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ABSTRACT

A mathematical treatment is developed which yields equations relating
faradaic current, voltage, and time when an alternating voltage is applied to
an electrolytic cell composed of a plane and auxiliary electrodes immersed
in a solution containing initially supporting electrolyte and only reversibly
oxidizable or reducible species. Both oxidant and reductant are taken to be
soluble, and specific adsorption is assumed to be absent. The voltage across
that branch of the equivalent circuit through which only faradaic current
flows is assumed to be periodic with fixed amplitude and with or without
an additional direct applied voltage component; the resultant current is
distorted. Diffusion controlled kinetics is postulated, and it is assumed that
equilibrium is essentially established at the electrode surface. The equations
developed show that a “steady state” (i.e, a periodic state) is quickly at-
tained, yield diagnostic tests of use in establishing the reversible mech-
anism, make it possible to determine the standard potential, and finally
yield for the periodic state a relation between faradaic current and time.
These results are then generalized so as to include systems in which the
reversible electrochemical step is followed by a sufficiently slow secondary
reaction step. One diagnostic result of interest in the latter connection is that
the mean faradaic current vanishes in the periodic state, regardless of the am-
plitude or of the shape of the applied periodic potential, when the follow-up

reaction occurs to a negligible extent.

The problem of developing a mathematical de-
scription of the chemical effects of alternating cur-
rent on reversible redox systems has been attacked
with varying degrees of success by several investi-
gators (1-12) subject to the following restrictions:
(a) undistorted voltage and current waves, and/or
(b) both components of the redox system must
either be present in the solution initially or present
at the electrode’s surface as the result of superim-
posed direct current. Berzins and Delahay (8)
assumed what in the classification of Delahay, Senda,
and Weis (17) may be called alternating voltage
(A.V.) control [i.e., controlled sinusoidal potential
difference across that branch of the equivalent cir-
cuit for one electrode through which only faradaic
(f) current is flowing]. They derived an equation
for the instantaneous value of the (distorted) fara-
daic current as a function of time. This equation
contained transient terms and a “steady-state” (or,
better, a “periodic-state’”’) term. Plane electrodes
were involved.

Recently Matsuda and Delahay (13) extended
the A.V. control problem to derive an equation for
. the transient current produced by faradaic rectifica-
tion after the periodic component had reached a
steady state. Their equation was restricted to small
values of the A.V. and to solutions initially con-
taining both oxidant and reductant.

1 Alfred P. Sloan Fellow; N.S.F. Senior Post Doctoral Fellow at In-
stitute of Mathematical Sciences, New York University (1960-61).
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Koutecky (14), assuming A.V. control, derived
an equation for the instantaneous value of the fara-
daic current as a function of time for the general
case of a periodic voltage of optional wave shape
and applied it to the special cases of sine waves,
square waves, and triangular waves. His equations
were largely, although not entirely, concerned with
the conditions characteristic of polarography (i.e.,
dropping electrode), but his work and an initial
portion of the present work are related. We shall
be concerned with stationary electrodes, with a
treatment for (in some ways) slightly more general
systems, with a detailed treatment of the statement
of the periodic state, and with devising a method
of determining the standard potential and other
properties (m and n below) of a reversible electro-
chemical step in an otherwise irreversible process.

In the present paper we shall discuss a system un-
dergoing A.V. electrolysis with or without super-
imposed direct applied voltage for the case employ-
ing voltage control when the initial concentration of
either oxidant or reductant is zero. Clearly, large
A.V. amplitudes may be necessary to bring con-
centrations at the electrode surface into the poised
region where reasonable accuracy in potential-con-
centration relationships may be achieved.?

This case is of only limited practical interest for

3 A certaln experimental difficulty which, it has been suggested
{p. 313 of ref. (17)], could complicate interpretation of the more
usual (low amplitude) A. V. control systems, is absent here because
of the different method used to interpret the results.
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potentiometrically reversible redox reactions but
should be important in the study of oxidations or
reductions involving “follow-up” mechanisms, e.g.

Red = ne + Ox (fast)
Ox = products (slow)

especially when the half-life period of the unstable
(or highly reactive) intermediate substance is short
compared to the polarographic drop time but long
compared to the period of the A.V. in a usable fre-
quency range.

General Assumptions

In the theoretical treatment along the lines in-
dicated, the following restrictions and assumptions
will be made,

(i) A plane electrode is used and conditions for
the semi-infinite linear diffusion are achieved.

(ii) A. V. control is employed (A. V. alone or with
a superimposed direct voltage component).

(iii) The only depolarizer initially present is the
reductant. (This is an unessential restriction, as
noted later, and is made only to emphasize the case
that is of practical interest here.)

(iv) A supporting electrolyte eliminates migra-
tion of the depolarizer and also keeps the pH con-
stant through buffer action. Convection is assumed
absent.

(v) “Spontaneous depolarization’” (15) occurs only
by diffusion, i.e., the depolarizer concentration at the
electrode changes only by diffusion or electron trans-
fer to the electrode and not by secondary chemical
reaction or by convection.

(vi) Specific adsorption is absent.

(vii) Electrochemical equilibrium exists between
the electrode and the concentrations of the electro-
chemically active species just outside the region
effectively occupied by the electrical double layer.

(viii) In view of the transient nature of faradaic
rectification, it will be ignored as a possible source of
disturbance of over-all concentration after a steady
state (i.e., a periodic state) is achieved. ‘

In principle, the above assumptions are all that are
needed. In practice, however, it is desirable that the
electrolytic resistance is rendered negligible by the
high concentration of supporting electrolyte, and
that the working electrodes of the electrolytic cell
are a measuring electrode and an unpolarizable
auxiliary electrode. A negligible resistance ensures
an undistorted voltage wave across the faradaic
branch, a very desirable restriction, as discussed
later. It should also be noted that when a second
faradaic process of the above type occurs, it can be

treated as a parallel branch in the equivalent circuit.

Assumption (vii) that chemical equilibrium is
achieved with alternating voltage does not imply
that the charge transfer resistance (Grahame’s §) is
zero, but it does mean that the # is negligible in
comparison with the mass transfer resistance (diffu-
sion) for the experimental conditions, i.e., that the
frequency used is low enough to enable close ap-
proach to equilibrium in a small fraction of a cycle.
The validity of this assumption in the case of a
poised ferrocyanide-ferricyanide solution was dem-
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onstrated by Remick and McCormick (16) who
showed that the introduction of the Nernst equation
into Grahame’s equations for the faradaic admittance
(6) adequately predicted the experimentally ob-
served relation of depolarizer concentration to polar-
ization resistance and capacitance up to the highest
frequency used, viz., 5000 cps. Less reactive systems
would be expected to behave reversibly only up to
lower frequencies.

The assumption that electrochemical equilibrium
exists between the electrode and species just out-
side the double layer implies that the salt concentra-
tion is high, so that the width of the double layer is
appropriately small. Were this condition not fulfilled,
one would have to include in the diffusion equation
of the i** electrochemically active species the usual
migration term (D,e,/RT) (3¢/9x)C,, ¢ being the

potential at point x, and D,, e,, and C, being the dif-,

fusion coefficient, charge and concentration (at x)
of species i.*

The system as a whole will also be undergoing a
periodic buildup and disappearance of the electrical
double layer at the electrode. The total current at
any time is the sum of this nonfaradaic current and
the faradaic current i, calculated below. That is, as
discussed by Grahame (6), the additional process of
charging and discharging the double layer can be
regarded as corresponding to a condenser (of capac-
ity depending on instantaneous voltage) in parallel
with the faradaic branch of the equivalent circuit.
We consider first the behavior of the faradaic branch.

Boundary Value Problem
The reversible electrode reaction

Red 2 m Ox + ne [1]

involves the soluble species Red and Ox whose
charge types are not specified. In Eq. [1] m and n are
rational numbers. The molar -concentrations of these
species, respectively, will be symbolized by C and
C.x and the bulk concentration of Red by C°;. Cy and
Cox are functions of the time, t, and the distance, ,
from a plane parallel to the electrode surface but
just outside the electrical double layer region. To
express diffusion control, Fick’s second law will be
employed as usual, expressed in terms of concen-
tration rather than activities:

0Cax(x, 1) /8t = Doe[0°Cox (, t) /0x*] [2]
dCx(x, t) /0t = Dp[8°Cx(x, t)/9x"] [3]

where D, and D,, are diffusion coefficients. Equations
[2] and [3] will be solved subject to the initial and

3 This assumption concerning the width of the double layer will
often be satisfied even when the assumption would be inaccurate for
systems for which a kinetic boundary condition is appropriate (i.e.,
a boundary condition such as —D3C/dx = kCox — k’Cr at the elec-
trode surface). In this kinetic cage, Bockris (26) belleved that the
‘‘zeta potential” is largely suppressed at concentrations above ca. 1N.
This conclusion, however, was not substantiated by Breiter, Kleiner-
man, and Delahay (27) whose calculations (based on a theoretical
equation which was found to be in accord with experimental data
obtained in the polarographic reduction of lodate lons) indicated
that the zeta potential might well be ca. 0.05v even in 1M solution.
Since electron transfer proceeds from positions immediately adjacent
to the electrode, we see that for double layer effects to be negligible
in the kinetic case, the double layer should be narrower than a few
Angstroms. In the electrochemical equilibrium case (assumption vii),
however, to satisfy our assumption, it merely suffices that diffusion
be rapid across the double layer so that concentration ratios inside
it are given by a local Nernst (i.e., Boltzmann) relation. Accord-
ingly, our assumption will often be valid when it is not valid to
:l;gl:lct ::lm:ible layer effects on rate constants for electron transfer to

e electrode.
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boundary conditions (and to the assumption of a
bounded solution):

Ca(x, 0) = C*% [4]
Cux(x,0) =0 [5]
Dox 0Cox(x, t) /9x + m D 0Cr(x, t) /dx = 0
atx =0 [6]

plus a condition on C.. (0, t).

If one considers instead of [56] the alternative
condition that C..(x, 0). equals a nonzero quantity
C%:, Eq. [7], [13], and [15] remain valid, if C.:(x, t)
in [7] is replaced by C.(x,t) — C’», and f in [13]
and [15] by f— C°.. Equation [8] remains intact,
but in Eq. [9] and [14] the second C,.. and f should
be replaced by C,. — C°x and f — C°,,, respectively.
~ In Appendix I, Eq. [2] to [6] are solved by‘ the
Laplace transform method. The solution is given by

a 1
i, = —nFA (Dox/fr)m—at— J‘o Cux(0,t —7)r"dr [7]

As the boundary condition at x = 0, we employ
the Nernst relation between C.(0,t) and Cr(0,t)
fort > 0:°

Ep(ot) =E',+ (RT/nF) In {C..(0,t)"/Cx(0,t)} [8]

where E, is the amplitude of the applied alternating
voltage, p(wt) is any continuous periodic function of
ot, of period 27 and of unit amplitude, and E’, is a
quantity defined later.

From Eq. [8] and Eq. [24] of Appendix I, it fol-
" lows that for t > 0, C..(0, t) in Eq. [7] satisfies the
relation:

[Co:(o, t) ]m = [cvn - (Dox/DR) b Cox(oy t) /m]

exp [ (nF/RT)(Ep(wt) — E')] [9]

The quantity E’, is defined through the following
argument: Since the electrolytic resistance is as-
sumed negligible, the potential difference across the
cell is the sum of the two half-cell potentials,
E. 4+ E,, where E, is the half-cell potential across the
auxiliary unpolarizable electrode. If E, is the direct
component of the applied potential, we thus have

E.=E,+ E,p(ot) — E, [10]

Writing E, in terms of its standard potential E, of
the reversible step of the half-cell, we have

E,=E, + (RT/nF) In {C..(0, t)™/Cx(0, t)} [11]

From Eq. [10] and [11], Eq. {8] is obtained with
E’, given by
E'o = En + Ec - Ed [12]

Delahay, Senda, and Weis (17) have emphasized
the desirability that, in specifying the type of con-

4 Equation {7) can also be obtained, after a somewhat involved
series of substitutions, from the first half of Eq. [21] of ref. (14).
However, the derivation given in Appendix I of this paper has cer-
tain advantages for our purposes and is referred to later.

5 The apparent discontinuity between the limit which this Cox (0, t)
approaches as t -» 0 and that which Eq. {5) approaches as x — 0
causes no difficulty. It is indeed a standard type of discontinuity (22)
in diffusion and heat conduction problems.
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trol used, both the alternating and mean components
of the current or voltage control should be desig-
nated. The argument of the preceding paragraph
shows that we are here dealir.g with the case of A.V.
control, with E.,, = E; (when the mean value of

p(wt) is zero), i.e., with E, = E, — E..

It sometimes happens that E,p(et) is treated as a
piecewise continuous function,’ for example, when it
is treated as a square wave applied potential.
Strictly speaking, it is continuous, but is approxi-
mated by this discontinuous function. To adapt
Eq. [13] to this case, one uses the fact.that the de-
rivative of a step function is a Dirac $§-function (19).”

Applications of Equations [7] and [9]

Silverman and Remick (18) observed oscillo-
graphically that a periodic state was achieved very

rapidly using I..,,~-control, {i.e., A.C. control (17)],
plane electrodes, and solutions initially containing
only one component of a reversible redox system.
We know of no comparable experimental demonstra-
tion involving A.V. control; however, Eq. [7] and
[9] can be shown to predict the attainment of a
periodic state. Moreover, this periodic state is a con-
venient one for application of the equations to ex-
perimental data. Accordingly, we first show how
these equations lead to the periodic state.

For this purpose, it is very convenient to introduce
a function f(w8) which agrees with C (0, ) for § > 0,
but which is the periodic continuation of C(0, )
forg=0.

In Appendix II it is then shown that Eq. [7]
can be rearranged to give

[f(ot—y)ly™" dy

iy = nFA (0Do/n)" {f a_z

—1% J:, flot—y)y™" dy} [13]

where f(wt — y) satisfies Eq. [14] for all t. Equation
[14] is obtained from Eq. [9] by replacing C..(0, t)
by f(wt —y).

[f(ut—y)]™ = [C°x — (f(ot — y)/m) (D./Dr)**]
exp {(nF/RT) [E,p (ot —y) —E.1} [14]

In Appendix II, it is shown that f(et—y) is
bounded by some quantity, M say, so the second
integral in [13] tends to zero as ot tends to infinity

%It may be recalled that a plecewise continuous function is one
which has in any finite interval at most a finite number of discon-

tinuities.

7In the case of piecewise continuous p(wt), one may utilize Eq.
[22]) and [9] as follows. Piecewise continuous p(wt) implies plece-
wise continuity of the function Cox(0,t) defined by Eq. [9], and
even (Appendix II) its finiteness for the p(wt) of interest. Its
Laplace transform Cox (0, 3) therefore exists and has “nice proper-
ties.” Consider now the contour integral expression obtained for
Cox (x, t) by applying the usual Inversion Theorem (23) to.Eq. [22],
where Cox (0, s) has just been described. This expression has the de-
sirable convergence behavior outlined in ref. (23) (uniform converg-
ence in x and in t) and one may proceed to test as discussed in ref.
(23) whether it and the corresponding contour integral for u (0, t)
{u is defined in Appendix II) satisfy the differential equations and
boundary conditions. dCox (x, t) /32 and thereby i may be obtained
then by differentiating under the integral sign. Indeed, some of the
proofs in Appendices II and III might well have been shortened
through use of the contour integral.

Equations [13] and (15) do not apply at those times t for which
{ é‘i’)t)dis dlsc?ntlnuous since Eq. [24] of Appendix 1 (and hence Eq.

oes not.
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since its majorant, Mf;y™* dy, behaves in this way.
Hence, this integral is a transient term. The first in-
tegral in [13] is periodic in ot, because f(wt — y) is
periodic in ot (as shown in Appendix III), its deriva-
tive, therefore, being periodic also, and because its
limits are not functions of t. This integral, therefore,
describes the periodic state.

An equivalent form of Eq. [13], derived in Ap-
pendix II, is given by Eq. [15], the first integral
being the periodic term and the second being the
same transient term as in Eq. [13].

iy=—% nFA(oDu/7)" {f7[f (at) — f(ut—y) Jy™" dy
+ fof(ot—y)y™"dy} [15]

Using these equations, it is shown, incidentally, in
Appendix III that the mean value of the periodic
state integral in Eq. [13] or [15] is zero, for arbi-
trary periodic functions p(wt) and for arbitrarily
large amplitudes. This theorem generalizes earlier
discussions by other investigators for small ampli-
tudes. It should have diagnostic value since it would
obviously be false if the irreversible follow-up re-
action occurred appreciably.

To examine a possible way for determining E’;s
and other properties, it is convenient to convert the
integral for the periodic state into a “reduced” form.
That is, we proceed to deduce an “equation of cor-
responding states” for the faradaic current and for
its dependence on applied potential.

We see from Eq. [14] that at any given tempera-
ture f(wt — y) depends on nE’,, m, C°% and on the
value of the function nE, at the time ot — y (taking
\/De/Ds == 1). Therefore, we may write (for given
T), f(ot —y) as a function of C°, of nE’,, of m, of
the value of nE; at time ot, and of y.° Similar re-
marks apply to the y-derivative of f(wt—y). Accord-
ingly, the periodic state term in either [13] or [15]
satisfies the formal relation:

iy = nFA(wDu/7)"" {* h(y,nE',, m nE,C%) dy [16]

where the function h can be written in the two
equivalent forms (forms which differ only by a
quantity whose integral from 0 to « vanishes):

h =y af (ut — y) /3y

[17]

L :
hE?y"” [f(ot —y) — f(wt)]

Equation [16] is a convenient one for our pur-
poses, for we see from Eq. [13] that at a given tem-
perature, C’: and electrode area A, a plot of nE, vs.
iy/n (@D.)" depends only on nE’, and m. Therefore,
by adjusting the direct voltage E. and (in multiples

of some preassigned amplitude) E,, the E, vs. i, plot
could be made to conform to a standard shape, a

shape which, for any preassigned nE’,, ni‘,, C°z and

T, depends only on m. From the value of E, needed

to attain this specified nE’,, E, could be calculated

from Eq. [12], n could be determined from the E,

% The value of Es at (wt ~— y) is determined if one knows for all ¢
its value at ot and if one knows y, i.e., Er(wt — y) is a function of
the function E/ (wt) and of y.
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needed to attain the standard shape, and m could be
determined from the C°;-dependence of the data.
(For example, for m =1 Eq. [14] shows that
f(ot —y) is directly proportional to C°, so h and
hence i, in [16] are directly proportional to C°, for
any given E,.) Again, Eq. [16] provides other diag-
nostic tests. A plot of i,/o'* vs. E, should be inde-

pendent of o and of E,.‘
Instead of plotting E, vs. i,, i, can be plotted vs. ot,
after first writing Eq. [16] for the periodic state in

the appropriate reduced form. Since E, = E,p (wt),
the integrand in [16] can be written as a function of

ot and of nﬁ, as well as of y, nE’,, m, and C°x. Once
again, for any given C°;, T' and electrode area, the ad-
justing of E, and, in multiples of some amplitude, of

E,, would lead to a standard shape which depends on
m. The values of E, and n could then be determined
as before, and m could be determined from the C°
dependence of the plot. Again, as before, diagnostic
tests could be devised: The plot of i,/ vs. ot should
be independent of « and, if m = 1, should be pro-
portional to C°;.

In actual fact, one measures total current rather
than only the faradaic branch. The nonfaradaic com-
ponent is independent of C°y, so that a plot of i vs. E,
or vs. t would now be a linear function of C°; when
m = 1. On the other hand, no standard shape of a
plot of i vs. E, or t can be attained simply by adjust-

ing E; and E,.» .

Accordingly, in this situation, recognizing that
under the assumptions listed earlier, the total cur-
rent is the sum of the faradaic and nonfaradaic
branches and that the nonfaradaic component is in-
dependent of C°;, the value of i, corresponding to any
particular phase angle of E, can be obtained by sub-
tracting from the measured, instantaneous current
the value of that current when C°; = 0. Examples
where this type of subtraction has been made in po-
tentiometric work may be found in ref. (25) and
(16). If the condition mentioned earlier that the iR
be negligible had not been imposed, no such subtrac-
tion process would be permissible for obtaining i,,
for the iR drop at any given t would cause the in-
stantaneous potential drop across the electrode to
depend on C°, contrary to assumption. Further-
more, since the cell is a nonlinear circuit element,
the iR drop through the bulk of the solution would
contain harmonics which would invalidate the as-
sumption of a sinusoidal E,.

Information about the characteristic behavior of
the integral in Eq. [16], and hence about the faradaic
current, can be deduced either from numerical inte-
gration or from investigation of the properties of
known reversible systems. However, some prelimi-

? To be sure, at small values of Ey, points on this plot correspond-
ing to large values of i will not be attained. Note that although i

and E; depend on E;, the plot does not.

1oFor, if nE’s and nE; were each made to conform to their pre-
assigned values by such adjustments, the nonfaradaic current vs. E;
plot would then differ from system to system: Any two systems
normally differ in E, and hence, for a preassigned nE’, in Eaq (cf.
Eq. [12]). But for a given E,, a plot of nonfaradaic current vs. E;

would be a standard one only for a preassigned E¢ and ‘;.'/.
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nary insight into its behavior as far as the depend-
ence of i, on E, in Eq. [16] can be obtained as fol-
lows. We shall consider, by way of a concrete ex-
ample, the important case in which m = 1, D, = Dy,
and p(wt) is sin wt. The integral for the periodic
state in Eq. [16] becomes (using it in the form of Eq.
[13], after introducing Eq. [14] and performing the
differentiation:

. nFAC)nFE, j‘“
" (#/wDu)"RT Y°

exp [nF (E, sin (ot —y) — ') /RT] cos (wt—y)y™" dy

{1+ (Dux/D3)"exp [nF (E,sin (wt —y) —E’.) /RT]}*
[18]

When |nF E'./RT| >> 1 and E, << |E',|, the coeffi-
cient of ¥ cos (wt—y) in the integrand, is very

small at all times, i.e., for all |E,| = E,.* Accordingly,
i, is then small for all such E,, a result expected on

physical grounds. In the very special instance that E .
is sufficiently small, the integral in Eq. [18] be-
comes®

' cos ( wt — % ) exp (—nFE’.,/RT)/[1

4+ (Dos/Dz)” exp (—nFE',/RT)])* [19]
When E, becomes comparable in magnitude with
E’,, however, the current will become large at the
appropriate times and, because of the sensitivity of

the exponential terms to E,, this effect should pre-
sumably occur fairly suddenly as E, is increased. In-

deed a plot of faradaic current vs. E, may ultimately
provide a convenient way for the determination of

Up to this point, we have restricted our attention
to reversible systems. If in addition, the reversible
electrochemical step [1] is followed by an irre-
versible decomposition of the product of [1] to yield
an electrochemically inactive substance, Eq. [3] to
[6] remain unchanged, as does Eq. [8]. Only Eq. [2]
is modified, namely, through the addition of the re-
action rate term. If the irreversible step is very slow,
this additional term represents only a minor pertur-
bation of Eq. [2]. Physical considerations indicate
that the solution for i, should depend continuously
on the value of the reaction rate constant in this per-
turbation term. When this constant is sufficiently
small, therefore, the results will approach those pre-
viously obtained. That is, our final equations are still
applicable, provided the irreversible step is suffi-
inator s shout unity. For B e o sre YSTY amall and the denom-
compared with unity, so that the first factor in the integrand ap-

proximately equals (Dr/Dox) exp {nF [E‘s — Er sin (wt — y)1/RT)
which is very small.

12 Upon expanding cos (wt — ¥) and recalling that
fo y-Yicosydy = j‘vn y-12giny dy = (x/2)1/2
o L]

-— ™
and noting that cos wt + sin wt = v2 cos (vt — —), Eq. (19} is
4
obtained.
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ciently slow. As mentioned earlier, it is this situa-
tion where the present equations are likely to be
of the most interest.

Manuscript received May 29, 1961; revised manuscript
received April 10, 1962.

Any discussion of this paper will appear in a Discus-
sion Section to be published in the June 1963 JOURNAL.
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APPENDIX I
Derivation of Eq. [7]

We let u(x,t) denote the quantity
u(x,t) = C°r — Cn(x,t) [20]

Seeking a bounded solution of Eq. [2] to [6], we intro-
duce boundary conditions [4] and [5] into the Laplace
transforms of Eq. [2] and [3], respectively, and obtain
two differential equations in the domain x > 0 which can

]

-easily be solved to give equations for the transforms,

u and Cox:
u(x,s) = u(0,5) exp (—s"*x/Ds"?) [21]
Cox(x,5) = Cax(0,5) exp (—s"2x/D,*) [22])
where s is the Laplace variable.
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Differentiation of these equations with respect to x
followed by evaluation at * = 0 and combination with
the transform of Eq. [6] yields

Cox(0,5) = u(0,5)m(D2a/Dex)? f23]
Taking the inverse transform of Eq. [23] gives

m u(0,t) = Cox(0,t) (Dox/Dr)** (241"

except at points of discontinuity, using a uniqueness
theorem (24).

The instantaneous anodic current, i, is related to the
flux according to Eq. [25]

i = ‘n,FAqu[aCox (E,t) /am]c:o [25]

wherein we use the convention that an anodic current
is negative, and where A denotes the electrode area.
The term [9C.x(x,t) /dx], may be calculated from the
preceding equations as follows. Differentiating Eq. [22]
with respect to x and setting x = 0, one finds

[aax (x,s) /ax] 20

= —on(o,s) (S/Dox) W = —sax(ﬂ,s) (Doxs) '

= [—8/(nDox) "] f= e Cox(0,t)dt f~ et dt  [26a]

= [—s/ (aDex) ] f= €' [f* Cox(0,t —z) /" dx]dt [26b]
j: Cox(0,t — 1)1 dx ]dt

® d
- 1 -rt
= — (7tDox) J: e [ at
[26¢]

where we have introduced into (a) the fact that s/ is
simply the Laplace transform of (xt)**. In obtaining
(b) we have employed the convolution theorem for
Laplace transforms, and in obtaining (¢) we have used
the standard relation between the Laplace transform of
a function (here of (! Cw(0,t—<)7t"*ds) and of its

derivative.
It is now immediately apparent from [26c] that

a 1]
[3Cax(2,t) /0] 220 = — (7tDox) Ty J: Cox (0t —7)x*ds
[27)
quiation [7] of the text is then obtained from [25] and
[27].

APPENDIX II
Derivation of Eq. [13] and [15] from [7]

We shall consider the behavior of Eq. [7] for
times greater than 0, and we may therefore replace
Cox(0,t — x) in that ezuation by the function f (0wt — ot),
which satisfies Eq. [14] for all values of the argument of
f, positive or negative. The time derivative in Eq. [7]
can then be written as in Eq. [28], after first performing
the differentiation and making use of the identity

9f (wt — wt) /9t =—9f (ot — wt) /dt

]
i J' f (0t — wr) v de
at v°

":[ a(fn)

where £(0) is to be obtained from Eq. [14] by setting
mt — y equal to zero there.

Introducing into Eq. [28] a change of variable,
Y = o, the right-hand side of the equation becomes:

[ a
»J| S swt—n) [vmay
ay

°l o
) [a—yf(mt—y) ] v dy [29]

=f(0)t" —w

f(ot — wt) ] =dr [28]

f(0)t'7 —

ol

It is evident from Eq. [14] that f(ot—y) is a
bounded function® of wt— y, so that upon integrating
the third term of [29] by parts we get in place of [29]

13 For any value of wt — Y, flwt — y) is the positive root of an al-

gebrale equation, all of whose coefficients are finite. The roots of
such equations always lie in a finite region of the complex plane.
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—m"“f 2 flot—y) y* dy
! ay o¥? )
2 LJet—y)y™dy [30]

From Eq. [7], [28], and [30] Eq. [13] then follows.
The first mtegral in Eq. [13] can also be written in
the alternative form

+

im 2% (b — wyymay (31]

-0tV gy

Upon integrating by parts, this term becomes

- 1 ©
—lim [f(wt —)et?—— j‘ flot —y)y™dy ]
é->0+ 2 Y

=——hm [f f(ot —e)y™dy —f f(wt—y)y"”dy]

[32]
where we have introduced the identity

1 j“’
S VL -3/2 d
€ 2 Je Yy Y
Rewriting the integrals in [32] as:

(ot —e) —f(wt)] [~y dy
+ f7 [f(wt) —flot—y) ]y dy [33]

and proceeding to the limit ¢ = 0, the first expression
in [33] varies as (constant) (e) (e'*) using the condi-
tions on f specified in footnote™ and so vanishes. In-
troducing the second integral of [33] into [31], Eq. [15]
is obtained.

APPENDIX III

Proof that the Mean Value of i, Equals Zero in the
Periodic State

In this section we consider the behavior at positive
times, and it follows therefore that t >> t.. Thus, we
may replace C.. by f.

It is first noted that physical arguments show that
there can be only one positive solution of Eq. [14] for
f(ot —y), even when this equation has more than one
solution (i.e.,, when m % 1), All other solutions must
either be negative or partly imaginary. We further note
that since p(wt) =p(wt+4 2x), f(ot—y) and
f(ot —y 4 2x) satisfy the same Eq. [14]. Because of
the uniqueness of the physically real f(wt—y) just
mentioned, it then follows that for our positive s,
f(ot—y 4 21) = f(ot—1y), ite, f(ot—y) is also a
periodic function of ot with the ‘same period as p(wt).

We next observe that the mean value of the integral
describing the periodic state is obtained by averaging
it with respect to wt over a period of 2x. Using Eq.
[15], the integral which occurs in this average can be
written in the equivalent form

1 (21274

4n VO

[nm I ot —f(mt—y)]y"’”dy:ld(wt)
>0tV y=¢
[34]

where 6 is any large value of wt. It can easily be shown
that the convergence of the y-integral as ¢ » 0* is uni-
form in wt and, hence, lim and [ can be interchanged,

using a standard theorem [20]. Thus we obtain

043w

[j:ﬂ [f(ot) — f(ot —y)]ly*?dy ]d(mt)
(35]

— —1im
45 €0+ Voutze

" Fo; € small and y lying in the interval (0, ¢), | f(wt) — f(wt — ) |
= f(wt) | -+ v, whence |J‘ flwt) — flot — y)Iy-32dy| =

dwt
NJ“ y-1/2dy = 2N ¢'/2, where N, an upper bound to the derivative, is

independent of wt. Actually the differentiability of f(wt) needn't .

have been used. The milder Hélder condition, | f(wt) — flwt — y) |
= constant - y* but where a > ¥, would have sufficed.
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Because of the readily proven convergence of the
Y-integral with respect to the upper limit (e), uniform
in wt, [35] may be written as

1 042w L
—— lim lim [f [f (wt)

dn 0t LowVerzo
—f(ot—y) Jy*"dy ]d(mt) (36]
The integrals Jif(ot) — f(ot —y)ly*2dy and yr
ST (0t) —f(wt—y)]d(wt) exist for any e >0 and

L, and the double integral also exists not only for con-
tinuous f(wt) but also for piecewise continuous f(wt).
It then follows from a standard theorem [21] that the
order of integration can be interchanged. We obtain

1 L (2% 4
——— lim lim yr [! [f(wt)
4 >0+ Loy Vr=e 0

—f (ot — 1) 1d (t) ]dy [37]

But, since f(wt) was seen earlier to be a periodic func-
tion of wt, it is true that

L fet)d(ot) = (" f(ot —y)d(wt)  [39)

since it is easily shown that the value of a periodic
function averaged over its period is independent of the
initial value of the phase angle.

We see, therefore, that the wt integral in Eq. [37]
must vanish which proves the desired result.

This result of Appendix III can be proven under
milder restrictions, such as piecewise continuity of
f(wt). As pointed out in the text, Eq. [15] for i, is valid
for piecewise continuous f(wt), except at the isolated
points of discontinuity of the latter. The derivation of
Eq. [35] from [34] proceeds as before, when points wt
of discontinuity of 1{ are excluded. The derivation of
[37] from [35] and the use of [38] remain valid. Thus, if

July 1962

one defines i, arbitrarily but finite at the isolated
points of discontinuity of f(wt), the mean value of i, is
zero in the periodic state for piecewise continuous func-

tions f(wt).
SYMBOLS

A, area of electrode’s surface, cm?
ox, concentration of oxidant, mole 1-.

"Cp, concentration of reductant, mole 1,

Con, concer:tration of reductant in bulk of solution,
mole 17,

D.., diffusion coefficient of oxidant, cm?® sec.

D, diffusion coefficient of reductant, cm?® sec™.

E., half-cell potential difference of measuring elec-
trode, v.

E., half-cell potential difference of auxiliary, non-
polarizable electrode, v.

E,, half-cell potential difference between electrode and
the solution just outside of electrical double layer,
in Ox-Red system under investigation, v.

E4, direct component of applied cell potential, v.

E/, amplitude of the periodic E, wave, v. E; = E;p(ot).
E,, standard potential of the Ox-Red system, v.
E'o, Eo + Eu - Ed.

Ecu11, mean cell potential, v.

£, function of, (a particular function).

1, (as a subscript) faradaic.

F, faraday (96514 abs.-coulombs g-equiv.?),

h, function of, (a particular function).

i,, instantaneous faradaic current, amp.

m, number of oxidant molecules produced from oxida-
tion of 1 mole of reductant.

7, number of electrons involved in oxidation of 1 mole
of reductant.

R, gas constant (8.3166 x 107 erg deg™ mole™?).

t, time, sec.

T, absolute temperature,

%, C°z — Chp.

x, perpendicular distance from a plane which is paral-
lel to the planar electrode of Ox-Red system, but
which is just outside the electrical double layer re-
gion.

o, angular frequency of alternating voltage, sec™.



