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On the relation of protein dynamics and exciton relaxation
in pigment–protein complexes: An estimation of the spectral density
and a theory for the calculation of optical spectra

Thomas Renger and R. A. Marcusa)

Noyes Laboratory of Chemical Physics, Pasadena, California 91125

~Received 15 November 2001; accepted 25 February 2002!

A theory for calculating time– and frequency–domain optical spectra of pigment–protein
complexes is presented using a density matrix approach. Non-Markovian effects in the exciton–
vibrational coupling are included. A correlation function is deduced from the simulation of 1.6 K
fluorescence line narrowing spectra of a monomer pigment–protein complex~B777!, and then used
to calculate fluorescence line narrowing spectra of a dimer complex~B820!. A vibrational sideband
of an excitonic transition is obtained, a distinct non-Markovian feature, and agrees well with
experiment on B820 complexes. The theory and the above correlation function are used elsewhere
to make predictions and compare with data on time–domain pump–probe spectra and frequency–
domain linear absorption, circular dichroism and fluorescence spectra of Photosystem II reaction
centers. ©2002 American Institute of Physics.@DOI: 10.1063/1.1470200#
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I. INTRODUCTION

Understanding the complex role of proteins in char
and energy transfer reactions presents an interesting c
lenge for theory. In recent years the picture describing p
teins as a rigid scaffold has changed. Protein dynamic
recognized as playing a significant part in the reaction. O
of the more spectacular pieces of evidence on how chem
reactions can trigger conformational motion~andvice versa!
comes from single molecule experiments on protein moto1

In addition to these large scale motions on a microsec
time scale much faster reactions involving energy or cha
transfer processes are influenced by small amplitude pro
vibrations on a picosecond time scale. The complex struc
of the proteins allows them to exhibit this extremely bro
dynamic range.

The complexity of the protein is also the source of
main difficulty in modeling these systems. There is no sim
unique model for the protein, and different descriptions foc
on different experiments. For example, conformational m
tion can be neglected when interpreting subpicosecond
periments. Instead, the protein can be regarded as existin
different conformations, reflecting a static disorder. This c
cumstance may lead, for example, to an inhomogene
broadening of optical transition lines of chromophores bou
to the protein, or to a distribution of charge and energy tra
fer rates. Our aim in the present paper is to obtain dyna
variables, such as the spectral density and correlation fu
tions, which characterize protein dynamics relevant to ex
ton relaxation in photosynthetic pigment–protein complex
These functions are then incorporated into a theory of v
ous types of optical spectra.

To obtain a realistic correlation function for the trans
tion energies of the photosynthetic pigments, we first exa

a!Electronic mail: ram@caltech.edu
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Downloaded 05 Apr 2007 to 131.215.21.81. Redistribution subject to AIP
e
al-
-
is
e
al

.
d
e
in
re

e
s
-
x-
in

-
us
d
s-
ic
c-
i-
s.
i-

-

ine experiments2 on a model system consisting of ana-helix
and a bound bacteriochlorophyll molecule, the B77
complex. It appears to be the only example at present o
successful step by step separation of a photosynthetic
tenna complex into single-pigment–protein units, namely
preparation of the B777-complex starting from the bacte
LH1 core antenna. A structure of the B777-complex is sho
in Fig. 1. It was adapted from the known structure of t
bacterial LH2 antenna system3 by removing the B800 bacte
riochlorophyll that is missing in the LH1 antenna complex.
low-resolution structural study exists for the LH1 complex4

It appears that the basic pigment–protein subunits of the b
terial antennas LH1 and LH2 are related to each other
also to the bacterial reaction center. The latter is believed
be the ancestor of the plant reaction centers of photosyst
I and II.5,6 A simplifying feature of the experiments2 on the
B777-complex is that the specific interaction occurs betw
a single pigment and the protein, rather than involving,
addition, larger aggregate pigment–pigment and pigme
protein interactions.

An exact result for linear optical absorption and fluore
cence was obtained for harmonic models by Kubo a
Toyozawa7 and Lax.8 A very similar formulation was used in
a harmonic model for the nonadiabatic electron trans
rate.9,10All such approaches have in common the calculat
of a transition rate between two weakly coupled electro
states which interact with a large variety of effective ha
monic vibrations. Georgievskiiet al.11 gave a generalization
of this approach for anharmonic systems. They used lin
response theory and a second-order cumulant expansio
relate the transition rate to a correlation function and a sp
tral density.11 The same relation is obtained in a harmon
oscillator model. Since the second-order cumulant expan
is valid for a greater class of systems, it is inferred tha
description for anharmonic systems in terms of effective h
7 © 2002 American Institute of Physics
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monic oscillators can be found. An earlier approach with
same goal is given by Loringet al.12 and by Chandler.13

In contrast to the two-level system discussed above
exact analytic solution exists for relaxation rates of a mu
level system coupled to a large manifold of harmonic
effective harmonic oscillators. Accordingly, approxima
theories have been used, as in Refs. 14–30. The multil
Redfield theory,15–17 an example of a Markovian theory, ha
been applied to photosynthetic antenna systems.20–22 We re-
call that in a Markovian theory for a statistical density o
eratorr̂(t) the equation of motiondr̂(t)/dt depends only on
the properties of the system att and not on properties a
earlier times, i.e., there are no memory effects of the ea
behavior. As noted laterr̂(t) is a reduced statistical operato
describing the electronic motion, reduced in the sense th
is thermally averaged over an equilibrium distribution of t
vibrational motion. In general, it is the reduction in degre
of freedom from the description of the dynamics of a lar
system to that of a small subsystem that gives rise to n
Markovian, or memory, effects.

If, for example, the coupling of the exciton to some s
lected vibrational modes is treated nonperturbatively, as
done in some effective mode models,31,32 all ‘‘memory’’ is
automatically included for the coupling to these mod

FIG. 1. Model for the B777-complex. The model has been adapted from
atomic structure of the LH2 complex~Ref. 3! ~Brookhaven Protein Data file
1kzu.pdb!.
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There is no reduced description involved. However, such
approach is computationally intensive and so has been
ited to a small number of electronic pigment states and
fective vibrational modes. The largest system treated so
we believe, is a chlorophyll dimer consisting of nine ele
tronic states coupled to two effective vibrational modes.32 An
alternative approach of comparable numerical intensity
given by a path integral formulation.33,34

We present an alternative and numerically less intens
approach which uses perturbation theory for part of
exciton–vibrational coupling. It will be shown how the non
Markovian effects for a whole manifold of low-frequenc
protein vibrations can be included in the theory. For th
purpose we determine from experiment the couplin
weighted density of vibrational states of the protein, the
called spectral densityJ(v). Markovian treatments20–22 of
photosynthetic antenna systems are extended in the pre
article by exploring non-Markovian effects for the exciton
vibrational interaction. A measure of non-Markovian effec
we argue, is the production of vibrational sidebands in op
cal absorption and fluorescence spectra: If the interaction
tween the electronic and vibrational motion is such that
correlation function for the optical transition energy for th
creation of the exciton decays rapidly the present proces
Markovian. In such a short time there is no time for vibr
tions to be excited and so there are no vibrational sideba
An earlier non-Markovian formulation of the density matr
theory28 for linear absorption and circular dichroism spec
is refined in the present article to include a more accur
summation of the exciton–vibrational coupling terms and
also extended to include the description of fluorescence
narrowing spectra and to time–domain pump–probe spec

When non-Markovian effects are studied the choice
an operator~the projection operator! used for the derivation
of the equations of motion for the reduced statistical opera
is critical. Different projection operators can be best co
pared by a generalized cumulant expansion method de
oped by Kubo35 and by van Kampen.36 As pointed out by
Hashitsumeet al.37 and Mukamelet al.38 the time-convolu-
tionless projection operator technique developed by Shib
et al.37,39 and by Tokuyama and Mori40 corresponds to a so
called partial ordering prescription~POP! in the time-
ordering of the cumulant expansion,37–39 whereas a more
widely used projection operator technique developed
Zwanzig41 corresponds to a chronological ordering prescr
tion ~COP!.37–39 The POP leads to an ordinary differenti
equation of motion with time-dependent coefficients for t
reduced statistical operatorr̂(t), whereas the COP results i
an integro-differential equation forr̂(t) containing a convo-
lution. In POP the memory effects appear in the tim
dependent coefficients while in COP they appear in the
tory of r̂(t). Besides mathematical convenience t
guidelines for the choice of the time-ordering prescripti
may not be clear. At infinite order both prescriptions beco
equivalent. In the Markovian limit they also become equiv
lent.

One way, chosen recently by Palenberget al.42 to evalu-
ate the convergence of the two time-ordering prescriptions
to compare with an exact result. However, the latter ex

e
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9999J. Chem. Phys., Vol. 116, No. 22, 8 June 2002 Relation of protein dynamics and exciton relaxation
only for relatively simple systems. In their study of a dim
with dichotomously fluctuating site energies POP yielded
better results for the time-dependent population of dim
states. The electronic coupling between the two states
included exactly. On the other hand, for a two-level syst
where the levels are coupled weakly by an external field
the correlation function of the energy gap decays expon
tially Mukamel showed43 how the ordering prescription i
related to the stochastic properties of the energy gap:
COP equation for such a system yields the optical absorp
lineshape known44 for a two-level system with a dichoto
mously fluctuating energy gap. The POP equation for
same system gives43 the lineshape function obtained44 for a
system where the energy gap is modulated by a Gaus
random process. In the present study the choice of orde
prescription was based on the fact that the second-order
description reduces in the one-pigment limit to the exact
lution for the linear absorption because of the assum
Gaussian nature of the bath, whereas the second-order
does not.

The paper is organized as follows: The standard sp
boson type theory is used in Sec. II to extract the correla
function of the pigment transition energy from fluorescen
line narrowing spectra measured2 at 1.6 K on B777-
complexes. The non-Markovian density matrix equations
discussed in Sec. III. Various phenomena in the frequen
and time–domain are treated in Sec. IV using POP and
clude the description of circular dichroism, linear absorpti
fluorescence and pump–probe spectra. Fluorescence line
rowing spectra of B820 complexes are calculated and c
pared with the experimental data.2 The approximations and
results are discussed in Sec. V. A summary is given in S
VI. Various relations used in the text are derived in Appe
dices A–E. The COP method and results are describe
Appendix F.

The theory in the present article is applied elsewhere45 to
the photophysical properties of PS-2 reaction centers
green plants, specifically to the calculation of absorpti
fluorescence, circular dichroism and pump–probe spectr

II. CORRELATION FUNCTION
OF THE ELECTRONIC ENERGY GAP:
EXTRACTION FROM FLUORESCENCE LINE
NARROWING SPECTRA OF B777-COMPLEXES

The B777-complex in Fig. 1 is used here as a mo
system to learn about the local interaction between a pigm
and the protein in photosynthetic antennae. In this sectio
spectral densityJ(v) of the pigment–protein interaction i
extracted from the recently measured2 1.6 K fluorescence
line narrowing spectra of B777-complexes measured at
ferent excitation wavelengths. From thisJ(v) the correlation
functionC(t) of the optical transition energy of the pigme
is obtained.

We use the site-selective fluorescence spectra rather
the absorption spectrum for this purpose because the s
disorder in the absorption spectrum introduced by the pro
and solvent environment overwhelms other details of t
spectrum. In fluorescence line narrowing spectroscopy
Downloaded 05 Apr 2007 to 131.215.21.81. Redistribution subject to AIP
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fluorescence signalI (v,vexc) of selectively excited pigments
depends on the excitation energy\vexc:

46

I ~v,vexc!

5E
2`

`

dv10ah~vexc,v10!I h~v,v10!Pinh~v102v̄10!,

~2.1!

whereah and I h are the homogeneous absorption and flu
rescence spectra, respectively, of the complex with the
→0) transition energy at\v10, and a Gaussian distributio
function Pinh(v102v̄10) is assumed, for the inhomogenei
in 0→0 transition frequenciesv10 of the complexes in the
sample, with a maximum atv̄10.

To use Eq.~2.1! it is necessary to calculate the homog
neous absorption and fluorescence spectra of a pigm
coupled to a variety of vibrational degrees of freedom of
system. Standard theories for treating this problem7,8,16 as-
sume that the vibrations can be treated as effective harm
oscillators that do not change their frequencies upon e
tronic excitation of the pigment. We will make the sam
assumption.

The calculations are based on the spin–boson t
Hamiltonian:47

H5H0u0&^0u1H1u1&^1u, ~2.2!

where the HamiltonianH0 of the electronic ground state is
HamiltonianHvib of unshifted harmonic oscillators,

H05Hvib5Tnucl1(
j

\vj

4
Qj

2 ~2.3!

and the HamiltonianH1 of the excited electronic stateu1& is
given as

H15Tnucl1\v101(
j

\vj

4
~Qj12gj!

2, ~2.4!

whereTnucl denotes the kinetic energy of nuclei and\v10 is
the energy difference between the minima of the poten
energy surfaces~PES! of the excited and the ground elec
tronic state,u1& and u0&, respectively, of the pigment in th
B777-complex. This Hamiltonian is the one-pigment versi
of the multi-pigment Hamiltonian given later. Thevj denote
the relevant frequencies and22gj the shift in minimum of
the excited state PES relative to the ground state. For n
tional convenience a dimensionless coordinateQj

5qjA2vj /\ is used~e.g., Ref. 16!, where theqj are the
usual ~mass-weighted! normal coordinates. TheQj can be
written as Cj

11Cj , i.e., in terms of the usual creatio
and annihilation operators of vibrational quanta of prote
modej.

The homogeneous absorption and fluorescence sig
are given by8,16

ah~v!5
4p2vn

3\c
um10u2Da~v!, ~2.5!

I h~v!5
4v3n3

3\2c3 um10u2DI~v!, ~2.6!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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wherem10 is the transition dipole moment,n the refractive
index of the sample and the lineshape functionsDa/I(v) for
absorption~a! and fluorescence (I ) are8,16

Da/I~v!5
1

2p E
2`

`

dt e6ı(v2v10)t1G(t)2G(0). ~2.7!

Here 1 refers toa and 2 to I . This Da/I(v) contains a
time-dependent functionG(t) of the spectral densityJ(v),48

G~ t !5E
0

`

dv$„11n~v!…J~v!e2 ivt1n~v!J~v!eivt%,

~2.8!

J~v!5(
j

gj
2d~v2vj!. ~2.9!

This J(v) describes how the configuration of nuclei of th
protein changes upon electronic excitation of the pigme
The n(v) in Eq. ~2.8! is the mean number of vibrationa
quanta for an oscillator of frequencyv in thermal
equilibrium:49

n~v!5
1

e\v/kT21
. ~2.10!

The lineshape function, Eq.~2.7!, can be written as a
sum of two terms: a zero-vibrational quantum (0→0) tran-
sition and vibrational sidebands:46

Da/I~v!5
e2G(0)

2p E
2`

`

dt ei (v2v10)t

1
e2G(0)

2p E
2`

`

dt e6 i (v2v10)t~eG(t)21!, ~2.11!

which can also be written as

Da/I~v!5e2G(0)d~v2v10!1f„6~v2v10!…. ~2.12!

Here d(v2v10) refers to the 0→0 transition and the
f„6(v2v10)… to the absorption (1) or fluorescence (2)
vibrational sidebands.

The homogeneous lineshape functionsDa(v) and
DI(v) are mirror symmetric with respect to the ener
\v10, i.e., Da(v2v10)5DI(v102v), reflecting the as-
sumption that the vibrational frequencies of the effective h
monic oscillators do not depend on the electronic state of
pigment. The integrated intensity of the vibrational sideba
*2`

` dv f(v2v10) relative to that of the zero-vibrationa
quantum transitione2G(0), equalseG(0)21, and is a measure
of the exciton–vibrational coupling strength. The signi
cance ofG(0) is that at temperatureT50, it can be shown
from Eq. ~2.8! to equal S, the well-known Huang–Rhys
factor

S5E
0

`

dv J~v!5(
j

gj
2 , ~2.13!

wheregj
2 also equals the average change8 in number of vi-

brational quanta with energy\vj in an optical transition
from any specific initial vibrational state. Since the displac
ment of the minima of the potential energy surfaces of
Downloaded 05 Apr 2007 to 131.215.21.81. Redistribution subject to AIP
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two electronic states with respect to each other equ
22gj , the more this displacement, the larger isS.

The exciton–vibrational coupling is weak whenS!1,
and strong whenS@1. The typical coupling in photosyn
thetic antenna complexes lies in an intermediate rangS
'1,50–53 a notable exception being the red-absorbing
tenna states of photosystem I (S.2).54–56

Introducing the results for the homogeneous absorp
and fluorescence lineshape functions Eqs.~2.12! into Eq.
~2.1!, using Eqs.~2.5! and~2.6!, yields the fluorescence line
narrowing spectrum at a frequencyv, excited at a frequency
vexc, which includes an inhomogeneous distribution fun
tion Pinh having a maximum atv105v̄10,

I ~v,vexc!;E
0

`

dv10$e
2G(0)d~vexc2v10!

1f~vexc2v10!% $e2G(0)d~v2v10!

1f~v102v!%Pinh~v102v̄10!. ~2.14!

Equation~2.14! can be written as

I ~v,vexc!;e22G(0) d~v2vexc!Pinh~vexc2v̄10!

1e2G(0) f~vexc2v!„Pinh~vexc2v̄10!

1Pinh~v2v̄10!…1E dv10f~vexc2v10!

3f~v102v!Pinh~v102v̄10!. ~2.15!

The first term on the right in Eq.~2.15! is the resonant fluo-
rescence at the excitation wavelength and originates from
0→0 transitionsd(vexc2v10) in absorption followed by the
0→0 transition d(v2v10) in fluorescence. The facto
e22G(0)Pinh(vexc2v̄10) does not appear to have been e
tracted experimentally2 for the present system, because
interference by scattered light from the excitation.57

The second term on the right side of Eq.~2.15! contains
two types of sidebands: The first arises from excitation of
0→0 transition d(vexc2v10) followed by fluorescence
yielding the sidebandf(v102v), and the second from ex
citation of the sidebandf(vexc2v10) and followed by fluo-
rescence at the 0→0 transitiond(v2v10). The last term on
the right hand side of Eq.~2.15! contains excitation of a
sideband and fluorescence to a sideband.

The above expression simplifies when the pigmen
protein coupling is weak. We use this case as a first step i
iterative procedure to extractJ(v) from the data: For weak
coupling the shape of the vibrational sidebandf(v) at low
temperatures is the same as the shape of the spectral de
J(v), as can be seen by approximatingeG(t)21 by G(t) in
Eq. ~2.11! and settingn(v)50 in Eq. ~2.8!. Further, since
the vibrational sideband in absorption at low temperatu
must be only on the high-energy side of the 0→0 transition,
a 0→0 transition is the major contributor to the low-energ
wing of the absorption spectrum. In this case the shape of
vibrational sideband in fluorescence line narrowing spectr
given by thef(vexc2v) appearing in Eq.~2.15!. The fol-
lowing strategy was therefore chosen to extractJ(v) from
the spectrum:
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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The shape of the sideband in the fluorescence line
rowing spectrum excited in the low-energy wing of the a
sorption spectrum was used as a first guess for the spe
densityJ(v). An empirical functional form which is an ex
tension of earlier21,22,25,27,28,50functional forms was used fo
J(v):

J~v!5 (
i 51,2

si kiv
qe2(v/v i )

p
. ~2.16!

It contains the parameterssi , v i , p and q, ki being the
normalization factors,p/(v i

(q11)G„(q11)/p…), and the sum
s11s2 being equal to theS of J(v) in Eq. ~2.13!. An initial
valueS51 was used, typical for pigment–protein complex
as discussed before. The fit was iterated by next calcula
f(v) in Eqs. ~2.8!–~2.12! numerically and then calculatin
the spectrum from Eq.~2.15!. This fit was performed for the
lowest excitation energy\vexc used in the experiment. Usin
this first estimate for the shape ofJ(v), the S5s11s2 was
varied next to fit the dependence ofI (v,vexc) on the excita-
tion frequencyvexc in Eq. ~2.15!. At higher excitation ener-
gies the last contribution in Eq.~2.15! involving sidebands in
absorption and in emission becomes important and leads
broadening of the sideband seen in the spectrum in Fig.
short wavelengths. Since the weight of the sideba
is determined byS this broadening effect can be used
estimateS.

The fit at the differentvexc’s in Fig. 2 was obtained for
S51.3. TheJ(v) so determined is shown in the upper ha
of Fig. 3. The optimized parameters ares150.8, s250.5,
\v150.069 meV, \v250.24 meV, p50.5, q53. For p
50.5 andq53 the spectral density, Eq.~2.16!, is

J~v!5 (
i 51,2

si

7!2v i
4 v3e2(v/v i )

1/2
. ~2.17!

FIG. 2. Dependence of fluorescence line narrowing spectra of B7
complexes on the excitation wavelength. Open circles denote the ex
mental values from Ref. 2 and solid lines represent the theoretical fit u
the spectral density in Fig. 3.
Downloaded 05 Apr 2007 to 131.215.21.81. Redistribution subject to AIP
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The maxima of the two contributions in the above sum oc
at frequencies 36v i , i.e., at 20 and 70 cm21. Becauses1

.s2 the first maximum determines the maximum ofJ(v) in
Fig. 3.

If the system were treated as a continuum of harmo
vibrations, as in the Debye model of specific heat, the d
sity of the vibrations, namely the(jd(v2vj) in Eq. ~2.9!,
would contribute a factorv2 to theJ(v) and there would be
a cut-off in v, because of the finite number of coordinate
The remaining dependence onv in Eq. ~2.17!, v exp
2(v/vi)

1/2 would then arise from this cut-off and from th
dependence ofgj

2 in Eq. ~2.9! on j and hence onv.
The parameters of the Gaussian distribution funct

Pinh(v102v̄10), used in the calculation of the fluorescen
line narrowing spectrum in Eq.~2.14!, were determined from
the linear absorption spectrum2 of the B777-complex in Fig.
4. The maximum ofPinh occurs at a frequencyv̄10 corre-
sponding to a wavelength of 782 nm~and so shifted to the
red of the absorption maximum at 777 nm! and the width of
the inhomogeneous distribution function~FWHM! is
600 cm21.58

The correlation functionC(t) of the transition energy
X5H12H0 of the pigment is given as

C~ t !5
1

\2 ^dX~ t !dX~0!&, ~2.18!

where ^ ¯ &5Trvib$Weq . . . % and denotes an average wi
respect to the equilibrium statistical operator ofH05Hvib ,

Weq5e2Hvib /kT/Trvib$e
2Hvib /kT%. ~2.19!

The dX is the deviation ofX from its mean valuêX&,

7-
ri-
g
FIG. 3. Upper half: Spectral densityJ(v), extracted from the fit of fluores-
cence line narrowing spectra of the B777-complex. Lower half: Correla
function of the pigment transition energy of B777-complexes atT51.6 K.
Solid and dashed lines show the real and imaginary parts, respectively
inset in the lower half is a zoom into the small amplitude long time co
ponents of the correlation function.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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dX5X2^X&5(
j

\vjgjQj , ~2.20!

where the time dependence is determined byHvib ,

dX~ t !5eiH vibt/\dXe2 iH vibt/\. ~2.21!

The C(t) is obtained in terms of the spectral densityJ(v)
~Appendix A!:

C~ t !5E
0

`

dv v2$„11n~v!…J~v!e2 ivt1n~v!J~v!eivt%.

~2.22!

As seen in the lower half of Fig. 3 the real part ofC(t)
exhibits a strongly damped oscillation. It and the imagina
part of C(t) are essentially zero after about 100 fs. Abo
5% of the initial correlation is seen in the inset of Fig. 3
decay on a 500 fs time scale. ThisC(t) of the B777-complex
will be related later to an excitonic correlation function a
will be used for the description of dissipation and optic
spectra in larger complexes, containing more than one
ment.

III. DENSITY MATRIX THEORY OF EXCITON
RELAXATION

We next introduce an exciton–vibrational Hamiltonia
H and from it obtain the equations of motion for the ex
tonic density operatorr̂(t). In the following H is given by
the sum,Hex1Hvib1Hex-vib1Hex-rad. It contains the exciton
term Hex,

Hex5(
m

Emum&^mu, ~3.1!

where m50 denotes the electronic ground state at ene
E050, m5M a one-exciton state at energyEM , m52M a
two-exciton state at energyE2M , a vibrational termHvib in
Eq. ~2.3! composed of unshifted harmonic oscillators, a
Hex-vib an exciton–vibrational coupling term,

Hex-vib5(
mn

V̂mnum&^nu. ~3.2!

The operatorV̂mn contains the coupling between one-excit
statesm5M , n5N, and between two–exciton statesm

FIG. 4. Linear absorption spectrum of B777-complexes using the spe
density of Fig. 3 Open circles denote the experimental values from Re
and the solid line the calculated values.
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52M, n52N, and can be expressed in terms of the eig
coefficients of the exciton statescm

(M ) , cmn
(2M ) and coupling

constantsgj
(m) ,

V̂MN5(
j

(
m

cm
(M )cm

(N)\vjgj
(m)Qj , ~3.3!

V̂2M2N5(
j

(
m.n

cmn
(2M )cmn

(2N)\vj~gj
(m)1gj

(n)!Qj , ~3.4!

all other matrix elementsV̂mn in Eq. ~3.2! being zero. The
c’s and Em are obtained59 from the one- and two-exciton
state eigenvalue problems, as usual~e.g., Ref. 30!. As input
parameters for this diagonalization procedure the interm
lecular couplingsVmn and optical transition energiesXm of
the pigments at the minimum position of the potential ene
surface of the electronic ground state are needed.16 To take
into account a modulation ofXm by the vibrations, theXm is
expanded about the minimum position of the ground st
PES. The linear dependence is described by the excit
vibrational coupling constantsgj

(m)5]Xm /]Qj u0 .
The HamiltonianHex-rad describing the coupling of the

aggregate to the external pump and probe fields is, in
rotating wave approximation,

Hex-rad5(
mn

Fmn~ t !um&^nu, ~3.5!

whereFM0(t) describes the absorptive radiative coupling
the ground stateu0& to the one-exciton stateuM & and
F2NM(t) the coupling of the one-excitonuM & to the two-
exciton stateu2N&,

FM0~ t !52 (
s5pu,pr

EVs
~ t !e2 iVstmM

(s) , ~3.6!

F2NM~ t !52 (
s5pu,pr

EVs
~ t !e2 iVstmM→2N

(s) . ~3.7!

The emissive radiative couplings areF0M(t)5FM0* (t) and
FM2N(t)5F2NM* (t), respectively.

The external field is characterized by the envelop
EVs

(t) of the pump (s5pu) and probe (s5pr) pulses, their
carrier frequenciesVs , and their polarization vectorseW s .
The scalar products ofeW s and the dipole moments of th
excitonic transitionsmW M andmW M→2N are denoted bymM

(s) and
mM→2N

(s) :

mM
(s)5eW s•mW M[eW s•(

m
cm

(M )mW m ,

mM→2N
(s) 5eW s•mW M→2N[eW s•(

k. l
ckl

(2N)~cl
(M )mW k1ck

(M )mW l !,

~3.8!

where the local dipole momentmW m characterizes theS0

→S1 transition of the pigment at sitem, andmW M[mW 0→M is
the dipole moment of the excitation of the one-exciton st
uM & andmW M→2N is the dipole moment of the optical trans
tion from the one-exciton stateuM & to the two-exciton state
u2N&.
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In treating the dynamics of the excitons a reduced sta
tical operatorr̂(t) is introduced,15,16 as noted earlier,r̂(t)
5trvib$Ŵ(t)%, where the statistical operatorŴ(t) of the en-
tire system is reduced by taking the trace with respect to
vibrational coordinates of the protein and the pigmen
When there is no coupling to external light fields the syst
is in its ground state and the statistical operatorŴ(t) factor-
izes into a vibrational and an excitonic partW̃(t)
5Wequ0&^0u. This factorization occurs prior to a timet0 , the
time of the first interaction with an external field. ThisWeq is
the equilibrium statistical operator of the vibrations in E
~2.19!, with Hvib given by Eq.~2.3!.

The coupling with the external field then causes the
citonic and vibrational part to depart from equilibrium. B
cause the excited states are coupled to the vibrations
statistical operator of the optically excited states does
factorize as for the ground state. The density matrix the
provides a way to treat the correlations between excito
and vibrational degrees of freedom.60

Different techniques can be used to obtain an equatio
motion for the reduced statistical operatorr̂(t). The follow-
ing equations ~3.9!–~3.12! apply to the present non
Markovian treatment of the exciton–vibrational problem.
second-order cumulant expansion35 for the time-evolution
operator yields38

]

]t
r̂~ t !52 i „Lex1Lex-rad~ t !…r̂~ t !1

]

]t
r̂~ t !U

dissi

, ~3.9!

where the Liouville operatorLex,

Lexr̂~ t !5
1

\
@Hex,r̂~ t !# ~3.10!

describes the dissipation-free dynamics of the excitonic s
tem, and theLex-rad(t) the exciton-radiational coupling,

Lex-rad~ t !r̂~ t !5
1

\
@Hex-rad~ t !,r̂~ t !#, ~3.11!

the square brackets denoting commutators, as usual. The
term in Eq. ~3.9! contains the dissipative part due to th
exciton–vibrational coupling. Different prescription schem
for the cumulant expansion have been used to obtain
dissipative part,35,38 as discussed in the Introduction. We u
the partial ordering prescription~POP!38,61first. As discussed
later it is the more appropriate of the two for the pres
problem. Results obtained from the alternative chronolog
ordering prescription~COP!26,28,38,41are given later for com-
parison.

The dissipative part of the equation of motion obtain
from second-order POP is38

]

]t
r̂~ t !U

dissi

52
1

\2 E
0

t2t0
dt^Lex-vib~ t !e2 iLext

3Lex-vib~ t2t!eiLext&r̂~ t !, ~3.12!

where the^ & in Eq. ~3.12! denotes an equilibrium averag
over the vibrational degrees of freedom^Ô&5Trvib$ÔWeq%,
Weq being the equilibrium statistical operator of the vibr
tions given in Eq.~2.19!. The timet0 in Eq. ~3.12! is a time
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for onset of an external field. For finite pulse widths t
choice of t0 is somewhat arbitrary. One has to cut off th
pulse for earlier times, which is an approximation that is n
necessary in the COP treated in Appendix F. Any depende
of dissipation on the intensity of the external field h
been neglected in Eq.~3.12!. The Liouville operator
Lex-vib(t) in Eq. ~3.12! acts on an arbitrary operatorÔ ac-
cording to Lex-vib(t)Ô51/\@Hex-vib(t),Ô#, with Hex-vib(t)
being the exciton–vibrational Hamiltonian in the interacti
representation,

Hex-vib~ t !5eiH vibt/\Hex-vibe2 iH vibt/\. ~3.13!

The operatoreiLext in Eq. ~3.12! acts on an arbitrary

operator ÔaseiLextÔ5eiH ext/\Ôe2 iH ext/\. The reduced sta-
tistical operatorr̂(t) in Eqs.~3.9!–~3.12! is then expanded in
terms of exciton statesm,n,

r̂~ t !5(
mn

rmn~ t !um&^nu. ~3.14!

The equations of motion for the exciton density mat
rmn(t) are given in Appendix B in terms of the correlatio
functionC(t) of the optical energy gap of the pigments. Th
various phenomena are treated in the following sections
ing these equations.

IV. TREATMENT OF PHENOMENA

A. Linear absorption, circular dichroism
and fluorescence
1. Linear absorption

The linear absorption spectruma(v) is obtained as the
real part of a Fourier–Laplace transform of the dipole
dipole correlation functionD(t),43,62 a(v)}Re*0

`dteivtD(t),
whereD(t)5(MumMu2rM0(t) andrM0(0)51. The absorp-
tion spectrum then is

a~v!}(
M

umMu2DM~v!, ~4.1!

with the lineshape functionDM(v),

DM~v!5ReE
0

`

dt eivtrM0~ t !. ~4.2!

Using the quantum master equation in Appendix B the eq
tion of motion forrM0(t) is

]

]t
rM0~ t !52 ivM0rM0~ t !

2(
K,L

E
0

t

dt CMKKL~t!eivLKtrL0~ t !, ~4.3!

where \vLK5EL2EK and \vM05EM theseEM being the
exciton energies in Eq.~3.1!. The correlation function
CMKKL(t) in Eq. ~4.3! is

CMNKL~ t !5(
mn

cm
(M )cm

(N)cn
(K)cn

(L)^dXm~ t !dXn~0!&. ~4.4!

The latter contains the eigencoefficients of exciton sta
cm

(M ) and a two-site correlation function,

^dXm~ t !dXn~0!&5^eiH vibt/\dXme2 iH vibt/\dXn&. ~4.5!
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The time-dependence in Eq.~4.5! is the same as that in Eqs
~2.21! and ~3.13!. ThedXm is the deviation of the transition
energy of themth pigment from its mean value,

dXm5Xm2^Xm&5(
j

\vjgj
(m)Qj . ~4.6!

For mÞn, Eq. ~4.5! describes the correlation of the modul
tion of electronic energies at site~i.e., pigment! m with that
at siten.

We next introduce22 a radiusRc for the correlations of
protein vibrations at different sites, assuming an exponen
decay for the dependence on the distanceRmn between the
pigmentsm andn:

^dXm~ t !dXn~0!&5e2Rmn /Rc^dX~ t !dX~0!&. ~4.7!

The^dXm(t)dXm(0)& hasRmn50 and will be assumed to b
site-independent and is given by theC(t) in Eq. ~2.22!. The
C(t) appears in the lower half of Fig. 3 and, we recall, w
calculated from the spectral densityJ(v) extracted from
fluorescence line narrowing spectra of the B777-complex

Using Eqs.~2.22! and ~4.7! the correlation function in
Eq. ~4.4! can be written as

CMNKL~ t !5gMNKLC~ t !, ~4.8!

with

gMNKL5(
m,n

e2Rmn /Rccm
(M )cm

(N)cn
(K)cn

(L) . ~4.9!

The secular approximation,15,16,62which neglects certain
oscillating parts in the equation of motion by settingL5M
in Eq. ~4.3!, is used next. It is discussed in Appendix B a
simplifies Eq.~4.3! to yield a homogeneous equation that c
be solved analytically:

]

]t
rM0~ t !5S 2 ivM02(

K
gMKE

0

t

dt C~t!eivMKtD rM0~ t !,

~4.10!

gMK[gMKKM . ~4.11!

The solution of Eq.~4.10! is

rM0~ t !5expH 2 ivM0t2(
K

gMKE
0

t

dt~ t2t!C~t!eivMKtJ .

~4.12!

For simplicity, a Markov approximation will next be applie
to the off-diagonal part of the exciton–vibrational couplin
namely to the terms in Eq.~4.12! with KÞM . This approxi-
mation is valid either when theK5M terms dominate the
exciton–vibrational coupling (gMM@ugMKu) or, when on a
coarse grained time axis,t@1/uvMKu. The latter condition
follows from the oscillating factoreivMKt in Eq. ~4.12! which
tends to cancel the contributions to the integral for timet
@1/uvMKu. The diagonal terms withM5K do not contain
such an oscillating factor. In the presence of static disor
the respective coupling constantsgMM are larger than the
ugMKu appearing in the off-diagonal terms, as discussed la
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In this way an exact treatment in Eq.~4.12! is used, however,
for the diagonal partgMM of the exciton–vibrational cou-
pling.

The integral in Eq.~4.12! for the off–diagonal termsK
ÞM then becomes

gMKE
0

t

dt~ t2t!C~t!eivMKt

'gMKtE
0

`

dt C~t!eivMKt5gMKtC̃~vMK!. ~4.13!

The non-Markovian solution of Eq.~4.12! is given for com-
parison in Appendix C. The Fourier–Laplace transfo
C̃(vMK) of the correlation functionC(t) is related to the
local spectral densityJ(v) ~Appendix A!:

C̃~vMK!5C̃(Re)~vMK!1 iC̃ (Im)~vMK!, ~4.14!

by

C̃(Re)~v!5pv2$~11n~v!!J~v!1n~2v!J~2v!%,
~4.15!

with v5vMK . We note that in Eq.~4.15!, J(v)50 for v

,0,63 as seen from Eq.~2.9!. The C̃(Im)(vMK) satisfies a
Kramers–Kronig relation,64

C̃(Im)~vMK!5
1

p
`E

2`

`

dv
C̃(Re)~v!

vMK2v
. ~4.16!

The diagonal part of the exciton–vibrational coupling
taken into account exactly in the integralgMM*0

t dt(t
2t)C(t)5gMM„2 i (El /\) t2G(t)1G(0)…, where the
function G(t) was introduced in Eq.~2.8! and where

El5E
0

`

dv\vJ~v! ~4.17!

is the reorganization energy.El is calculated for the presen
J(v) to be 102 cm21.

The lineshape function for absorption is next obtain
from

DM~v!5ReE
0

`

dt ei (v2ṽM0)t eGM(t)2GM(0)e2t/tM,

~4.18!

where the 0→0 transition from the ground stateu0& to an
exciton stateuM & occurs atṽM0 ,

ṽM05vM02gMMEl /\1 (
KÞM

gMKC̃(Im)~vMK!. ~4.19!

The time-dependent functionGM(t) in Eq. ~4.18! is

GM~ t !5gMMG~ t !, ~4.20!

and the inverse dephasing time

tM
215 1

2 (
K

kM→K ~4.21!

is determined by the rate constantskM→K of relaxation from
exciton stateuM & to exciton stateuK&,

kM→K52gMKC̃(Re)~vMK!. ~4.22!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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2. Circular dichroism

For the calculation of the CD spectrum the dipo
strength umMu2 in Eq. ~4.1! is replaced by the rotationa
strengthr M of the excitonic transition,

CD~v!}(
M

r MDM~v!, ~4.23!

where

r M5 (
m.n

cm
(M )cn

(M )RW mn•mW m3mW n . ~4.24!

HereRW mn is a vector from sitem to siten and the• and3
denote the usual scalar and vector products.

3. Fluorescence

The density matrix theory used thus far considers eq
librium fluctuations about the equilibrium position of nucl
of the electronic ground state. When the assumption is m
that a rapid vibrational relaxation occurs in the exciton
states it is useful in treating the fluorescence from stateuM &
to introduce a coordinate transformation of the Hamilton
to coordinates relative to the equilibrium position of theM th
excitonic PES~Appendix D!. The shifted electronic energie
\vK08 are given by Eq.~4.25!, includingK5M andKÞM ,

\vK08 5\vK022ElgMMKK , ~4.25!

with gMMKK following from Eq. ~4.9!:

gMMKK5(
m,n

~cm
(M )!2~cn

(K)!2e2Rmn /Rc. ~4.26!

One has thus obtained a modified exciton–vibrational c
pling Hamiltonian resulting from the shifted equilibrium po
sition. Using this transformed Hamiltonian and the result
exciton–vibrational correlation functions, the quantum m
ter equation~4.10! is used in Appendix E to obtain an ex
pression for the fluorescence signal,

I ~v!}(
M

e2\vM0 /kT

(Ne2\vN0 /kT umMu2DM8 ~v!, ~4.27!

in terms of the lineshape function,DM8 (v),

DM8 ~v!5ReE
0

`

dt ei (v2ṽM08 )t e„GM(t)…* 2GM(0)e2t/tM8 ,

~4.28!

where the asterisk denotes the complex conjugate and w

ṽM08 5vM02gMMEl /\1 (
KÞM

gMKC̃(Im)~vMK8 ! ~4.29!

and

1/tM8 5(
K

gMKC̃(Re)~vMK8 !. ~4.30!

Here, vMK8 5vM08 2vK08 and the fact thatC̃(Re)(0)50 was
used.

The lineshape functions for absorption and circular
chroism DM(v) in Eq. ~4.18! and theDM8 (v) for fluores-
cence in Eq.~4.28! are used in a later section to calcula
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fluorescence line narrowing spectra of B820 complex
These equations were also used in our recent application45 to
calculate various optical spectra of Photosystem II reac
centers.

B. Time-resolved pump–probe spectra

A now standard theory14 is next used in conjunction with
the present non-Markovian density matrix description to c
culate pump–probe spectra. We first recall the relev
expression.14 In a pump–probe experiment the absorption
a weak probe pulse is measured as a function of the d
time td after the pump pulse. The pump–probe sign
Da(td) is defined as the difference between the absorp
a(td), measured by the probe pulse delayed fortd with
respect to a pump pulse, and the absorptiona0 measured by
the probe pulse alone. The energy lossS(t) of the probe
pulse in the sample can be calculated from the light-indu
polarizationP(t) according to14

S~ t !52VprEVpr
~ t !Im$eiVprtP~ t !%, ~4.31!

where P(t) contains terms of first- and third-order in th
external field. Fifth- and higher-order terms are neglect
The nonlinear polarizationP(t) is

P~ t !5naggS (
M

mM
(pr)

„rM0
(1) ~ t !1rM0

(3) (t)…

1 (
M ,2N

mM→2N
(pr) (r2NM

(1) (t)1r2NM
(3) ~ t !…D , ~4.32!

wherenagg is the number density of aggregates in the samp
The detector in a pump–probe experiment measures a t
integrated signal,

a}E
0

`

dt S~ t !. ~4.33!

Only the third-order terms in Eq.~4.32! survive the differ-
enceDa(t), and the pump–probe signal can be written a14

Da~td!5E
2`

1`

dv Dadisp~td ,v!, ~4.34!

with the dispersed signal being

Dadisp~td ,v!}
Vpr

p
ImH ẼVpr

~Vpr2v!S (
M

mM
(pr)r̃M0

(3) ~v!

1 (
M ,2N

mM→2N
(pr) r̃2NM

(3) ~v! D J , ~4.35!

with the scalar productsmM
(pr) and mM→2N

(pr) defined in Eq.
~3.8!. Instead of observing a time–integrated signalDa(td)
by a single detector the probe pulse signal can be dispe
in a monochromator and its frequency dependence measu
the dispersed signal being theDadisp(td ,v) in Eqs. ~4.34!

and ~4.35!. The polarization termsr̃M0
(3) (v) and r̃2NM

(3) (v) in
Eq. ~4.35! are obtained from a hierarchy of equations for t
density matrixrmn

(n)(t) and a Fourier transformation. Here
rmn

(n)(t) is of nth-order in the external fields in the expansio
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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rmn~ t !5(
n

rmn
(n)~ t !. ~4.36!

The different orders n in (]/]t) rmn
(n)52 ivmnrmn

(n)

1 (]/]t) rmn
(n)udissi1 (]/]t) rmn

(n)uex-rad are generated by th
field part of the equations of motion,

]

]t
rmn

(n)U
ex-rad

5
1

i\ (
k

„Fmk~ t !rkn
(n21)~ t !2Fkn~ t !rmk

(n21)~ t !….

~4.37!

The hierarchy starts with the zeroth-order density matrix
ement, taken asrmn

(0)5dm0dn0 .
It is assumed that the pump pulse acts before the pr

pulse and that the vibrational relaxation on the PES of
exciton is fast enough that the probe pulse detects vi
tionally equilibrated exciton populations and that any coh
ences between different exciton states have decayed. In
case the second-order density matrix elements reduc
rmn

(2)(t)'dmndmMrMM
(2) (t).

The equations of motion for the diagonal elements,
exciton state occupation probabilitiesrMM

(2) (t), are given by
Eq. ~4.38! using a Markov approximation for the off
diagonal exciton–vibrational coupling as before,

]

]t
rMM

(2) ~ t !52
2

tM
rMM

(2) ~ t !1(KkK→MrKK
(2)~ t !

1
2

\
EVpu

mM
(pu) Im$eiVputrM0

(1) ~ t !%, ~4.38!

where the dephasing constantstM
21 and rate constantskM→K

are given by Eqs.~4.21!–~4.22!.
The first-order density matrix elementrM0

(1) (t) on the
right-hand side of Eq.~4.38! is obtained as~Appendix B!

rM0
(1) ~ t !5

imM
(pu)

2p\
eGM(t)E

2`

1`

dv
e2 ivt

tM
212 i ~v2ṽM0!

3E
0

1`

dt ei (v2Vpu)te2GM(t)EVpu
~t!. ~4.39!

A delta function-shaped probe pulseApreWprd(t2tpr) at time
tpr5tpu1td is assumed and leads to the third-order den
matrix elements, arising from the field parts of the equatio
of motion for rmn

(3)(t),

rM0
(3) ~ t !5rM0

(3) ~ t,r00
(2)!1rM0

(3) ~ t,rMM
(2) !

[rM0
(3) ~ t,0!1rM0

(3) ~ t,M !. ~4.40!

In this and subsequent equations we distinguish betw
terms arising from the ground state populationr00

(2)(t) and
those arising from the excited state populationrMM

(2) (t).
In the limit of fast vibrational relaxation considered,

discussed in Appendix D, the statistical operator of the ex
ton statem at time tpr is Weq(M )rMM

(2) (tpr). Here,Weq(M )
denotes the equilibrium statistical operator for the vibratio
in the M th PES. The equations of motion for the third-ord
density matrix elements are then obtained as
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]

]t
rM0

(3) ~ t,0!52 i S vM01(KgMKE
0

t2tpr
dt C~t!eivMKtD

3rM0
(3) ~ t,0!2

i

\
mM

(pr)Aprd~ t2tpr!r00
(2)~ t !,

~4.41!

]

]t
rM0

(3) ~ t,M !52 i S vM08 1(KgMK8 E
0

t2tpr
dt C~t!eivMK8 tD

3rM0
(3) ~ t,M !2

i

\
mM

(pr)Aprd~ t2tpr!rMM
(2) ~ t !,

~4.42!

and

]

]t
r2NM

(3) ~ t !52 iv2NM8 r2NM
(3) ~ t !

2S ( 2Kg2N2K8 E
0

t2tpr
dt C~t!eiv2N2K8 t

1( KgMK8 E
0

t2tpr
dt C* ~t!eivKM8 tD r2NM

(3) ~ t !

2
i

\
mM→2N

(pr) Aprd~ t2tpr!rMM
(2) ~ t !. ~4.43!

The Fourier transforms of Eqs.~4.41!–~4.43!, and the Fou-
rier transform of the probe pulse enter into Eq.~4.35! for the
dispersed pump–probe signal. Three contributions are t
obtained from Eq.~4.35!: ground state bleaching GB~v!,
stimulated emission SE(v,td), and excited state absorptio
ESA(v,td),

Dadisp~v,td!}GB~v!1SE~v,td!1ESA~v,td!.
~4.44!

The GB~v! is105

GB~v!52(
M

~mM
(pr)!2DM~v!(

K
PK~ tpr!, ~4.45!

where the equationr00
(2)(t)52(KrKK

(2)(t), resulting from the
identity (mrmm51, was used,

PK~ t !5rKK
(2)~ t !, ~4.46!

and DM(v) is the lineshape function of absorption, E
~4.18!. The SE(v,td) is described by105

SE~v,td!52(
M

~mM
(pr)!2DM8 ~v!PM~ tpr!, ~4.47!

where DM8 (v) is the fluorescence lineshape function, E
~4.28!. The ESA(v,td) is105

ESA~v,td!5 (
M ,2N

~mM→2N
(pr) !2DM→2N8 ~v!PM~ tpr!,

~4.48!

with the lineshape function
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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DM→2N8 ~v!5ReE
0

`

dt ei (v2ṽ2NM8 )t

3eG2NM(t)2G2NM(0)e2t/t2NM, ~4.49!

and

G2NM~ t !5~g2N2N1gMM22g2N2NMM!G~ t !. ~4.50!

The frequenciesṽ2NM8 in Eq. ~4.48! are

ṽ2NM8 5v2NM8 2
El

\
~g2N2N1gMM22g2N2NMM!

1 (
2KÞ2N

g2N2KC̃(Im)~v2N2K8 !

1 (
KÞM

gKM„C̃
(Im)~vMK8 !…* . ~4.51!

The shifted one-exciton energiesvM08 are those in Eq.~4.25!,
and the two-exciton energiesv2K08 are

\v2K08 5\v2K022Elg2K2KMM , ~4.52!

where El is the reorganization energy in Eq.~4.17! and
where

g2K2KMM5 (
m.n

(
k

~cmn
(2K)!2~ck

(M )!2~e2Rmk /Rc1e2Rnk /Rc!,

~4.53!

and we have

vmn8 5vm08 2vn08 . ~4.54!

Here m and n represent the different one- and two-excit
states in Eq.~4.51!. The coupling constantg2N2K in Eq.
~4.51! is

g2N2K5 (
m.n

(
k. l

~cmn
(2N)!2~ckl

(2K)!2~e2Rmk /Rc1e2Rml /Rc

1e2Rnk /Rc1e2Rnl /Rc!. ~4.55!

The inverse dephasing time in Eq.~4.49!, t2NM
21 5t2N

21

1(tM8 )21, contains the one-exciton dephasing constan
Eq. ~4.30! and the two-exciton constantt2N

21 :

t2N
215(

2K
g2N2KC̃(Re)~v2N2K8 !, ~4.56!

whereg2N2K is given by Eq.~4.55! andv2N2K8 are obtained
from Eqs.~4.52! and ~4.54!.

For large delay timestd5tpr2tpu the pump–probe sig
nal becomes independent oftd because an equilibrium dis
tribution of the exciton state occupation probabilitiesPM

(eq) is
reached. The ground state bleaching GB~v! in Eq. ~4.45!
contains the effect of depopulation of the electronic grou
state by the pump pulse and therefore is constant at ti
after the pump pulse. The stimulated emission SE(v,td) in
Eq. ~4.47! and excited state absorption ESA(v,td) in Eq.
~4.48! contain information about the time-dependent pop
lation of exciton states: Only those one-exciton states wh
are populated at a given delay timetd will contribute to
SE(v,td) and ESA(v,td).
Downloaded 05 Apr 2007 to 131.215.21.81. Redistribution subject to AIP
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The equations in this section were used recently to c
culate pump–probe spectra of Photosystem II reac
centers.45

C. Fluorescence line narrowing spectra
of B820 complexes

The fluorescence line narrowing spectra2 of B820 com-
plexes are calculated next using the spectral densityJ(v)
extracted from the fluorescence line narrowing spectra of
B777-complex in Sec. II. The B820 complex is modeled a
dimer of two B777 subunits with the intermolecular couplin
of 230 cm21 determined in Refs. 65–67 from the circula
dichroism and the difference spectra, singlet minus trip
The geometry of optical transition dipoles was taken fro
the LH2 complex.3 The dependence of the fluorescence li
narrowing spectra on the excitation energy\vexc is given by
the dimer analog of Eq.~2.1! for the monomer:

I ~v,vexc!5^a~vexc!I ~v!&disorder, ~4.57!

where a(vexc) denotes the homogeneous absorption sp
trum @Eqs.~4.1! and ~4.18!# of the dimer complex andI (v)
is the homogeneous fluorescence spectrum given by
~4.27! and ~4.28!. In contrast to Eq.~2.1! for the monomer,
where the disorder average was performed partly ana
cally, now the disorder average is performed numerically
a random generation of dimer site energies. A Gaussian
tribution function of FWHM5500 cm21 and a mean site en
ergy of the two pigments corresponding to 808 nm we
determined from the fit of 1.6 K linear absorption spectrum2

^a(v)&disorder, using Eqs.~4.1! and~4.18!. The POP theory–
calculated and measured absorption spectra are compar
Fig. 5. For efficient numerical sampling of the disorder
Eq. ~4.57!, the 0→0 transition was broadened by adding
inverse dephasing time of (2 ps)21 to the inverse dephasin
time tM

21 in Eq. ~4.21!. This additional broadening68 does not
influence the shape of the vibrational sideband, because
latter has a large breadth from other sources. As noted be
the 0→0 was not compared with the present experime
because of scattered light from the excitation in the exp
ment. For the correlation radius of protein vibrations a va
of Rc55 Å was chosen, estimated in an earlier article45 from
pump–probe spectra of PS-2 reaction centers.

FIG. 5. Linear absorption spectrum of B820-complexes using the P
theory. Open circles are the experimental values from Ref. 2 and the
shows the calculation.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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The calculation procedure consists of the followi
steps:~i! random generation of site energies,~ii ! the calcula-
tion of the exciton energies and eigencoefficients by a dia
nalization,~iii ! the calculation of absorptiona(vexc) at the
excitation energy,~iv! the calculation of the fluorescenc
spectrum I (v), ~v! performing the disorder averag
^¯&disorderby repetition of steps~i!–~iv!, and the summation
of the results fora(vexc)I (v). The fluorescence line narrow
ing spectra are calculated using this prescription and the
rameters given above and are compared with the meas
spectra2 in Fig. 6.

An alternative partial summation of the exciton
vibrational coupling was obtained by using a chronologi
ordering prescription~COP! in Appendix F. The integro-
differential equations for the density matrix obtained in
COP reveal a lineshape function similar to the Markov
Lorentzian lineshape given later in Eq.~5.4! but with a
frequency-dependent broadening function that allows on
describe the high energy part of the vibrational side band
seen in the calculation of fluorescence line narrow
spectra69 in Fig. 8, which corresponds to Fig. 6 calculate
with POP. The mean site energy of the pigments in the C
calculations was 806 nm, determined from the linear abso
tion in Fig. 7.

V. DISCUSSION

A. The correlation function C„t …

The correlation functionC(t) of the energy gap of the
pigment in the B777-complex is shown in Fig. 3. Althoug
fluorescence line narrowing and hole burning spectra h
been calculated for different pigment–protein complex
before,50–53 we are not aware of a correlation functionC(t)
having being extracted from such data. A second and me
technical difference from earlier work is the present use

FIG. 6. Fluorescence line narrowing spectra of the B820-complexes
different excitation energies using the POP theory. Open circles are
experimental values from Ref. 2 and the lines show the calculations.
noise in the theoretical spectra is caused by the finite~10000! ensemble size
of random configurations of disorder used in the calculation.
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the FFT for the calculation of the spectra, which facilitat
the use of a more general shape of the spectral densityJ(v).
Sometimes a combination of Gaussian and Lorentzian fu
tional forms50 and sometimes51 a spectral density withq
52 andp51 in Eq.~2.16! are used instead, withq52 being
inferred from the Debye density of states for bulk crystal

The shape of theC(t) versust plot is needed in the
subsequent theory. The major part ofC(t) in Fig. 3 is seen to
decay on a 100 fs time scale, and a small part~5%! on a 500
fs time scale. One can infer that for any multi-pigment sy
tem composed of pigment–protein subunits of structure si
lar to that of the B777-complex, significant non-Markovia
effects in the exciton transfer dynamics can be expected o
when exciton transfer occurs on a 100 fs~or shorter! time
scale. Such ultrafast transfer times have been observed
number of antennas, among them the LH2,70 LH1,70 LHCII71

and the photosynthetic reaction centers of bacteria and g
plants.72 In that case a non-Markovian theory is expected
provide a more detailed understanding of such experime
As discussed in detail below an important feature that can
deduced fromC(t) concerns the appearance of vibration
sidebands in optical spectra, which has a non-Markovian
gin.

B. Fluorescence line narrowing spectra
of B820-complexes

The extractedJ(v) in Fig. 3 was used for the calculatio
of fluorescence line narrowing spectra of dimeric B82
complexes. The resulting comparison with the experime2

on B820-complexes is shown in Fig. 6. The non-Markovi
theory predicts the correct shape of the vibrational sideb
at different excitation energies. A small difference in the tw
inhomogeneous widths 600 cm21 and 500 cm21 deduced for
the pigment transition energies of the B777-complex and
B820-complex might, if real, be due to a greater exposure
the B777 pigment to the solvent,73 as suggested in Ref. 2
The widths~FWHM! of 500 cm21 and 600 cm21 were de-
termined here from the calculation of linear absorption sp
tra shown in Figs. 4 and 5. The additional narrowing of t
main peak in the B820 absorption spectrum from 500 cm21

for the pigments to 350 cm21 for the excitonic transition in
Fig. 5 is caused by the intermolecular coupling, the s
called resonance energy transfer narrowing.75 The inhomoge-

or
he
e

FIG. 7. Linear absorption spectrum of B820-complexes using a COP the
Open circles are the experimental values from Ref. 2 and the line show
calculation.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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neous broadening of exciton states in larger antenna c
plexes is smaller (70– 240 cm21)76–79than the 350 cm21 for
B820, presumably because of lesser exposure to the so
and stronger resonance energy transfer narrowing. The h
energy shoulder in the spectrum in Fig. 5 in the experime
and calculated spectrum is due to transition to the up
exciton state, which exhibits only small oscillator streng
because of an unfavorable geometry of optical transition
poles of the pigments. The fact that the experimental sh
der is more pronounced than the calculated one may a
from the additional unbound chlorophylla in the sample, an
effect not taken into account here.

C. The fast modulation limit: Markovian lineshapes

The Markovian limit for the absorption and fluorescen
lineshapes will be considered first. For this purpose
rM0(t) in Eq. ~4.12! is investigated and written as

rM0~ t !5e2 iVMte2t/tMe2gMM* 0
t dt(t2t)C(t), ~5.1!

where Eqs.~4.13! and ~4.21! were used, andVM5vM0

1(KÞMgMKC̃ Im(vMK). The introduction of the dephasin
time tM in Eq. ~4.21! is based on a Markov approximatio
for the off-diagonal terms of the exciton–vibrational co
pling and is valid if the exciton relaxation is slow whe
compared to the decay timetc of the exciton–vibrational
correlation functionC(t), i.e., tM.tc . For theC(t) in Fig.
3 tc'100 fs, neglecting the small amplitude tail ofC(t) that
decays in a 500 fs time scale. The Markovian limit for t
absorption lineshape function is obtained by approximati

e2gMM* 0
t dt(t2t)C(t)'e2gMMt* 0

`dt C(t). ~5.2!

This approximation is valid, if

gMMC~0!tc
2!1, ~5.3!

as discussed for a two–level system in Ref. 43. In this s
called fast modulation limit44 there is no time for the excita
tion of vibrational quanta and a Lorentzian lineshape fu
tion, centered atṽM0 in Eq. ~4.19! is obtained

DM~v!5
tM

21

~v2ṽM0!21tM
22 . ~5.4!

The equality*0
`dtC(t)52 i tC̃ Im(v50)52itEl /\ that fol-

lows from Eqs. ~4.15! and ~4.16! with v5vMK50 was
used. Similarly the Markovian result for the fluorescen
lineshape functionDM8 (v) is obtained by replacing thetM

andṽM0 in Eq. ~5.4! by thetM8 in Eq. ~4.30! and theṽM08 in
Eq. ~4.29!, respectively. Taking into account also80

C̃(Im)(vMK8 )'C̃(Im)(vMK) and Eq.~4.25!, the fluorescence an
absorption lineshape functions peak at the same en
\ṽM0'\ṽM08 , i.e., no Stokes shift is obtained in Markovia
approximation, as expected14 in the fast modulation limit.

For the present system from Fig. 3 we estima
\2C(0)'300 meV2 and tc'100 fs so thatg0tc

2'7gMM .
The factorgMM depends on the delocalization of excito
and vibrations,gMM5(m,n(cm

(M ))2(cn
(M ))2e2Rmn /Rc. For de-

localized vibrations,Rc@Rmn , gMM51 results, whereas fo
localized vibrations,Rc!Rmn , gMM5(m(cm

(M ))4 which may
Downloaded 05 Apr 2007 to 131.215.21.81. Redistribution subject to AIP
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vary between 1 for localized electronic states and 1/N, N
being the number of pigments, for delocalized excito
Hence, for the present dimer 1.gMM.1/2 and Eq.~5.3! is
not fulfilled. So, non-Markovian contributions to the line
shape functions are expected and they are discussed ne

D. Non–Markovian lineshapes:
Comparison of POP and COP

A non–Markovian theory based on Eqs.~4.18! and
~4.28! yields vibrational sidebands, in agreement w
experiment.2 A partial ordering prescription~POP! gave the
best agreement with the sideband obtained in the experim
as seen in the contrast between Figs. 6 and 8. The C
theory is seen to fail in the description of the low-energy p
of the sideband, whereas the POP theory agrees reason
with experiment in the whole spectrum, as seen in Fig. 6
addition, the POP lineshape function, Eq.~4.18!, reduces to
the exact spin boson result, Eq.~2.7!, in the limit of a two-
level system, i.e., forgMK5dMK , whereas the COP theor
does not. Hence, the nonperturbative summation81 of the di-
agonal part of the exciton vibrational coupling obtained
the POP theory but not in the COP led to a better agreem
with the experiment.

The choice of ordering prescription used for a given s
tem can be based on the statistical properties of the bath
discussed by Mukamel in Ref. 43: If the dynamics of t
bath can be mapped onto a random Gaussian process
partial ordering prescription is preferable, whereas a disc
stochastic process, for example, a two-state jump mode
best included in a COP treatment of the lineshape functio43

as noted in the Introduction. The reaction coordinate for
present problem is the pigment’s optical energy gapX(t) that
enters the correlation functionC(t) in Eq. ~2.18!. X(t) is

FIG. 8. Fluorescence line narrowing spectra of the B820-complexes
different excitation energies using a COP theory. Open circles are the
perimental values from Ref. 2 and the lines show the calculations. The n
in the theoretical spectra is caused by the finite~10000! ensemble size of
random configurations of disorder used in the calculation.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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given as a linear combination of harmonic oscillator coor
nates in Eq.~2.20!. A combination of harmonic terms can b
mapped onto a non-Markovian Gaussian stochastic proc
irrespective of whether a quantum or classical descriptio
used for the oscillators, shown by Mukamel82 using a gener-
ating function approach. Hence, the better agreement of
for the present system is a consequence of the Gaus
properties of the reaction coordinateX(t).

As seen in the B820 absorption spectra in Figs. 5 an
the calculation of inhomogeneous spectra gives very sim
results in both theories, POP and COP, due to the averag
Due to the different sidebands in the two theories the m
site energies estimated from the calculation of the absorp
spectra differ by 2 nm, the COP site energy being lower
energy to compensate the more prominent contribution
the high-energetic part in the vibrational sideband. The
merical effort is somewhat less in the COP calculations.

E. Excitonic potential energy surfaces

We also used POP and COP theories recently to calcu
various photophysical properties, among them time-resol
pump–probe spectra of PS-2 reaction centers.45 It was seen
there that in the pump–probe spectra the exciton state re
ation did not change considerably when a Markov appro
mation was applied. The major effect of the latter was on
lineshape function of the optical transitions rather than on
time-dependent change of the spectrum. Since the exc
relaxation is determined by the off-diagonal terms of t
exciton–vibrational coupling, whereas the vibrational sid
bands are determined by the diagonal part of that couplin
seems reasonable to apply, as we have done in the POP
ment, a Markov approximation to the off-diagonal terms a
to describe the diagonal terms by a non-Markovian meth
In doing so a first-order picture of mutually shifted exciton
PES arises, where the shift is given by the diagonal par
the exciton–vibrational coupling. The exciton relaxation o
curs between such PES and is described by the off-diag
part in Eq.~4.22!. The diagonal part of each excitonic state
characterized by an excitonic reorganization energyEl

(M )

5gMMEl and an excitonic Huang Rhys factorSM5gMMS.
Here,El is the reorganization energy of the local pigmen
protein coupling in Eq.~4.17! andS is the local Huang Rhys
factor. The value ofgMM depends on the delocalization o
excitons and vibrations: Electronic delocalization leads t
decrease in the couplinggMM to local protein vibrations.

The rate of exciton relaxation given in Eq.~4.22! con-
tains the vibrational termC̃(Re)(vMK) in Eq. ~4.15!. This term
describes how the protein can dissipate the electronic en
by absorption„11n(vMK)… or emissionn(vKM), of vibra-
tional quanta, thus ensuring energy conservation during
citon relaxation. The electronic factorgMK entering the rate
in Eq. ~4.22! is given in Eqs.~4.11! and~4.9!. In the limit of
delocalized protein vibrations (Rc@Rmn) gMK5u^M uK&u2

5dMK , and so no relaxation occurs, whereas for localiz
protein vibrations (Rc!Rmn) gMK5(m(cm

(M ))2(cm
(K))2,

which can be as small as zero for localized electronic st
~e.g., if cm

(M )51 thencm
(K)50 for KÞM !. It equals 1/N for

completely delocalized excitons,N being the number of pig-
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ments. Thereby, a fast exciton relaxation reflected in a la
gMK for MÞK is promoted by localized protein vibration
and partly delocalized electronic states. Delocalized pro
vibrations could, however, lead to dissipation via the mod
lation of interpigment couplings, a modulation which w
neglected here.

F. Approximations

Key approximations used in the present article are
following:

The secular approximation, used in the description
dissipation and described in Appendix B. The approximat
has been investigated recently in a model study on a dim83

and in a calculation of fluorescence depolarization in
B850 antenna complex of purple bacteria.84 The study of
B850 complexes, which is the first nonsecular study o
photosynthetic antenna system, showed rather minor co
butions from the nonsecular terms to the depolarization84 in
the parameter range of most interest for experiment.85 A
dimer model83 showed larger contributions which depend
on the parameters. It would be useful to see whether
inclusion of nonsecular terms contributes more in line n
rowing optical spectra, which can resolve the homogene
lineshapes.

The third-order perturbation theory used in the pres
article for the coupling of excitons to the external fields r
stricts the theory to pump–probe spectra whose intensit
proportional to the intensity of the pump field. The expe
ments on pigment–protein complexes are usually perform
in this regime, so simplifying the interpretation of the expe
ments. A notable exception is the investigation of excito
exciton annihilation in studies of the intensity dependence
pump–probe spectra~e.g., Ref. 86!. The present neglect o
the field-dependence of dissipation is well justified when
third-order perturbation theory is valid.87

In the calculation of pump–probe spectra a finite pum
pulse and a delta function probe pulse were assumed.
pump pulse was chosen to be finite rather than a delta fu
tion in order to include a finite spectral width. That fini
width is necessary to excite selectively certain exciton sta
whereas a delta function probe pulse with its white spectr
is able to probe the whole spectrum. In the experiment s
a white spectrum is often generated by a stochastic mix
of finite pulses with different carrier frequencies~e.g., Ref.
88!. In this case the theory would contain the appropri
spectral properties, and the time-resolution would be diff
ent only for short delay times where the actual two puls
might overlap. In principle it is, however, possible to use a
in the experiment a longer pump pulse for selective exc
tion and a shorter probe pulse for better time-resolution
a greater spectral width of detection.

In the calculation of the pump–probe spectra it was
sumed that there was fast vibrational relaxation within
excitonic state and so coherences created by the pump p
between different exciton states were neglected. This
proximation was used to obtain a simple relation betwe
time-dependent populations of exciton states, n
Markovian optical lineshapes and pump–probe spectra.
inclusion of coherent vibrational motion found in som
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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pigment–protein complexes89–94 is beyond the scope of th
present approach, which considers equilibrium fluctuati
of the vibrations. A Markov approximation could have be
used to include coherences between different exc
states.22

A correlation radius22 for the protein vibrations relate
the correlation function of the exciton–vibrational couplin
in the quantum master equation to a local correlation fu
tion C(t). ThisC(t) thus characterizes the modulation of t
local pigment energies by the protein dynamics and is rela
to the local spectral densityJ(v) in Eq. ~2.22!. J(v) appears
in the time-dependent formulation of the lineshape funct
in Eqs. ~2.7! and ~2.8!, of the optical transition of the pig
ment and can thus be determined from independent exp
ments. A more detailed analysis of the molecular dynam
in photosynthetic proteins, using normal mode calculatio
or molecular dynamics simulations, could provide inform
tion on the size of the correlation radiusRc and also on the
importance of static and dynamic disorder in interpigm
couplings,95 which was neglected here. It remains to be
tablished whether the decay of the correlation function of
protein vibrations is indeed exponential,96 as assumed in Eq
~4.7!.

G. Comparison with other theories

The present theory is related in spirit to a theory dev
oped by Mukamel and co-workers23,24,97and to a recent ap
proach by Ohta, Yang and Fleming.98 The overall goal of
these theories, including the present one, is to find an ap
priate description of both the exciton–vibrational and t
excitonic coupling. This problem also has a long history
the field of molecular crystals, where Green’s function te
niques were used to obtain results for linear optical spec
as, for example in Refs. 99 and 100. A difference betwe
molecular crystals and photosynthetic antennas is that in
latter the vibrational and electronic structure does not h
the periodic symmetry found in the former. Even where
X-ray structures appear symmetric as for the LH2 comple3

disorder effects reduce the symmetry of the electronic
vibrational states.101 However, the general problem of find
ing an appropriate basis set of eigenfunctions remains. In
present paper the exciton states were defined for the equ
rium position of nuclei in the electronic ground state and
exciton–vibrational coupling was expressed in this basis
usual.

In the Liouville pathway correlation function approac
employed by Mukamel and coworkers23 the diagonal part of
the exciton–vibrational coupling is taken into account e
actly, while the contributions to optical lineshape functio
from the off-diagonal parts of the exciton–vibrational co
pling were neglected.23 The present result for the linear ab
sorption in Eqs.~4.1! and~4.18! reduces102 to their Eq.~3.3!
in Ref. 23 by omitting allgMK terms with KÞM in Eq.
~4.19! and the exciton relaxation in~4.22!. Ohtaet al.98 re-
cently combined Mukamel’s correlation function approa
with a standard Redfield approach, by introducing a lifeti
broadening of the optical lineshapes. The present resu
linear absorption in Eqs.~4.1! and ~4.18! reduces to the one
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given in Eq. ~16! in Ref. 98 when the exciton relaxation
induced shift of electronic energies, the terms withgMK with
KÞM in Eq. ~4.19! are neglected.

In the presence of static disorder it can be expected
ugMKu,gMM for KÞM and a large part of the shift of elec
tronic energies is contained in the term withgMM in Eq.
~4.19!. In this case the present POP theory of linear abso
tion and the theory in Ref. 98 can be expected to give sim
results. One conceptional advantage of the present theo
that it rests solely on a density matrix formulation and
therefore more readily extended than another approa98

which combines two different theories, the density mat
theory and the correlation function approach. Extensions
the present theory are given in Appendices C and F b
non-Markovian treatment of the off-diagonal parts of t
exciton–vibrational coupling in the POP theory~Appendix
C! and in the COP theory~Appendix F!.

Whereas in the calculation of the linear optical spec
the present theory contains the results of earlier correla
function approaches23,98as limiting cases, in the case of non
linear spectra there are nevertheless advantages of the c
lation function approach.23 The main advantage of the latte
is the inclusion of wave packet dynamics inside the excito
PES which the present theory cannot describe. The theor
pump–probe spectra in Ref. 23 also contains coherent sh
time contributions which were neglected here. An advant
of the present theory is its relative simplicity.

The population relaxation rates obtained in the corre
tion function approach23,24,103 contain the mutual shifts o
excitonic PES, whereas the present theory treats them
standard Redfield type30 way. A recent comparison103 of both
types of rates shows that they agree if the spectral den
J(v) is sufficient broad in energy to cover all transition e
ergies between the different exciton levels. A Markovian a
proximation for the off–diagonal elements of the exciton
vibrational coupling was applied in the present PO
treatment as well as in the correlation function approac23

for the description of exciton relaxation. The COP theory
Appendix F uses a Fourier–Laplace transform to treat
equations of motion for the exciton state populations in
non-Markovian way. Non-Markovian contributions becom
important when the population relaxation is faster or on
same time scale as the vibrational relaxation and lead to n
exponential relaxation dynamics of excitons as discus
earlier.

VI. SUMMARY

The theory developed in the present article includes n
Markovian effects in the exciton–vibrational coupling in th
calculation of frequency– and time–domain optical spec
of pigment–protein complexes. The presence of n
Markovian effects was inferred from the presence of vib
tional sidebands found at low temperatures in differe
pigment–protein complexes, since they are absent in a M
kovian treatment. Additional evidence arises from a comp
son of the decay of the correlation function of the optica
probed energy gap of the pigments and ultrafast exciton
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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laxation times measured in different antennas.70–72 The cor-
relation function itself was estimated from fluorescence l
narrowing spectra of B777-complexes.

The present theory provides a step towards a more
croscopic understanding of the dynamic role of proteins
inducing exciton relaxation. This role appears in the rate c
stantkM→K in Eq. ~4.22! and its dependence on the deloc
ization of protein vibrations and excitons appears viagMK

and the spectral densityJ(v) of the protein. TheJ(v) was
obtained from fluorescence line narrowing spectra of B7
complexes. ThisJ(v) was used to calculate fluorescence li
narrowing spectra of a two-pigment system, the B820 co
plex, using two different summations techniques for t
exciton–vibrational coupling, POP and COP. Only one of
two, the second-order POP allows for an exact summatio
the diagonal part of the exciton–vibrational coupling a
therefore reduces to the exact result in the one-pigment li
Only it gave agreement with the vibrational sideband fou
experimentally. This result was explained by the stocha
properties of the reaction coordinateX(t), i.e., the optical
energy gap of the pigments.

An interesting feature of the exciton–vibrational dyna
ics in photosynthetic antenna systems is the intermed
coupling strength of both the exciton–vibrational~El

5100 cm21, local reorganization energy estimated from t
J(v) of B777-complexes! and the excitonic coupling~V12

5230 cm21 in B820-complexes!, a situation treated in the
present approach by introducing excitonic potential ene
surfaces.

As seen in our recent contribution45 on PS-2 reaction
centers, the theory is readily implemented numerically,
cluding an average over disorder in electronic pigment en
gies and orientations of the different complexes in
sample.
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APPENDIX A: CORRELATION FUNCTION
AND RELATION BETWEEN C̃„v…

AND SPECTRAL DENSITY J „v…

The correlation functionC(t) in Eq. ~2.22! is obtained,
using Eqs.~2.20! and ~2.21! and usingQj5Cj1Cj

1 . We
have

C~ t !5
1

\2 (
j

~\vj!
2gj

2Trvib$Weqe
i /\Hvibt~Cj

1Cj
1!e2 i /\Hvibt~Cj1Cj

1!%, ~A1!

where Weq is the equilibrium statistical operator in Eq
~2.19!. The vibrational Hamiltonian in Eq.~2.3! can be ex-
pressed in terms of the creation and annihilation operator
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Hvib5(j\vj(Cj
1Cj11/2). Using the relation104

eivjtCj
1CjCje

2 ivjtCj
1Cj5e2 ivjtCj , one obtains

C~ t !5(
j

vj
2gj

2$„11n~vj!…e
2 ivjt1n~vj!e

ivjt%, ~A2!

where n ( vj ) 5Trvib $ WeqCj
1Cj % 5(NNe2N\vj /kT/

(Me2M\vj /kT51/(e\vj /(kT)21).
The correlation function can be expressed in terms of

spectral density in Eq.~2.9!, as shown in Eq.~2.22!. Apply-
ing the Fourier–Laplace transform Eq.~F5! to that equation
then gives

C̃~v!5 lim
e→0

E
0

`

dt e( iv2e)tC~ t !

5 lim
e→0

E
2`

`

dv8~v8!2
„11n~v8!…„J~v8!

2J~2v8!…
e1 i ~v2v8!

~v2v8!21e2 . ~A3!

Noting that the last factor in Eq.~A3! equalspd(v2v8)
1 i `, where` denotes the Principal Part one arrives at E
~4.15! and ~4.16!.

APPENDIX B: EXCITON REPRESENTATION
OF THE POP EQUATIONS AND CORRELATION
FUNCTIONS OF THE EXCITON–VIBRATIONAL
COUPLING

The different phenomena in Sec. IV are treated using
equations of this Appendix. In the representation of exci
statesm,n,... @Eq. ~3.1!#, the equation of motion~3.9! be-
comes

]

]t
rmn52 ivmnrmn~ t !1

1

i\
(k„Fmk~ t !rkn~ t !

2Fkn~ t !rmk~ t !…2(
kl

$Kmkkl~ t !rln~ t !

1Knkkl* ~ t !rml~ t !2„Klnmk~ t !

1Kkmnl* ~ t !…rkl~ t !%, ~B1!

where\vmn5Em2En @cf. Eq. ~3.1!#, andKmnkl(t) denotes
the time-dependent dissipative function

Kmnkl~ t !5E
0

t2t0
e2 ivkltCmnkl~t!, ~B2!

and Cmnkl(t) denotes the exciton–vibrational correlatio
function for one- and two-exciton states,

Cmnkl~ t !5^V̂mn~ t !V̂kl~0!&, ~B3!

V̂mn(t) being a matrix element of Eq.~3.13!. The property
Cmnkl(t)5Clknm* (2t) was used.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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The correlation function, Eq.~B3!, can be expressed i
terms of site correlation functions and exciton eigencoe
cients for the one-exciton states~m5M , n5N, k5K and
l5L! as shown in Eq.~4.4!. The respective correlation func
tion for the two–exciton states is

C2M2N2K2L~ t !5 (
m.n

(
k. l

cmn
(2M )cmn

(2N)ckl
(2K)ckl

(2L)^„dXm~ t !

1dXn~ t !…„dXk~0!1dXl~0!…&, ~B4!

and for the one- and two-exciton states we have

C2M2NKL~ t !5 (
m.n

(
k

cmn
(2M )cmn

(2N)ck
(K)ck

(L)^„dXm~ t !

1dXn~ t !…dXk~0!&. ~B5!

As demonstrated in the text the above correlation functi
Cmnkl(t) can be factorized into an electronic partgmnkl and
a vibrational partC(t) by introducing a correlation radiusRc

of protein vibrations in Eq.~4.7!,

Cmnkl~ t !5gmnklC~ t !, ~B6!

where the factorgmnkl depends on the exciton eigencoef
cients and the correlation radius. The one-exciton funct
gMNKL is given in Eq. ~4.9!. The two-exciton function
g2M2N2K2L is

g2M2N2K2L5 (
m.n

(
k. l

cmn
(2M )cmn

(2N)ckl
(2K)ckl

(2L)~e2Rmk /Rc

1e2Rml /Rc1e2Rnk /Rc1e2Rnl /Rc!, ~B7!

and the mixed one- and two-exciton functiong2M2NKL is

g2M2NKL5 (
m.n

(
k

cmn
(2M )cmn

(2N)ck
(K)ck

(L)~e2Rmk /Rc

1e2Rnk /Rc!. ~B8!

The above functions are used in the calculation of pum
probe spectra in Eqs.~4.55! and ~4.53!, taking into account
Eq. ~B12!.

The dissipative part of the equation of motion~B1! can
be further simplified by introducing a rotating wave appro
mation for the dissipative parts, also known in the literatu
as a secular approximation.15,16,62Specifically, only those el-
ements of the sum(kl contribute which contain the sam
free time evolutioneivmnt as the density matrixrmn on the
left side of this equation.15,16,62All other contributions lead
to oscillating terms~nonsecular terms! in the solution which
average to zero on a coarse–grained time axis. This sec
approximation serves to decouple the equations of mo
for the diagonal elementsrmm(t), which are the exciton stat
occupation numbers, from those for the off-diagonal e
Downloaded 05 Apr 2007 to 131.215.21.81. Redistribution subject to AIP
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mentsrmn(t), mÞn, which describe the phase relationsh
of the different exciton states.

The respective dissipative parts of the equations of m
tion for the diagonal parts become

]

]t
rmm~ t !U

diss

522 (
kÞm

$Re$Kmkkm~ t !%rmm~ t !

2Re$Kkmmk~ t !%rkk~ t !%, ~B9!

and those for the off-diagonal elements are

]

]t
rmn~ t !U

diss

52S (
k

~Kmkkm~ t !1Knkkn* ~ t !!

22 Re$Kmmnn~ t !% D rmn~ t !, ~B10!

where

Kmkkm~ t !5gmkE
0

t2t0
dt eivmktC~t!, ~B11!

with

gmk[gmkkm ~B12!

and

Kmmnn~ t !5gmmnnE
0

t2t0
dt C~t!. ~B13!

In Sec. IV the solution for the first-order density matr
elementrM0

(1) (t) on the right hand side of Eq.~4.38! is ob-
tained from Eqs.~B1! and~B2!, using Eqs.~4.36! and~4.37!,
applying the secular approximation to the dissipative ter
@Eq. ~B10!# and the Markov approximation to the off
diagonal part of the exciton–vibrational coupling as befo
and settingt050 in Eq. ~B2!. This choice oft0 implies that
the pump–pulse acts at positive times close to zero.
rM0

(1) (t) then becomes

rM0
(1) ~ t !5

imM
(pu)

\ E
0

t

dt e2 i ṽM0(t2t)e2(t2t)/tM

3eGM(t)2GM(t)EVpu
~t!e2 iVput, ~B14!

which may be conveniently calculated: A Fourier–Lapla
transform is introduced to treat the convolution in Eq.~B14!
and the inverse is then taken and Eq.~4.39! is obtained.

APPENDIX C: NON-MARKOVIAN SOLUTION
FOR OFF-DIAGONAL TERMS
OF EXCITON–VIBRATIONAL COUPLING

A non-Markovian description of the off-diagona
exciton–vibrational coupling in the calculation of the lin
shape function for linear absorption is readily obtained: T
non-Markovian solution of the integral in Eq.~4.13! is
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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gMKE
0

t

dt~ t2t!C~t!eivMKt

5gMKE
0

`

dv v2J~v!

3S „11n~v!…H cos„~vMK2v!t…21

~vMK2v!2

1 i
sin„~vMK2v!t…2~vMK2v!t

~vMK2v!2 J 1n~v!

3H cos„~vKM2v!t…21

~vKM2v!2

2 i
sin„~vKM2v!t…2~vKM2v!t

~vKM2v!2 J D . ~C1!

The Markovian limit, Eq.~4.13!, is reached for large time
t@1/vMK .

APPENDIX D: VIBRATIONALLY EQUILIBRATED
EXCITED STATES AND EXCITONIC POTENTIAL
ENERGY SURFACES

In the following the diagonal part of the exciton
vibrational coupling Hamiltonian of the one-exciton state
Eq. ~3.3!, is used to define excitonic potential energy s
faces ~PES!.29,30 The vibrational Hamiltonian in Eq.~2.3!
was defined with respect to the equilibrium position of nuc
for the electronic ground state. To obtain a PESUM for an
exciton stateuM &, it is useful when the system is vibra
tionally relaxed in that state, to combine the vibration
Hamiltonian and the diagonal part of the one-exciton par
the Hamiltonian of the exciton vibrational coupling, E
~3.2!, in the usual fashion to obtain

UM5UM
(0)1(

j

\vj

4
„Qj12gj~M ,M !…2. ~D1!

The coupling constantsgj(M ,N) are

gj~M ,N!5(
mn

cm
(M )cn

(N)gj
(m) ~D2!

and the PES minimum is

UM
(0)5EM2(

j
\vjgj~M ,M !2. ~D3!

The introduction of this PES is useful only when the diag
nal part of the exciton–vibrational coupling is larger than t
off-diagonal part, i.e.,

gj~M ,M !.ugj~M ,N!u ~MÞN!. ~D4!

When the excitonic states are completely localized o
sees from Eq.~D2! that gj(M ,N)/gj(M ,M )50 for MÞN.
Hence, condition~D4! is fulfilled if the excitonic states are
partly localized, for example, by static disorder. In this ca
it can be assumed that the new equilibrium position of
vibrations for a vibrationally relaxed exciton stateuM & oc-
curs at
Downloaded 05 Apr 2007 to 131.215.21.81. Redistribution subject to AIP
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Qj5Qj
(M )522gj~M ,M !, ~D5!

according to Eq.~D1!. A purely electronic density matrix is
not able to describe this reorganization of the nuclei, sinc
treats the vibrations as a passive system staying in the
equilibrium. However, there are situations where a kno
edge of the dynamics of this reorganization is not needed
example, in the study of steady-state fluorescence fr
equilibrated excited states. Alternatively, the intra-excit
PES relaxation might be so fast that in a study of pum
probe spectra it can be assumed that the probe pulse will
vibrationally equilibrated excited states. Since the equil
rium position is known from Eq.~D5!, the aggregate Hamil-
tonian, Eqs.~3.1!–~3.2!, can be transformed using a ne
coordinateQj85Qj12gj

(M ,M ) which reflects the new equilib
rium position of nuclei in the exciton stateM . To use the
density matrix theory it is convenient to order the Ham
tonian with respect to the dependence on the coordinateQj8 .
The vibrational Hamiltonian consists of the quadratic term

Hvib8 5Tnucl1(
j

\vj

4
~Qj8!2. ~D6!

The linear terms define the exciton–vibrational coupli
Hamiltonian,

Hex-vib8 52(
j

\vjQj8gj~M ,M !u0&^0u

1(
K,N

(
j

\vjQj8$gj~K,N!

2dKN gj~M ,M !%uK&^Nu

1 (
2K,2N

(
j

\vjQj8$gj~2K,2N!

2d2K2Ngj~M ,M !%u2K&^2Nu, ~D7!

where the two-exciton coupling constantgj(2K,2N) is

gj~2K,2N!5 (
m.n

cmn
(2K)cmn

(2N)~gj
(m)1gj

(n)!. ~D8!

The coordinate-independent terms contribute to the excito
Hamiltonian,

Hex8 5(
K

\vK08 uK&^Ku1(
2K

\v2K08 u2K&^2Ku, ~D9!

with the shifted excitonic energies of the one-exciton sta

\vK08 5\vK022(
j

\vjgj~K,K !gj~M ,M !; ~D10!

Eq. ~4.25! then is obtained from the above equation, usi
Eqs. ~D2!, ~4.6!, ~4.7!, and ~4.26!. The shifted two-exciton
energies\v2K08 are

\v2K08 5\v2K022(
j

\vjgj~2K,2K !gj~M ,M ! ~D11!

and Eq.~4.52! follows using Eqs.~D8!, ~B5!, ~B6!, ~4.6!,
~4.7!, and~4.53!.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Terms which are off-diagonal with respect to the excit
states have been neglected inHex8 , using Eq.~D4!.

The electronic energies are shifted and new coup
functions result from the changed exciton–vibration
Hamiltonian Hex-vib8 . The electronic ground state now als
couples to the vibrations

g008 5gMM . ~D12!

However, we also have

gMM8 50 and gMMnn8 50 ~n50,N,2N!, ~D13!

because the new equilibrium position ofHvib is at the mini-
mum of theM th excitonic PES.

The new two–exciton coupling constantg2N2N8 can be
similarly expressed as

g2N2N8 5g2N2N1gMM22g2N2NMM , ~D14!

whereg2N2N is given by Eq.~4.55! with 2K52N, gMM is
given by Eqs.~4.11! and ~4.9! with K5M andg2N2NMM is
given by Eq.~4.53! with 2K52N. The shifted excitonic en-
ergies, Eqs.~D10! and ~4.52!, as well as the new coupling
constants in Eqs.~D12!–~D14! are used to calculate the fluo
rescence spectra in Appendix E and to calculate the co
butions from excited state absorption and stimulated em
sion to the pump–probe spectra in the limit of fast int
exciton relaxation, Eqs.~4.47! and ~4.48!.

To apply the quantum master equation, Eqs.~B1! and
~B2!, to the third-order density matrix elements term
rM0

(3) (t,M ) and r2NM
(3) (t), needed in the calculation of th

pump–probe spectra, a coordinate transformation of
Hamiltonian to the equilibrium position of theM th PES is
used. TherM0

(3) (t,0) arises from the second-order ground st
populationr00

(2)(t) and therefore no coordinate transform
tion is needed there. The equations of motion, Eqs.~4.41!–
~4.43!, are then obtained from the quantum master equat
Eqs.~B1! and~B2!. For this purpose the secular approxim
tion, Eq. ~B10!, for the dissipative terms, and the Marko
approximation for the off-diagonal part of the exciton
vibrational coupling are again introduced, and one setst0

5tpr in Eq. ~B2!. This choice oft0 takes into account tha
before the delta function probe pulse acts attpr the statistical
operator of excitons and vibrations factorizes due to fast
brational relaxation.

APPENDIX E: DERIVATION OF EQUATION
FOR THE FLUORESCENCE SPECTRUM

The fluorescence spectrumI (v) is obtained from a
Fourier–Laplace transform of the dipole–dipole correlat
function D(t),

I ~v!}ReE
0

`

dt eivtD~t!, ~E1!

where

D~ t !5Tr$d̂†
•d̂~t!Weq~e!%, ~E2!

Weq(e) is defined below, and the dipole operator,
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d̂†5(
M

mW MuM &^0u, ~E3!

contains all transitions between the one-exciton manif
uM & and the ground stateu0&. The time-dependence of th
dipole operator is defined with respect to the aggreg
Hamiltonian of the ground state and the 1-exciton manifo

d̂~ t !5U0
†~ t !d̂Ue~ t !, ~E4!

where U0(t)5e2 ( i /\) H0t, and Ue(t)5e2 ( i /\) Het. The
Hamiltonian He contains the vibrational Hamiltonian, Eq
~2.3!, and the one-exciton contributions of Eqs.~3.1! and
~3.2!. The equilibrium statistical operator of the one-excit
manifold is written as

Weq~e!5(
M

p~M !Weq
vib~M !, ~E5!

wherep(M ) denotes the Boltzmann distribution of excito
occupation probabilities andWeq

vib(M ) describes vibrations
which are equilibrated with respect to the minimum positi
of the M th excitonic PES.

Equation~E2! can be written equivalently as

D~ t !5Tr$d̂Ue~ t !Weq~e!•d̂†U0
†~ t !%, ~E6!

and the trace with respect to the electronic degrees of f
dom can be performed yielding

D~ t !5(
M

mW MBW M0~ t !, ~E7!

where a transition amplitudeBW (t) was introduced:

B̂~ t !5trvib$Ue~ t !Weq~e!d̂†U0
†~ t !%

5(
M

p~M !mW Mtrvib$Ue~ t !Weq
vib~M !uM &^0uU0

†~ t !%.

~E8!

We have

B̂~0!5(
M

p~M !mW MuM &^0u. ~E9!

In case of a two-level system an exact analytical solution
the propagation of the statistical operatorWeq

vib(M )uM &^0u
appearing in Eq.~E8! can be obtained. However, for th
multi-level system considered here an approximate solu
is used. The latter is obtained using the density matrix the
considered in this paper. In this case the transition amplit
BM0(t) is

BW M0~ t !5p~M !mW MrM0~ t !, ~E10!

and from Eq.~E9! it follows that

rM0~0!51. ~E11!

The fluorescence signal then is obtained from the real pa
the transformr̃M0(v) as

I ~v!}(
M

p~M !umMu2 Rer̃M0~v!. ~E12!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Using the concept of excitonic PES introduced in Appen
D to take into account vibrationally relaxed excitonic stat
the equation of motion for the density matrixrM0(t) reads,
using a POP description, as

d

dt
rM0~ t !52 ivM08 rM0~ t !2E

0

t

dtH (
KÞM

gMKeivMK8 t

3C~t!1gMMC* ~t!J rM0~ t !, ~E13!

which yields the fluorescence signal in Eqs.~4.27! and
~4.28!.

Alternatively, a COP description for the dissipative pa
gives

d

dt
rM0~ t !52 ivM08 rM0~ t !

2E
0

t

dtH (
KÞM

gMKe2 ivK08 tC~t!

1gMMe2 ivM08 tC* ~t!J rM0~ t2t!. ~E14!

The transform of the above equation is

2 ivr̃M0~v!2rM0~ t50!

52 ivM08 r̃M0~v!2GM8 ~v!r̃M0~v!, ~E15!

with the GM8 (v) given later in Eq.~F9!. By introducing this
result forr̃M0(v) and Eq.~E11! into Eq.~E12!, Eq. ~F8! for
the fluorescence lineshape is obtained, taking into acco
Eq. ~4.27!.

APPENDIX F: TREATMENT OF PHENOMENA
USING THE CHRONOLOGICAL
ORDERING PRESCRIPTION „COP…

The dissipative part of the equation of motion, Eq.~3.9!,
using a COP reads38 as

]

]t
r̂~ t !udiss52

1

\2 E
0

t2t0
dt

3^Lex-vib~ t !e2 iLex(t2t)Lex-vib~t!&r~t!,

~F1!

and in the exciton representation,

]

]t
rmnudiss52(

kl
E

0

t2t0
dt„e2 ivkntCmkkl~t!rln~ t2t!

1e2 ivmktCnkkl* ~t!rml~ t2t!2@e2 ivmlt

3Clnmk~t!1e2 ivkntCkmnl* ~t!#rkl~ t2t!…,

~F2!

whereCmnkl(t) denotes the exciton–vibrational correlatio
function, Eq.~B3!. Applying a secular approximation as di
cussed in Appendix B the dissipative part for the diago
elementsrmm(t) becomes
Downloaded 05 Apr 2007 to 131.215.21.81. Redistribution subject to AIP
x
,

nt

l

]

]t
rmm~ t !udiss52(

k
gmk ReE

0

t2t0
dt$eivkmtC~t!rkk~ t2t!

2eivmktC~t!rmm~ t2t!%. ~F3!

The dissipative part for the off-diagonal elements is

]

]t
rmnudiss 5

mÞn

2E
0

t2t0
dt$(k„e

2 ivkntgmkC~t!

1e2 ivmktgnkC* ~t!…

22gnnmm Re$C~t!%%rmn~ t2t!. ~F4!

The coupling constantsgmk and gnnmm in Eqs. ~B12! and
~B13! were used. To solve the integro-differential equatio
for the density matrix the Fourier–Laplace transform,

F̃~v!5 lim
e→0

E
0

`

dt e( iv2e)tF~ t !,

~F5!

F~ t !5
1

2p E
2`

`

dv e2 ivtF̃~v!,

is used. In an alternative approach auxiliary functions25 have
been introduced to transform the set of integro-differen
equations for the density matrix into a set of ordinary diffe
ential equations. The coupling to the external light field
Ref. 25 was included nonperturbatively, and a Lorentz
form of the spectral density was assumed. The present
proach includes the external pump and probe fields in th
order perturbation theory and neglects the field depende
of dissipation. However, an arbitrary functional form of th
spectral density is treated here. An alternative weak fi
perturbation approach, which is also not restricted to a s
cial type of spectral density, employs an expansion in ter
of Laguerre polynomials.26,27

1. Calculation of linear absorption, circular dichroism
and fluorescence

The COP lineshape function for linear absorption a
circular dichroism is28

DM~v,COP!5
GM

(Re)~v!

„v2vM02GM
(Im)~v!…21„GM

(Re)~v!…2
,

~F6!

where theGM(v) function is defined by

GM~v!5(
K

gMKC̃~v2vK0!. ~F7!

As shown in Appendix E, the lineshape functionDM8 (v),
entering the formula for fluorescence, Eq.~4.27!, becomes in
the COP description,

DM8 ~v,COP!5
GM8

(Re)~v!

„v2vM08 2GM8
(Im)~v!…21„GM8

(Re)~v!…2
,

~F8!

with
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GM8 ~v!5 (
KÞM

gMKC̃~v2vK08 !1gMMC̃* ~vM08 2v!.

~F9!

2. Calculation of pump–probe spectra

As in the POP case discussed in the text, a perturba
theory for the coupling to external fields is used and
equation of motion for the off-diagonal elementsrmn

(n)(t) then
is

]

]t
rmn

(n)~ t ! 5
mÞn

2 ivmnrmn
(n)~ t !2E

0

t

dt$(k„e
2 ivkntgmkC~t!

1e2 ivmktgnkC* ~t!…22gnnmm Re$C~t!%%

3rmn
(n)~ t2t!1

]

]t
rmn

(n)~ t !uex-rad, ~F10!

where the field part (]/]t) rmn
(n)(t)uex-radis given in Eq.~4.37!.

The Fourier–Laplace transform of the above equation is

2 ivr̃mn
(n)~v! 5

mÞn

2 ivmnr̃mn
(n)~v!2$(k~gmkC̃~v2vkn!

1gnk„C̃~vmk2v!…* !

22gmmnn Re$C̃~0!%%r̃mn
(n)~v!

1E
0

`

dt eivt
]

]t
rmn

(n)~t!uex-rad. ~F11!

In addition to the above off-diagonal elements an equa
for the second-order diagonal elementsPM(t)5rMM

(2) (t) has
to be solved, which is

]

]t
PM~ t !522(KgMKS E

0

t

dt Re$eivMKtC~t!%PM~ t2t!

2Re$eivKMtC~t!%PK~ t2t! D 1S MM
(2) ~ t !,

~F12!

with the source term

S MM
(2) ~ t !5

2

\
mM

(pu) Im„eiVputrM0
(1) ~ t !…. ~F13!

The rM0
(1) (t) on the right is obtained as the inverse Fo

rier transform ofr̃M0
(1) (v) which is obtained from Eq.~F11!

as

\r̃M0
(1) ~v!52

mM
(pu)ẼVpu

~v2Vpu!

v2vM01 iGM~v!
, ~F14!

where theGM function is given in Eq.~F7! and ẼVpu
(v

2Vpu) is the transform of the pump pulse envelopeEVpu
(t).

To ensure existence of the integral in Eq.~F5!, theF(t)
there should tend to zero ast→`. With this goal ensured an
equation of motion for

DPM~ t !5PM~ t !2PM
(eq) , ~F15!
Downloaded 05 Apr 2007 to 131.215.21.81. Redistribution subject to AIP
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is solved, wherePM
(eq) is the asymptotic solution of Eq.~F12!

for t→`, and is obtained as

PM
(eq)5rMM~ t→`!5

e2\vM0 /kT

(Ne2\vN0 /kT (
K

S̃KK
(2)~0!, ~F16!

where the detailed balance,

C̃(Re)~v!5e2\v/kTC̃(Re)~2v!, ~F17!

following from Eqs~4.15! was used.
In terms of a transform of Eq.~F15! and using Eqs.

~F12! and ~F16! the D P̃M(v) is given by

2 ivD P̃M~v!1(NgMN$~C̃~vMN1v!

1C̃* ~vMN2v!!D P̃M~v!2„C̃~vNM1v!

1C̃* ~vNM2v!…D P̃N~v!%

52PM
(eq)1

i

v
PM

(eq)(NgMN„@C̃~vMN1v!

1C̃* ~vMN2v!#2e2\vNM /kT@C̃~vNM1v!

1C̃* ~vNM2v!#…1S̃ MM
(2) ~v!, ~F18!

where S̃ MM
(2) (v) is the Fourier–Laplace transform of th

source termS MM
(2) (t) in Eq. ~F13!. There is no singularity at

v50 in the second term on the rhs, since the subsequ
bracket vanishes atv50 because of the detailed balanc
Eq. ~F17!.

As before, a delta function probe pulse attpr and fast
intra-exciton PES relaxation are assumed in the calcula
of the pump–probe signal, Eq.~4.35!. The three contribu-
tions in Eq.~4.44! then are

GB~v!52(
M

~mM
(pr)!2DM~v,COP!(

K
PK~ tpr!, ~F19!

where DM(v,COP) is the COP absorption lineshape, E
~F6!,

SE~v!52(
M

~mM
(pr)!2DM8 ~v,COP!PM~ tpr!, ~F20!

with the COP fluorescence lineshapeDM8 (v,COP), Eq.~F8!,
and

ESA~v!5 (
M ,2N

~mM→2N
(pr) !2DM→2N~v,COP!PM~ tpr!,

~F21!

where the excited state absorption linesha
DM→2N(v,COP) is

DM→2N~v,COP!52ImS 1

v2v2NM8 1 iG2N8 ~v! D . ~F22!

The damping functionG2N8 (v) is

G2N8 ~v!5(
2K

8
g2N2KC̃~v2v2KM8 !1(

K

8
gMKC̃~v2NK8 2v!

1g2N2N8 C̃~v2v2NM8 !, ~F23!
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where theg2N2K andg2N2N8 are given in Eqs.~4.55!, ~D14!.
The shifted one-exciton energiesvM08 are those in Eq.~4.25!,
the two–exciton energiesv2N08 are defined in Eq.~4.52! and
v2NM8 5v2N08 2vM08 .
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