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Photoinduced Spectral Diffusion and Diffusion-Controlled Electron
Transfer Reactions in Fluorescence Intermittency of Quantum Dots

Jau Tang® ( #5%4F# ) and R. A. Marcus*®
Noves Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125, U.S.A.

An overview 1s given for the experimental and theoretical development on fluorescence intermittency
(blinking) in semiconductor erystalline nanoparticles, We consider a model with photoinduced spectral
diffusion and diffusion-controlied electron transfer processes as the underlying mechanism for intermit-
tency in quantum dots. Depending on the frequency response of a dielectric medium, anomalous/normal
diffusion in energy space leads to power-law intermittency for single quantum dots and quasi-stretched
exponential decay in ensemble-averaged fluorescence intensity. Intricate relationship between single par-
ticle and ensemble behavior is discussed. Some kinetic and energetic parameters are linked to the temporal
behavior of blinking statistics and ensemble fluorescence decay.
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I. INTRODUCTION

Recent developments in nanofabrication of low-di-
mension materials such as quantum dots, quantum wells,
quantum wires and nanotubes have generated wide interest
and opened a new realm of scientific research'™ (and refer-
ences therein). For semiconductor nanocrystailine parti-
cles, or quantum dots (QDs), their unusual optical and elec-
trical properties have found novel utilizations and have of-
fered potential applications in biology, chemistry, physics
and technology. For example, because of the size-depen-
dent photoluminescence of QDs with a high guantum-
yield, QDs are being explored for biological tagging as a
tracer for cancerous cells.” Their tunability of band-gap
emission with a very narrow line width and large optical
strength have offered many potential applications, includ-
ing new types of laser, clectro-optical modulators and high
density logical devices." In addition, with chemical ma-
nipulations large-scale nano-assemblies can be made bot-
tom-up from colleidal QDs whose sizes are easily control-
lable.

Blinking (fluorescence intermittency) phenomenon
in single QDs was first reported by Brus and coworkers.”
They observed that when single QDs were under continu-
ous light illumination some went dark and became light

again stochastically. In addition, unusual power-law distri-
bution in the histogram of the on-off (light-dark) events
were noted.” In this report, we present an overview of re-
cent experimental and theoretical developments of these
unusual photochemical processes involved in QDs. We dis-
cuss the roles of photoinduced spectral diffusion and elec-
tron transfer reactions involved in the mechanisms of fluo-
rescence intermittency in QDs. We also address the intri-
cate relationship between power-law intermittency of sin-
gle QDs and the ensemble-averaged fluorescence decay
which appears to follow a quasi-stretched exponential be-
havior. The diffusion-controlled electron transfer (DCET)
model in the presence of Debye and non-Debye dielectric
medium will be described.

Ever since the first abservation” of blinking phenom-
cna of QDs, there has been a wealth of literature on experi-
mental and theoretical studies of the unusual behavior. On
the experimental side, several groups have made signifi-
cant improvements in the understanding of these phe-
nomena, for example, the work of Brus,*® Bawendi,*"?
Nesbitt,'""" Dahan,'**" Orrit,”"** Cichos,”**" and their col-
laborators and of many others.”>” In addition to the initial
observation of blinking and power law, Brus’s group® later
identified the dark QD state as positively charged with a
hole residing in the core of a QD and an electron possibly
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trapped elsewhere. Nesbitt’s group'” first reported
power-law behavior (« a small number) for the lifetime dis-
tribution for both on and off-events. In a later study,'” they
eliminated the possibility of a static distribution of the elec-
tron/hole trapping sites. Bawendi’s group’ linked the inter-
mittency to photoinduced spectral diffusion, suggesting a
possible role of diffusion on the power law. In a different
study, they observed two emission tracks separated by
20~25 meV with QDs on a rough gold surface,'" indicating
that a previously dark charged state on a quartz substrate
becomes emissive. They also noted the histogram of such
binary jumps also follows a % power law. Chung and
Bawendi explored the relationship between ensemble fluo-
rescence de::ay12 and single QDs intermittency. Dahan and
coworkers'® demonstrated applications of QDs to biologi-
cal labeling and to single photon sources. They also ob-
served nonergodicity and addressed the relation between
single particle and ensemble measurements.”' In Orrit’s
group®"** intensity correlation techniques were used to
study QDs. They observed a similar 377 power law.
Cichos and coworkers™?* observed the correlation be-
tween the dielectric property of the tapped state and the
power law. Hitbner, Basche and coworkers® and Cichos’
group™ independently observed a similar power-law be-
havior in single organic chromophores, indicating the
power-law behavior is not restricted only to semiconductor
nanoparticies.

On the theoretical front, understanding of the mech-
anisms for QD blinking phenomena and power law has
been advanced by many groups, e.g., Efros and Rosen,”’
Wolynes, Weiss,™ Silbery,™ Nesbitt,'” Bawendi,'® Orrit,”
Barkai,” Tang and Marcus,**** Frantsuzov and Marcus,>
Klafter and Szabo,*’ Osad’ko,* etc. Efros and Rosen’ con-
sidered a rate equation among three states with 0, [ and 2
electron-hole pairs to describe a random telegraph (blink-
ing) signal. This model led to an ordinary exponential de-
cay instead of a power law. Wang and Wolynes™ used a re-
action diffusion scheme to describe Poisson statistics of
intermittency in single molecules. The issues about QDs
and power law were not discussed. Silbey** studied the
Lévy flight model and connections to power-law behavior.
Nesbitt! used a static model with exponentially distributed
distances for the tunneling rate. This model requires a very
large number of surface trap sites over a wide distance
range to accommodate 7 to 8 decades for the dynamic range
of blinking statistics. Bawendi' described a discrete-time
random walk model for a dark trap state in resonance with
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the excited states of QDs. They suggested this intrinsic
hopping time depends on temperature, and light intensity at
eryogenic temperatures. Orri®' presented a model that re-
lates the exponent of the power law to potential of the elec-
tron in the QD, in the matrix and in the traps. It remains to
be explored for this model to explain why most of the ob-
served exponents in QDs are close to -3/2. Klafter and
Szabo™ explored two-state single-molecule trajectories
arising from a multi-substrate kinetics.

Weiss™ described a stochastic two-state model and
obtained some relations between the lifetime distribution
function for intermittency and the ensemble intensity. Such
a model was applied by Margolin and Barkai*® to various
cases where intermittency can be described by a power law
or an exponential decay. These relations can also be de-
rived using our DCET (diffusion-controlled electron trans-
fer) model, which provides a molecular basis and physical
insight into the kinetic parameters and into the stochastic
nature of energy fluctuations. In two recent studies®™* Au-
ger-assisted electron transfer for deep traps was invoked.
Because intermittency was also observed in organic chro-
mophores, it remains to be explored if the electronic cou-
pling in these systems also involves such Auger-assisted
processes.

To improve our understanding of the underlying mech-
anism for fluorescence intermittency and the power law, we
recently proposed a diffusion-controlled electron transfer
(DCET) mechanism’®®” to elucidate short-time behavior of
single QDs and quasi-stretched exponential df:ca\y38 of flu-
orescence intensity decay {/(1)) of a QD ensemble. The dif-
fusion-reaction model was first considered by Zusman™
for electron transfer and has since then been extensively
used by many others.” " In this overview, we focus first on
light-induced spectral diffusion, analyze next the inter-
mittency for single QDs, and finally discuss the ensemble
behavior of {/(1)) over the entire time span and investigate
its relationship to lifetime distribution P(¢) for both light
and dark-events in single QDs.

II. DIFFUSION-CONTROLLED ELECTRON
TRANSFER MODEL

In this main section about the theoretical model, our
presentation is divided into five topics, (A) single particle
vs. ensemble, (B) electronic states relevant to intermit-
tency, (C) photoinduced spectral diffusion, (D) intermit-
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tency of single QDs and power law, and (E) ensemble-
averaged fluorescence intensity.

A. Single particle vs. ensemble

Before addressing the issues about fluorescence inter-
mittency in single QDs and the ensemble-averaged fluores-
cence, we would like to consider whether ergodicity ap-
plies in QDs, i.e., whether the time-average of single-
particle behavior is equivalent to ensemble-averaged be-
havior. There are subtle differences between single-QD be-
havior and ensemble behavior. In intermittency measure-
ments, one observes the fluorescence intensity of a single
QD under continuous illumination. A histogram illustrated
in Fig. 1 is recorded for an individual single QD that under-
goes stochastic exchanges between a light state [1> and a
dark state [2>. In such a study a QD is distinguishable from
the others, and its histogram shows binary jumps between
two levels, “on” or “off”. The charged state {2> appears
dark due to quenching by a fast radiationless Auger pro-
cess. From the histogram one can determine the duration of
“on” or “off” periods and display the probability distribu-
tion P,,(2) or Pue{f) of the duration time for the “on” or
“off” events. On the other hand, in ensemble measure-
ments, the fluorescence intensity is recorded from large
numbers of QDs which are indistinguishable. The detector
can not tell which QD emits a photon, and a priori knowl-
edge is lacking about the history of an individual QD. En-
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Fig. 1. A schematic histogram of fluorescence inter-
mittency showing stochastic binary jumps be-
fween two intensity levels. Blinking statistics
P(¢) is defined as the lifetime distribution for
the duration periods for the “on” or “off”
events.
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semble-averaged fluorescence decay actually represents
the sum of the histograms from all QDs. Therefore, to de-
scribe {/(#)} for an ensemble one needs to use coupled rate
equations including both forward and reverse reactions,
whereas to describe either Po(f) or Pusdf) of a single QD
only a forward or reverse rate equation needs to be used.
Therefore, the nonergodic nature of QDs needs to be under-
stood from the context of the fact that in P(f) of sin-
gle-particle studies a QD is distinguishable whereas in en-
semble measurements of {J()) QDs are indistinguishable.

B. Electronic states relevant to intermittency

Semiconductor crystalline nanoparticles, or quantum
dots as they are often called, used in intermittency studies
are made of CdSe, CdTe, InS, and other compositions. The
usual size is about | to 4 nm in radivs. As semiconductors
in bulk, the band gap of QDs is of the order of a few meV,
but tunable by sizes. In addition, due to quantum size ef-
fects QDs contain discrete electronic structure instead of
the continuous conduction and valence bands as in bulk
materials. Several relevant electronic states, their relax-
ation pathways and rate constants, play a key role in inter-
mittency are illustrated in Fig. 2.

C. Phetoinduced spectral diffusion

According to the observation by Empedocles et al.,’
the spectral line width of band edge emission increases
with time and light intensity. To describe such a spectral
diffusion process, we consider in Fig. 3 two parabolic po-
tentials with ¢ as the reaction coordinate. The g, there is the
horizontal displacement between the potential well U {g) =
wq’/2 for the light state |1>and Us(g) = x(g + ¢0)/2 - E, for
the ground state [0>, and £, is the free energy gap.

The rate equation for population f{g, ¢) in state |1> is
the well-known Smoluchowski diffusion equation

5
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where the diffusion constant D, = A,*/z;, and x A;* ~ k5 T'in
the high temperature limit. Its Green function G(g,4";7), the
probability of finding a QD at point ¢' at time 7 that was ini-
tially at g, is given by™®
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Based on the Franck-Condon principle, the spectral emis-
sion energy, AU{g) = U\(g) — Uslg), changes in time and re-
sults in spectral diffusion. The second moment of the emis-
sion spectrum is given by

o’ () = {(AU(9) - (AU@))')
= [ dg(<4q,) G(g. 4:1)

= 2kAA! [1 —exp(—/t, )], (3)

where A =« g,°/2, is the “excitation reorganization energy”
and 2 A the Stokes shift.
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Fig. 2. A schematic energy diagram for a QD, showing
conduction band above the lowest excited state
IL*> and the valence bands below |[G>, and
other states relevant to blinking. Fast Auger re-
laxation processes cause the positively charged
|2> to appear dark.
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Spectral linewidth data of CdSe QDs by Empedocles
etal.” were converted to spectral second moments and plot-
ted in Fig. 4, with a universal variable “energy density”
(time ¢ times light intensity). The data were fitted to Eq. (3)
with an inverse dependence of 1; on light intensity, based
on the light-induced diffusion assumption.

D. Intermittency of single QDs and power law
According to the first-passage time theory,* an N-
dimensional diffusion with an (N-1)-dimensional absorb-
ing surface boundary results in a ™ power law for the
surviving probability. Initial observation of 17 power-law
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Fig. 3. Light-induced spectral diffusion between the
ground state and the photoexcited state.
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Fig. 4. The spectral second moment vs. energy density
(light intensity times evolution time t). The ex-
perimental data of CdSe (taken from Empedocles
and Bawendi®) were fitted by Eq. (3) to extract
diffusion correlation time constant.*
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intermittency in QDs prompted the hypothesis of 1-D dif-
fusion of the electron/hole among discrete localized sur-
face traps. However, such a discrete hopping mechanism is
faulty. To account for 7 to 8 decades for the observed P(2),”
the number of the localized traps has to exceed 500, as il-
lustrated in Fig, 5: in addition, these localized traps have to
be aligned in a 1-D fashion for this 1-D mechanism to
work. A QD of 2 to 4 nm in radius would not contain so
many surface traps that can line up in an 1-D array. There-
fore, the 1-D diffusion is likely to operate in a configuration
space, such as in energy space as suggested by Bawendi’s
group’ from photoinduced spectral diffusion measure-
ments.

To be more general and to accommodate a power law
with an exponent that could differ from the ideal -3/2, we
considered a non-Markovian anomalous diffusion in the
diffusion-controlled electron transfer model between a
dark charged state and a light neutral state, and the ordinary
Markovian diffusion is thus treated as a special case.”’

In treating anomalous diffusion in electron/energy
transfer reactions, there are two often used approaches:
POP (partial ordering prescription) and COP (chronologi-
cal ordering prescription)™ (with details and references
given). One can use a simplified three-state model of Fig. 6
to represent the more elaborate electronic states depicted in
Fig. 2. Inthe POP scheme for ET, such a three-state system,
the rate equation contains a time-dependent diffusion con-
stant as>®

0_11 . N 1-D diffusion among discrete traps
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Fig. 5. A simplified three-state model with binary
jumps (blinking) between a “light” state |1>and
a “dark state™ |[2>, |1> is accessed by photo-
excitation from the ground state [0>.
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After the initial transient, a quasi-equilibrium is established
between [0> and |1>, and Eq. (4a) can be simplified to a
two-state equation as™
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Fig. 6. Blinking statistics P(r) for 1-D diffusion among
N discrete trap sites with an absorbing sink. The
number of decades for the power-law behavior
depends on N. In order to have P(#) cover eight
decades of dynamic range, far greater than 500
discrete in-line trap sites are required. Because
such a large number of trap sites is unrealistic
for a small QD, this trap model has been ruled
out.
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where Dy(2) = o D(0), Vil =l Vod’s g1 = WAW + o) ~ W / Yo
¢ = | and V,, the electronic coupling. Because ¢; increases
with light intensity, so does the effective diffusion coeffi-
cient D,.

As discussed earlier in Sec. I1.A, to describe inter-
mittency for single QDs, one should use a decoupled rate
equation. For the “on™ events the forward ET equation is
given by*’

) b 1 ¢
= P(@:0=D(0 Q( 30 +7€8—T@U,(Q)]pl(g,t)
—E—E;‘-LS(UE(Q))MQ,:), &)

and for the “off” events the reverse ET rate equation is
given by

8 a

Epz(QJ) '!(f) 6Q[ k ﬁQ 1(Q)]F%(Q t)
_2=nlh,

25 s w0 ©

Here we consider harmonic potentials U,(Q) = U(Q) -

UxAQ), U(Q) = k(0 — 00,)*/2. UAQ) = K(Q = Qo2)* 12 +

AG®, ¥ the force constant and k A" = kT, AG® the free en-
ergy gap, A = k{Qy, — Qo2)"/ 2 the reorganization energy
and ¥, the electronic coupling. The time-dependent diffu-

sion coefficient Da(7) is related to diclectric function, g7}
by37.49

2 d ~ 1
D.(0)=-41 2 10,0, 8,0)=L"| —
S+ =
TLi(S)
TLk(S)‘s M)_ Z(@:ek(‘g)_ew %)
€y SXA(S) 89"‘"81

For a Debye dielectric medium %(s) = 1/(1 +s 1p). T4 (s5) =
Ti e = Tog Bx/80, OWll) = exp(-t/t. ) and Dy(1) = Af!'sﬁli be-
comes time-independent,

A histogram, illustrated in Fig. 1, consists of many
stochastic jumps between binary levels, representing “light”
and “dark”™ levels. Each blinking event for a QD starts with
the reaction coordinate O at the energy-level crossing, i.e.,
00, 0y =8(0 — Q.), as shown in Fig. 7. The surviving
probability P,,,() for the “on”-events of a single QD, or P,
(1) for the “off”-events, is defined as the waiting time distri-

Tang and Marcus

bution function for a QD at (. and is turned into the “dark

state” (or “light” state) between ¢ and 1 + df per unit d¢. The

Green function for sink-free diffusion in a harmonic poten-
2 37,49

tial kg*/2 is given by’

G,(g,950)=

I o _g-9'0,0))
i (-e0) | 24 0-e0)] "
Egs. (5) and (6) can be solved by the Green function
method and Laplace transform. We obtained the Laplace
transform of P(¢) as

B s (s 4,GHQ..05%)
P, (s)=-|d o d s A Ty
() ‘{{ te dt[_’[ 0 p (O 1’)) 1+ 4,G:(0..0.:5)
2
4, =§§Vk P !6(U|(Q)—U2(Q))/6Q|Q=LL' i

Defining gi(s} = 4,Gy(Q., O.:5), Pils) of a single QD can be
established via g(s) obtained previously™®*’

gk( O 10

2 e
e +g,(s) 1= Pi(s)

(10)

For a Cole-Davison dielectric medium® X(s)= 1/(1+s 1p) P,
one obtains an asymptote gi(s) = (s + Tt} "™ if s>
Inverse Laplace transform of Eq. (10) yields

Pi. S’)n-

L+((s+T, )rt,.)] e (an
By inverse Laplace transform of Eq. (11), one has®’

B ot

on-event eum——

off-event

reaction coordinate @ reaction coordinate Q

Fig. 7. Intermittency as controlled by 1-D diffusion in
energy space via a sink at the energy-level
crossing of two parabolic potential wells of a
light |L> state and a dark |D> state.
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Py~ %[E_Mm (1,7 Y]expT, )
if 1<1/T, <7,

RO~ )" T-Beo/2)n I 1<t

RO~ e, )" exot-T0f|r @ o/2-1)r

if f,<t<1/T, <1, (12)

o

where

(i [t0s j’ 12, =alV, [ 1,0 Bep +1)/20 kyTH 1,

(rk ok )Em =E,  Tou 2k T, T (B +1). (13)

and E,(z) = Z z" /I T(na+1) is the Mittag-Leffler func-

a=0
tion.™ As illustrated in Fig. 8. Py(t) of Eq. (12) foliows two
power laws with an exponent of —Bcp /2 at t < ¢, and an-
other exponent of =2 + Bep/2at >4, ;.
For the normal diffusion case in a Debye medium
with Bep = 1, Eq. (12) can be simplified to™®

B(t)= \[T:IT? [i.-,/m/t‘.:‘_ explt/t. ;)
ek
xerfe ({77, ):Iexp(-—l"kt), (14)

and

0.1 =107

001d /
/P{t) - T

1E-3 P(t) ~ A
Ay~ £

1E-8 l

Pt) ~ 1925

U
T

)
10 100

1n 10n 100n 1 10 100u 1m 10m 100m 1
t(s)

Fig. 8. Blinking statistics P(r) for DCET model with
normal diffusion (Bep = 1) and anomalous dif-
fusion {Becp # 1). The exponent for the power
law depends on B¢y of the dielectric medium.
At a much shorter time than £, (set arbitrarily at
107 ), P(r) follows a different power law.
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E —E , =AG’, 2Tt -2, =

(16)

From Eq. (15) for a Debye dielectric medium, two expo-
nents exist for the power law, i.e.,-1/2 atr<f ;and-3/2 at¢
> f.;. As an example of the applications of the DCET
model, experimental data of CdTe QDs by Shimizu et al."”
are illustrated in Fig. 9, showing good agreement with Eq.
(15). Because diffusion is light-induced, as light intensity
increases T, is shortened, and according to Eq. (16) 'y in-
creases and the exponential bending tail for the “on” events
appears. For the “off” events, the light-dependence of dif-
fusion in the dark state is diminished by a fast Auger relax-
ation, 1, is substantially longer than ;. The exponential
bending for the “off” events is expected to occur much later
in time. :
In the long-time limit (£ >> 1, ) gi{s) = 1/ 5 + /i, Eq.
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log ¢

Fig. 9. The log-lot plot of t P(¢) vs. time ¢ for data of
both “off” and “on” events of CdTe QDs at 300
K and 125 W/cm® (taken from the Shimizu et
al.'®). The data were fitted to Eq. (15).
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Y
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_a Kl

5 Wexp(—ﬁ‘,[,k/kgf) (17

kaeff
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where

= Tdtj:Ak exp(—ﬂ}n,k tanh(z/ 27, ))
0

1J2mad (i-exp(-21/1, )~ k]. (18)

Details about evaluation of f; have been provided by Rips
and Jortner.” Eq. (17) indicates that P,(r) for both “on” and
“off” events would decay exponentially.

E. Ensemble-averaged fluorescence intensity

As discussed earlier, to treat ensemble-averaged fluo-
rescence intensity one has to use the coupled rate equation
with both forward and reverse electron transfer. In Eq. (4) a
POP approach was used. In the above single-QD intermit-
tency study only the short time power-law behavior was of
major interest. To calculate longer time behavior for a sin-
gle QD or the ensemble fluorescence intensity over the en-
tire time span, one needs to solve Eq. (4) in Laplace trans-
form. Because Eq. (4) of POP scheme involves a product in
the time domain of D,(r) and a diffusion operator on time-
dependent population pg(?), it becomes a convoluted inte-
gral in the Laplace transform domain and much more diffi-
cult to handle numerically. Therefore, in the treatment of
this section we chose the other COP approach which in-
volves convelution in the time domain but a simpler prod-
uct form in the Lapalce transform domain.

The coupled rate equation for electron transfer in the
COP scheme is given by

Lo 0=Jértt=0m @9
cl

MVI — L5 (U (@) P (@0 —p2(2.0))

2 o0 j 4Ly =1)p2 Q.
ct

27:[1/«

(UL O)(P2 (0.0 -p (Q.1) (19)
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where L;(t) =

wfm- -—--(U( )/k T
“Q(af 30 F e ))

()= (stpu+ DV P2 /7, 4L Eq. (19) becomes Markovian if
Beo =1 where o, (£) = 8(r)/t, . Most of the expressions de-
rived earlier in this study by POP approach can also be ob-
tained by COP. Both approaches yield similar asymptotic
results at very short or long times; differences in the mid-
time regime are assumed to be small. Defining G(Q.0";s),
the Green function in the Laplace transform domain, that
satisfies sGH0.0";5) = Ls)GH0,0':5) = 8 (Q - Q"), one
obtains from Eq. (19)

COE j 0 p;(0:5) :f T d0p,(0,0)

j dO4,GI(Q,,0:5)p, (0, 0)— j dQ4,G2(Q,.0:5)p,(0.0)

20
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If an ensemble of QDs is initially at O,, the energy level
crossing, with p1(0.0) = C (0 - 0.) and px(0.0)= (1 - €)
8(Q— Q.). Eq. (20) yields

- - 1C 1-C)g,
<Px(s)>mg=£ 16800200 ),

§ 5 14g(s)+gs(s)

If a QD ensemble is initially in |1> as illustrated in Fig. 10
with a Boltzmann distribution p,(Q,0) = (1/{27{/(31","’?)
exp(—x(Q ~ Q0.1 )*/2ksT), the normalized intensity (J(s)) can
be derived from Eq. (20) and™

short time —_— long time

reaction coordinate Q

reaction coordinate Q

Fig. 10. Time evolution of an initial population profile
in |1> centered at (O, ;. At longer times a
steady-state distribution is established be-
tween |1> and [2>. The relation of forward/re-
verse ET activation energy (Ea1/E42). reorga-
nization energy (A) and free energy gap (AG")
to two parabolas is illustrated.
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TV =(p () =L 1— L 5
T o

where v, and y; are the nonadiabatic forward and reverse re-
action rates. Defining the relaxation function (R(s)) as
(RN = L) = (H(s)) = L/s, from Eq. (22), one has

— 1 v, +7,
R(s)):— Pt e .
( s S(1+g1(s)+g2(s)) (23)
The steady-state intensity is given by
l,= ! = . (24)
1+¢ exp(—AG" /k,T)

Using the relationship between Py(s) of single QDs
and gi{s) one can express Eq. (21) as

- _1=Pi(s) C+(=C)P:(s) 5
(pI(S)>J_Tug s 1= Pi(s)P2(s) (23)
One can also express Eq. (22) as™®
_ (=P Yi-P
(1(5)> 4 ( i X_ ) (26)
s s (1 -P (s)Pz(s})
and Eq. (23) as
_ 1- El 1 "*;z :
(R(S‘))Il 1_YI+Y2 ( (_S)X_ (S‘)) ; (27)
s s 1=Pi(5)P2(s)

Eqs. (25-27) represent relationships between ensemble-
averaged behavior and blinking statistics Py(s) of single
QDs. The Stokes shift was not included in deriving Eqgs.
(22-27)if the initial population is not centered at Oy ;. More
details and the roles of band-edge electronic structures will
be discussed elsewhere.™

Egs. (25-27) have been derived previously by Weiss
and his coworkers,” and were applied by others, including
Dahan,*® Orrit®"*? and Barkai®® to characterize asymptotic
behavior of QDs. Eq. (25) only applies when an initial pop-
ulation is af the energy level crossing, and was used previ-
ously by Bardou et al.™ for laser cooling, and was recently
applied by Chung and Bawendi'? to ensemble studies.
These equations were previously expressed in terms of
Pu(s) and (15). Here, we show {t,)"" = ;. and is simply the
non-adiabatic electron transfer rate. More importantly, via
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gis) Egs. (21-23) provide formulas calculable for the en-
tire time span (for anomalous/normal diffusion model), and
link {/(#)} and P(#) to measurable molecular-based quanti-
ties.

Some calculated curves based on Eq. (22) with a
Debye medium are illustrated in Fig. 11, showinga fitto a
stretched exponential £, + (1 — L) exp(—(¢/T;)"). At much
longer times, they decay exponentially. As an example for
the applications of the equations derived in this section for

1.0
0.8
0.6
A
= B =002
v 0.4- a=055 T =125
¢ r = 004
a=058 T =176
024 & 1 = pos

« =063, TG =187

0.0 Ty

10° 10 10" 10° 10’
Time t (s)
(a)
10"+
1074
—% 1074
= 1075
v
0] ® 1. 002 T =334
& 1= 004, T =373 D\
= 008 T =331 i
10°° r — T : .
0 1000 2000 3000 4000
Time t (s)
(b)

Fig. 11. {a) Semi-log plot of {I(1)) (dot curves) and the
fitted (solid) curves using a stretched expo-
nential 1o, + (1 — L)exp(—{t/Ty)*) with fitted
values for o and Tp. Bep = 1 was used. 9(b)
Semi-log plot of the normalized {J(1)) — /.,
showing a fitted tail of exp(—#/T;), indicating
the stretched exponential decay is only an ap-
proximation.



16 J. Chin. Chem. Soc., Vol. 33, No. 1. 2006

ensemble-averaged behavior, fluorescence intensity decay
data of CdSe with a ZnS shell are compared with Eq. (22)
as illustrated in Fig. 12. From the fits, we estimated some
molecular-based kinetic and energetic parameters. As a
comparison with the Debye case, which has normal diffu-
sion in Fig. 11, anomalous diffusion is considered and the
influence of By is illustrated in Fig. 13. The fits to a stretched
exponential for anomalous diffusion case are notas good as
the normal diffusion case.

To obtain an analytic expression for ([{)) or (R(1)) re-

|
: i
i
A F
f %* CdSe with a ZnS shell e
= 5 [.:50,!1':11 !
A =7 =90 17210
:=10,1 =100, 1 {=09 i
\
|
0.1 T » T T T 1 i
. 3 4 5
10! 10’ 100 100 10" 10" 10
|

Time t (s)

Fig. 12. Log-leg plot of experimental {{(r)} (dot
curves) and the fitted (solid) curves using Eq.
(22). From /., ~0.26 at the long times, we esti-
mated AG'~-33 meV. Using &; ~0.75, 1,~ 10
sand 1o~ 100 s, we estimated £ ; ~45 and £4.-
~78 meV.>

I E—
gy
o .ﬂ%{-ﬁ L= 5:— L= 200
0.81 % ;= 01,T,=.004
4
b
A 0.67 %,
= ‘s;.
Vg4f * Boo=1 \
s . O =176 ,
=058, Ty=17 \ | o162
0.27 Peo =07 ———
=048, T, = 162
e T T Ty s e
10° 10 10" 10 w0 1 1t 100 10

Time t (s)

Fig. 13. Semi-log plot of {{(z)} vs. 7 for both normal and
anomalous diffusion cases with a fit to a
stretched exponential. As Bep decreases the
exponent « also decreases.

Tang and Marcus

guires the inverse Laplace transform of Egs. (21-23), and a
closed form is unavailable. Instead. standard numerical in-
verse Laplace transform from IMSL was used to calculate
(1)) and (R(1)}. To obtain desired accuracy, we have in-
cluded 25 terms in Taylor’s series expansion of gi(s) in ei-
ther regime of a small and large 5. The fitted values for 1,
and 1, in Fig. 12 are not unique. We can obtain similar fits
by varying T, as much as 50% but keeping ©,I", fixed.
Unique determination of I, requires measurements of the
bending tail in 2,,(#) for a single QD under the same condi-
tions of light intensity and temperature. Because diffusion
is light-driven, an increase in light intensity shortens 1,
and increases I';. From the analysis of the data of {/{1))
alone and the fitted t,T"|, we are able to extract some useful
parameters.

{I(s)) of Eq. (22) is related to the autocorrelation of
fluorescence intensity of others by (J(s)) = Ca{s)y2/(v1 + ¥2).
As iltustrated by experimental data of CdSe QDs by Messin
et al.,'® with a very large time constant for a correlator,
C{£)/Ci{0) behaves as (I(1)} (or (R(z)) at short times). The
fit to [-Ce{(1)/CH0), as shown in Fig. 14, shows a power
law with Bcp/2 ~ 0.48, very close to the ideal value for nor-
mal diffusion (8¢p = 1). Unusual time dependence in /(1))
and (R(1)) arises if P,,{t) and P,{¢) follow different decay-
ing laws. Such a situation has been extensively studied by
Margolin and Barkai®* using a phenomenological Py(). It
can be analyzed in this study by assigning a different Py,
for gi(s) for the light and dark states. As an example, if
P.g1) follows a power law but P,,(r) decays single expo-

109 s ptyg

el g oy LS
il S
By
-
w
L]
B "
Ky ]
O 05 !
= CdSe B
LL)L ®  Malvern correlator T = 180 s
T,=60s, o=0.84
Malvern correlator T = 1800 s
T,=860s, o= 0.48
0.0 a 5 T T T o
10° 10 107 10’ 10’ 10

Time t (s)

Fig. 14. Semi-log plot of CH(r)/CH0) for CdSe QDs fit-
ted by power law 1 — (#/Tp)™.
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nentially as y,exp(—y:7), we obtain CH{#) ~ (#/7.2) Perzi 2 (v +
v VT (1= Bepa/2) v172 f2. Such a time dependence with
Bepz = 0.6 was observed by Verberk et al.”' in uncapped
CdSe QDs. Both m for the exponent of P(¢) and o for the
stretched exponential fit to (/{#)) arc influenced by the di-
electric response, due to a distribution of diffusion correla-
tion times. A correlation of m with dielectric properties was
recently noted by Issac et al. **

For the anomalous diffusion case, the calculated
{I(2)) is shown in Fig. 11 with a stretched exponential fit,
and (R(#)) is illustrated in Fig. 15, showing (R(¢)) ~
exp(—(#T) ') or 1 — (R(1)) ~ (¢/T,) =% at short times.
(R(#)y approaches exp(—#/7; ) at longer times, where T, = (1
+ £+ 1)/ (y1 + y2) was derived from the asymptote of gi(s)

103 R(t) ~ exp(-t'TL)
Ben :
[ SO |
10 0.9
. 0.8
=0 0.7
S :
=
\
E 02 °gN"
S 10 SEEXT 7 =10,7, =200, 1o =100

=000, 14/ 1=02

R ~ expl-(¢T )]

-4
0 v
10* 10° 10% 10" 10° 10" 107 10
Time t (s)
(a)
10°

T =10, 1, =200, 1o = 100 ‘dﬁ:g?w
T =001,1,/l,=0.2 #

Beo
B - & i
1

2 09

10 (WTPe) 0.8

i 07
10-41 T T 2 r T T .l
Tt o ot w0t o 10t et

Time t (s)
(b)

Fig. 15. (a) Log-log plot of -In{R(f)) vs. 1. (b} log-log
plot of 1—{R(#)) vs. 1. Both plots show a power
law of (#/T,)) %" at a short time (/< 1 5). At lon-
ger times {t >> 10? s), however, {(R(5)) ~
exp(—1/T¢).
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at very small 5. 7, can be derived from Eq. (22) as
2 T(Bep/2+1D)

(TS)I}CD;-: |~Bep /2 (IR
G @) )Y

which can be simplified for §ep=1to

I:v=£ ‘/;+‘/Z 2. (29)

8 | exp(—=E,, /k,T)+exp(-E, /k,T)

28)

1i1. CONCLUSION

In conclusion, in this overview we have described re-
cent developments in experiments and theories on fluores-
cence intermittency in quantum dots. Considerable im-
provement in understanding the underlying mechanism has
been made possible by extensive studies by various groups.
We have addressed five topics, including the issue about
single particle vs. ensemble behavior, electronic states
relevant to intermittency, photoinduced spectral diffusion,
power-law intermittency, and ensemble-averaged fluores-
cence intensity decay. Using the diffusion-controlled elec-
tron transfer model for both normal and anomalous diffu-
sion, we examined blinking behavior Py(r) for single QDs,
ensemble-averaged fluorescence decay (/(7)). and the rela-
tionship between (/(f)) and relaxation function {(R(f)) with
Pie). (1()), (R(1)) and Py(t) follow characteristically differ-
ent decaying behavior during various time regimes. From
the measurements of single-particle or ensemble behavior,
one can in principle extract those molecular-based quanti-
ties. Applications were demonstrated with fittings to exper-
imental data from single-QD studies and ensemble mea-
surements.

Although in this report, we focused only on intermit-
tency in quantum dots, the DCET model can be extended to
similar power law behavior observed in single organic mol-
ecules. " The electronic structure for these systems are
different from those of semiconductor materials; the fluo-
rescence intermittency between a light state and a long-
lived dark state is also believed to be controlled by 1-D dif-
fusion in energy space. Extension of this DCET model to
intermittency in enzyme activity using single molecule
spectroscopy’’ requires modification of the Marcus-type
electron transfer reactions to Kramer’s type of reactions in-
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volving bistable potential. For a shallow bistable potential
where its bottom is close to a sink, intermittency at short
times is dictated by the diffusion near the bottom. One would
expect similar power-law behavior as in QDs. More details
await further investigation.
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