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A simple model explaining the experimental data on QDs luminescence blinking is suggested. The model
does not assume the presence of the long-lived electron traps. The bleaching of the QD luminescence is a result
of the Auger assisted radiationless relaxation of the excitation through the deep surface states. Possible ways of
the experimental verification of the model are discussed.
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I. INTRODUCTION

Modern technology of colloidal nanocrystal preparation
has revolutionized the field. This technology allows the fab-
rication of spherical semiconductor quantum dots �QD� with
narrow size distribution.1,2 Colloidal quantum dots having
wide excitation spectra, narrow emission spectra, high quan-
tum yields for luminescence, and great photostability are
ideal laser material,3,4 single-photon source,5 and lumines-
cent labels for chemical and potential biological
applications.6

Investigations of the QDs properties by various experi-
mental techniques have yielded a number of striking results.
One of them is the statistics of the single QD luminescence
switching events �blinking�.7 It is known from many single-
molecule experiments that under continuous excitation the
luminescence emission switches “on” and “off” by sudden
stochastic jumps. Such a behavior was observed in dye
molecules,8 light harvesting complexes9 and polymers.10 In
these non-QD systems the distribution of the “on” and “off”
times is usually exponential or near exponential.

In contrast, the distribution of the blinking events for the
colloidal QDs has the form of a power law.11–18 Single CdSe
QD experiments conducted by Shimizu et al.11 demonstrated
the power law distribution for both “on” and “off” intervals
over the four decades of time, namely from 0.1 s to 1000 s.
The exponent was about −1.5 for both distributions. This
power law is unchanged for the different temperatures �from
10 K to room temperature�, radii �15 Å and 25 Å�, laser
intensities �from 100 W/cm2 to 700 W/cm2�, and atmo-
spheric conditions �from air to vacuum�.11 The distribution is
also the same for uncapped CdSe QD and for CdSe QD
capped by several ZnS monolayers.11 Analogous results were
found by other groups12–18 for various sizes �from 15 Å to 27
Å�, materials �CdSe, TeSe, InP�, and laser intensities �from
100 W/cm2 to 20 kW/cm2�. The exponents for the “off”
time distribution is in the range from −1.5 to −1.6 are re-
ported for all the experiments. The longest time range was
covered in experiments of Kuno et al. on single 27 Å radius
CdSe QDs capped by ZnS at room temperature.12,13 In the
latter case the power law distribution with the exponent �
−1.5 was found to apply over more than five decades of time,
namely from 200 �s to 100 s. The power-law “on” times

distribution with the exponent varying from about −1.5 to
−2.0 was observed by different experimental groups.12–18 In
the present paper was address mostly the results of Shimizu
et al.11 where the exponent around −1.5 was observed for the
“on” and “off” times distributions.

A standard explanation of blinking phenomenon is given
by a three-level model.19 This model has a ground state, a
light-emitting excited state, and a “dark” trapping state from
which the system does not luminesce. A laser is used to
excite the system from the ground state to the light-emitting
state. A luminescence occurs with the emission of a photon
from the light-emitting excited state. Occasionally the light-
emitting state undergoes a radiationless transition to a “dark”
trapping state. Thereby, trapping and detrapping events
switch the photoluminescence “off” and “on,” respectively.

A now commonly accepted idea on the nature of the trap-
ping state in the colloidal QDs was proposed by Efros and
Rosen �a long-lived trap hypothesis�.20 They suggested that
the luminescence is quenched if one of the carriers �the elec-
tron or the hole� is trapped in the surrounding matrix. A
photoexcited electron-hole pair in such a charged dot can
recombine by a radiationless Auger process. The recombina-
tion time of the Auger process, about 1 ps,21,22 is three or
four orders of magnitude faster than a radiation assisted pro-
cess, and so the QD then has an extremely small probability
to emit a photon after excitation. The charged QD is “dark.”
This mechanism of the luminescence quenching is supported
by several experimental observations: qualitative quenching
of the luminescence is found after the addition of an
electron23 or hole quencher,23,24 thus making this charged
QD dark.

The model of Efros and Rosen20 connects the lumines-
cence switching events with the electron transitions from the
QD to the long-lived trap state and back. A simple three-level
picture with constant ionization and neutralization reaction
rates did not, however, explain the power law distribution of
the blinking times. This model gives an exponential distribu-
tion of “off” and “on” times.20 More advanced explanations
including multiple traps, like a model suggested in Ref. 25,
could in principle explain the power law distribution of “off”
times, but not “on” times, as was discussed in details by
Kuno et al.5,26

Three major models of the power law behavior utilizing
the long-lived trap hypothesis have been suggested in the

PHYSICAL REVIEW B 72, 155321 �2005�

1098-0121/2005/72�15�/155321�10�/$23.00 ©2005 The American Physical Society155321-1

http://dx.doi.org/10.1103/PhysRevB.72.155321


literature. Kuno et al.26 gave an explanation of the power law
distribution using a wide range of exponentially distributed
ionization-recombination rates, switched randomly after each
electron transition between the internal QD states and the
electron traps in the environment. The model assumes very
large variations of the electron transition rate �5–6 orders of
magnitude� caused by the changes in the environment. Such
large fluctuations of the electron transfer rate, however, have
not been observed in other systems.

Shimizu et al.11 proposed a model of resonant transitions
of the electron between the excited state of the QD and a
long-lived �with intrinsic lifetime more than 1000 s� trap
state. It is known from the experiment27–29 that the energy of
the excited state displays a long-correlated stochastic motion
with a characteristic time of hundreds of seconds. The am-
plitude of this spectral diffusion varies from 3 meV at 10 K
to 60 meV at room temperature.27 At the cryogenic tempera-
tures the diffusion is light induced, and the shift of the lumi-
nescence line depends directly on the number of the ab-
sorbed photons. There is little published information29 on the
rate of the spectral diffusion at room temperature. According
to the model of Shimizu et al.11 the electron transfer event
switching the luminescence intensity happens only when the
excited state and the trap state are in resonance. The model
provided a promising concept of a slow diffusive coordinate.
The excitation energy of the lowest excited electronic state
of the QD plays a role of this coordinate. The idea of the
slow coordinate switching the intensity of the luminescence
naturally explains the large difference between the
excitation-relaxation times of the electronic system of the
QD and the blinking times. Further development of this idea
was made in the paper of Jung et al.30 The weak point in this
model is an assumption of an existence of a single electron
trap state placed in the narrow region of energies and located
in the surrounding near each given QD. In order to resolve
this problem Tang and Marcus31 assumed that the trap is the
crystal-induced surface state. In the metals such states were
determined by angle resolved photoemission and inverse
photoemission of valence-edge and conduction-edge states.

The third model proposed by Margolin et al.32 gives an
explanation in which the blinking by three-dimensional hop-
ping diffusion of the photoejected electron is in the surround-
ing media. The positively charged QD stays “off” until the
electron returns back. The long “on” times are explained by
the existence of a long-lived hole trap in the vicinity of the
QD. While the hole is trapped and the electron is diffusing
the QD stays “on.” A weakness of this model is in nonzero
escape probability of the ejected electron.

We explore here an alternative mechanism for the lumi-
nescence intermittency in which it does not assume any long-
lived trap state. The QD always returns back to the ground
�neutral� state after photoexcitation � directly or via a surface
state �. The “on”-“off” switching of the QD luminescence
intensity is caused by large variations of the nonradiative
relaxation rate of the excited electronic state to the ground
state via surface hole trap states. The hole trapping is assum-
ing to be induced by an Auger-assisted mechanism.

The experimentally measured electric, optical, mechani-
cal, and kinetic properties of the quantum dots given in this
paper concern CdSe colloidal QDs only.

II. MECHANISM OF THE QD INTERMITTENCY

The size of the colloidal QDs used is smaller than a size
of the Bohr exciton in the bulk ��112 Å for CdSe �Ref. 33��.
So, they are in the so-called strong confinement regime,
where the electrons and holes could be considered as inde-
pendent particles, taking into account the Coulomb interac-
tion as a perturbation.33 The structure of the delocalized elec-
tronic levels in the QD could be described using simple
particle-in-the-box model �see Fig. 1�. The levels in the con-
duction band correspond to the single electron states in the
spherical well. For the electron states with the envelope an-
gular momentum 0, 1, 2, …, we use notations 1Se ,1Pe ,1De,
etc., respectively, with a subscript e. The valence band levels
correspond to the single hole states �1S3/2 ,1P3/2 ,2S3/2, etc.�,
the subscript denoted the total angular momentum which is
the sum of the envelope angular momentum and the band-
edge Bloch function angular momentum.33 The uncharged
QD in the ground state contains no electrons or holes. The
photoexcitation of the QD creates an electron in the conduc-
tion band and a hole in the valence band. The lowest excita-
tion energy of the QD is calculated as

Eex = E1Se − E1S3/2 + U�1Se,1S3/2� , �2.1�

where E1Se and E1S3/2 are the energies of 1Se and 1S3/2 single
particle levels and U�1Se ,1S3/2� is the energy of the averaged
Coulomb interaction between the electron in 1Se and the hole
in the 1S3/2 state33

FIG. 1. A schematic picture of the electronic levels of the CdSe
quantum dot. 1Se ,1Pe, and 1De are the delocalized levels in the
conduction band �electron states�. 1S3/2 ,1P3/2, and 2S3/2 are the
delocalized levels in the valence band �hole states�. The dashed
lines represent the energies of the valence band edge and the con-
duction band edge in the bulk semiconductor. The dotted line rep-
resents the Fermi level.
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U�1Se,1S3/2� � − 1.8
e2

�R
, �2.2�

where e is the electron charge, R is a radius of the dot, and �
is a dielectric permittivity of the semiconductor material. For
the CdSe QDs with the radius 15–35 Å the excitation energy
Eex given by Eqs. �2.1� and �2.2� varies from 2.1 eV to 2.6
eV.

The emission spectrum of the CdSe QD photolumines-
cence has a narrow peak at the energy Eex. There is also a
broad and less intense luminescence maximum at 300–700
meV lower than the excitation energy,34,35 presumably due to
the electron or hole transition into the surface states in the
QD. It was demonstrated that the surface state emission in-
tensity is very sensitive to the removal and the exchange of
the ligand layer.36 Optically detected magnetic resonance
studies have showed that this maximum corresponds to deep
hole traps.37 We can conclude that the surface states are
placed lower than the Fermi level and 300–700 meV higher
than the 1S3/2 state. A broad surface state emission peak with
the energy 400 meV lower than Eex was found by an elec-
trogenerated chemiluminescence measurements for ZnS
capped CdSe QDs �Ref. 38� as well as for uncapped ones.39

A similar placement of the surface states was obtained by a
scanning force conductance spectroscopy.40 Numerical simu-
lations of the QD electronic structure demonstrate that the
trap states could form a band.41 Formation of the surface
states band has a reasonable explanation. The 15 Å radius
CdSe QD consists of about 1000 atoms, more than 400 of
them existing on the surface. So, there are at least 400 dan-
gling bonds in the QD. It was demonstrated36,42 that only Cd
atoms on the surface �but not all of them� are connected to
the TOPO ligands. As a result, we have at least 200 surface
states in the band-gap corresponding to Se dangling bonds.
The corresponding electronic states weakly interact with
each other and as a result form the band. We assume that the
hole trap states in any given QD form a band with the width
of about 200 meV �see Fig. 1�. The energy gap between 1S3/2
state and the lowest level in the band E1 could vary from dot
to dot, but it is always about 300–400 meV.

Absorption spectroscopy of the negatively charged QDs
shows a peak in the infrared region corresponding to
1Se→1Pe transition of the excess electron in the conduction
band.43 The center of the peak �0 corresponds to the energy
difference between 1Se and 1Pe states predicted
theoretically33 ��300 meV for 24 Å radius QD�. The full
width at half-maximum �FWHM� of the peak varies from
140 meV to 220 meV when the QD radius changes from
26 Å to 15 Å. The infrared absorption spectroscopy of the
QD ensemble after the visible excitation also shows a
peak44,45 centered at the same energy with a similar width
��170 meV for 23 Å radius QD�. The absorption line rises
in a few picoseconds after the visible excitation and decays
very slowly, at times of �n�1 �s.45 It is the clear evidence
that fast hole trapping occurs in a large fraction of the QDs in
the ensemble. While the hole is trapped, the electron is lo-
cated in the 1Se state in the conduction band and can be
excited to 1Pe state by IR irradiation. This peak in the IR
absorption spectrum could not be attributed to the electron

trapping, because the hole excitation energy is much smaller
due to large effective mass. The slow decay of the absorption
corresponds to a nonradiative phonon-assisted recombination
of the trapped hole and the electron through the large energy
gap. That wide spectrum of 1Pe−1Se energy difference

� = E1Pe − E1Se �2.3�

of about 200 meV is difficult to explain by the size distribu-
tion of the QDs in the ensemble. The energy difference �
scales as R−2 with the radius of the dot R.33 Reported size
distribution �about 5% rms� of the QD ensemble could so
generate inhomogeneous FWHM not larger than 70 meV. On
the other hand, hole-burning experiments on this 1Pe−1Se
absorption demonstrate a quite narrow homogeneous line.46

Thus, we suggest that the energy difference between 1Se and
1Pe electron states � is a subject of a light-induced diffusion,
analogous to the diffusion of the luminescence line energy
Eex. Specifically, we consider the difference of the energies
of the electronic states � as a function of the nuclear coordi-
nates of the system �QD � ligand layer�. The small move-
ments of the nuclear coordinates after the photoexcitation of
the dot is assumed to generate a slow light-induced diffusion
of this variable. Subtracting the calculated inhomogeneous
FWHM from the observed width we have an estimate
�100 meV for the diffusion amplitude of �. We discuss pos-
sible mechanisms of the light-induced spectral diffusion
later.

As is seen from experiment,35 the deep trap emission rises
in a few picoseconds after the light excitation demonstrating
surprisingly high trapping rate for such a large energy gap.
The overlap integral between the delocalized 1S3/2 state and
the localized surface state must be very small in comparison
with the overlap of the delocalized states. So, the phonon-
assisted hole trapping process is assumed to be very slow in
this case. We suggest that the trapping is an Auger-type reso-
nant process �see Fig. 2�: the excess hole energy provides to
the electron excitation.

The kinetic scheme of the excitation-relaxation cycle of
the QD is presented in Fig. 2. The scheme is described by a
system of kinetic equations

d

dt
P0 = − kIP0 + krPe + knPt,

d

dt
Pe = kIP0 − �kr + kt�Pe + kdPi,

d

dt
Pi = ktPe − �kd + ke�Pi,

d

dt
Pt = kePi − knPt, �2.4�

where P0 , Pe , Pi, and Pt are the populations of the
ground state, the excited state, the intermediate state
�trapped hole � 1Pe electron� and the trap state
�trapped hole � 1Se electron�, respectively. The populations
satisfy the normalization condition

EXPLANATION OF QUANTUM DOT BLINKING WITHOUT … PHYSICAL REVIEW B 72, 155321 �2005�

155321-3



P0 + Pe + Pi + Pt = 1. �2.5�

The excitation rate is expressed as12

kI =
I�

��
, �2.6�

where I and � are the intensity and the frequency of the light
and � is the excitation cross section. The characteristic laser
intensity I=1 kW/cm2 corresponds to an excitation rate
kI�107 s−1, using ��4	10−15 cm2 for the absorption cross
section of the dot.13 The radiative decay rate of the excitation
kr is the inverse of the radiative lifetime �r. The radiative
lifetime of the QD excitation is about 150 ns at 10 K.34 It
decreases with increasing temperature and reaches the value
�20 ns at room temperature.47,48 Such dependence is attrib-
uted to the splitting in the fine structure of the excited state
�existence of a dark exciton�.33,47 We set �r equal to 20 ns in
our model. The population probability of the excited state is
always much less than unity since kI
kr. So the effect of a
double excitation and of an induced emission can be ne-
glected. The rate of the phonon-assisted 1Pe→1Se transition
without the hole excitation �non-Auger process� ke was
found49 to be �3	1011 s−1. The nonradiative relaxation of
the trapped state �trapped hole � 1Se electron� to the ground
state of the QD �the electron-hole recombination� kn=1/�n is
in order of 106 s−1, according to Ref. 45.

The rate of the Auger assisted trapping as a function of
the reaction coordinate � defined by Eq. �2.3� is given by the
Fermi Golden rule formula,

kt��� =
2�

�
Veh

2 n�� + E1S3/2
+ U�1Pe,TS� − U�1Se,1S3/2��

�2.7�

where Veh is the matrix element of the electron-hole interac-
tion, n�E� is the density of the surface states as a function of
energy and U�1Pe ,TS� is the averaged Coulomb interaction
between the electron in 1Pe state and the trapped hole. The
calculated value44 of U�1Pe ,TS� slightly varies from
−1.15e2 /�R to −0.925e2 /�R depending on the position of
the trapped hole on the surface. The fast 1Pe→1Se relaxation
generates a finite width �=�ke�200 �eV for the 1Pe state
energy. In theory, the energy E1Pe could be exactly deter-
mined in the absence of the electron-phonon interaction. We
use this “bare” value of the 1Pe state energy for the precise
definition of the variable � in Eq. �2.3�. According to our
previous suggestion the density of surface states n�E� con-
sists of many peaks at the energies E1 ,E2 ,E3 ,E4 ,… with
spacing of about 1 meV. The small lifetime of the final state
1Pe broadens each peak in Eq. �2.7� up to the width �. The
standard theory predicts well-known Breit-Wigner shape of
the decaying level. It was demonstrated however that the
shape of the single level connected to the quantum chaotic
system transforms into the Gaussian form in the so-called
strong coupling limit.50 In this case the trapping rate could be
cast as

kt��� = �
i

Ai exp�−
�� − �i�2

�2 	 , �2.8�

where �i is expressed via the energy Ei of the ith surface
state in the band,

FIG. 2. The kinetic scheme of the QD relaxation after the light-
induced excitation. The trapping of the hole is assisted by simulta-
neous electron 1Se→1Pe excitation �Auger process� with conse-
quent relaxation of the excited electron and hole. The energy
difference between 1Pe state and 1Se state is denoted by �.

FIG. 3. The trapping reaction rate dependence on the coordinate
� in the vicinity of �1 given by Eq. �2.8�. The parameters are
Ai=1012 s−1, �=0.2 meV. The surface states are placed equidis-
tantly �i=�1+ �i−1�	1 meV.
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�i = Ei − E1S3/2
− U�1Pe,TS� + U�1Se,1S3/2� .

The behavior of the trapping rate �2.8� is illustrated in Fig. 3,
when the rate increases many orders of magnitude in the
vicinity of �1. We estimate the value of �1 as 300 meV. There
are no experimental data on the detrapping rate kd. Due to the
similarity of the molecular mechanism we assume that the
detrapping rate is of the same order of magnitude as the
trapping rate kt. The exact numerical value of this rate does
not affect the luminescence properties, as seen later. The lu-
minescence intensity w the proposed model, given in Eq.
�2.4�, is proportional to the excited state population Pe,

w = krPe. �2.9�

We note that while the system is trapped in the surface state,
another electron-hole pair can be excited by the photon ab-
sorption. This pair, however, quickly recombines by Auger
mechanism and does not add to the luminescence intensity.
Thus, we do not consider those excitations in Eq. �2.4�. The
Eqs. �2.4�, �2.5�, and �2.9� give the following expression for
the steady state luminescence intensity under the continuous
laser excitation:

w =
kI

A + 
tB
, �2.10�

where


t =
kt

kd + ke
, A = 1 +

kI

kr
, B =

ke

kr
+

kI

kr
+

kI

kr

ke

kn
.

Using estimate for the reaction rates �kI�107 s−1,
kr�5	107 s−1, ke�3	1011 s−1, kn�106 s−1� we have

A � 1, B � 6 	 104.

It follows from Eq. �2.10� that the emission intensity is about
kI when kt is much less than kt

*=ke /B�5	106 s−1 �the lu-
minescence is “on”�. In the opposite case w in Eq. �2.10� is
much less than kI �the luminescence is quenched�. It is
readily seen that the result does not depend on kd in both
limiting cases. It could be omitted in Eq. �2.10�, yielding a
simpler formula,

w =
kI

A + kt/kt
* . �2.11�

In the proposed model of the QD blinking the 1Pe−1Se en-
ergy gap � plays a role of the slow variable. It performs the
light-induced stochastic motion generating huge variations of
the trapping rate. Such variations of the nonradiative relax-
ation rate of the excited QD were observed experimentally
by Schlegel et al.48 by time-correlated photon counting. The
motion of the stochastic variable ��t� is much slower than the
excitation-relaxation transitions of the QD, one can utilize a
local steady-state approximation.51 Accordingly, the lumines-
cence intensity at any given time t is calculated using a sta-
tionary solution �2.11�, where kt is treated as a constant,

kt = kt���t�� .

As seen from Fig. 3 there is some value �* very close to �1
separating two regions with the small and the large trapping
rates

kt��� 
 kt
* for � � �* − � ,

kt��� � kt
* for � � �* + � �2.12�

with a narrow transition layer of size ��20 �eV in between.
As a result, the luminescence intensity �2.11� is a nearly step
function of �. It causes the telegraphlike behavior of the
luminescence intensity as a function of time, the lumines-
cence intensity makes sudden jumps between “on” and “off”
regimes. Figure 4 gives an illustration of the model. When �
which was initially smaller than �* crosses the border and
becomes larger than �*, the luminescence switches from
“on” to “off.” It switches back to “on” when the trap energy
becomes smaller than �* again.

III. DISTRIBUTION OF THE BLINKING TIMES

The probability distribution function of the coordinate �
at the time t satisfies the following diffusion equation:

�t���,t� = D����� + �� − �0�/�2����,t� , �3.1�

where ��50 meV is a root mean square deviation of the
�Gaussian� steady-state distribution of �, and �0�300 meV
is the center of the distribution. The diffusion coefficient D is
assumed to be proportional to the excitation intensity I and to
depend only weakly on temperature. However it could de-
pend on the environment and the QD preparation procedure.
We introduce the difference x=�−�0 as a new reaction coor-
dinate. This x is a function of the nuclear coordinates of the
system mentioned earlier. The master equation for the distri-
bution function ��x , t� follows from Eq. �3.1�:

FIG. 4. A schematic picture of the mechanism of the QD blink-
ing. The 1Se−1Pe energy gap ��t� is the stochastic Markovian pro-
cess. The thin curve shows the stationary distribution of �. The
dependence of the QD luminescence intensity on � has a sharp
threshold at �*. So, the luminescence is “off “ when ���* �hatched
area� and “on” otherwise.
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�t��x,t� = D�x��x + x/�2���x,t� . �3.2�

The threshold coordinate value between “on” and “off” re-
gions is x*=�*−�0. When the edge energy �*�300 meV is
very close to �0; the following condition is fulfilled:


�* − �0
 
 � .

Under this condition one can set x*=0 without loss of gen-
erality.

The “off” time period started when the coordinate x
crosses the transition region and becomes equal to �. We set
time t equal to zero at this moment. We show later that the
final result for the observed distribution of the “off” times
does not depend on the precise value of �. The distribution of
the “off” times poff�t� is a derivative of the survival probabil-
ity of the “off” state,

poff�t� = −
d

dt
Poff�t� . �3.3�

The survival probability is equal to unity at zero time and
goes to 0 at infinite time. It could be expressed as an integral
of the survival probability distribution function �off�x , t�,

Poff�t� = �
0

�

�off�x,t�dx , �3.4�

�off�x , t� satisfies Eq. �3.2�,

�t�off�x,t� = D�x��x + x/�2��off�x,t� �3.5�

with an absorbing boundary condition at the border �the first
passage time problem�

�off�x,t�
x=0 = 0. �3.6�

The condition �3.6� is not exact because of the finite size of
the transition region � near x=0. However, it is valid for
times much larger than

�0 =
�2

D
. �3.7�

The initial value of the coordinate x at zero time is taken
equal to �,

�off�x,t = 0� = ��x − �� . �3.8�

The solution of Eqs. �3.5�, �3.6�, and �3.8� is well known52

�off�x,t� = �0�x,t� − �0�− x,t� , �3.9�

where �0�x , t� is a solution of Eq. �3.5� with the initial con-
dition �3.8�, but without the boundary conditions �3.6�,

�0�x,t� =
1

�2��2�1 − exp�− 2t/���

	exp� − �x − � exp�− t/���2

2�2�1 − exp�− 2t/���	 , �3.10�

where

� = �2/D �3.11�

is the diffusion relaxation time. The survival probability of
the “off” state can be expressed as

Poff�t� =
1

�2��2�1 − exp�− 2t/���

	�
−b

b

exp� − x2

2�2�1 − exp�− 2t/���	dx , �3.12�

where b=� exp�−t /��
�. At the times t��0 the integrand
in Eq. �3.12� is equal to 1 for the region of integration. So,
we have

Poff�t� =
2� exp�− t/��

�2��2�1 − exp�− 2t/���
for �0 
 t .

This expression has the following limiting behavior for
Poff�t�:

Poff�t� =
�

�
� �

�t
for �0 
 t 
 � , �3.13a�

Poff�t� =
�

�
� 2

�
exp�− t/�� for t � � . �3.13b�

The “off” time distribution function Eq. �3.3� yields the
power law behavior,

poff�t� =
�

2�
� �

�
t−3/2 �3.14a�

for �0
 t
� and the exponential decay when t��,

poff�t� =
�

��
� 2

�
exp�− t/�� . �3.14b�

This behavior is natural for any model of 1D diffusion with
an absorbing boundary. The distribution �off�x , t� at small
times is much narrower than �. So, an unbiased diffusion
approximation could be used which gives the power law re-
sult �3.14a�. The exponential dependence at large times in
Eq. �3.14b� corresponds to the decay of the quasistationary
distribution �off�x , t� as a whole. Specifically, there is a reac-
tive flux proportional to the survival probability Poff�t�, gen-
erating the first order steady-state decay rate 1 /�.

The distribution �3.14a� depends on the excitation light
intensity and the temperature through �. The experimentally
observed “off” distribution, however, does show excitation
dependence. It is a consequence of a measuring procedure
including the integration of the luminescence intensity dur-
ing the time bin. The experimentally observed time distribu-
tion is limited to times greater than some minimal observa-
tion time �min, which exceed the experimental time bin; one
cannot see a blink shorter than that time. In order to observe
the power law on the short times �min must be larger than the
smallest time �0 for which of the power law is valid, given
by Eq. �3.7�. A measured normalized “off” distribution p̄off�t�
is proportional to poff�t� for the times t larger then �min,
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p̄off�t� = Cpoff�t� .

The coefficient C could be found from the normalization
integral,

�
�min

�

p̄off�t�dt = C�
�min

�

poff�t�dt = 1. �3.15�

Under the condition

�0 � �min 
 � �3.16�

the main contribution to the normalization integral comes
from the region of small times. The normalized “off” time
distribution is then found from �3.15� to be

p̄off�t� =
1

2�min
� �min

t
	3/2

for �min � t 
 � , �3.17a�

p̄off�t� = � �min

2�3 	1/2

exp�− t/�� for t � � . �3.17b�

The “off” time distribution has the power law form with
exponential cutoff. The normalized power law distribution
�3.17a� depends on �min only, and so is thereby independent
of the light intensity and the temperature. It also does not
depend on the transition layer size �. Combining Eqs. �3.7�
and �3.11� we obtain the following expression for the �0
value

�0 = �� �

�
	2

. �3.18�

The cutoff time � for the “off” times distribution found from
the ensemble luminescence measurements53 to be of the
order of ��1000 s. The values of the transition layer size
and the diffusion amplitude were estimated above as
��20 �eV and ��50 meV. The substitution of those val-
ues to Eq. �3.18� gives the smallest time for the validity of
the power law �0�100 �s. This value is of the same order of
magnitude as minimal observation time �min in the experi-
ments of Kuno et al.12–14 and much smaller than �min in the
experiments of Shimizu et al.11 So, the present model is con-
sistent at the small times.

The “on” time distribution also could be found from Eq.
�3.2�. The “on” time period starts when the coordinate x
crosses the transition region. We again set t=0 at this mo-
ment and introduce the “on” survival probability distribution
�on�x , t� satisfying Eq. �3.2� for negative x,

�t�on�x,t� = D�x��x + x/�2��on�x,t� �3.19�

with an absorbing boundary condition

�on�x,t�x=0 = 0. �3.20�

The initial condition is the delta function,

�on�x,t = 0� = ��x + �� . �3.21�

Equation �3.19� with the conditions �3.20� and �3.21� is
equivalent to Eqs. �3.5�, �3.6�, and �3.8� after a substitution
x→−x. As a result we have the same distribution �3.17a� and
�3.17b� for the measured “on” time

p̄on�t� =
1

2�min
� �min

t
	3/2

for �min � t 
 � , �3.22a�

p̄on�t� = � �min

2�3 	1/2

exp�− t/�� for t � � . �3.22b�

The Markovian nature of the master equation �3.2� deter-
mines an additional important property of the emission in-
tensity. The consecutive blink events are not correlated in our
model, because the coordinate x has no memory about its
prior evolution.

The present model explains the following experimental
data on the colloidal QD luminescence blinking:

�1� Distribution of the “on” and “off” luminescence du-
rations under the continuous light excitation have an inverse
power law form with an exponent of �1.5 over six decades
in time.11

�2� The “off” time distribution is unchanged for the dif-
ferent temperatures and laser intensities.11–18

�3� Consecutive blink events are not correlated. There is
no correlation between the “off” time duration and the sub-
sequent “off” time. Similarly, there is no correlation between
consecutive “on” times and also between consecutive “on”-
“off” and “off”-“on” times in agreement with
experiments.13,14

�4� The “on” and “off” time distributions are stationary in
time. The statistics of the blinking times collected during
frame segments of the full measurement time show the same
power law distribution.13

�5� The exponential cutoff time is predicted to be in-
versely proportional to the excitation intensity. It could also
depend on the temperature, the environment, and the proce-
dure of the QD preparation.

IV. LIGHT-INDUCED DIFFUSION OF THE QD STATES

Early spectroscopic experiments34 showed that the emis-
sion spectrum of the colloidal QD ensemble is quite wide
�about 80 meV�. It was explained by the inhomogeneous
broadening due to the QD size distribution �about 5% rms�.
Unexpectedly, it was found that the homogenous lumines-
cence spectral line measured in the single QD experiments is
also much broader than expected width � /�r, where �r is the
radiative lifetime. Posterior investigations27–29 showed that
the energy of the emitted photon Eex displays a long-
correlated stochastic motion with a characteristic time of
hundreds of seconds. The amplitude of this spectral diffusion
�FWHM� is about 3 meV at 10 K. The spectral diffusion is
driven by the light absorption at this temperature. The mean
square displacement of the spectral line directly depends on
the number of absorbed photons.29 Following Blanton et al.28

we attribute this behavior to photoinduced changes at the
nuclear coordinates at the nanocrystal surface. The changes
could be the result of the mechanical �acoustic phonon� os-
cillations of QD shape after light excitation observed experi-
mentally by Cerullo et al.54 The changes in the nuclear co-
ordinates at the surface shift the energies of E1Se and E1S3/2
states. As a result, each excitation of the QD induces a small
jump of the Eex value. The direction and the length of the
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jump are random. The characteristic length of the jump aE is
much smaller than the amplitude of the spectral diffusion �E.
The distribution of coordinate shifts at each jump has a bias
depending on the value of the coordinate. The characteristic
time interval between successive excitations is given by

�I = 1/kI, �4.1�

where the excitation rate constant kI is given by Eq. �2.6�.
According to the random walk theory,55 the evolution of the
coordinate Eex for the coarse-grain energies scale much
larger than the jump length aE and the coarse-grain times
scale much larger than the excitation time interval �I and so
could be considered as a continuous diffusion with bias. The
distribution function �E�Eex , t� of the energies thus satisfies a
diffusion equation

�t�E�Eex,t� = DE�E��E + ���Eex���E�Eex,t� , �4.2�

where the “diffusion coefficient” DE=aE
2 /�I is proportional

to the excitation light intensity I and where a unitless “po-
tential” ��Eex� corresponds to the steady-state distribution of
the emitting energies �st�Eex�,

�st�Eex� = exp�− ��Eex�� . �4.3�

If the steady-state distribution has a Gaussian form the func-
tion ��Eex� is parabolic,

��Eex� =
�Eex − E0�2

2�E
2 , �4.4�

where E0 is a center of the steady-state distribution �st�Eex�.
It can be demonstrated that the diffusion model is consistent
with the experimental data. The solution of Eqs. �4.2�–�4.4�
with delta-function initial condition

�E�Eex,0� = ��Eex − Ein�

is given by the well-known expression55

�E�Eex,t� =
1

�2��2�1 − exp�− 2t/�E��

	exp� − �Eex − Ēex�t��2

2�2�1 − exp�− 2t/�E��
	 , �4.5�

where �E=�E
2 /DE is the relaxation time and

Ēex�t� = �Ein − Eo�exp�− t/�E� + E0.

Equation �4.5� also yields the time dependence of the mean
square displacement of Eex,


�Eex − Ēex�t��2� = �E
2�1 − exp�− 2t/�E�� . �4.6�

Thus, the width of the luminescence line �FWHM� integrated
over the time t is given by the following expression:

FWHM = ��8 ln 2�1 − exp�− 2t/�E�� . �4.7�

The observed time dependences of the luminescence line
with the CdSe QD �Ref. 29� at the temperatures 10–40 K are
seen in Fig. 5 to be fitted by the function �4.7�. As also seen
there, the parameters for the spectral diffusion depend

weakly on temperature in the given range. For the excitation
intensity I=85 W/cm2 the averaged time between excita-
tions is �I�1 �s.13 The results of fitting allow the determi-
nation of an averaged length aE of the single jump

aE = �E
��I/�E.

Its value varies from 0.1 �eV to 0.3 �eV for the data pre-
sented in Fig. 5, when the temperature varies from 10 K to
40 K.

We suggest above that the energy difference between 1Pe
and 1Se states in �, which is the function of the nuclear
coordinates of the system, is also a subject of a light-induced
diffusion with a mechanism analogous to the mechanism of
the diffusion of the emission energy Eex. The single jump
size

a = ���I/� � 1.5 �eV

is much larger than aE �0.1 to 0.3 �eV�. The probability
density of the delocalized electron near the surface is larger
for 1Pe state than for 1Se state. Thus the sensitivity of the
1Pe energy to the surface modifications could be much larger
than the 1Se energy. It gives a possible explanation of the
difference between a and aE. The sensitivity of the 1Pe state
to the surface conditions could also make a dependent on the
environment.

V. DISCUSSION

We have suggested a simple model to explain the experi-
mental data on QDs luminescence blinking, without assum-
ing the existence of the long-lived electron or hole trap. The
QD always returns back to the ground �neutral� state after
photoexcitation. The main assumption of the model is that
the bleaching of the QD luminescence is a result of the fast

FIG. 5. The averaged single dot spectral line width as a function
of the integration time �Ref. 29� fitted by the formula �4.7�. The
experimental measurements were taken with the excitation intensity
I=85 W/cm2. The parameters of the fits are �E=1.02 meV,
�E=130 s, for 10 K �squares�; �E=1.6 meV, �E=109 s, for
20 K �triangles�; �E=1.8 meV, �E=99 s, for 30 K �circles�;
�E=2.8 meV, �E=82 s, for 40 K �squares�.
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radiationless relaxation of the excitation by transition of the
hole to the deep surface traps. The hole is trapped to the
surface state by the Auger mechanism, the excess hole en-
ergy, due to an energetically favorable transition, enables the
simultaneous electron excitation from 1Se state to 1Pe state.
So, the radiationless relaxation rate sharply depends on the
energy gap between 1Pe and 1Se states, which is the function
of the nuclear coordinates of the system. We assume that
1Pe−1Se gap is the subject of the long-time diffusion in-
duced by the light excitation. The present model explains the
important properties of the QD blinking, but some features
were left unexplained.

One of them is a large difference between the cutoff times
for the “on” times and “off” times found in single QD
experiments11 and ensemble luminescence measurements.53

The cutoff time for “off” distribution is about 40 times larger
than for the “on” distribution at room temperature.53 This
fact could be explained if the mean jump length depends on
the 1Pe−1Se energy gap �. It is equivalent to the introduction
of the � dependence of the diffusion coefficient in Eq. �3.1�.
Such dependence could be the result of the large difference
in the length of the jumps made with or without photon
irradiation at room temperature. While the diffusion coeffi-
cient is reasonably larger in the “on” region in comparison
with the “off” one, the cutoff time of the “on” time distribu-
tion in Eq. �3.22a� and �3.22b� would need to be much
smaller than the corresponding “off” cutoff time in �3.17a�
and �3.17b�.

Another possible explanation of the cutoff times differ-
ence is in the influence of the competing trapping process,
namely Auger-type excitation of the 1De electron state. It is
natural to assume that the 1De−1Se energy gap is also the
subject of the light induced diffusion. Its motion should be
correlated with the motion of the 1Pe−1Se gap. So, when
the 1Pe−1Se energy gap � becomes small enough, the
1De−1Se gap could reach the resonance with the upper edge
of the trap energies band and quench the QD emission. It can
be shown that this cutoff mechanism could apply for “on”
times, but because of the positioning of the states could not
apply to the “off” times.

While the exponent of the “off” times distribution found
by the most of the experimental groups is always about −1.5,
the “on” times distribution varies for the different
experiments.11–18 It seems that the properties of the “on” dis-
tribution are more sensitive to the environment conditions
and to the QD preparation procedure. The power-law “on”
time distribution with the exponent different from −1.5 could
be explained in the present model by the strong � depen-
dence of the diffusion coefficient in the “on” region. The
development of the model in this direction is the subject of
future investigation.

It is difficult to test directly one of the major assumptions
of the present model, the diffusion of the 1Pe−1Se energy
gap. An optical single QD spectroscopy seems unsuitable for
this purpose, because the rate of the radiationless transition
from the 1P state to the 1S state is many orders of magnitude
larger than the rate of the radiative one. It is easier to check
experimentally the light-induced nature of a driving force of

the QD blinking. The present model predicts that the cutoff
times of the “on” and “off” distributions are inversely pro-
portional to the excitation intensity. There is some evidence
of this behavior in literature. Shimizu et al.11 demonstrated
that the cutoff time of the “on” time distribution becomes
smaller when the excitation intensity increases. The averaged
“on” time obtained by Banin et al.56 decreases with increas-
ing excitation intensity. Systematic studies of the intensity
dependence of the cutoff times are suggested in order to
demonstrate the relevance of the light-induced mechanism of
the luminescence intermittency.

We suggest another critical experiment for testing this
point. One could switch off the laser irradiation during the
single QD spectroscopic measurements and then switch it on
after some macroscopic time. According to the present model
the slow variable � does not move or moves little during this
outage. So, if the luminescence was “on” before the outage it
stays “on” after it �the same is true for “off” state�. The
correlation between the luminescence intensity before and
after the laser outage can quite possibly be checked experi-
mentally. Chung and Bawendi53 have demonstrated that such
a correlation occurs for the QD ensemble luminescence.

An important component of the present mechanism is the
suggestion that radiationless relaxation goes via the hole trap
state. That suggestion could be directly tested by the single
QD near-infrared spectroscopy. According to the present
model each single QD should demonstrate deep trap emis-
sion. The luminescence intensity in this spectral region
should be switched by sudden jumps, correlated with the
blinks in the visible spectrum. The population of the trap
states is larger during “off” periods, so the deep trap emis-
sion should be more intense that time.

The time-resolved measurements of the relaxation rate of
the excited state in the single QD could be done by the time-
correlated photon counting procedure48 together with the
maximal likelihood estimation method.57,58 The long-lived
trap hypothesis predicts very fast �subpicosecond� relaxation
of the electronic excitation of the charged �“dark”� quantum
dot and slow �20 ns� radiative relaxation in the opposite case.
The suggested model of the radiationless relaxation by hole
trapping allows intermediate relaxation rates. The observa-
tion of the relaxation rates larger than 108 s−1 and less than
1012 s−1 could provide an additional test of the present
theory.
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