadratic growth after double integration over
time. We can then effectively replace U(r) in the Eq. (20)
with the “noiseless” term U(7) E—\:“EDCI(, which has similar
properties to the original U(r) term, i.e., (U):—\EDCK
~-DK=(U) [from Eq. (33)] and (U?)=2D’K>~3D?K>
=(U?) [from Eq. (35)]. Combining Eq. (20) with Eq. (31)
and the results of the present section, the final stochastic
equation for diffusion of K(7) under the influence of both
V(t) and U(¢) terms then reads

dK R —
= V2D K + 2 - K2\D,&(1). (36)

Equation (36) is the central result of the present paper. Its
short and long time behavior is tested in the numerical Sec.

X and one observes good agreement with the direct simula-
tions of vibrationally excited ozone molecule, as in Fig. 7.
The reader may proceed directly to Sec. VIII without loss of
understanding, skipping the discussion on corrections to
symmetric top approximation presented in Sec. VIIL.

VIl. CORRECTION TO THE SYMMETRIC TOP
APPROXIMATION

In Secs. II-VI we discussed the effect of vibrations on
rotational dynamics of a triatomic molecule using the near-
symmetric top approximation, i.e., assuming /,=1I3. As can
be seen in Fig. 8, the symmetric top approximation works
very well for most values of K, except for very small ones.
For small values of K, the rotational dynamics of a triatomic
molecule can be trapped in the region where the vector of the
total angular momentum J rotates (in the body-fixed frame),
not around the &, axis but around the &; axis, as in the closed
trajectory around §&; axis in Fig. 8. These rotational dynamics
are well known since for a general rigid body, there are two
stable axes of rotation:'* one which corresponds to the mini-
mum moment of inertia and the other which corresponds to
the maximum moment of inertia. The separatrix between the
regions of stable rotations is given in parametric form,'*
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FIG. 8. Rotation of total angular momentum J in the body-fixed frame of a
rigid triatomic molecule. The sphere J%+J§+J§=Jz represents all possible
orientations of the total angular momentum J. Every closed trajectory on the
sphere is formed by the end points of rotating J at some rotational energy
E,. i.e., the closed trajectories are the intersections of the sphere Jf+]§
+J5=J% with the ellipsoid (J3/21))+(J3/21) +(J3/213) =E .

Jsx_ + ﬁ 1
LT T Lcosh(n)’
J5'=J tanh(7), 37
o I3 1, 1
Br= g2 -2 ——,
I I,/ cosh(7)

where parameter 7 parametrizes three-dimensional curve
(37) and goes from — to %. For values of K, such that |K|
> (I,/1,)J vector J lies outside the separatrix region (37) and
therefore rotates only around & -axis, while for |K]|
<(I,/I,)J it can also rotate around 53—axis.14 The area of
stable rotation around &;-axis scales as (I;/1,)J and is very
small for molecules with I; <1,, such as ozone. Yet, in this
region, K is not a constant of motion any more and oscillates
around zero value with a frequency of molecular rotation
around &z-axis, which is of the order of J/I5. In the present
section we discuss the effects of the latter fast oscillations of
K on the general model of diffusion (36).

Under the influence of vibrational chaos, by means of
the Coriolis coupling, vector J may jump from one region of
stable rotation to the other, i.e., may jump over the separatrix
boundary (37) back and forth, as in Fig. 9. The theoretical
description of this behavior is very difficult and requires
analysis of noise-induced transitions in a nonlinear system
with bifurcations.'® In the present section we provide a sim-
plified approximate treatment of the problem and estimate
the effect of additional domain of stable rotations on the
diffusion of K(z).

We consider a triatomic molecule with the total energy
below the dissociation limit, total angular momentum J and
some initial value K(0) >0 close to the separatrix K*¥, as in
Fig. 10. Since along the separatrix the value of K** changes
from 0 (at 7= =) to J(I,/1,) (at 7=0), see Eq. (37), we use

¥~=0.5J(1,/1,) in the equations below. At the initial time
the distribution density of K is a delta-function centered at

J. Chem. Phys. 132, 224304 (2010)

FIG. 9. Bifurcation of rotational behavior of ozone molecule near the sepa-
ratrix (37) for J=20 and E=-0.01 eV. The results of MD simulations are
shown for J; and J; components of the total angular momentum J, time is in
picoseconds. Two horizontal lines of the J;(7) plot denote the additional
zone of stable molecular rotations |J,| <(I,/1,)J, in which J; can oscillate
while J; is conserved, see text. Outside the zome, i.e., |J,|>(I;/1,)J, J; is
conserved while J5 oscillates. Vibrational chaos by means of Coriolis cou-
pling forces angular momentum J to jump between the two zones of stable
rotations.

K(0), as in Fig. 10(a). According to Eq. (36), the distribution
density p(K) at later times will spread out with the variance
o?=((K-K(0))*)=2D,(J>*~K(0)*)t and the mean value
w=(K)=K(0)—(1+2)K(0)D.t changing linearly at initial
times. At some time, the expanding distribution density p(K)
reaches the point K**, as in Fig. 10(b), which provides an
opportunity for those trajectories K(z) that appeared in the
interval (—=K**, K*) to enter the region where J rotates around
the &;-axis and K oscillates around the zero. Within a very
short time [compared to the characteristic diffusion time
1/D, of K(r)], 2m/(J/13), the interval (—-K**,K**) becomes
uniformly populated due to the oscillations of K(z) around
zero and the distribution density should now have a form
shown in Fig. 10(b). At later times the typical form of dis-
tribution density remains as the one shown in Fig. 10(c) with
the S, area, defined in Fig. 10(d), “filled up” to the
y-coordinate of spreading Gaussian S, at K=K**. The distri-
bution density at initial times can be therefore represented by
a Gaussian of variance o that is split at K** in two parts,
which are apart by a distance 2K** and the interval
(-K**,K*) is filled uniformly and continuously. This simple
explanation agrees with the results of MD simulations for
ozone molecule shown in Figs. 10(e) and 10(f).

One can see from Fig. 10(d) that the asymmetry of the
distribution function caused by the area S; may change the
average values of (K(¢)) and ((K(1)—K(0))?), which other-
wise would be equal to w(f) and o(t)?, respectively. We
know that at small values of K the value of o changes with
time as O(J) while the value of u changes as O(K), i.e., the
peak of the Gaussian moves much slower than it spreads.
Therefore the dynamics of asymmetry of the distribution
function due the presence of S, area is determined by o(¢)
alone. Since both o(r) and the asymmetry of distribution
function change on the same time scale and o(t) increases
with time, the effect of S;-area on ((K(1)—K(0))?) is negli-
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FIG. 10. Distribution densities p(K) at initial times. Insets (a)—(c) schematically represent the change in distribution density as time goes from (a) to (c). Inset
(d) denotes areas of p() used in text. Insets () and (f) show the histogram of p(r) at times 3.5 and 5.5 ps, respectively, obtained from MD simulation of ozone
molecule with J=40, K(0)=8 and total energy —0.01 eV. Vertical lines in (e) and (f) correspond to the interval (—K**, K**).

gible: ((K(1)-K(0))*)= (o(t)+K*)*=~o(1)%. Yet, the situa-
tion is different for the mean value (K(#)), the absolute value
of which decreases with time as follows from the Appendix.
In addition, (K(z)) changes much slowly, on the order of
O(K), than the change of the asymmetry of the distribution
function, which is of the order of O(J). Therefore the effect
of the asymmetry of the distribution function due to the ap-
pearance of the S; area may have a significant effect on the
dynamics of (K(z)). The latter may result in an effectively
higher drift coefficient of K.

To estimate the increase in the drift coefficient we use
simple geometrical considerations. If we use the notations S,
Sy, and §, for the corresponding areas of the distribution
density shown in Fig. 10(d), then the mean value of K is

So Sy
(KY=p +0
So+S1+5, So+S1+5,

+(u— K‘”‘)(

S
—2)’ (38)
So+S+5,

where u, 0, and (u—K**) are the corresponding mean values

of K for the areas S, S;, and S,, respectively. Rearranging
Eq. (38) we obtain

,bLSl + stSZ

K) = ,
(K)=n So+S,+5,

(39)

i.e., §; and K** shift (K) toward zero on the time scale of
o(t), which is the reason for faster drift coefficient of K(z).

From simple geometrical considerations, as in Fig. 10(d), we
find the normalized areas

2K exp[— (u — K*)*/20°]

S, = ,
: \e"%cr + 2K exp[— (u— K*)%/20°]
(40)
2ol —erf[(u- K*)\20))
2T 2ma + 2K expl- (u— K202
Given  with  0=\2D.(/>-K(0)*)t and  wu=K(0)

—(1+ \E)K(O)Dct, we find the correction to the mean value
of K(r) obtained from a symmetric top model,
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FIG. 11. The figure illustrates correction to the symmetric top approxima-
tion for ozone molecule with /=20, K(0)=4, and E=-0.025 eV. Solid thick
lines in both plots represent the results of MD simulations; solid thin lines
are obtained from integration of stochastic Eq. (36); dashed lines are the
results of stochastic Eq. (36) corrected by the value Eq. (41).

I‘LCOFI‘([) =—uS - KSXS27 K(0) > 0. (41)
One needs to add this correction to the mean values of (K(z))
obtained from integration of stochastic Eq. (36). Equation
(41) is approximate since the stochastic equation (36) is non-
linear and, in general, does not result in Gaussian distribu-
tions of K at all times.

An acceleration of the drift coefficient of K due to the
presence of the correction term (41) influences the
vibrational-rotational energy exchange as seen in the
relation (d/dt)E,ouion~ (d/ dt){K()*)=(d/dt){(K(t)-K(0))?)
+2K(0)(d/dt){K(0)y=(d/ dt)o(t)*+2K(0)((d/ dt) u(t)
+(d/dt) pro(1)). At initial times and small values of K(0) the
derivative (d/drt) peo(t) is significant, which means that for
molecules with low values of K(0) the rotational-vibrational
energy exchange happens more slowly in the asymmetric top
model than in the symmetric top approximation [since
(d/dt)o(t)>>0 and K(0)(d/dt) peoy(t) <0]. Examples are
given in Fig. 11. We note here that one should not confuse
the symmetry of molecular ellipsoid of inertia with the iso-
topic symmetry of a triatomic molecule.

Nevertheless, the correction to the symmetric top ap-
proximation described in the present section is more an ex-
ception than the rule. Indeed, all the discussion above re-
ferred to the specific case of initial conditions in the form of
delta-function centered at K=K(0) and energies below the
dissociation threshold. First, no real conditions will provide a
distribution function of K which is biased or asymmetric in
K(0), i.e., there is no physical reason to consider initial dis-
tribution functions of K with K(0) # 0. Second, the case of
total energy below the dissociation threshold is of low prac-
tical interest since highly vibrationally excited triatomic mol-
ecules formed in atom-diatom collisions have total energy
above the dissociation threshold. Molecules with low K(0)
and total energy above dissociation have the highest possible
vibrational energy and can easily dissociate. Therefore the
distribution density p(K) is expected to be mostly depleted

J. Chem. Phys. 132, 224304 (2010)

on the interval (—K**,K*) and therefore the effect of the
asymmetry of molecular inertia ellipsoid will be minor.

VIil. THE NON-RRKM EFFECTS

We can now estimate the rate of diffusion of K using
Einstein’s law of diffusion (K?)=2Dt. The typical angular
momentum of an ozone molecule at room temperatures was
estimated previously to be J=17#; it follows from Egs. (31)
and (43) that the diffusion constant D=~J?D,=0.3%4% ps~'.
For the typical experimental conditions where the mass-
independent effect is still observed, at 1 atm, the frequency
of collisions is 5 X 10° collisions/ 5,3 which makes the aver-
age lifetime of ozone molecule of the order of 200 ps.
During this time K changes on average by \/ZI%
=+0.342X200=7.7#, which constitutes 45% of J. The
present analysis thus indicates that for ozone molecule K(z)
is neither adiabatic (constant) nor active (rapidly varying).
This result implies that the intramolecular dynamics of ozone
molecule is essentially of a non-RRKM type. In particular,
one of the major consequences of such a non-RRKM behav-
ior is the possibility for K(z) to diffuse into the region, which
is not allowed in the usual adiabatic RRKM approximation
and which is sometimes called a closed channels domain."”
In the adiabatic RRKM approximation ozone molecules with
the total energy above the energy of dissociation yet with a
total vibrational energy below the dissociation barrier
Ediss (C]OSed States)’ Evib=E_Erot(K) <Ediss7 or in other

words with the values of |K| greater than K,

= (2(E-E ) -2 (NL13))/ (1/1,)~ (1 /L, I3)), cannot dis-
sociate without an additional exciting collision. In the same
way, excited ozone molecules with |K|<K,, and E.j
> Egis cannot be stabilized (enter closed states region |K|
> K nax) Without an additional event of de-excitation. Yet,
following from the present analysis, the molecule actually
does not need any collision to enter the domain of closed
states or to return back: K(¢) simply diffuses there obeying
the diffusion law in Eq. (36), as in Fig. 5. The possibility of
an ozone molecule dissociating thus is determined by the
value of K. The values of K obey the diffusion law in Eq.
(36); therefore the possibility of a molecule dissociating is
controlled by the diffusion process (36). We performed nu-
merical tests that showed that vibrationally excited ozone
molecules with a total energy above the dissociation thresh-
old do not dissociate until the values of |K| become less than
K x> as shown in Fig. 5. We also observed reversible “ran-
dom walk” of K(7) to and from the closed states in numerical
MD simulations with the representative numerical trajectory
shown in Fig. 5; one can also see the distribution functions
of K in Fig. 12 and note that K spans all possible values from
—J to J at longer times. The mechanism of the K-diffusion
controlled dissociation of ozone molecules discussed in the
present section also agrees well with the direct numerical
simulation for the statistics of lifetimes of vibrationally ex-
cited ozone molecules.'®

IX. EFFECTS OF ISOTOPIC SYMMETRY

In principle, the isotopic symmetry of the molecule can
directly influence Coriolis noise &J.. Since the strength of
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FIG. 12. Evolution of distribution density p(K) for ozone molecule with J=20, K(0)=8, and total energy E=—0.025 eV. Solid lines are the results of MD

simulations, and dashed lines are the result of integration of stochastic Eq. (36).

Coriolis coupling should depend on the symmetry of ozone
molecule, as in Fig. 3, the diffusion of K is expected to
depend on the symmetry of ozone molecule as well. In a
following paper18 we show that the diffusion of
K-component of angular momentum defines the statistics of
lifetimes of excited ozone molecules. However, no signifi-
cant effect of symmetry on the diffusion of K was observed,
similar to the classical numerical results for different isoto-
pomers of ozone shown in Ref. 8. We speculate that the
symmetry effect of Coriolis coupling can appear in quantum
mechanical analysis of the model which is a subject of on-
going study.

X. NUMERICAL METHODS

We used MD simulations to numerically compute corre-
lation functions and to find the diffusion coefficient D (E).
We considered a model of ozone molecule 0'°0'%0'° with
the interatomic potential19 used in Refs. 9 and 10. At each
. . . 14
time step we calculated inertia tensor

> m(y*+z%) - > mxy - mxz
Li=| -Zmyx  2m(P+?)  -Xmyz |, (42)
- mzx ~D>mzy  2mE+y?)

diagonalized it, and found its principal moments of inertia
1,(1), I,(¢), and I5(¢r) and its principal axes &, &, and &.
Projecting angular momentum J to the principal axes of in-
ertia we kept track of components of angular momentum in
body-fixed reference frame F'. In particular, we were inter-
ested in the variance and the mean of K(r). We performed
microcanonical sampling of ozone molecules for given total
energy E, angular momentum J, and a fixed initial value
K(0) of K-projection of angular momentum. We selected the
values of |K(0)| such that the diffusion of K is primarily

governed by V(r)-term in Eq. (20), i.e., we selected K(0) far
from its maximum value of J, where U(#)-term dominates
over V(t)-term; we selected |K(0)| far from K*=(I,/1,)J to
eliminate the effects of asymmetry of inertia ellipsoid. We
propagated trajectories for about 5—10 ps and calculated the
mean square deviation ((K(r)—K(0))?) averaged over 1000
trajectories, yielding the results in Fig. 13. The short time for
the trajectory propagation and the slowness of the diffusion
rate of K guaranteed that the average value of K along the
whole trajectory remained equal to K(0). We then obtained
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FIG. 13. Mean-square deviation of K as a function of time. Results (i)
correspond to the case E=FEg+0.015 eV, J=7.6f, and K(0)=4.5%. Results
(ii) correspond to the case E=FEg,+0.015 eV, J=7.6f, and K(0)=6.1%.
Colored points correspond to the direct MD computation of K(7), and black
points correspond to the numerical solution K(t)=—[87.(t")J,(t")/15(¢")dt’
of the approximate differential Eq. (13) along the same MD trajectory. Slope
of best fit line provides a diffusion coefficient 2D(K(0)).
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FIG. 14. Coefficient D, as a function of excess vibrational energy E.;,
—Eg for ozone molecule. Vertical line represents zero excess energy E.;,
—E4=0. Each type of data point corresponds to particular value of J and
total energy E, in eV, and different values of K(0). The solid line represents
the fitting curve (43).

diffusion coefficient D(K(0)) as 2D=limHm<K(t)2)/t.15 The
coefficient D, was then calculated as D,=D(K(0))/(J?
—-K(0)?) and plotted in Fig. 14. The analytical function
D (E,;,) that fits the numerical results shown in Fig. 14 is
D.(E)
0.000 04 + 0.0015 exp(— 15(E - 0.05)?),
0.05, E>0.05,

E <0.05

(43)

with E in units of eV and D, in units of ps~!. We used
analytical expression (43) along with Eq. (32) to perform
numerical simulation of stochastic Eq. (36) employing He-
un’s stochastic numerical scheme.?® The results of MD simu-
lations and the corresponding theoretical results from sto-
chastic integration of Eq. (36) are shown in Fig. 7. The plots
of probability density from MD simulations and from the
stochastic integration of Eq. (36) are compared in Fig. 12.

Figure 7(b) of the present paper is similar to the Fig. 2 in
Ref. 8, yet our results are of higher curvature. As follows
from the analysis in Appendix, nonlinear time behavior of
(K) and (K?) appears at higher values of D, We have run
independent numerical simulations to compare the values of
D, produced by the potential energy surface (PES) used in
the present work and the potential surface used by Schinke
group8 obtained in a private communication. Our PES indeed
yielded higher values of D, than the PES of Schinke et al®

The moment of time when ozone molecule was consid-
ered as dissociated in Fig. 5 was taken as the moment of time
when one of the valence bonds extended for more than 3 A.
It was shown in Refs. 9 and 10 that the transition state for
ozone molecule corresponds to valence bond extensions on
the order of 2.5 A, thus at 3 A the ozone molecule can be
considered dissociated.

XI. DISCUSSION

In the present paper we have shown that for a triatomic
molecule such as ozone the projection of rotational angular

J. Chem. Phys. 132, 224304 (2010)

momentum on the principal axis of inertia & shows diffusive
behavior and derived an explicit stochastic equation that
governs such diffusion. Vibrational chaos plays the role of
perturbing force to the rotational dynamics of a near-
symmetric top molecule such as ozone. As a result, the
K-component of the total angular momentum J of the top
diffuses. This diffusion is shown in the present paper both
analytically and numerically. Diffusion induced by chaos has
been extensively studied in the past in the context of Arnold
diffusion.?' In particular, the stochastic pump model*! em-
ploys a similar idea of diffusion in nonlinear systems in-
duced by coupling to stochastic regions of phase space, i.e.,
by coupling to the bath of chaotic motion. This model as well
as its quantum version”>” has been used previously to de-
scribe intramolecular energy flows in weakly chaotic mol-
ecules and has been also pointed as being relevant to the
ozone problem in Refs. 7 and 24.

For the ozone molecule, the observed diffusion is fast
enough to violate the assumption of adiabaticity of K and
slow enough to consider K active. Thus one should expect
non-RRKM effects in the process of ozone formation. The
main reason for non-RRKM behavior resides in the fact that
once an activated molecule is formed and its |K| has diffused
above K., 1.e., to the closed states domain, the ozone mol-
ecule cannot dissociate and waits until K diffuses back to the
domain of open states. During this time (diffusion controlled
time) ozone molecule is likely to undergo a deactivating col-
lision. Thus, the process of ozone formation depends on the
Coriolis-driven diffusion of K. In a subsequent paper18 we
show that the observed diffusive energy exchange between
the rotational and vibrational degrees of freedom in ozone
molecule explains the nonstatistical distribution of lifetimes
of the activated ozone molecules observed in Refs. 9 and 10.

APPENDIX: APPROXIMATE ANALYTICAL SOLUTION
OF EQ. (31)

In this appendix we derive an approximate analytical
time behavior of the first two moments of K(z) in Eq. (31).
The exact time behavior will be slightly modified by the
K-dependence of the coefficient D (K). Yet, for the present
analysis we can approximate it with a constant D,
=~ D.(K(0)) from Eq. (43).

In the Stratanovich representation, the stochastic equa-
tion (31) is solved using regular rules of integration.15 Its
solution is

K(t)y=J sin( \’Hcf &1 )dt' + CO) , (A1)
0

where Cy=arcsin(K(0)/J). Representing the sine function as
a difference of complex exponents and using the result for
the average value of an exponential function"

explk f I §(t’)dt’} = exp[ k%], (A2)
0

we obtain

Downloaded 17 Sep 2010 to 131.215.21.85. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



224304-14 M. Kryvohuz and R. A. Marcus

(K() = K(0)e™, (A3)

which on the time scale less than 7~ 1/D,. can be described
by the linear law

(K(t) - K(0))=—K(0)D.1. (A4)

For the second moment of K(z) using the same formula (A2),
we have

(K*(1)) = K(0) + 5(J> = 2K(0)*)(1 — ™)), (A5)

For times less than 7~ 1/4D,, expression (A5) results in the
linear dependence

(K2(t) — K(0)%y = 2D (J* = 2K(0)*)z. (A6)

Note that at K(0)=J/ \5 the slope of (K*(¢)—K(0)?) changes
its sign.
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