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The effect of the large impact parameter near-elastic peak of collisional energy transfer for
unimolecular dissociation/bimolecular recombination reactions is studied. To this end, the
conventional single exponential model, a biexponential model that fits the literature classical
trajectory data better, a model with a singularity at zero energy transfer, and the most realistic model,
a model with a near-singularity, are fitted to the trajectory data in the literature. The typical effect
of the energy transfer on the recombination rate constant is maximal at low pressures and this region
is the one studied here. The distribution function for the limiting dissociation rate constant k0 at low
pressures is shown to obey a Wiener–Hopf integral equation and is solved analytically for the first
two models and perturbatively for the other two. For the single exponential model, this method
yields the trial solution of Troe. The results are applied to the dissociation of O3 in the presence of
argon, for which classical mechanical trajectory data are available. The k0’s for various models are
calculated and compared, the value for the near-singularity model being about ten times larger than
that for the first two models. This trend reflects the contribution to the cross section from collisions
with larger impact parameter. In the present study of the near-singularity model, it is found that k0

is not sensitive to reasonable values for the lower bound. Energy transfer values ��E�’s are also
calculated and compared and can be similarly understood. However, unlike the k0 values, they are
sensitive to the lower bound, and so any comparison of a classical trajectory analysis for ��E�’s with
the kinetic experimental data needs particular care. © 2008 American Institute of Physics.
�DOI: 10.1063/1.3026605�

I. INTRODUCTION

In the treatment of gas phase dissociation, unimolecular
isomerization, and bimolecular recombination reactions, it
has been recognized for many years that “weak collisions”
rather than “strong collisions” play a major role in the acti-
vation and deactivation of the vibrationally hot intermediate
complexes in these reactions.1–5 Our interest in the subject
was prompted by studies of ozone whose formation and iso-
topic effects have been of much recent interest.6–22 In gen-
eral, the formation of a molecule AB is described by

A + B � AB�, �1�

AB� + M → AB + M , �2�

where M is a collision partner and AB� is a vibrationally
excited intermediate. In a weak collision assumption, unlike
in a strong collision one, many collisions with M are re-
quired to activate and deactivate a reactant molecule. When
the collision is “weak,” the AB� may still have enough en-
ergy after the collision in reaction �2� to redissociate into
A+B, instead of always being “deactivated,” and so a set of
such equations with different energy is considered, leading to
a master equation or to a steady-state equation. The latter is
then solved for the probability distribution function for the
vibrational energy in the energetic intermediate AB�.

Information on the collisional energy transfer in reac-
tions such as in Eq. �2� is usually obtained from the pressure
dependence of the reaction rate of the overall reactions �1�
and �2�, using the solution of the collisional master or steady-
state equation to fit these experimental reaction rate versus
pressure data.3,5 To this end, a functional form for the colli-
sion energy transfer probability, denoted here by Z�E� ,E�, is
typically assumed, and its parameters are calculated from the
fit. The functional forms used for this purpose are usually
the exponential model introduced by Rabinovitch, used in
Sec. II A, or a step ladder in which the reactant molecule
gains or loses energy in collisions in discrete amounts called
“steps.”1,2,23,24 Hold et al.25 also introduced a stretched ex-
ponential model. A biexponential model was used by Brown
and Miller26 and modified by Hu and Hase.27 Complement-
ing these studies have been ab initio or semiempirical calcu-
lations of the collisional energy transfer, frequently using
classical mechanical trajectories for the collisions.26–36 Ana-
lytical treatments of vibrational energy transfer have been
given for particular cases.5,34–38 In particular, a detailed dis-
cussion of the original master equation and of its steady-state
approximation is given by Penner and Forst,38 who ex-
pressed the solution in terms of hypergeometric functions.

The Z�E� ,E� is defined as the number of collisions per
unit time with energy transfer for the vibrationally excited
intermediate E→ �E� ,E�+dE�� per unit dE�. Z�E� ,E� has
units of s−1 energy−1 when it is chosen to be the product ofa�Electronic mail: ram@caltech.edu.
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the concentration of colliders and the bimolecular collision
rate constant for the transition E→E� per dE�. Its theoretical
calculation involves an integration over impact parameters b,
using 2�bdb as a weighting factor. Collisions with large b
contribute mainly to the energy transfer near E�−E�0.
When plotted versus E�−E, they yield an elastic-collision
peak in the classical limit at E=E� corresponding to b=�.
The larger the average value of the energy transfer per col-
lision in any reaction, the further the important energy trans-
fer region is from the elastic E�−E=0 peak. Examples of the
tendency toward a singular behavior at E�=E are seen in
Refs. 39–43. The data of Ivanov and Schinke40 shown in Fig.
1 are used later as an example. From a quantum mechanical
view, the inelastic collisions have a lower bound for the en-
ergy transfer �E−E��, namely, a quantum of rotational or vi-
brational energy, depending upon the collision. So in quan-
tum mechanical calculations, there is no such singularity, but
instead there is a near-elastic peak. Therefore, a lower bound
should be imposed. A maximum impact parameter bmax such
that no trajectories lead to sizable energy transfer for
b�bmax has usually been imposed in the literature to avoid
this peak.26–35 Then a single exponential, step-ladder or biex-
ponential model was usually adopted to fit the trajectory
data. For example, Brown and Miller26 neglected the bin in
which E�−E�0 with a bin size of around 30 cm−1 in a
biexponential fit to the trajectory data. Hu and Hase27 sug-
gested that bmax should be identified as the value of b at
which the average energy transfer equals the inverse of the
state density. In such a choice, the resulting collision cross

section was considerably larger than the usually assumed
value, but within 5% of the experimental value.27

The paper is organized as follows. The theory is de-
scribed in Sec. II for the different models. It is applied to a
particular system in Sec. III. The results are discussed in Sec.
IV, with concluding remarks in Sec. V.

II. THEORY

A. General aspects

In using trajectories to calculate the transition rate
Z�E� ,E�, a random sampling of trajectories is performed
over the vibrational and rotational coordinates and their con-
jugate momenta of the vibrationally excited intermediate and
over a Boltzmann-weighted distribution of relative velocities
of the collision partners.31–36 The calculations of energy
transfer are typically made as a function of the internal en-
ergy E of the energetic intermediate, its total angular mo-
mentum J,44 and occasionally K, the projection of J along a
specified principal axis of rotation, typically that with the
smallest moment of inertia. For notational simplicity, we
suppress the symbol J in the following.

To obtain insight into the effect of the near-elastic peak
at �E�−E�=0 in the comparison between experimental data
and trajectories, it is convenient to consider the collisional
steady-state/reaction equations, and obtain approximate ana-
lytical solutions. Examples of other treatments are also
available.45–59

We focus on the limiting low pressure rate constant k0. It
is of particular interest partly because it describes the maxi-
mum effect of the collisions and partly because it is simpler
to treat than the rate constant at higher pressures, where a
solution of the complete master equation would have been
necessary. While simple theoretical expressions for the dis-
tribution function of different �E ,J� states of the reactants
and for the energy transfer can also be obtained for the high-
pressure limit of k, k�, they do not provide insight into the
effect of energy transfer on k itself, since k� is independent
of Z�E� ,E�. The effect of the near-elastic peak should be
largest at low pressures, since the average energy of the re-
acting vibrationally excited intermediate in a unimolecular
reaction or a bimolecular recombination is well known to
decrease when the pressure is decreased.60 Accordingly, the
vibrational energy of the typical molecule is closer to the
energy dividing line between stable and unstable intermedi-
ates and so is closer to the near-elastic peak when the pres-
sure is decreased.

To treat the kinetics for the recombination of two species
A+B→AB, one can either proceed from the reactants
�A+B� or from the product �AB�. If a tagged A is followed in
time in its progress to form AB, and if a tagged A in AB is
followed in time in its progress to form A+B, beginning with
an equilibrium concentrations of AB for the given A and B
concentration, the sum of the tagged distribution functions at
any energy E is equal to the equilibrium distribution at that
E. Thus, to solve the problem, one can either begin with a
tagged A or a tagged AB. To simplify the comparison with
earlier work,46–50 we begin with AB and use the result to
calculate also the rate of recombination A+B→AB.

FIG. 1. Cross sections for internal �a� and vibrational �b� energy transfers as
functions of �Eint and �Ev for different temperatures �Ref. 40�.
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We consider the reaction in the low pressure regime

M + AB�E�
→

Z�E�,E�

←
Z�E,E��

M + AB��E�� , �3�

AB��E�� → A + B �if E� � 0� , �4�

where E��0 denotes the internal energies of any reaction
intermediate AB� that can dissociate into the separated reac-
tants without a further collision. Energies E� in the reactant
that are negative are insufficient for dissociation.

The scheme �Eqs. �3� and �4�� is appropriate only for the
low pressure limit of the dissociation rate. At higher pres-
sures, an AB��E�� on a second collision can also yield an AB�

with a different E�, where both E’s are greater than zero. At
sufficiently low pressures, each AB��E�� formed in reaction
�3� with E��0 ultimately dissociates into A+B before any
further collision. For this case, the problem simplifies and a
large set of equations �the master equation� for AB��E�� is
not needed for E��0.

We denote the probability energy distribution function
for AB by g�E� and write

k0 = 	
E�=0

� 	
E=−�

0

g�E�Z�E�,E�dE�dE . �5�

The equilibrium probability that AB has an energy in the
range E, E+dE is geq�E�dE, where

geq�E� = ��E�exp�− E/kT�/Q �6a�

and ��E� denotes the density of quantum states of the mol-
ecule, Q is the partition function of AB in the center-of-mass
system of coordinates. When the energy is measured relative
to E=0, the dissociation limit Q is also calculated relative to
that energy, and so contains a factor exp�D /kT�, where D is
the dissociation energy of AB measured from the bottom
of its potential well to the dissociation level. When E be-
comes very negative in the steady-state problem, i.e., when
E→−D and g�E�→geq�E�. This condition on g�E� serves as
a boundary condition,

g�E� → geq�E� E → − D . �6b�

After a short initial period, g�E� relaxes toward a steady
state.5 We use a steady-state approximation here. The steady-
state equation for g�E� is

0 = 	
−�

0

Z�E,E��g�E��dE� − g�E�	
−�

�

Z�E�,E�dE� E � 0.

�7a�

The latter can be rewritten as

g�E� = 	
−�

0

Z�E,E��g�E��dE�
	
−�

�

Z�E�,E�dE�, E � 0.

�7b�

An analytical solution of this integral equation for a single
exponential model for the energy transfer was first given by
Troe,5 who obtained it using a trial solution method. For the

present article, we note instead that Eq. �7b� is a homoge-
neous Wiener–Hopf equation of the second kind and use the
Wiener–Hopf method61 to obtain a solution.

We first study the single exponential and biexponential
models with this method. For the single exponential model,
in terms of a deactivation constant � and of an activation
constant ��, we have

Z�E�,E� = Z0 exp�− �E − E��/��, E� � E , �8a�

Z�E�,E� = Z0 exp�− �E� − E�/���, E� � E , �8b�

and for the biexponential model,

Z�E�,E� = Z0�exp�− �E − E��/��

+ c exp�− �E − E��/d��, E� � E , �9a�

Z�E�,E� = Z0�exp�− �E� − E�/���

+ c exp�− �E� − E�/d���, E� � E , �9b�

where Z0 is a constant and � ,�� and d ,d� are related by
microscopic reversibility �detailed balance�.

The quantities Z�E� ,E� and Z�E ,E�� satisfy microscopic
reversibility

��E�Z�E�,E� = ��E��Z�E,E��exp�− �E� − E�/kT� . �10�

For practical purposes, we can typically treat the lower limit
on E as E→−�, a minor approximation when D	kT. Ne-
glecting the effect of the change in ��E� between E and E� in
the vicinity of E=0, Eqs. �8a�, �8b�, �9a�, �9b�, and �10�,
yield

1

��
=

1

�
+

1

kT
, �11a�

1

d�
=

1

d
+

1

kT
. �11b�

The constants c and d are obtained later from fitting classical
trajectory calculations data for vibrational energy transfer.

We have also examined a model with singularity at
E�−E=0 using another method,

Z�E�,E� = Z�1 + C�E − E��−
�exp�− �E − E��/��, E� � E ,

�12a�

Z�E�,E� = Z�1 + C�E� − E�−
�exp�− �E� − E�/���, E� � E ,

�12b�

where � and �� are the same as those of the single exponen-
tial model. C and 
 and are obtained later from classical
trajectory data.

B. Single exponential model

To compare with the earlier and insightful result in lit-
erature by Troe,5 we use the single exponential expression
for the collisional energy transfer rate, namely, Eqs. �8a� and
�8b�. The average “up-energy” transfer, defined as the aver-
age energy increase in the molecule for collisions that lead to
an increase in energy, is
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��E�up = 	
E

�

�E� − E�Z�E�,E�dE�
	
E

�

Z�E�,E�dE�

= ��, E� � E . �13a�

Similarly the average “down”-energy transfer is

��E�down = 	
−�

E

�E� − E�Z�E�,E�dE�
	
−�

E

Z�E�,E�dE�

= − �, E� � E . �13b�

These quantities ��E�up and ��E�down are not observ-
ables in the usual reaction rate experiments and so cannot be
directly compared with experiment. In computation, the
quantity ��E2� is a more convenient parameter than
��E�.62,63 Here in our discussion, the average over impact
parameter b and the other initial variables is included in the
definition of Z�E� ,E� at the given E. The rate constant k on
the other hand, as a function of pressure and its limiting
value at low pressure k0, are the observables in these experi-
ments. Nevertheless, since the values of the moments are
often calculated in the literature from classical trajectories or
from approximate fits to those data, the values of these mo-
ments are often cited, and are calculated here, bearing in
mind that they are not directly observable and are model
dependent.

To solve Eq. �7b�, we use a Wiener–Hopf procedure61

and, as in the standard procedure, first extend the domain in
Eqs. �7a� and �7b� from E�0 to E�0 by introducing the
functions g−�E� and g+�E�, g�E�=g−�E�+g+�E�, with the
properties

g−�E� = g�E� , E � 0,

=0, E � 0,
�14a�

g+�E� = 0, E � 0,

=g�E� , E � 0.
�14b�

Here, g�E� is the unknown function. From Eqs. �7b� and
�14�, we then obtain for the entire E-range, −��E��,

g−�E� + g+�E�

= 	
−�

�

g−�E��Z�E,E��dE�
	
−�

�

Z�E�,E�dE�,

− � � E � � . �15a�

For E�0, this equation becomes

g−�E� = 	
−�

0

g−�E��Z�E,E��dE�
	
−�

�

Z�E�,E�dE�,

− � � E � 0, �15b�

which coincides with Eq. �7b� for E�0. For E�0, we have

g+�E� = 	
−�

0

g−�E��Z�E,E��dE�
	
−�

�

Z�E�,E�dE�,

�15c�
0 � E � � .

The idea behind the Wiener–Hopf method is to solve this
pair of equations for g+�E� and g−�E� and hence, from Eq.
�14�, for g�E�. Because Z�E ,E�� has one form in Eq. �8�
when E��E and has a different form when E��E, there are
two terms for Z�E ,E��. On taking the Fourier transform

f̃�z�=�−�
� e2�izEf�E�dE, z=u+ iv, where u and v are real, and

using the convolution theorem, we have from Eqs. �8� and
�15a�,

g̃−�z� + g̃+�z� =
g̃−�z�
� + ��

� 1

1/� + 2�iz
+

1

1/�� − 2�iz

 , �16�

which can be rewritten as

2�iz�2�iz − 1/kT�g̃−�z�
1/� + 2�iz

=
�1/�� − 2�iz�g̃+�z�

�� + ���
. �17�

The solution for the g̃−�z� in Eq. �17� obtained in Appendix A
is

g̃−�z� = Gs
�1/� + 2�iz�

2�iz�2�iz − 1/kT�
, �18�

where Gs is a constant. The solution for g̃+�z� is not needed
but is given for completeness in Appendix A. The inverse
transformation of Eq. �18� for g̃−�z� yields

g−�E� = 	
−�+iv

�+iv

g̃−�z�e−2�izEdz = Gs�� kT

��
e−E/kt −

kT

�

 , �19�

where Gs� is a constant to be determined. We have from Eq.
�14a� that g−�E�=g�E� for E�0 and when E→−�, we have
g�E�→geq�E�. Writing geq�E� as geq�0�e�−E/kT�, a value is ob-
tained for the constant Gs�, Gs�=geq�0��� /kT, and hence

g�E� = geq�0��e−E/kT −
��

�

 , �20�

which is the trial solution given by Troe.5 Using it, the ana-
lytical solution for the low pressure “three-body” recombina-
tion rate constant k0 can be obtained. From Eqs. �5� and �20�,

k0 = Z0geq�0�����1 −
��2

�2 
 = Z0�� + ���
��2��0�

QkT
, �21�

where Q contains the factor exp�D /kt�. This result agrees
with the trial solution of Troe.5

C. Biexponential model

In this model, the average up-energy transfer is given
by

��E�up = 	
E�=E

�

�E� − E�Z�E�,E�dE�
	
E�=E

�

Z�E�,E�dE� = ���2 + cd�2�/��� + cd�� . �22a�
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Similarly

��E�down = 	
E�=−�

E

�E� − E�Z�E�,E�dE�
	
E�=−�

E

Z�E�,E�dE� = − ��2 + cd2�/�� + cd� . �22b�

For the biexponential model, following a procedure similar to that in Sec. II B for the single exponential model, we obtain

2�iz�2�iz − 1/kT��2�iz − r4�g̃−�z�
�1/� + 2�iz��1/d + 2�iz�

= −
�1/�� − 2�iz��1/d� − 2�iz�g̃+�z�

2�iz − r3
, �23�

where

r3 = 1/2kT � ��1/2kT�2 + ��� + ���/dd� + �cd + cd��/����/�� + �� + cd + cd��

and

r4 = 1/2kT − ��1/2kT�2 + ��� + ���/dd� + �cd + cd��/����/�� + �� + cd + cd��

.
The solution for g̃−�z� in Eq. �23�, obtained in Appendix B, is

g̃−�z� = Gbi
�1/� + 2�iz��1/d + 2�iz�

2�iz�2�iz − 1/kT��2�iz − r4�
. �24�

Inversion yields

g�E� = geq�0��eE/kT +
��d�

�d

1/kt − r4

r4
−

�1/� + r4��1/d + r4���d�

r4kt
e−r4E� . �25�

This equation reduces to Eq. �19� when d=�.
From these results, k0 is given by

k0 = Z0���� + cdd� +
���2 + cd2���d�r3

�dr4
− � 1

�
+ r4
�1

d
+ r4
��d�

r4
� ��

1/� + r3
+

cd�

1/d + r3

�geq�0� . �26�

This equation reduces to Eq. �20� when d=�.

D. Singularity model

The average up-energy transfer and down-energy transfer are given by

��E�up = 	
E�=E

�

�E� − E�Z�E�,E�dE�
	
E�=E

�

Z�E�,E�dE� = ���1 + C����−
�1 − 
�
�1 − 
��/�1 + C����−

�1 − 
�� , �27a�

��E�down = 	
E�=−�

E

�E� − E�Z�E�,E�dE�
	
E�=−�

E

Z�E�,E�dE� = − ��1 + C���−
�1 − 
�
�1 − 
��/�1 + C���−

�1 − 
�� .

�27b�

To use a perturbation method for this case, although a suitable branch-point analysis might also be used, the g�E� given by
Eq. �20� and Z�E� ,E� given by Eq. �12� are introduced into the right hand side of Eq. �7b�. A new g�E� is obtained, and this
step is then iterated. After several iterations, we find that g�E� for E�−� /100 ceases to be affected further. For −� /100
�E�0, g�E� becomes negligible because of continuity with g�E�=0 for E�0. Using this g�E� to calculate k0, we obtain a
value close to the one obtained using g�E� from Eq. �20�, for g�E� can be used here. The expression for the rate constant k0

thus given by Eq. �5� is then

k0 = Z0	
E�=0

� 	
E=−�

0

geq�0��e−E/kT −
��

�

e−�E�−E�/���1 + C�E� − E�−
�dE�dE = Z0geq�0�����1 −

��2

�2 

+ CZ0geq�0�	

E�=0

� 	
E=−�

0 �e−E/kT −
��

�

e−�E�−E�/���E� − E�−
dE�dE . �28�
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E. Near-singularity model

For this model, the same functions are adopted for Z�E� ,E� as in the singularity model. Because of the quantum limit, we
set a lower bound � to the energy transfer in the integral when calculating the energy transfer and rate constant. Equation �27�
then becomes

��E�up = 	
E�=E+�

�

�E� − E�Z�E�,E�dE�
	
E�=E+�

�

Z�E�,E�dE�

=

	
E�=E+�

�

�E� − E��1 + C�E� − E�−
�exp�− �E� − E�/���dE�

	
E�=E+�

�

�1 + C�E� − E�−
�exp�− �E� − E�/���dE�

, �29a�

��E�down = 	
E�=−�

E−�

�E� − E�Z�E�,E�dE�
	
E�=−�

E−�

Z�E�,E�dE�

=

	
E�=E+�

�

�E� − E��1 + C�E − E��−
�exp�− �E − E��/��dE�

	
E�=E+�

�

�1 + C�E − E��−
�exp�− �E − E��/��dE�

, �29b�

and we also have

k0 = Z0�	
E�=�

� 	
E=−�

0

+ 	
E�=0

� 	
E=−�

E�−� 
geq�0��e−E/kT −
��

�

e−�E�−E�/���1 + C�E� − E�−
�dE�dE

= Zgeq�0������1 −
��2

�2 
e−�/�� − ����kT +
���

�2 
e−�/�� + �kTe−�/�� + CZgeq�0��	
E�=�

� 	
E=−�

0

+ 	
E�=0

� 	
E=−�

E�−� 

��e−E/kT −

��

�

e−�E�−E�/���E� − E�−
dE�dE . �30�

III. APPLICATION TO Ar+O3

For the collisions of O3 with Ar, we obtain, from the
trajectory data,40 the parameters for different temperatures
and calculate ��E� and k0 for the single exponential model,
the biexponential model, and the singularity model.

A. Comparison of single exponential
and biexponential models

We determine �, c, and d from classical trajectory
data,40 and �� and d� are obtained from Eq. �11�. The
results for the ��E� and k0 for both models are given in
Table I.

B. Comparison of single exponential
and singularity models

We determine C and 
 from the classical trajectory
data.40 The average energy transfer and rate constants calcu-
lated from it are given in Table II.

C. Comparison of single exponential
and near-singularity models

According to Ref. 40, collisional changes in K provide a
major route for the vibrational energy transfer. On that basis,
a lower bound for the energy transfer is the quantum cutoff
for the rotational energy �A−B��2K+1�J, where A and B are
the rotational constants and K is the projection of the angular
momentum along the principal axis of rotation, as noted in
Sec. III A. An average over J is used since we averaged over
J in the calculation of energy transfer. In Ref. 40,
A�3.5 cm−1 and B�0.4 cm−1. From these values, the esti-
mated lower bounds are given in Table III, namely from
15 to 30 cm−1, depending on the temperature. The resulting
average energy transfer and rate constants are calculated and
shown in Table III.

The cases T=700 K and T=1000 K are purely hypo-
thetical since no experimental data are available for those
conditions, only trajectory results40 are available for these
temperatures.
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IV. DISCUSSION

For Ar+O3, the ���E�� for the biexponential model is
seen in Table I to be a little smaller than that from the single
exponential model by about 10%–20%. The k0 for this biex-
ponential model is about the same as that for the single ex-
ponential model �Table I�. The ���E�� for the singularity
model is seen in Table II to be smaller than that from the
single exponential model by 20%–40%. When we set a
lower bound in �E for the singularity model, i.e., the near-
singularity model, and calculate the average up- and down-
energy transfer, the results shown in Table III agree well with
those from Ref. 40, as they should if this truncated singular-
ity model is a good description of the trajectory data. The k0

for the singularity and near-singularity models is larger than
that for the single exponential model by a large factor, 25, at
room temperature, as seen in Tables II and III.

These results for k0 can be interpreted in terms of the
extra contribution from large b collisions for the biexponen-
tial, singularity, and near-singularity models, compared with
the single exponential model. The single exponential model
is fitted to the low b data. For the comparison of singularity
and near-singularity models and the single exponential
model, the difference for ��E�up/down is less than that for the
k0. This result can also be understood. k0 is seen from Eq. �5�
to have a larger contribution from small ��E� values to the
integral than for the single exponential model. In the case of
���E��, the numerator in Eqs. �22�, �27�, and �29� is again
enhanced by this enhanced Z�E ,E�� but the denominator is
enhanced even more, since the former is weighted by the
small �E.

In Refs. 11–13, the average down-energy refers to the
total internal energy transfer instead of only vibrational en-
ergy transfer treated here. So that value should be much

larger than that if only vibrational energy transfer were con-
sidered. If we compare the total internal down-energy trans-
fer ��Eint↓� in Ivanov and Schinke’s trajectory work40 with
the values in Gao and Marcus’ work11–13 used to fit experi-
mental data, there is only a small difference in ��Eint↓�.

The authors of Ref. 40 gave a different reason for choos-
ing a cutoff of 3 or 10 cm−1 for ��Eint�, namely that the
energy transfer averages gradually decrease as the value for
��Eint� cutoff decreases and decrease particularly rapidly for
the cutoff below the ones they chose. It was suggested that
bmax may be found by weighting the average nenrgy transfer
versus impact parameter by the differential cross section.63

Another result seen in Table I is that both � and d
��� and d�� for the trajectory data are proportional to kT,
though are much smaller, and the ratios d /� and d� /��
remain almost the same. The increase in d and d� with tem-
perature means that small energy transfer behavior becomes
less important at higher temperatures, as expected. The
typical system is further removed from the singularity or
E�−E=0.

V. CONCLUDING REMARKS

Analytical solutions for the low pressure rate constant
are given, using several different approximations to the tra-
jectory data, the single exponential, a biexponential, a singu-
larity, and a near-singularity models. The near-singularity
model is the most realistic. The differences should be maxi-
mal in the low pressure regime. Expressions are obtained for
the limiting low pressure rate constant k0, ��E�up, and
��E�down. The values of k0 from the biexponential are similar
to those from the single exponential model. Those from the
singularity and near-singularity models are an order of mag-
nitude larger than those from the single exponential model.
The origin of the difference is the large additional contribu-
tion of collisions with large cross sections in the singularity

TABLE I. Example of correction of k0, ��E�up, and ��E�down. Single exponential model �s� and biexponential
model �bi�.

Parameters
k0bi

k0s

a ��E�upbi

��E�ups

b ��E�downbi

��E�downs

b

�=43 cm−1 c, c=1.70 c, d=3.70 cm−1 c, T=298 K 1.02 0.86 0.88
�=119 cm−1 c, c=3.27 c, d=7.16 cm−1 c, T=700 K 1.01 0.82 0.84
�=163 cm−1 c, c=3.49 c, d=8.57 cm−1 c, T=1000 K 1.01 0.83 0.85

ak0s refers to the rate constant of the single exponential model and k0bi refers to the one of the biexponential
model.
bA notation similar to that in footnote b is used for ��E�up and ��E�down.
cValues of parameters were obtained using the trajectory results of O3 /Ar collisions from Ref. 40.

TABLE II. Example of correction of k0, ��E�up, and ��E�down. Single exponential model and the singularity
model.

Parameters
k0singu

k0s

a ��E�upsingu

��E�ups

b ��E�downsingu

��E�downs

b


=0.20 c, �=43 cm−1 c, C=50 c, T=298 K 25.1 0.81 0.81

=0.35 c, �=119 cm−1 c, C=50 c, T=700 K 10.8 0.67 0.67

=0.41 c, �=163 cm−1 c, C=50 c, T=1000 K 7.6 0.63 0.63

ak0singu refers to the rate constant of the singularity model and k0s refers to the single exponential model.
bA notation similar to that in footnote b is used for ��E�up and ��E�down.
cValues of parameters were obtained using the trajectory results of O3 /Ar collisions from Ref. 40.
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and near-singularity models that is absent in the single expo-
nential model. The values from single exponential model for
the ��E� are somewhat larger than those from the biexpo-
nential model by about 10%–20% and larger than those from
the singularity model by 20%–40% but similar to those from
the near-singularity model. The physical origin of these dif-

ferences lies in the smaller contribution from the smaller
cross sections with large energy transfer in the biexponential
and singularity models, compared with that in the single ex-
ponential model. While the numerator in Eqs. �22�, �27�, and
�29� is enhanced by this enhanced Z�E ,E��, the denominator
is enhanced even more, since the former is weighted by the
small �E. For the near-singularity model, a big part of small
energy transfer collision is removed. This cancels out the
former effect.
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APPENDIX A: SOLUTION OF EQ. „7b…
AS A WIENER–HOPF EQUATION
OF THE SECOND KIND FOR THE SINGLE
EXPONENTIAL MODEL

We first note that �g̃−�z��= ��−�
� e2�izEg−�E�dE� and

g̃−�z� is a function of z alone. Also, �g̃−�z��
= ��−�

0 e2�iuEe−2��Eg−�E�dE���−�
0 e−2��E�g−�E��dE. If we can

find a solution for g̃−�z� such that �g−�E���M1e2�v−E, as
E→−�, where �−�0 and hence tends to zero as E→−�,
then we have

�g̃−�z�� � 	
−�

0

e−2��EM1e2��−EdE = M1
1

2���− − ��
. �A1�

Thereby, in the part of the lower half plane where
Im z=v�v−, �g̃−�z�� has no singularity. So g̃−�z� is an ana-
lytic function in the half of the z-plane for which Im z�v−.

Next we consider g̃+�z�,

�g̃+�z�� = �	
−�

�

e2�izEg+�E�dE� = �	
0

�

e2�izEg+�E�dE� , �A2�

since g+�E�=0 for E�0. For E�0 it follows from Eq. �14c�
that

�g̃+�z�� = �	
0

�

e2�izE

��	
−�

0

g−�E��Z�E,E��dE��dE�
	
−�

�

Z�E�,E�dE�.

�A3�

We note that g̃+�z� is a function of z alone, and also from
Eqs. �8a� and �A3�,

�g̃+�z�� = �	
0

�

e2�iuEe−2��E�	
−�

0

g−�E��
1

� + ��
e−E−E�/��dE��

�dE� � 	
0

�

e−2��E�	
−�

0

g−�E��
1

� + ��

�e−E−E�/��dE��dE . �A4�

If we can find a solution �g−�E����M1e2�v−E�, where E��0,
then since �−�0 we have �−�− 1

2���
and then

�g̃+�z�� � 	
0

�

e−2��E�	
−�

0

g−�E��
1

� + ��
e−E−E�/��dE��dE

=
1

� + ��

1

2�� + 1/��
�	

−�

0

g−�E��eE�/��dE��

�
M1

� + ��

1

2�� + 1/��

1

2��− + 1/��
. �A5�

Thereby, �g̃+�z��→0 as Im z=�→�, and we see that
g̃+�z� has no singularity in the upper half plane for which
Im z�−�1 /2����, and so is analytic in that upper half plane.
The right-hand side of Eq. �17� is therefore analytic in the
upper half plane, Im z�−�1 /2����. We had seen earlier in
Appendix A that g̃−�z� is analytic in the lower half plane
Im z�v−. From the derivation on the left-hand side of Eq.
�17�, we need for analyticity of this side of the equation,
Im z�−1 /2�kT. Thereby, we require that the left-hand
side of Eq. �17� is analytic in the lower half plane where
Im z�−�1 /2�kT�. Since v−�0�−�1 /2���� we now see

TABLE III. Example of cutoff effect for the near-singularity model.

Parameters
k0n-singu

k0s

a ��E�upn-singu

��E�ups

b ��E�downn-singu

��E�downs

b


=0.20 c, �=43 cm−1 c, C=50 c, T=298 K 24.9 1.06 1.06

=0.35 c, �=119 cm−1 c, C=50 c, T=700 K 10.8 0.86 0.98

=0.41 c, �=163 cm−1 c, C=50 c, T=1000 K 7.6 1.04 1.04

ak0s refers to the rate constant of the single exponential model and k0n-singu refers to the rate constant of the
near-singularity model with a lower bound. This lower bound is 15 cm−1 for T=298 K, 25 cm−1 for T
=700 K, and 30 cm−1 for T=1000 K.
bA notation similar to that in footnote b is used for ��E�up and ��E�down.
cValues of parameters were obtained using the trajectory results of O3 /Ar collisions from Ref. 40.
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that both sides of Eq. �17� are analytic in the strip
−�1 /2����� Im z�−�1 /2�kT�. Since the analytic continua-
tion is unique, there exists an entire function F in the com-
plex plane which coincides with the right-hand side of Eq.
�17� in upper half plane Im z�−�1 /2���� and coincides
with the left-hand side of Eq. �17� in the lower half plane
Im z�Min�−�1 /2�kT� ,v−�. Since g̃+�z� goes to zero, no
slower than exponentially as �z�→�, then the entire function
F is bounded at infinity. One concludes that F is constant,
which we denote by Gs, and so obtain

g̃−�z� = Gs
�1/� + 2�iz�

2�iz�2�iz − 1/kT�
, �A6�

g̃+�z� = Gs
� + ��

1/�� − 2�iz
. �A7�

APPENDIX B: SOLUTION OF EQ. „7b…
AS A WIENER–HOPF EQUATION OF THE SECOND
KIND FOR THE BIEXPONENTIAL MODEL

Following similar procedure in Appendix A, we
can now solve Eq. �23�. As in Appendix A, �g̃−�z��

= ��−�
� e2�izEg−�E�dE�, and g̃−�z� is a function of z alone. Also,

�g̃−�z��= ��−�
0 e2�iuEe−2��Eg−�E�dE���−�

0 e−2��E�g−�E��dE. If
we can find a solution for g̃−�z� such that �g−�E��
�M1e2�v−E, as E→−�, where �−�0 and hence tends to
zero as E→−�. Then we have

�g̃−�z�� � 	
−�

0

e−2��EM1e2��−EdE = M1
1

2���− − ��
. �B1�

Thereby, �g̃−�z�� has no singularity in the part of the lower
half plane where Im z=v�v−. So g̃−�z� is analytic in the half
of the z-plane for which Im z�v−.

Next we consider g̃+�z�,

�g̃+�z�� = �	
−�

�

e2�izEg+�E�dE� = �	
0

�

e2�izEg+�E�dE� .

�B2�

Since g+�E�=0 for E�0, for E�0 it follows from Eq. �14c�
that

�g̃+�z�� = �	
0

�

e2�izE�	
−�

0

g−�E��Z�E,E��dE��dE
	
−�

�

Z�E�,E�dE�� . �B3�

We note that g̃+�z� is a function of z alone, and also from Eq. �9a�

�g̃+�z�� = �	
0

�

e2�iuEe−2��E�	
−�

0

g−�E��
1

� + �� + cd + cd�
�e−E−E�/�� + ce−E−E�/d��dE��dE�

� 	
0

�

e−2��E�	
−�

0

g−�E��
1

� + �� + cd + cd�
�e−E−E�/�� + ce−E−E�/d��dE��dE . �B4�

If, as stated above, we can find a solution �g−�E����M1e2�v−E�, where E��0, then

�g̃+�z�� � 	
0

�

e−2��E�	
−�

0

g−�E��
1

� + �� + cd + cd�
�e−E−E�/�� + ce−E−E�/d��dE��dE

=
1

� + �� + cd + cd�
� 1

2�� + 1/��
	

−�

0

g−�E��eE�/��dE� +
1

2�� + 1/d�
	

−�

0

g−�E��eE�/d�dE��
�

M1

� + �� + cd + cd�
� 1

2�� + 1/��

1

2��− + 1/��
+

1

2�� + 1/d�

1

2��− + 1/d�

 . �B5�

Thereby, �g̃+�z��→0 as Im z=�→�, and g̃+�z� has no singularity in the upper half plane for which Im z�−�1 /2����
�−�1 /2�d�� and since �−�0�−�1 /2�����−�1 /2�d��, it is analytic in that upper half plane. The right-hand side of Eq. �23�
is therefore analytic in the upper half plane for which this condition is fulfilled and where

Im z � max�− �1/2����,�− r3/2��� ,

where

r3 = 1/2kT + ��1/2kT�2 + ��� + ���/dd� + �cd + cd��/����/�� + �� + cd + cd�� .
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We had seen earlier in Appendix B that g̃−�z� is analytic in
the lower half plane Im z�v−. From the derivation on the
left-hand side of Eq. �23�, we need for analyticity of this side
of the equation Im z�−1 /2�kT. Thereby, we require that
the left-hand side of Eq. �23� is analytic in the lower half
plane where Im z�−�1 /2�kT�. Since v−�0�−�1 /2����,
we now see that both sides of Eq. �23� are analytic in the
strip max�−�1 /2���� , �−r3 /2���� Im z�−�1 /2�kT�. Since
the analytic continuation is unique, there exists an entire
function F in the complex plane which coincides with
the right-hand side of Eq. �23� in upper half plane
Im z�max�−�1 /2���� , �−r3 /2��� and coincides with the
left-hand side of Eq. �23� in the lower half plane
Im z�−�1 /2�kT�. Since g̃+�z� goes to zero no slower than
exponentially as �z�→�, then the entire function F should be
bounded at infinity. One concludes that F is constant, which
we denote by Gbi, and so obtain

g̃−�z� = Gbi
�1/� + 2�iz��1/d + 2�iz�

2�iz�2�iz − 1/kT��2�iz − r4�
. �B6�
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