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On the relation of protein dynamics and exciton relaxation
in pigment—protein complexes: An estimation of the spectral density
and a theory for the calculation of optical spectra
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A theory for calculating time— and frequency—domain optical spectra of pigment—protein
complexes is presented using a density matrix approach. Non-Markovian effects in the exciton—
vibrational coupling are included. A correlation function is deduced from the simulation of 1.6 K
fluorescence line narrowing spectra of a monomer pigment—protein coiti#&¥), and then used

to calculate fluorescence line narrowing spectra of a dimer coniB@20). A vibrational sideband

of an excitonic transition is obtained, a distinct non-Markovian feature, and agrees well with
experiment on B820 complexes. The theory and the above correlation function are used elsewhere
to make predictions and compare with data on time—domain pump—probe spectra and frequency—
domain linear absorption, circular dichroism and fluorescence spectra of Photosystem Il reaction
centers. ©2002 American Institute of Physic§DOI: 10.1063/1.1470200

I. INTRODUCTION ine experimentson a model system consisting of arhelix
and a bound bacteriochlorophyll molecule, the B777-

Understanding the complex role of proteins in chargecomplex. It appears to be the only example at present of a
and energy transfer reactions presents an interesting chajyccessful step by step separation of a photosynthetic an-
lenge for theory. In recent years the picture describing protenna complex into single-pigment—protein units, namely the
teins as a rigid scaffold has changed. Protein dynamics igreparation of the B777-complex starting from the bacterial
recognized as playing a significant part in the reaction. Ong¢ 41 core antenna. A structure of the B777-complex is shown
of the more spectacular pieces of evidence on how chemicgl, Fig. 1. It was adapted from the known structure of the
reactions can'trigger conformationgl moti@ndyvice 'versa bacterial LH2 antenna systéry removing the B800 bacte-
comeslf.rom single molecule experlmgnts on prote!n mdtors‘r'ochlorophyll that is missing in the LH1 antenna complex. A
In addition to these large scale motions on a microsecon w-resolution structural study exists for the LH1 compfex.

time scale much faster reactions involving energy or charg?t appears that the basic pigment—protein subunits of the bac-

transfer processes are influenced by small amplitude protein .
. . P ) . y P P terial antennas LH1 and LH2 are related to each other and
vibrations on a picosecond time scale. The complex structure . . . .

. o also to the bacterial reaction center. The latter is believed to
of the proteins allows them to exhibit this extremely broad

d i be the ancestor of the plant reaction centers of photosystems
T e comple | and 11> A simplifying feature of the experimerft®n the
The complexity of the protein is also the source of a ana fl. P g p

main difficulty in modeling these systems. There is no simpIeB77,7'Com,plex is that the specifif: interaction ocqurs bgtwegn
unique model for the protein, and different descriptions focu Single pigment and the protein, rather than involving, in
on different experiments. For example, conformational mo-2ddition, larger aggregate pigment—pigment and pigment—
tion can be neglected when interpreting subpicosecond eXROt€In interactions.
periments. Instead, the protein can be regarded as existing in AN exact result for linear optical absorption and fluores-
different conformations, reflecting a static disorder. This cir-c€énce was obtained for harmonic models by Kubo and
cumstance may lead, for examp]e, to an inhomogeneou-goyozawg and Lax&}Avery similar formulation was used in
broadening of optical transition lines of chromophores bound@ harmonic model for the nonadiabatic electron transfer
to the protein, or to a distribution of charge and energy transrate®'°All such approaches have in common the calculation
fer rates. Our aim in the present paper is to obtain dynamiof a transition rate between two weakly coupled electronic
variables, such as the spectral density and correlation funstates which interact with a large variety of effective har-
tions, which characterize protein dynamics relevant to excimonic vibrations. Georgievskét al! gave a generalization
ton relaxation in photosynthetic pigment—protein complexesof this approach for anharmonic systems. They used linear
These functions are then incorporated into a theory of variresponse theory and a second-order cumulant expansion to
ous types of optical spectra. relate the transition rate to a correlation function and a spec-
To obtain a realistic correlation function for the transi- tra| density!* The same relation is obtained in a harmonic
tion energies of the photosynthetic pigments, we first exampscillator model. Since the second-order cumulant expansion
is valid for a greater class of systems, it is inferred that a
dElectronic mail: ram@caltech.edu description for anharmonic systems in terms of effective har-
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There is no reduced description involved. However, such an
- approach is computationally intensive and so has been lim-
ited to a small number of electronic pigment states and ef-
fective vibrational modes. The largest system treated so far,
we believe, is a chlorophyll dimer consisting of nine elec-
tronic states coupled to two effective vibrational motfesn
alternative approach of comparable numerical intensity is
given by a path integral formulatioti:>*

We present an alternative and numerically less intensive
approach which uses perturbation theory for part of the
exciton—vibrational coupling. It will be shown how the non-
Markovian effects for a whole manifold of low-frequency
protein vibrations can be included in the theory. For this
purpose we determine from experiment the coupling-
weighted density of vibrational states of the protein, the so-
called spectral density(w). Markovian treatment8=22 of
photosynthetic antenna systems are extended in the present
article by exploring non-Markovian effects for the exciton—
vibrational interaction. A measure of non-Markovian effects,
we argue, is the production of vibrational sidebands in opti-
cal absorption and fluorescence spectra: If the interaction be-
tween the electronic and vibrational motion is such that the
correlation function for the optical transition energy for the
creation of the exciton decays rapidly the present process is
Markovian. In such a short time there is no time for vibra-
tions to be excited and so there are no vibrational sidebands.
An earlier non-Markovian formulation of the density matrix
theory® for linear absorption and circular dichroism spectra
; is refined in the present article to include a more accurate

“J summation of the exciton—vibrational coupling terms and is
also extended to include the description of fluorescence line
FIG. 1. Model for the B777-complex. The model has been adapted from th&arrowing spectra and to time—domain pump—probe spectra.
atomic structure of the LH2 compléRef. 3 (Brookhaven Protein Data file When non-Markovian effects are studied the choice of
Lkzu.pdb. an operatorthe projection operatdprused for the derivation
of the equations of motion for the reduced statistical operator
monic oscillators can be found. An earlier approach with thes critical. Different projection operators can be best com-
same goal is given by Loringt al'? and by Chandlel® pared by a generalized cumulant expansion method devel-

In contrast to the two-level system discussed above neped by Kubd® and by van Kampef As pointed out by
exact analytic solution exists for relaxation rates of a multi-Hashitsumeet al*” and Mukamelet al.** the time-convolu-
level system coupled to a large manifold of harmonic ortionless projection operator technique developed by Shibata
effective harmonic oscillators. Accordingly, approximate et al®"**and by Tokuyama and Mdfi corresponds to a so-
theories have been used, as in Refs. 14—30. The multilevellled partial ordering prescriptiotPOB in the time-
Redfield theory®~'” an example of a Markovian theory, has ordering of the cumulant expansiéfi*® whereas a more
been applied to photosynthetic antenna systéhfSWe re-  widely used projection operator technique developed by
call that in a Markovian theory for a statistical density op- Zwanzid" corresponds to a chronological ordering prescrip-
eratorp(t) the equation of motiodp(t)/dt depends only on tion (COP.*’~3° The POP leads to an ordinary differential
the properties of the system atand not on properties at equation of motion with time-dependent coefficients for the
earlier times, i.e., there are no memory effects of the earliereduced statistical operatp(t), whereas the COP results in
behavior. As noted latgi(t) is a reduced statistical operator an integro-differential equation fgr(t) containing a convo-
describing the electronic motion, reduced in the sense that ltution. In POP the memory effects appear in the time-
is thermally averaged over an equilibrium distribution of thedependent coefficients while in COP they appear in the his-
vibrational motion. In general, it is the reduction in degreestory of p(t). Besides mathematical convenience the
of freedom from the description of the dynamics of a largeguidelines for the choice of the time-ordering prescription
system to that of a small subsystem that gives rise to nommay not be clear. At infinite order both prescriptions become
Markovian, or memory, effects. equivalent. In the Markovian limit they also become equiva-

If, for example, the coupling of the exciton to some se-lent.
lected vibrational modes is treated nonperturbatively, as was One way, chosen recently by Palenbetal*? to evalu-
done in some effective mode modéts’? all “memory” is ate the convergence of the two time-ordering prescriptions, is
automatically included for the coupling to these modesto compare with an exact result. However, the latter exists
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only for relatively simple systems. In their study of a dimer fluorescence signa(w, w.,o of selectively excited pigments
with dichotomously fluctuating site energies POP yielded thejepends on the excitation enerfjyey.: *°

better results for the time-dependent population of dimer

states. The electronic coupling between the two states wdd @ @exd

included exactly. On the other hand, for a two-level system o

where the levels are coupled weakly by an external field and = j dw 10 ( Wexe, @10) | (@, @10) Pinn( @10— ®10),

the correlation function of the energy gap decays exponen- o

tially Mukamel showe®f how the ordering prescription is (2.1
related to the stochastic properties of the energy gap: The

COP equation for such a system yields the optical z‘;lbsorptiowhereah andlp are the homogeneous absorption and fluo-

lineshape know# for a two-level system with a dichoto- rescence spectra, respectively, of the complex with the (0

mously fluctuating ener a0. The POP equation for th —0) transition energy at w,o, and a Gaussian distribution
same); stem ivg§the I?nyesgh;.e function ob?ain”é‘d‘or a Tunction Pyy(wso— @10 is assumed, for the inhomogeneity
y g P .in 0—0 transition frequencies,, of the complexes in the
system where the energy gap is modulated by a Gaus&asrample Wwith 2 maximum ab.
1 10-

random process. In the present study the choice of ordering To use Eq(2.1) it is necessary to calculate the homoge-

prescription was based on the fact that the second-order POP : :
neous absorption and fluorescence spectra of a pigment

description reduces in the one-pigment limit to the exact so- . . .
P Pig oupled to a variety of vibrational degrees of freedom of the

lution for the linear absorption because of the assumed : . .
Gaussian nature of the bath, whereas the second-order Ca&stem. Standard theories for treating this proBI%i"ﬁ as-

Sume that the vibrations can be treated as effective harmonic

does not. . ) .
. . . . oscillators that do not change their frequencies upon elec-
The paper is organized as follows: The standard spin—"". _ . ;
. ) ._tronic excitation of the pigment. We will make the same
boson type theory is used in Sec. Il to extract the Correlatloréssumption

function of the pigment transition energy from fluorescence . .
. . The calculations are based on the spin—boson type
line narrowing spectra measufed@t 1.6 K on B777- Hamiltonian®?

complexes. The non-Markovian density matrix equations are
discussed in Sec. Ill. Various phenomena in the frequency— H=H|0)(0|+H,|1){1], (2.2
and time—domain are treated in Sec. IV using POP and in- o ) )
clude the description of circular dichroism, linear absorptionWhere the Hamiltoniai, of the electronic ground state is a
fluorescence and pump—probe spectra. Fluorescence line n&familtonianH,;, of unshifted harmonic oscillators,
rowing spectra of B820 complexes are calculated and com- b
pared with the experimental datahe approximations and H0=Hvib=Tnuc|+Z TgQé (2.3
results are discussed in Sec. V. A summary is given in Sec. ¢
VL. Various relations used in the text are derived in Appen-and the Hamiltoniard, of the excited electronic staté) is
dices A—E. The COP method and results are described igiven as
Appendix F.

The theory in the present article is applied elsewtare
the photophysical properties of PS-2 reaction centers of
green plants, specifically to the calculation of absorption,

fluorescence, circular dichroism and pump—probe spectra. WhereTnuc denotes the kinetic energy of nuclei ahtois
the energy difference between the minima of the potential

energy surface$PES of the excited and the ground elec-

ho
Ha= Touert fosot X = (Qet20,)% 24

Il. CORRELATION EUNCTION tronic state|1) anq|0>, rgspeptivgly, of the pi'gment in thg
OF THE ELECTRONIC ENERGY GAP: B777-complex. This Hamiltonian is the one-pigment version
EXTRACTION FROM ELUORESCENCE LINE of the multi-pigment Hamiltonian given later. Thg denote
NARROWING SPECTRA OF B777-COMPLEXES the relevant frequencies ane2g, the shift in minimum of

o ) the excited state PES relative to the ground state. For nota-
The B777-complex in Fig. 1 is used here as a modetional convenience a dimensionless coordina®@,

system to learn about the local interaction between a pigment q; /—zwg/ﬁ is used(e.g., Ref. 16 where theq, are the
and the protein in photosynthetic antennae. In this section gg 3] (mass-weightednormal coordinates. Th@, can be
spectral density)(w) of the pigment—protein interaction is \yritten as C§+C§, i.e., in terms of the usual creation

extracted from the recently measufetl6 K fluorescence “and annihilation operators of vibrational quanta of protein
line narrowing spectra of B777-complexes measured at dlfmodeg_

ferent excitation wavelengths. From thi&w) the correlation The homogeneous absorption and fluorescence signals
function C(t) of the optical transition energy of the pigment 5o given b6
is obtained.

We use the site-selective fluorescence spectra rather than 4mwn 5
the absorption spectrum for this purpose because the static an(@) = —gz—lu1d Dalw), 2.9
disorder in the absorption spectrum introduced by the protein -
and solvent environment overwhelms other details of that (@)= 4o°n | 112D () 26
spectrum. In fluorescence line narrowing spectroscopy the " 372c3 1Ml Eil@)s :
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where u g is the transition dipole moment, the refractive  two electronic states with respect to each other equals

index of the sample and the lineshape functibng () for —2g,, the more this displacement, the largeSis
absorption(a) and fluorescence | aré® The exciton—vibrational coupling is weak whé&<1,
and strong wherS>1. The typical coupling in photosyn-
D “(w):ifw dt e* (@ 019t+G(t) - G(0) 2.7) thetic antenna complexes lies in an intermediate raBige
“ 27 ) ~159-%% 3 notable exception being the red-absorbing an-

tenna states of photosystem3¥2).54-56

Introducing the results for the homogeneous absorption
and fluorescence lineshape functions E@12 into Eq.
% ) ) (2.1), using Eqs(2.5 and(2.6), yields the fluorescence line
G(t)= fo do{(1+n(w))I(w)e ' +n(w)I(w)e'}, narrowing spectrum at a frequenay excited at a frequency
2.8 e which includes an inhomogeﬂeous distribution func-
tion P;,, having a maximum ai = w1,

Here + refers toa and — to I. This D, (w) contains a
time-dependent functioB(t) of the spectral density(w),*

Jw)=2, B?8(w—w,). (2.9 oo
r ‘ |(w,wexc)~f dwyofe” * D 8(weye— w10)
0
This J(w) describes how the configuration of nuclei of the a0
protein changes upon electronic excitation of the pigment. + Pwexe— w10} {e7 V80— w10
The n(w) in Eq. (2.8 is the mean number of vibrational

g ) + —w)}P; —w1p)- 2.1
gquanta for an oscillator of frequencys in thermal w197 @)} Pin( @10~ 010 219
equilibrium#9 Equation(2.14) can be written as
n(w)= FRT (2.10 |(w’wex()~e—2(3(0) (0~ wexd) Pinh( @exe— @10)

) . ) +e 60 H(wexe @) (Pinh( @exc— @10)
The lineshape function, Eq2.7), can be written as a

sum of two terms: a zero-vibrational quantum-¢@) tran- 1P = +f d _
sition and vibrational sideband§: (@~ @10)) ©10$(@er™ @10

X ¢p(w19— @) Pipn( @10~ @10). (2.19

The first term on the right in Eq2.15 is the resonant fluo-
e G0 o rescence at the excitation wavelength and originates from the
+— f dte*i(@-@0t(e8M_1)  (2.1) 0—0 transitionss(wey— w10) in absorption followed by the
™ * 0—0 transition §(w—wqg In fluorescence. The factor
which can also be written as e 2COp,  (we— w10 does not appear to have been ex-
tracted experimentalfyfor the present system, because of
Doi(w)=e ®O8(w—wi)+d(x(w—w1). (212 interference by scattered light from the excitatfdn.
The second term on the right side of £g.15 contains
two types of sidebands: The first arises from excitation of the
0—0 transition d(we— wqg) followed by fluorescence
The homogeneous lineshape functiols,(w) and y?eld_ing the sid_ebanab(wlo— @), and the second from ex-
D,(w) are mirror symmetric with respect to the energyCltatlon of the sidebang(wec— w1o) and followed by fluo-
ﬁ(lu ie. D,(0—w0)=D (w0 ), reflecting the as- rescence at the-8 0 transitioné(w— wqg). The last term on
100 TeEe Zad B P10 I T10 g 9 . the right hand side of Eq(2.15 contains excitation of a
sumption that the vibrational frequencies of the effective har—Sideband and fluorescence to a sideband
monic oscillators do not depend on the electronic state of the . T ' .
The above expression simplifies when the pigment—

pigment. The integrated intensity of the vibrational sideband . - . ) :
I” . dw ¢(w—wy) relative to that of the zero-vibrational protein coupling is weak. We use this case as a first step in an

L G(0) G(0) . iterative procedure to extrad{ ) from the data: For weak
guantum transitioe , equalse®'™’—1, and is a measure : N .
. o . ... coupling the shape of the vibrational sidebapflv) at low
of the exciton—vibrational coupling strength. The signifi- : .
) A temperatures is the same as the shape of the spectral density
cance ofG(0) is that at temperatur€=0, it can be shown ) )
from Eq. (2.8) to equal S, the well-known Huang—Rhys J(w), as can be seen by apprgxmatm‘@‘ -1 byG(t)_ n
R ' Eqg. (2.11) and settingn(w)=0 in Eq. (2.8). Further, since
factor o X : ;
the vibrational sideband in absorption at low temperatures
o ) must be only on the high-energy side of the-0 transition,
S:f doJ(w)=2 9> (213 3 0-0 transition is the major contributor to the low-energy
0 5 . . .
wing of the absorption spectrum. In this case the shape of the
Whereg§ also equals the average chahgenumber of vi-  vibrational sideband in fluorescence line narrowing spectra is
brational quanta with energfw, in an optical transition given by the¢(wey— ) appearing in Eq(2.15. The fol-
from any specific initial vibrational state. Since the displace-HJowing strategy was therefore chosen to extrd@b) from
ment of the minima of the potential energy surfaces of thehe spectrum:

e

SONT
D)= 5 [ et et

Here §(w—wo) refers to the 6-0 transition and the
¢(=(w— wqp)) to the absorption {) or fluorescence )
vibrational sidebands.
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FIG. 2. Dependence of fluorescence line narrowing spectra of B777- 0 100 200 300 400 500 600
complexes on the excitation wavelength. Open circles denote the experi- t [fs]
mental values from Ref. 2 and solid lines represent the theoretical fit using
the spectral density in Fig. 3. FIG. 3. Upper half: Spectral densifi{w), extracted from the fit of fluores-
cence line narrowing spectra of the B777-complex. Lower half: Correlation
function of the pigment transition energy of B777-complexe3 atl.6 K.
Solid and dashed lines show the real and imaginary parts, respectively. The
l'ujset in the lower half is a zoom into the small amplitude long time com-

The shape of the sideband in the fluorescence line na . .
ponents of the correlation function.

rowing spectrum excited in the low-energy wing of the ab-

sorption spectrum was used as a first guess for the spectral

densityJ(w). An empirical functional form which is an ex-

tension of earligrt222527.28.5¢nctional forms was used for The maxima of the two contributions in the above sum occur

J(w): at frequencies 3G;, i.e., at 20 and 70 cm'. Becauses,
> s, the first maximum determines the maximumdgto) in
Fig. 3.
J(w)=,22 s kjwle(@/o)”, (2.16 If the system were treated as a continuum of harmonic
=

vibrations, as in the Debye model of specific heat, the den-
) _ sity of the vibrations, namely thE ;5(w — ;) in Eq. (2.9),
It contains the parametes, w;, p andq, k; being the \yould contribute a factow? to theJ(w) and there would be
normalization factorsp/(w{®* T'((q+1)/p)), and the sSum 4 cut-off in w, because of the finite number of coordinates.
s1+s; being equal to th& of J(w) in Eq. (2.13. Aninitial  The remaining dependence om in Eq. (2.17, o exp
valueS=1 was used, typical for pigment—protein complexes _ (/)2 would then arise from this cut-off and from the
as discussed before. The fit was iterated by next calculatingependence Gﬁ in Eq. (2.9 on ¢ and hence om.
¢(w) in Eqgs.(2.8—(2.12 numerically and then calculating The parameters of the Gaussian distribution function
the spectrum from Ed2.15. This fit was performed for the p, (¢~ ), used in the calculation of the fluorescence
lowest excitation energy weyc used in the experiment. Using |ine narrowing spectrum in Eq2.14), were determined from
this first estimate for the shape #«), the S=s,+s, was  the linear absorption spectrdrof the B777-complex in Fig.
varied next to fit the dependence I, we,o) on the excita- 4. The maximum ofP,,, occurs at a frequencipy, corre-
tion frequencywe, in Eq. (2.19. At higher excitation ener-  sponding to a wavelength of 782 nfand so shifted to the
gies the last contribution in E2.15 involving sidebands in  yeq of the absorption maximum at 777 nand the width of
absorption and in emission becomes important and leads toife  inhomogeneous  distribution  functiotFWHM) is
broadening of the sideband seen in the spectrum in Fig. 2 &g cnr 1,58
short wavelengths. Since the weight of the sidebands The correlation functiorC(t) of the transition energy
is determined byS this broadening effect can be used to x=H,—H, of the pigment is given as
estimateS.

The fit at the differeniwe,. s in Fig. 2 was obtained for 1
S=1.3. TheJ(w) so determined is shown in the upper half C()= W(&X(t)&X(O)), (2.18
of Fig. 3. The optimized parameters asg=0.8, s,=0.5,
hw,=0.069 meV, hw,=0.24 meV, p=0.5, q=3. Forp  where(--- )=Tr;,{W,q...} and denotes an average with

=0.5 andq=3 the spectral density, E§2.16), is respect to the equilibrium statistical operatorf=H,;,,
Weq= e~ o KT/ T fe™Hun /KTy (2.19
Jw)= 2 > w3e~(@op?? (2.17
i“12720] ' ' The 6X is the deviation ofX from its mean valugX),
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1 ' ' =2M, v=2N, and can be expressed in terms of the eigen-
16K coefficients of the exciton states)’, c(?M and coupling
_ o8y constantg{™,
El 06 -
§ VMN=Z§ % cMWeMrw.0MQ,, (3.3
S 04
2
< A
02| Vaun=2 2 cicinhod " +g)Q:. (3.4
%00 750 200 om0 all other matrix element¥,, in Eq. (3.2 being zero. The
A (m) c’'s and £, are obtainetf from the one- and two-exciton

_ , _ state eigenvalue problems, as us(eay., Ref. 30. As input
FIG. 4. Linear absorption spectrum of B777-complexes using the spectral for this di lizati d the int
density of Fig. 3 Open circles denote the experimental values from Ref. parameters Pr IS 'agona_'za 1on pll’(.)C€ ure .e intermo-
and the solid line the calculated values. lecular couplingsv,,, and optical transition energies,, of
the pigments at the minimum position of the potential energy
surface of the electronic ground state are neéfdw. take
into account a modulation of,,, by the vibrations, thé, is
expanded about the minimum position of the ground state
PES. The linear dependence is described by the exciton—
vibrational coupling constantg;gm)=c7xm/(7Q§|0.
SX(t) = e'Hviol/h 5x @~ Hvipt/ (2.20 The HamiltonianH ,_,q describing the coupling of the

. _ . aggregate to the external pump and probe fields is, in the
The C(t)_ is obtained in terms of the spectral densitfw) rotating wave approximation,
(Appendix A):

5X=X_<X>=§;« ho9Q;, (2.20

where the time dependence is determinedy;,

C(t)= f:dw wZ{(1+ n(w))J(w)efi“’t-l— n(w)J(w)ei‘"t}. H exrad™ % F,uv(t)|l’«><V|a (3.5

(2.22 whereF,,o(t) describes the absorptive radiative coupling of
As seen in the lower half of Fig. 3 the real part®ft)  the ground stat0) to the one-exciton stat¢M) and
exhibits a strongly damped oscillation. It and the imaginaryF2ym(t) the coupling of the one-excitofM) to the two-
part of C(t) are essentially zero after about 100 fs. Aboutexciton statd2N),
5% of the initial correlation is seen in the inset of Fig. 3 to

dgcay on a 500 fs time scale. _Thﬁ:§t) of the 3777—con_1plex Fuoh)=— > EQs(t)e*iﬂstM(Ms) , (3.6
will be related later to an excitonic correlation function and s=pu,pr

will be used for the description of dissipation and optical

iier::ttra in larger complexes, containing more than one pig- F,, . \(t)= _S:%pr Esls(t)e—lﬂstﬂ('\ASLZN. 3.7)

The emissive radiative couplings afey(t)=Fy(t) and
Fuan(t) =F3ym(t), respectively.
The external field is characterized by the envelopes
We next introduce an exciton—vibrational Hamiltonian Ens(t) of the pump é=pu) and probeg=pr) pulses, their
H and from it obtain the equations of motion for the exci- carrier frequencies),, and their polarization vectors.
tonic density operatop(t). In the followingH is given by  The scalar products ofs and the dipole moments of the
the sumHe,+ Hyip+ Hexvibt Hexrag It CONtains the exciton  excitonic transitiongiy, andziy_. .y are denoted by.{S and

IIl. DENSITY MATRIX THEORY OF EXCITON
RELAXATION

termHyg,, B o
Hex:% 5/4|/J*></"|v (3.1) M(,\AS)ZéS-,&MEéS-Z CEnM),&m,
m

where =0 denotes the electronic ground state at energy

&=0, ,u_=M a one-exciton state Qt en_er@y,,, n=2M a /-L(MS)—QNZés'/zM—»ZNEés'E Cl(ﬁN)(CI(M)/Zk_i_C(kM)/zI)r
two-exciton state at energy,,,, a vibrational termH,;, in k>
Eqg. (2.3) composed of unshifted harmonic oscillators, and (3.9

Hexvip an exciton—vibrational coupling term, where the local dipole momeni,, characterizes the,

. — S, transition of the pigment at site, and iy =g_m iS
Hexviv= 2 Vol i) (vl B2  the dipole moment of the excitation of the one-exciton state
v N . . . .
A M) and iy, is the dipole moment of the optical transi-
The operatoV,, contains the coupling between one-excitontion from the one-exciton sta{é/) to the two-exciton state
statesu=M, v=N, and between two-—exciton statgs  |2N).
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In treating the dynamics of the excitons a reduced statisfor onset of an external field. For finite pulse widths the
tical operatorp(t) is introduced®® as noted earlierp(t)  choice oft, is somewhat arbitrary. One has to cut off the
=tfvib{\7V(t)}, where the statistical operat®¥(t) of the en-  pulse for earlier times, which is an approximation that is not
tire system is reduced by taking the trace with respect to alnecessary in the COP treated in Appendix F. Any dependence
vibrational coordinates of the protein and the pigmentsOf dissipation on the intensity of the external field has
When there is no coupling to external light fields the systenrbeen neglected in Eq(3.12. The Liouville operator
is in its ground state and the statistical operai¢ft) factor-  Lexvi(t) in Eq. (3.19 acts on an arbitrary operat@ ac-
izes into a vibrational and an excitonic paf(t)  cording to Ley.in(t)O=1/A[Hexyin(t), 0], With Heyyin(t)
=Weq|0><0|- This factorization occurs prior to a tintg, the ~ being the exciton—vibrational Hamiltonian in the interaction
time of the first interaction with an external field. T, is representation,
the eqU|I_|br|um st_atlstlcal operator of the vibrations in Eq. Henin(t) =€ty o e~ iHvint/#, (3.13
(2.19, with H,;, given by Eq.(2.3. o ]

The coupling with the external field then causes the ex- 1 he operatore” = in Eq. (3.12 acts on an arbitrary
citonic and vibrational part to depart from equilibrium. Be- operator Oase'“eO=eHex* Qe Mex". The reduced sta-
cause the excited states are coupled to the vibrations tHistical operatop(t) in Egs.(3.9—(3.12) is then expanded in
statistical operator of the optically excited states does noterms of exciton states,v,
factorize as for the ground state. The density matrix theory
provides a way to treat the correlations between excitonic  p(1)=2, p,.,(1)|u){(v|. (3.14
and vibrational degrees of freeddth. mr

Different techniques can be used to obtain an equation ofhe equations of motion for the exciton density matrix
motion for the reduced statistical operafdt). The follow-  p,,(t) are given in Appendix B in terms of the correlation
ing equations (3.9—(3.12 apply to the present non- functionC(t) of the optical energy gap of the pigments. The
Markovian treatment of the exciton—vibrational problem. Avarious phenomena are treated in the following sections us-
second-order cumulant expansidrfor the time-evolution ing these equations.

operator yield®
IV. TREATMENT OF PHENOMENA

J J
—p(1)= =1 (Leyt Loyrad))p(t) + =p(t) , (3.9 A Linear absorption, circular dichroism
at gt dissi and fluorescence
where the Liouville operatof,,, 1. Linear absorption
1 The linear absorption spectruan( ) is obtained as the
Eexﬁ(t):%[Hewﬁ(t)] (3.10 real part of a Fourier—Laplace transform of the dipole—

dipole correlation functiorD(t),*3°? a(w) = Ref5dte“'D(t),

— 2 —
describes the dissipation-free dynamics of the excitonic sys¥hereD ()= y|uu|*pmo(t) andpyo(0)=1. The absorp-
tem, and theC,, {t) the exciton-radiational coupling, tion spectrum then is

1 2

Loxrad DD = 7 Hewrad 0 A1, @1 (@ lalule), @
the square brackets denoting commutators, as usual. The Ié’&th the lineshape functiody (),
term in Eq. (3.9 contains the dissipative part due to the B P it
exciton—vibrational coupling. Different prescription schemes DM(“’)_RefO dte“puo(t). (4.2
for the cumulant expansion have been used to obtain this o )
dissipative part®>®as discussed in the Introduction. We use USing the quantum master equation in Appendix B the equa-
the partial ordering prescriptioPOP336Lfirst. As discussed tion of motion forpy(t) is
later it is the more appropriate of the two for the present

problem. Results obtained from the alternative chronological a_tpMO(t): —iwpopmo(t)
ordering prescriptiofCOP?62838415re given later for com-
parison. _ t o or
The dissipative part of the equation of motion obtained KEL deTCMKKL(T)e K o(t), (4.3

from second-order POPfs ,
whereiw =& — & and hwyo=Ey these&,, being the

d 1 (t-t ' exciton energies in Eq(3.1). The correlation function
7 —— . —i Loy . .
o7tp(t) disei PJO d7(Lexvi(t)e CukkL(7) in Eq. (4.9 is
X Loxir t= 7)€ =) (1), (312 Cunk(D) =2 ciPeheiIe( 8Xnm(1) 9Xn(0)). (4.4)
mn

where the( ) in Eq. (3.12 denotes an equilibrium average ) ) o ]

over the vibrational degrees of freedd‘@ZTrvib{@Wea}, T(ksﬂe) latter contains the elgencoeﬁlplents of exciton states
W,q being the equilibrium statistical operator of the vibra- Cm~ and a two-site corrglat|on funct!on,

tions given in Eq(2.19. The timet, in Eq. (3.12 is a time (SXm(t) 6Xp(0))=(eMvit/h sX e M/ 5xX ). (4.5)
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The time-dependence in EQL.5) is the same as that in Egs.
(2.21) and(3.13. The 6X,, is the deviation of the transition
energy of themth pigment from its mean value,

5xm=xm—<xm>=2f hwg"Q;. (4.6)
Form#n, Eq. (4.5 describes the correlation of the modula-
tion of electronic energies at sitee., pigment m with that
at siten.

We next introduc® a radiusR, for the correlations of

T. Renger and R. A. Marcus

In this way an exact treatment in E@..12 is used, however,
for the diagonal party,,, of the exciton—vibrational cou-
pling.

The integral in Eq(4.12 for the off-diagonal term&
#M then becomes

t .
yMKf d7(t—7)C(7)e'“mMK”
0

~7Mth dr C(7)€'“MK™=y tC(wpyk)- (4.13
0

protein vibrations at different sites, assuming an exponentia.|-he non-Markovian solution of Ed4.12) is given for com-

decay for the dependence on the distaRgg, between the
pigmentsm andn:

(8X (1) 8X(0)) =& Rmn/Re( 5X(1) 6X(0)). 4.7

The (X (1) 6Xm(0)) hasR,,=0 and will be assumed to be
site-independent and is given by tbét) in Eq. (2.22. The

parison in Appendix C. The Fourier—Laplace transform
C(wyy) of the correlation functiorC(7) is related to the
local spectral density(w) (Appendix A):

C(t) appears in the lower half of Fig. 3 and, we recall, was

calculated from the spectral densiffw) extracted from
fluorescence line narrowing spectra of the B777-complex.
Using Egs.(2.22 and (4.7) the correlation function in

Eq. (4.4) can be written as
CumnkL(t) = ymnkC(1), (4.9

with
YMNKL= % e Rmn/RecM)c(N (O cL) (4.9

The secular approximatioit;*®%?which neglects certain
oscillating parts in the equation of motion by setting: M

in Eq. (4.9, is used next. It is discussed in Appendix B and
simplifies Eq.(4.3) to yield a homogeneous equation that can

be solved analytically:

P . t _
EPMO(I:): —iomo— X VMKf dTC(T)e'wMKT>PM0(t),
R 0
(4.10
YMK= YMKKM - (4.1

The solution of Eq(4.10 is

t .
PMo(t):eXW’ _inot_; YMKdeT(t— T)C(T)e""MKT] :
(4.1

For simplicity, a Markov approximation will next be applied

to the off-diagonal part of the exciton—vibrational coupling,

namely to the terms in Eq4.12 with K# M. This approxi-
mation is valid either when th&=M terms dominate the
exciton—vibrational coupling ¥%wm>|vymk|) or, when on a
coarse grained time axi$® 1/ wyk|. The latter condition
follows from the oscillating factoe' “Mk7 in Eq. (4.12 which
tends to cancel the contributions to the integral for tinres
> 1|lwyk|. The diagonal terms withl =K do not contain

Clomk) = CRNwy) +iC™ (wyy), (4.14
by
CRY ) =7mw?{(1+Nn(w))I(w)+N(— 0)I(— o)},
(4.15

with o= wyk . We note that in Eq(4.19, J(w)=0 for o

<052 as seen from Eq(2.9). The CM(wyy) satisfies a
Kramers—Kronig relatiofi?

= 1 (» CRIYw)
C( m>(wMK)=—pf do——. (4.16
a — WK — W

The diagonal part of the exciton—vibrational coupling is
taken into account exactly in the integrahyym/ E,dr(t
—7)C(7)=yum(—i (E\ /) t—G(t) +G(0)), where the
function G(t) was introduced in Eq.2.8) and where

E)\Zf dofinwl(w) (4.1

0

is the reorganization energl, is calculated for the present
J(w) to be 102 cm?.

The lineshape function for absorption is next obtained
from

Dm(w)= Refmdt gl (@= oMot @G (1)~ Gm(0)g—t/my
0
(4.18

where the 0-0 transition from the ground stat@) to an
exciton statgM) occurs afwy,

wvo= omo— YMMEN /ﬁ"‘K;M ymkC™ (wpk). (4.19

The time-dependent functioBy(t) in Eq. (4.18 is

Gu(t)=ymumG(1), (4.20
and the inverse dephasing time
Tl\_/ll:%; Km—k (4.2

is determined by the rate constakis_,« of relaxation from

such an oscillating factor. In the presence of static disordeg,citon statgM) to exciton statéK)

the respective coupling constang,, are larger than the

| ymk| appearing in the off-diagonal terms, as discussed later.

Kpm_k= Z'VMKE(Re)(wMK)-

(4.22
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2. Circular dichroism fluorescence line narrowing spectra of B820 complexes.

For the calculation of the CD spectrum the d,po|eThese equations were also used in our recent appli¢ation
strength |y |? in Eq. (4.) is replaced by the rotational calculate various optical spectra of Photosystem Il reaction

strengthr, of the excitonic transition, centers.

CD(w)* 2, ryDu(w), (4.23
M B. Time-resolved pump—probe spectra

where A now standard theol§} is next used in conjunction with

- the present non-Markovian density matrix description to cal-
ru= >, cCMcMR 4. X i (4.24 -
M= & Fm o BmntAm® ' culate pump-probe spectra. We first recall the relevant
_ expressiort? In a pump—probe experiment the absorption of
HereR,, is a vector from siten to siten and the- and X a weak probe pulse is measured as a function of the delay

denote the usual scalar and vector products. time 74 after the pump pulse. The pump—probe signal
Aa(7y) is defined as the difference between the absorption
3. Fluorescence a(7y), measured by the probe pulse delayed fgrwith

The densit trix th d thus f id .respect to a pump pulse, and the absorptigrmeasured by
e density matrix theory use us far consicers equlthe probe pulse alone. The energy I&g) of the probe

librium fluctuations about the equilibrium position of nuclei
of the electronic ground state. When the assumption is mao‘%UISE in the sample can be calculated from the light-induced

that a rapid vibrational relaxation occurs in the excitonicpdar'zat'onP(t) according t6*

states it is useful in treating the fluorescence from dtsite S(t)=20,Eq (H)Im{e'*tP(1)}, (4.30)

to introduce a coordinate transformation of the Hamiltonian o

to coordinates relative to the equilibrium position of t¢h ~ Where P(t) contains terms of first- and third-order in the
excitonic PESAppendix D). The shifted electronic energies €xternal field. Fifth- and higher-order terms are neglected.
hwy, are given by Eq(4.29, includingkK=M andK#M,  The nonlinear polarizatioR(t) is

hwgo=hoko—2E\ Ymmkk » (4.29 P(t)= nag‘{z M(pr) (l)(t)+p(3)(t))
with yumkk following from Eq. (4.9):

YMMKK= (cM2(cK))2e=Rmn/Re, (4.26 + E 28 o (PSMD + oS | (4.32
m,n

One has thus obtained a modified exciton—vibrational couWherenaggis the number density of aggregates in the sample.
pling Hamiltonian resulting from the shifted equilibrium po- The detector in a pump—probe experiment measures a time-
sition. Using this transformed Hamiltonian and the resultingintegrated signal,

exciton—vibrational correlation functions, the quantum mas-

ter equation(4.10 is used in Appendix E to obtain an ex- aocf dt S(t). (4.33
pression for the fluorescence signal, 0
e fiomo /KT Only the third-order terms in Eq4.32 survive the differ-
(@)D WWMFD,(A(Q)), (4.27  enceAa(r), and the pump—probe signal can be writtetf as
M N
+ o
in terms of the lineshape functio®,,(w), Aa(Td):J’ dw Aagisd 74,0), (4.39
D,(,l(w)zReJ' dt €@~ omot gGm()* ~Gu(0)g=tiry with the dispersed signal being
0
(4.28 Qo [~
Aagigf 79, @)% —Im{ Eq (Qp— R
where the asterisk denotes the complex conjugate and where s T4 1) 2, (L= ) % #aPriol )
Dpo= WMo~ VMMEA/ﬁ"‘K;M ykC™ (o) (4.29 +|\%N Mf\ﬁlzNP(zer’\l)M(w))]y (4.39
and with the scalar productg:{f” and u{?” ,, defined in Eq.
5 (3.9). Instead of observing a time—integrated sighal( 74)
1/7,’\,|=; Yk CRN wf). (4.30 by a single detector the probe pulse signal can be dispersed

in a monochromator and its frequency dependence measured,
Here, oy, = w0— @ko and the fact thalC(R®0)=0 was the dispersed signal being thewgisi( 74, @) in Egs.(4.39
used. and (4.35. The polarization termg{3)(») andpsiy,(w) in
The lineshape functions for absorption and circular di-Eq. (4.35 are obtained from a hierarchy of equations for the
chroismDy(w) in Eq. (4.18 and theD,(w) for fluores-  density matr|Xp(”)(t) and a Fourier transformation. Here,
cence in Eq.(4.28 are used in a later section to calculate p(“)(t) is of nth- order in the external fields in the expansion
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t—ty, )
P ()= 2p<”>(t>. (4.3 tpgﬁg(t 0)= (a)MO-I-EKyMK JO "drC(r)el“mKT
The different orders n in (d/dt) pM=—iw,,p'"
(0108) ppuy=—1®uupyy < p@(t, 0)——,u,M’)A S(t—1t,) pS(1),

+ (91 3t) p Pl gissit (9/3t) p{lexraa are generated by the
field part of the equations of motion,

(4.41)

J _

(n) (n=1)(¢ (n=1)(¢ t=tpr Ly
A E F 0P O F Ve 0. 2 7 G M) (wMO+EK7MK L dTC(T)e.wMKT)

(4.37

The hierarchy starts with the zeroth-order density matrix el- X pFd(t,M)— —,U«N'fr)Aprfs(t ton piam (L),
ement, taken ap')=5,08,0.

It is assumed that the pump pulse acts before the probe (4.42

pulse and that the vibrational relaxation on the PES of th
exciton is fast enough that the probe pulse detects vibra-
tionally equilibrated exciton populations and that any coher-g )
ences between different exciton states have decayed. In thﬁpzmm(t)— _'szMpzNM(t)
case the second-order density matrix elements reduce to

2)(+) ~ (2) t—t
puv(t)wb‘,uvb‘,uMpMM(t)' _ ’ pr () T

The equations of motion for the diagonal elements, the 2 2K Vona 0 dr C(r)e™znzx

exciton state occupation probabilitig§?,(t), are given by
Eq. (4.38 using a Markov approximation for the off- / fHP' * o] (3)

: ; : . . + drC e'“km t
diagonal exciton—vibrational coupling as before, 2 ko o (7) panm(t

d 2 [
Gt (D) == iR (0 + ki mpi(1) ﬁuMezNApra(t tor) it (1) (4.43

2 (o) 0t (1) The Fourier transforms of Eq#$4.41)—(4.43, and the Fou-
+ B pn IMET M po(D), (438 rier transform of the probe pulse enter into E¢.35 for the

dispersed pump—probe signal. Three contributions are then

where the dephasing constanfg' and rate constants, , ~ Obtained from Eq.(4.39: ground state bleaching G&),
are given by Eqs(4.21)—(4.22. stimulated emission Sk, 74), and excited state absorption

The first-order density matrix elemenfi)(t) on the ESA(w,7q),
right-hand side of Eq(4.38) is obtained asAppendix B Aagisd 0, 74) *GB(w) + SH w, 74) + ESA( @, 74).

—iwt (444)

= M eGm(®
ho()= "’ f 4o T "m0 The GHw) is'®

><fowdfei(wfﬂpwe*GMmEqu(T). (4.39 GB(w)=— Z (u{P)? DM(w); Pi(tp), (4.45

A delta function-shaped probe pulge&,d(t—t,) at ime  Where the equatiop{(t) = — S¢p{G(t), resulting from the
tor=tpu+ 74 is assumed and leads to the third-order densitydentity =,p,,,=1, was used,
matrix elements, arising from the field parts of the equations

(2) (¢
of motion fOI’p(3)(t), P(t)=prk(t), (4.46
and Dy (w) is the lineshape function of absorption, Eqg.
(3) (3) (2) (3) (2) M
prio(t)=piiolt,poig) + prio(t P (4.18. The SEf,7y) is described b

=pG(t,00+ pE)(t,M). (4.40

. . o B, 7)== 2 (1ii")?Diu(@)Pu(tyr), (4.47
In this and subsequent equations we distinguish between

terms arising from the ground state populatiai)(t) and , . . .
those arising from the excited state populatid®, (t). where Dy, (w) is the fluorescence lineshape function, Eg.

: <105
In the limit of fast vibrational relaxation considered, as (4.28. The ESA@, 1) is
discussed in Appendix D, the statistical operator of the exci-

ton statex at time ty, is Weg(M) p{iy(tp). Here, We(M) ESA(w,Td)IMgN (1445”. 20) 2D o @) Py (tey),
denotes the equilibrium statistical operator for the vibrations ’ (4.48
in the Mth PES. The equations of motion for the third-order

density matrix elements are then obtained as with the lineshape function
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1 T T T

D,’\AazN(w)=Rej dt &= @aumt
0 _ o8¢
x @C2nm(D = Canm(0)g =t/ manm, (4.49 3
=06}
and 2
504}
Ganm(t) = (yanont YMm— 22n2nmm) G(1). (4.50 L
The frequencie®,yy in Eq. (4.48 are 021 & |
Ex %00 750 800 850 900

~ ! — !

szM—szM_7(72N2N+7MM_2?’2N2NMM) A [m]

- FIG. 5. Linear absorption spectrum of B820-complexes using the POP

+ 2 72N2KC(Im)(wéN2K) theory. Open circle_s are the experimental values from Ref. 2 and the line
2K#2N shows the calculation.

+ 2 ym €™ (@) (4.51) S _
K#M The equations in this section were used recently to cal-

The shifted one-exciton energieg, , are those in Eq4.25,  culate pump—probe spectra of Photosystem Il reaction

. . 5
and the two-exciton energies,, are centers!
hwoo="hwoko— 2E\ YokokMMm » (4.52 _ _
) o ) C. Fluorescence line narrowing spectra
where E, is the reorganization energy in E¢4.17 and o Bg20 complexes
where

The fluorescence line narrowing speétod B820 com-

_ 2K)v2, (M) 2/ ——RoL/R “R..IR lexes are calculated next using the spectral denKi
7/ZKZK'\/'M_mZn Ek (Cg"”)) (C(k (e FimklFert @7 Fnulf), gxtracted from the fluorescence I?ne narfowing spe?:lt{rtg)of the
(4.53 B777-complex in Sec. Il. The B820 complex is modeled as a

dimer of two B777 subunits with the intermolecular coupling

of 230 cm ! determined in Refs. 65—-67 from the circular
w;'w=w;0—w;0. (4.54) dichroism and the difference spectra, singlet minus triplet.

The geometry of optical transition dipoles was taken from
the LH2 complexX The dependence of the fluorescence line
narrowing spectra on the excitation enerfgy,,. is given by

and we have

Here u and v represent the different one- and two-exciton
states in Eq.(4.51). The coupling constant,\.x in EQ.

(4.51) is the dimer analog of Eq2.1) for the monomer:
VoNoK = E z (CET?:]\I))Z(C(k%K))z(e_Rmk/Rc-l— e Rmi/Re I(wawex9:<a(wexc)|(w)>disorderr (4.57
m=n k=l where a(wq,) denotes the homogeneous absorption spec-
+e Rk/Re 4 g~ RniRe) (455  trum[Egs.(4.1) and(4.18] of the dimer complex anti( )

i ) , , 1 1 is the homogeneous fluorescence spectrum given by Egs.
Thglmverse.dephasmg time in EG49, mo\m=7x (4.27) and (4.29. In contrast to Eq(2.1) for the monomer,
+(7y) "~ contains the one-exciton de;l)hasmg constant INyhere the disorder average was performed partly analyti-
Eq. (4.30 and the two-exciton constamy : cally, now the disorder average is performed numerically by

i = (Re) . a random generation of dimer site energies. A Gaussian dis-
ToN= ; YanzkC A @onK) s (4.5 tribution function of FWHM=500 cnm * and a mean site en-
ergy of the two pigments corresponding to 808 nm were
where yonok 1S given by Eq.(4.55 and wjy,« are obtained determined from the fit of 1.6 K linear absorption spectrfum,
from Egs.(4.52 and (4.54). (a())gisorder USING Eqs(4.1) and(4.18. The POP theory—

For large delay timesy=t,—tp, the pump—probe sig- calculated and measured absorption spectra are compared in
nal becomes independent af because an equilibrium dis- Fig. 5. For efficient numerical sampling of the disorder in
tribution of the exciton state occupation probabilitlﬁ‘ﬁ‘*) is  Eg.(4.57), the 0—0 transition was broadened by adding an
reached. The ground state bleaching (@Bin Eq. (4.495 inverse dephasing time of (2 ps) to the inverse dephasing
contains the effect of depopulation of the electronic groundime 7',\_,|1 in Eq. (4.21). This additional broadenifi§jdoes not
state by the pump pulse and therefore is constant at timaafluence the shape of the vibrational sideband, because the
after the pump pulse. The stimulated emission &k{) in latter has a large breadth from other sources. As noted before
Eq. (4.47 and excited state absorption ES#F,) in Eq. the 0—0 was not compared with the present experiment,
(4.48 contain information about the time-dependent popu-because of scattered light from the excitation in the experi-
lation of exciton states: Only those one-exciton states whiclment. For the correlation radius of protein vibrations a value
are populated at a given delay timg will contribute to  of R;=5 A was chosen, estimated in an earlier arfitfeom
SE(w,7y) and ESA@, 7). pump—probe spectra of PS-2 reaction centers.

Downloaded 05 Apr 2007 to 131.215.21.81. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



10008  J. Chem. Phys., Vol. 116, No. 22, 8 June 2002 T. Renger and R. A. Marcus

T T 1

0 1 I
700 750 800 850 900
A [nm]

Ao =836 nm 16K 1.6K
- 1 08 |
3
8,
= 06 |
=
'é" 04 +
ST 1 2"
8, <
8 02
[=4
@
3
(73
o
S
=
[

FIG. 7. Linear absorption spectrum of B820-complexes using a COP theory.
Open circles are the experimental values from Ref. 2 and the line shows the
calculation.

the FFT for the calculation of the spectra, which facilitates
the use of a more general shape of the spectral dehgity.
Sometimes a combination of Gaussian and Lorentzian func-
FIG. 6. Fluorescence line narrowing spectra of the B820-complexes fotional forms® and sometimed a spectral density withy
differe_nt excitation energies using the PQP theory. Open circle_s are the- o andp= 1in Eq.(2.16) are used instead, Wiﬂp=2 being
experimental values from Ref. 2 and the lines show the calculations. The .
noise in the theoretical spectra is caused by the fili®®00 ensemble size inferred from the Debye denSIty of state_s for bulk C_ryStaIS'
of random configurations of disorder used in the calculation. The shape of theC(t) versust plot is needed in the
subsequent theory. The major part@t) in Fig. 3 is seen to
. ) ~decay on a 100 fs time scale, and a small &%) on a 500
The calculation procedure consists of the followingfs time scale. One can infer that for any multi-pigment sys-
steps:(i) random generation of site energi€$) the calcula-  tem composed of pigment—protein subunits of structure simi-
tion of the exciton energies and eigencoefficients by a diagom, tg that of the B777-complex, significant non-Markovian
nalization, (iii) the calculation of absorption(we.) at the  effects in the exciton transfer dynamics can be expected only
excitation energy,(iv) the calculation of the fluorescence \yhen exciton transfer occurs on a 100(€8 shortey time
spectrum I(w), (v) performing the disorder average scale. Such ultrafast transfer times have been observed in a
(+)disorderby repetition of stepéi)—(iv), and the summation nymper of antennas, among them the L142H1,7° LHCII ™%
of the results for(wey)! (w). The fluorescence line narrow- anq the photosynthetic reaction centers of bacteria and green
ing spectra_ are calculated using this prescription and the Pasiants’? In that case a non-Markovian theory is expected to
rameters given above and are compared with the measurgfloyide a more detailed understanding of such experiments.
spectrd in Fig. 6. . . . As discussed in detail below an important feature that can be
An alternative partial summation of the exciton— geqyuced fromC(t) concerns the appearance of vibrational
vibrational coupling was obtained by using a chronologicalsigepands in optical spectra, which has a non-Markovian ori-
ordering prescription(COP in Appendix F. The integro- gin.
differential equations for the density matrix obtained in a
COP reveal a lineshape function similar to the Markovian . .
Lorentzian lineshape given later in E¢.4) but with a B. Fluorescence line narrowing spectra
pe g . ) of B820-complexes
frequency-dependent broadening function that allows one to
describe the high energy part of the vibrational side band, as The extracted(w) in Fig. 3 was used for the calculation
seen in the calculation of fluorescence line narrowingof fluorescence line narrowing spectra of dimeric B820-
spectr& in Fig. 8, which corresponds to Fig. 6 calculated complexes. The resulting comparison with the experifent
with POP. The mean site energy of the pigments in the CORN B820-complexes is shown in Fig. 6. The non-Markovian
calculations was 806 nm, determined from the linear absorptheory predicts the correct shape of the vibrational sideband

820 840 860
A [nm]

tion in Fig. 7. at different excitation energies. A small difference in the two
inhomogeneous widths 600 crhand 500 cm * deduced for
V. DISCUSSION the pigment transition energies of the B777-complex and the

B820-complex might, if real, be due to a greater exposure of
the B777 pigment to the solvefit,as suggested in Ref. 2.
The correlation functiorC(t) of the energy gap of the The widths(FWHM) of 500 cmi ! and 600 cm® were de-
pigment in the B777-complex is shown in Fig. 3. Although termined here from the calculation of linear absorption spec-
fluorescence line narrowing and hole burning spectra havea shown in Figs. 4 and 5. The additional narrowing of the
been calculated for different pigment—protein complexesmain peak in the B820 absorption spectrum from 500 tm
before®®->3we are not aware of a correlation functi@{t) for the pigments to 350 cnt for the excitonic transition in
having being extracted from such data. A second and merellfig. 5 is caused by the intermolecular coupling, the so-

technical difference from earlier work is the present use otalled resonance energy transfer narrowitighe inhomoge-

A. The correlation function  C(t)
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neous broadening of exciton states in larger antenna com-
plexes is smaller (70—240 cm) "®~"°than the 350 cm® for
B820, presumably because of lesser exposure to the solvent
and stronger resonance energy transfer narrowing. The high-
energy shoulder in the spectrum in Fig. 5 in the experimental
and calculated spectrum is due to transition to the upper
exciton state, which exhibits only small oscillator strength
because of an unfavorable geometry of optical transition di-
poles of the pigments. The fact that the experimental shoul-
der is more pronounced than the calculated one may arise
from the additional unbound chlorophwylin the sample, an
effect not taken into account here.

>
C. The fast modulation limit: Markovian lineshapes i i/M%\\ i
The Markovian limit for the absorption and fluorescence R .

lineshapes will be considered first. For this purpose the 800 820 840 860
pumo(t) in Eq. (4.12) is investigated and written as A [nm]

Fluorescence [a.u.]
&

FIG. 8. Fluorescence line narrowing spectra of the B820-complexes for
different excitation energies using a COP theory. Open circles are the ex-

perimental values from Ref. 2 and the lines show the calculations. The noise
where Egs.(4.13 and (4.21) were used, andly=wwo in the theoretical spectra is caused by the firil8000 ensemble size of

+ 2 2m¥mkC M(wyk). The introduction of the dephasing random configurations of disorder used in the calculation.
time 7 in Eq. (4.2 is based on a Markov approximation
for the off-diagonal terms of the exciton—vibrational cou-
pling and is valid if the exciton relaxation is slow when
compared to the decay time, of the exciton—vibrational
correlation functionC(t), i.e., yy>7.. For theC(t) in Fig.

3 7.~ 100 fs, neglecting the small amplitude tail©ft) that
decays in a 500 fs time scale. The Markovian limit for the
absorption lineshape function is obtained by approximating

pro(t) =€~ 1Cute t/TMe*)/MMJ‘BdT('[*T)C(T)7 (5.1)

vary between 1 for localized electronic states and, 1N
being the number of pigments, for delocalized excitons.
Hence, for the present dimer=ly,,,>1/2 and Eq(5.3) is

not fulfilled. So, non-Markovian contributions to the line-
shape functions are expected and they are discussed next.

e ymmS BdT(t—T)C(T)Ne—VMMU 0d7C(7) (5.2)
. o L D. Non—Markovian lineshapes:
This approximation is valid, if Comparison of POP and COP
yumC(0) o<1, (5.3 A non—Markovian theory based on Eq#t.18 and

(4.28 vyields vibrational sidebands, in agreement with
experiment A partial ordering prescriptiofPOP gave the

best agreement with the sideband obtained in the experiment
as seen in the contrast between Figs. 6 and 8. The COP
theory is seen to fail in the description of the low-energy part
of the sideband, whereas the POP theory agrees reasonably
with experiment in the whole spectrum, as seen in Fig. 6. In
- addition, the POP lineshape function, £4.18), reduces to

The equality[dC(r)=—itC'™(w=0)=—itE, /A that fol-  the exact spin boson result, E@.7), in the limit of a two-

lows from Egs.(4.15 and (4.16 with w=wyx=0 Was |eyel system, i.e., foryyx = Syx, Whereas the COP theory
used. Similarly the Markovian result for the fluorescencegpes not. Hence, the nonperturbative summétiohthe di-
lineshape functiorDy(w) is obtained by replacing they  agonal part of the exciton vibrational coupling obtained in
andyo in Eq. (5.4) by the 7y, in Eq. (4.30 and thewy,o in the POP theory but not in the COP led to a better agreement
Eq. (4.29, respectively. Taking into account alSo with the experiment.

CUM (g, )~CI™(wp) and Eq.(4.25), the fluorescence and The choice of ordering prescription used for a given sys-
absorption lineshape functions peak at the same energgm can be based on the statistical properties of the bath, as
fiopyo~hoy,, i.€., no Stokes shift is obtained in Markovian discussed by Mukamel in Ref. 43: If the dynamics of the

as discussed for a two—level system in Ref. 43. In this so
called fast modulation limff there is no time for the excita-
tion of vibrational quanta and a Lorentzian lineshape func-
tion, centered aby,q in Eq. (4.19 is obtained

-1
™

~——— 7 2
(0—=wpo) + Ty

Du(w)= (5.9

approximation, as expect¥dn the fast modulation limit. bath can be mapped onto a random Gaussian process the
For the present system from Fig. 3 we estimatepartial ordering prescription is preferable, whereas a discrete
#2C(0)~300 meV* and 7.~100 fs so thatyorg~7yMM. stochastic process, for example, a two-state jump model is

The factor yyy depends on the delocalization of excitons best included in a COP treatment of the lineshape funéfion,
and vibrations,yy == mn(c™)2(c{™)2e Rmn/Re, For de-  as noted in the Introduction. The reaction coordinate for the
localized vibrationsR.>R.,,,, ymm=1 results, whereas for present problem is the pigment’s optical energy ¥ép that
localized vibrationsR. <R, yMM=Em(c§nM))4 whichmay enters the correlation functio@(t) in Eq. (2.18. X(t) is
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given as a linear combination of harmonic oscillator coordi-ments. Thereby, a fast exciton relaxation reflected in a large
nates in Eq(2.20. A combination of harmonic terms can be yyx for M#K is promoted by localized protein vibrations
mapped onto a non-Markovian Gaussian stochastic procesand partly delocalized electronic states. Delocalized protein
irrespective of whether a quantum or classical description isibrations could, however, lead to dissipation via the modu-
used for the oscillators, shown by Mukafifalsing a gener- lation of interpigment couplings, a modulation which was
ating function approach. Hence, the better agreement of POReglected here.
for the present system is a consequence of the Gaussian
properties of the reaction coordinaxgt). F. Approximations

As seenin the_ B820 absorption spectra n Figs. 5 a_nd_ 7 Key approximations used in the present article are the
the calculation of inhomogeneous spectra gives very Slml|af’0”owing:
results in both theories, POP and COP, due to the averagin

9 The secular approximation, used in the description of
Due to the different sidebands in the two theories the meaﬂissipation and described in Appendix B. The approximation

site energies estimated from the calculation of the absorptioHaS been investigated recently in a model study on a &imer
spectra differ by 2 nm, the COP site energy being lower in

. = and in a calculation of fluorescence depolarization in the
energy to compensate the more prominent contributions tgary o tenna complex of purple bactéfaThe study of
the high-energetic part in the vibrational sideband. The nu

ical effort | hat | i the COP calculati B850 complexes, which is the first nonsecular study of a
merical efiort 1S somewnat [ess in the calcuiations. photosynthetic antenna system, showed rather minor contri-

butions from the nonsecular terms to the depolariz&tion
the parameter range of most interest for experinfem.
dimer modét® showed larger contributions which depended
We also used POP and COP theories recently to calculaigh the parameters. It would be useful to see whether the
various photophysical properties, among them time-resolveghclusion of nonsecular terms contributes more in line nar-
pump-—probe spectra of PS-2 reaction certetswas seen  rowing optical spectra, which can resolve the homogeneous
there that in the pump—probe spectra the exciton state relafneshapes.
ation did not change considerably when a Markov approxi-  The third-order perturbation theory used in the present
mation was applied. The major effect of the latter was on theyrticle for the coupling of excitons to the external fields re-
lineshape function of the optical transitions rather than on thericts the theory to pump—probe spectra whose intensity is
time-dependent change of the spectrum. Since the excitosroportional to the intensity of the pump field. The experi-
relaxation is determined by the off-diagonal terms of thements on pigment_protein Comp|exes are usua”y performed
exciton—vibrational coupling, whereas the vibrational side-n this regime, so simplifying the interpretation of the experi-
bands are determined by the diagonal part of that coupling, inents. A notable exception is the investigation of exciton—
seems reasonable to apply, as we have done in the POP tregiciton annihilation in studies of the intensity dependence of
ment, a Markov approximation to the off-diagonal terms andyump—probe spectrée.g., Ref. 86 The present neglect of
to describe the diagonal terms by a non-Markovian methodhe field-dependence of dissipation is well justified when the
In doing so a first-order picture of mutually shifted excitonic third-order perturbation theory is valfd.
PES arises, where the shift is given by the diagonal part of In the calculation of pump—probe spectra a finite pump
the exciton—vibrational coupling. The exciton relaxation oc-pylse and a delta function probe pulse were assumed. The
curs between such PES and is described by the off-diagongimp pulse was chosen to be finite rather than a delta func-
part in Eq.(4.22. The diagonal part of each excitonic state istjon in order to include a finite spectral width. That finite
characterized by an excitonic reorganization enefd}’  width is necessary to excite selectively certain exciton states,
= ymmE\ and an excitonic Huang Rhys factS;=ywuS.  whereas a delta function probe pulse with its white spectrum
Here,E, is the reorganization energy of the local pigment—is able to probe the whole spectrum. In the experiment such
protein coupling in Eq(4.17) andSis the local Huang Rhys g white spectrum is often generated by a stochastic mixture
factor. The value otyyy depends on the delocalization of of finite pulses with different carrier frequenciés.g., Ref.
excitons and vibrations: Electronic delocalization leads to @g). In this case the theory would contain the appropriate
decrease in the couplingyy to local protein vibrations. spectral properties, and the time-resolution would be differ-
The rate of exciton relaxation given in EGh22 con-  ent only for short delay times where the actual two pulses
tains the vibrational ter©(R®(wy,) in Eq. (4.15. This term  might overlap. In principle it is, however, possible to use also
describes how the protein can dissipate the electronic energy the experiment a longer pump pulse for selective excita-
by absorption(1+n(wyk)) or emissionn(wyky), of vibra-  tion and a shorter probe pulse for better time-resolution and
tional quanta, thus ensuring energy conservation during exa greater spectral width of detection.
citon relaxation. The electronic factof,k entering the rate In the calculation of the pump—probe spectra it was as-
in Eq. (4.22 is given in Eqs(4.11) and(4.9). In the limit of  sumed that there was fast vibrational relaxation within an
delocalized protein vibrationsR(>Ry,) ymk=|(M|K)|?  excitonic state and so coherences created by the pump pulse
=duk, and so no relaxation occurs, whereas for localizechetween different exciton states were neglected. This ap-
protein vibrations R.<Rmn)  ymk==m(c™)2(c{9)2,  proximation was used to obtain a simple relation between
which can be as small as zero for localized electronic statesme-dependent populations of exciton states, non-
(e.g., ifc™=1 thenc)=0 for K+ M). It equals 1N for  Markovian optical lineshapes and pump—probe spectra. An
completely delocalized excitonhl, being the number of pig- inclusion of coherent vibrational motion found in some

E. Excitonic potential energy surfaces
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pigment—protein complex&5°*is beyond the scope of the given in Eq.(16) in Ref. 98 when the exciton relaxation—
present approach, which considers equilibrium fluctuationsnduced shift of electronic energies, the terms witl with
of the vibrations. A Markov approximation could have beenK# M in Eq. (4.19 are neglected.
used to include coherences between different exciton In the presence of static disorder it can be expected that
states? |ymk| < ymm for K#M and a large part of the shift of elec-

A correlation radiu® for the protein vibrations relates tronic energies is contained in the term wighy,y in Eq.
the correlation function of the exciton—vibrational coupling (4.19. In this case the present POP theory of linear absorp-
in the quantum master equation to a local correlation function and the theory in Ref. 98 can be expected to give similar
tion C(t). ThisC(t) thus characterizes the modulation of the results. One conceptional advantage of the present theory is
local pigment energies by the protein dynamics and is relatethat it rests solely on a density matrix formulation and is
to the local spectral densitlw) in Eq.(2.22). J(w) appears therefore more readily extended than another apprach
in the time-dependent formulation of the lineshape functionwhich combines two different theories, the density matrix
in Egs. (2.7 and (2.8), of the optical transition of the pig- theory and the correlation function approach. Extensions of
ment and can thus be determined from independent experihe present theory are given in Appendices C and F by a
ments. A more detailed analysis of the molecular dynamicsion-Markovian treatment of the off-diagonal parts of the
in photosynthetic proteins, using normal mode calculationgxciton—vibrational coupling in the POP theo@ppendix
or molecular dynamics simulations, could provide informa-C) and in the COP theorfAppendix B.
tion on the size of the correlation radi&& and also on the Whereas in the calculation of the linear optical spectra
importance of static and dynamic disorder in interpigmentthe present theory contains the results of earlier correlation
couplings® which was neglected here. It remains to be esfunction approaché®®as limiting cases, in the case of non-
tablished whether the decay of the correlation function of thdinear spectra there are nevertheless advantages of the corre-
protein vibrations is indeed exponentidlas assumed in Eq. lation function approac’ The main advantage of the latter
(4.7). is the inclusion of wave packet dynamics inside the excitonic

PES which the present theory cannot describe. The theory of
pump—probe spectra in Ref. 23 also contains coherent short-

G. Comparison with other theories time contributions which were neglected here. An advantage
I_of the present theory is its relative simplicity.

The population relaxation rates obtained in the correla-
tion function approacti?*1% contain the mutual shifts of
éa_xcitonic PES, whereas the present theory treats them in a

priate description of both the exciton—vibrational and theSt"’mdard Redfield typway. A recent comparisdff of both

excitonic coupling. This problem also has a long history intypes of rates shows that they agree if the spectral density

the field of molecular crystals, where Green’s function tech-‘J(“’,) 'Sbsij\f\f/'c'en:hbr%‘?‘f? n e:tnerg>; to ICOV?r ";I\I ,\t/:anfltlpn en-
nigues were used to obtain results for linear optical spectraergles etween the ditierent excrion 1evers. arkovian ap-

as, for example in Refs. 99 and 100. A difference betweer'?rOXimation for the off-diagonal elements of the exciton—
molecular crystals and photosynthetic antennas is that in th\é'brat'on"’lI coupling was applied n the _present POP
reatment as well as in the correlation function appréach

latter the vibrational and electronic structure does not hav% — ; . .
the periodic symmetry found in the former. Even where the or the Qescnpuon of exqton relaxation. The COP theory in
X-ray structures appear symmetric as for the LH2 comﬁlex,Append'X F uses a Fourier—Laplace transform to treat the

disorder effects reduce the symmetry of the electronic angduations of motion for the exciton state populations in a

vibrational stated® However, the general problem of find- "°"-Markovian way. Non-Markovian contributions become

ing an appropriate basis set of eigenfunctions remains. In thlénportant when the population relaxation is faster or on the

present paper the exciton states were defined for the equiliF3 "€ time scale as _the vib ratlo_nal relaxat_|on and Iea_d to non-
xponential relaxation dynamics of excitons as discussed

rium position of nuclei in the electronic ground state and theSXP
exciton—vibrational coupling was expressed in this basis agarller.
usual.

In the Liouville pathway correlation function approach
employed by Mukamel and coworkéfghe diagonal part of /| SUMMARY
the exciton—vibrational coupling is taken into account ex-
actly, while the contributions to optical lineshape functions  The theory developed in the present article includes non-
from the off-diagonal parts of the exciton—vibrational cou- Markovian effects in the exciton—vibrational coupling in the
pling were neglecte®® The present result for the linear ab- calculation of frequency— and time—domain optical spectra
sorption in Eqs(4.1) and(4.18 reducef®? to their Eq.(3.3) of pigment—protein complexes. The presence of non-
in Ref. 23 by omitting allyyk terms withK#M in Eq.  Markovian effects was inferred from the presence of vibra-
(4.19 and the exciton relaxation if4.22. Ohtaet al®® re-  tional sidebands found at low temperatures in different
cently combined Mukamel’s correlation function approachpigment—protein complexes, since they are absent in a Mar-
with a standard Redfield approach, by introducing a lifetimekovian treatment. Additional evidence arises from a compari-
broadening of the optical lineshapes. The present result afon of the decay of the correlation function of the optically
linear absorption in Eqg4.1) and (4.18 reduces to the one probed energy gap of the pigments and ultrafast exciton re-

The present theory is related in spirit to a theory deve
oped by Mukamel and co-workéf€*%"and to a recent ap-
proach by Ohta, Yang and Flemif§The overall goal of
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laxation times measured in different antenffag? The cor- Hup=Schw(C{C,+1/2).  Using the relatiol*

relation function itself was estimated from fluorescence "neeiwgtcgcgcgefiwgtcg Ce=e1vdC,, one obtains

narrowing spectra of B777-complexes.
The present theory provides a step towards a more mi- . ‘

croscopic understanding of the dynamic role of proteins in ~ C(1)=2, w2g2{(1+n(w,))e “d+n(w,)e' s}, (A2)

inducing exciton relaxation. This role appears in the rate con- ¢

stantky,_.k in Eq. (4.22 and its dependence on the delocal- — T + _ ~Nfiwg /KT

ization of protein vibrations and excitons appears ¥ijg VEVth—thwg/kTi(l(;Ee%wgl-l(—{%b_{\]/_\;ech Cef ==nNe o

and the spectral densit){ w) of the protein. Thel(w) was M '

obtained from fluorescence line narrowing spectra of B777'spectral density in Eq2.9), as shown in Eq(2.22. Apply-

complexes. Thid(w) was used to calculate fluorescence "”eing the Fourier—Laplace transform EGF5) to that equation
narrowing spectra of a two-pigment system, the B820 COMinan gives

plex, using two different summations techniques for the
exciton—vibrational coupling, POP and COP. Only one of the . o '
two, the second-order POP allows for an exact summation of C(w)=1im fo dt el 9tC(t)

The correlation function can be expressed in terms of the

the diagonal part of the exciton—vibrational coupling and =0

therefore reduces to the exact result in the one-pigment limit. o

Only it gave agreement with the vibrational sideband found = Iimf do’(0")?(1+n(0")(w")
experimentally. This result was explained by the stochastic €077

properties of the reaction coordinaxgt), i.e., the optical eti(w—w')

energy gap of the pigments. —J(—w’))m. (A3)

An interesting feature of the exciton—vibrational dynam-
ics in photosynthetic antenna systems is the intermediatﬁoting that the last factor in EqA3) equalsmd(w— ')

coupling _?trength of both the exciton-vibration&E, i, “\wherey denotes the Principal Part one arrives at Egs.
=100 cn +, local reorganization energy estimated from the(4.15) and (4.16.

J(w) of B777-complexesand the excitonic couplingV,
=230 cm ! in B820-complexes a situation treated in the

present approach by introducing excitonic potential energy
surfaces. APPENDIX B: EXCITON REPRESENTATION

As seen in our recent contributibhon PS-2 reaction OF THE POP EQUATIONS AND CORRELATION
centers, the theory is readily implemented numerically, 'n(F:L(J)TJ%TL:(N)gS OF THE EXCITON-VIBRATIONAL
cluding an average over disorder in electronic pigment ener-

gies and orientations of the different complexes in the  The different phenomena in Sec. IV are treated using the

sample. equations of this Appendix. In the representation of exciton
statesu, v,... [Eq. (3.1)], the equation of motiori3.9) be-
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APPENDIX A: CORRELATION FUNCTION + KK“V}‘(t))p")‘(t)}’ (BD)
AND RELATION BETWEEN C(w) wherefiw,,=&,— &, [cf. Eq.(3.1], andK ., (t) denotes

AND SPECTRAL DENSITY J(w) the time-dependent dissipative function

The correlation functiorC(t) in Eqg. (2.22 is obtained,

. . _ + t=tp .
using Egs.(2.20 and (2.21) and usingQ; C.+C;. We KMV“(t):f e nTC, (1), (B2)
have 0
C(t)=—122 (ﬁwg)29§Trvib{weqei/ﬁHvibt(C§ and .CWM(t) denotes the e>.<citon—vibrational correlation
[ function for one- and two-exciton states,

+Ce)e M (Cet Cp), (A1) Crover (D =V, ()7 ,(0), (83

where W, is the equilibrium statistical operator in Eq.
(2.19. The vibrational Hamiltonian in Eq2.3) can be ex- V,,(t) being a matrix element of Ed3.13. The property
pressed in terms of the creation and annihilation operators &,,,,,, (t) =C’{KW(—t) was used.
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The correlation function, E¢B3), can be expressed in mentsp,,,(t), u# v, which describe the phase relationship
terms of site correlation functions and exciton eigencoeffi-of the different exciton states.
cients for the one-exciton statég=M, v=N, k=K and The respective dissipative parts of the equations of mo-
A=L) as shown in Eq(4.4). The respective correlation func- tion for the diagonal parts become
tion for the two—exciton states is

J
Ep,u,/.t(t) :_22 {Re{K;LKK,u(t)}p;L,u(t)
di KFp
ComanakaL (D=2 ey e el IeE((Xm(t) s
m=n k= - Re{KK,u,uK(t)}pKK(t)}’ (Bg)

TXa(D)EX(0)+X,(0)), (B4 4 those for the off-diagonal elements are

and for the one- and two-exciton states we have J .
aPwl® =~ ( 2 (K + K (1)
ISS
Comankr (D)= > 2 cAMeEMeeb((8X (1)
m=n -k -2 RG{KMW(t)}>pW(t). (B10)
+ 8Xn(1))8Xk(0)). (B5)
where
As demonstrated in the text the above correlation functions .
C (1) can be factorized into an electronic pa,,, and K een(t) =7y Kf OdTemMTC(T), (B11)
a vibrational parC(t) by introducing a correlation radiug; prices #<Jo
of protein vibrations in Eq(4.7),
with
CMVK)\(t) = yﬂvkhc(t)i (86) Yur=Yurxp (B]_Z)
where the factory,,,, depends on the exciton eigencoeffi- and
cients and the correlation radius. The one-exciton function
is given in Eq. (4.9. The two-exciton function o
YmNkL 1S a- (4.9 K ()= y,mwf drC(7). (B13)
Yamanzk2L 1S 0

In Sec. IV the solution for the first-order density matrix
Yomanzkal = 2y 2 CEMIGN)(2K)(2L) (@~ Rmi/Re elementp(7)(t) on the right hand side of Ed4.38) is ob-
m=n k=1 tained from Eqs(B1) and(B2), using Eqs(4.36) and(4.37),
+ e~ Rmi/Re4 @ Rnk/Re @~ Rni /Re) (B7) applying the secular approximation to the dissipative terms
[Eq. (B10)] and the Markov approximation to the off-
diagonal part of the exciton—vibrational coupling as before,
and setting,=0 in Eq.(B2). This choice oft, implies that
the pump—pulse acts at positive times close to zero. The

and the mixed one- and two-exciton functigByonk IS

_ () (t) then becomes
Y2M2NKL= 2 2 Cgr’:ﬂ)ng)C(kK)C(kL)(e Rmk/Re pio(t)
m>n  k
I/*L(DU) t
M i _ _(t—
+ e Rnk/Rey (B8) p(Mlg)(t): - f dre iomot-ng=(t=7/my
0
The above functions are used in the calculation of pump— XeGM(t)’GM‘T)Equ( r)e ' CpuT, (B14)
probe spectra in Eq$4.55 and (4.53), taking into account
Eqg. (B12). which may be conveniently calculated: A Fourier—Laplace

The dissipative part of the equation of motitB1) can  transform is introduced to treat the convolution in E§14)
be further simplified by introducing a rotating wave approxi- and the inverse is then taken and E4.39 is obtained.
mation for the dissipative parts, also known in the literature
as a secular approximatidn®°2Specifically, only those el-
e s Sl 1h Conan 1 S ARPENDI C: NONAARKOUAN SOLUTION

. . . LR FOR OFF-DIAGONAL TERMS

left side of this equat|0|]15.'16'62A" other contributions lead OF EXCITON—=VIBRATIONAL COUPLING
to oscillating termgnonsecular termsn the solution which
average to zero on a coarse—grained time axis. This secular A non-Markovian description of the off-diagonal
approximation serves to decouple the equations of motioexciton—vibrational coupling in the calculation of the line-
for the diagonal elemenis, ,(t), which are the exciton state shape function for linear absorption is readily obtained: The
occupation numbers, from those for the off-diagonal elenon-Markovian solution of the integral in E(A.13) is
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Q:=QM=—2g,(M,M), (D5)

t .
’yMKJ d7r(t—7)C(7)e'“mMK™
0 according to Eq(D1). A purely electronic density matrix is

o not able to describe this reorganization of the nuclei, since it

= 'yMKf do 0?)(w) treats the vibrations as a passive system staying in thermal
0 equilibrium. However, there are situations where a knowl-
co(wyk—w)t)—1 edge of the dynamics of this reorganization is not needed, for

x| (1+ n(w)): (oyk— )2 example, in the study of steady-state fluorescence from

equilibrated excited states. Alternatively, the intra-exciton

sin((oyk— 0)t) — (oyk— o)t PES relaxation might be so fast that in a study of pump—
! 2 +n(w) - .
(wpk— ) probe spectra it can be assumed that the probe pulse will find
vibrationally equilibrated excited states. Since the equilib-
cod(wxm—@)t)—1 rium position is known from Eq(D5), the aggregate Hamil-
(wgm— )2 tonian, Egs.(3.1)—(3.2), can be transformed using a new
. RN B coordinateQ} = Q,+2g{™™ which reflects the new equilib-
_; Sinl(oxm = @)t) (‘;KM w)t]) (C1)  rium position of nuclei in the exciton statd. To use the
(0gm— ) density matrix theory it is convenient to order the Hamil-
The Markovian limit, Eq.(4.13), is reached for large times tonian with respect to the dependence on the coordiQate
t> Lwy - The vibrational Hamiltonian consists of the quadratic terms
hw
! g !
Hip=Touert 2 =7 (Q0)% (D6)
APPENDIX D: VIBRATIONALLY EQUILIBRATED
EXCITED STATES AND EXCITONIC POTENTIAL The linear terms define the exciton—vibrational coupling
ENERGY SURFACES Hamiltonian,

In the following the diagonal part of the exciton— , ,
vibrational coupling Hamiltonian of the one-exciton states, ex-vib— _g ﬁngggg(M,M)|0)<0|
Eqg. (3.3), is used to define excitonic potential energy sur-
faces (PES.2>%° The vibrational Hamiltonian in Eq(2.3)
was defined with respect to the equilibrium position of nuclei
for the electronic ground state. To obtain a PEg for an

+> 2 1hwQHgK,N)
K,N "¢

exciton state]M), it is useful when the system is vibra- — Skn Ge(M, M) FHK)(N|
tionally relaxed in that state, to combine the vibrational
Hamiltonian and the diagonal part of the one-exciton part of + > > hoQH{gL(2K,2N)
the Hamiltonian of the exciton vibrational coupling, Eq. 2K2N £
(3.2), in the usual fashion to obtain — Sokond (M, M)} 2K)(2N], (D7)
Uy = UW*‘E hz)g(anLZgg(M,M))z. (D1) where the two-exciton coupling constag(2K,2N) is
5
The coupling constants(M,N) are g§(2K12N):mz>n coelE (g™ +g). (DY)
9:(M,N)= > CEnM)CE]N)ggm) (D2) The goordinate-independent terms contribute to the excitonic
mn Hamiltonian,
and the PES minimum is
Ho= 2 hogolK)(K|+ 2 ool 2K)(2K],  (D9)
U$)=5M—§ hwg:(M,M)2. (D3)
with the shifted excitonic energies of the one-exciton states,
The introduction of this PES is useful only when the diago-
nal part of the exciton—vibrational coupling is larger than the ﬁwl’«):ﬁwKo_zz fwge(K,K)ge(M,M); (D10)
off-diagonal part, i.e., é
9:(M,M)>[gs(M,N)| (M#N). (D4)  Eg. (4.29 then is obtained from the above equation, using

éEqs. (D2), (4.6), (4.7), and (4.26). The shifted two-exciton

When the excitonic states are completely localized on . ,
energiesi wyi are

sees from Eq(D2) thatg,(M,N)/g,(M,M)=0 for M#N.
Hence, conditionD4) is fulfilled if the excitonic states are
partly localized, for example, by static disorder. In this case i @co=f 00— 22 hwge(2K,2K)ge(M,M) (D11)
it can be assumed that the new equilibrium position of the ¢

vibrations for a vibrationally relaxed exciton stdtd) oc- and Eq.(4.52 follows using Eqgs.(D8), (B5), (B6), (4.6),
curs at (4.7), and(4.53.
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Terms which are off-diagonal with respect to the exciton .
states have been neglectedH,, using Eq.(D4). dT:% AmM)O], (E3)
The electronic energies are shifted and new coupling
functions result from the changed exciton—vibrationalcontains all transitions between the one-exciton manifold
HamiltonianH., .;,. The electronic ground state now also |[M) and the ground statf). The time-dependence of the
couples to the vibrations dipole operator is defined with respect to the aggregate
Hamiltonian of the ground state and the 1-exciton manifold:

760=7MM- (D12 n fn
However, we also have d(t)=Uo()dU.(1), (E4)
h Ug(t)=e~ (/M) Hot d U(t)=e (/MHL  Th
Yaw=0 and yiu,=0 (»=ON2N), (D13 nere Uo(t)=e and Ue(t)=e oone

Hamiltonian H, contains the vibrational Hamiltonian, Eq.
because the new equilibrium position I, is at the mini-  (2.3), and the one-exciton contributions of Ed8.1) and
mum of theMth excitonic PES. (3.2). The equilibrium statistical operator of the one-exciton
The new two—exciton coupling constam,,y can be manifold is written as
similarly expressed as "
— VI
Yanan= YaNaNt VMM~ 2YV2N2NMM » (D14 Wed®) % PIM)Weq (M), (E9
where y,\y is given by Eq.(4.55 with 2K=2N, yyy is  wherep(M) denotes the Boltzmann distribution of exciton
given by Egs.(4.11) and (4.9 with K=M and y,nonmm IS OCcupation probabilities anW‘é‘é’(M) describes vibrations
given by Eq.(4.53 with 2K=2N. The shifted excitonic en- which are equilibrated with respect to the minimum position
ergies, Eqs(D10) and (4.52), as well as the new coupling of the Mth excitonic PES.

constants in EqgD12)—(D14) are used to calculate the fluo- Equation(E2) can be written equivalently as
rescence spectra in Appendix E and to calculate the contri- . At
butions from excited state absorption and stimulated emis- D(t)=Tr{dUe(t)Weqe)-d'Ug(t)}, (E6)

sion to the pump—probe spectra in the limit of fast intra-5nq the trace with respect to the electronic degrees of free-
exciton relaxation, Eq94.47) and(4.48. dom can be performed yielding
To apply the quantum master equation, E@1) and

(B2), to the third-order density matrix elements terms
p,(\%(t,l\/l) and p(23,\,)M(t), needed in the calculation of the
pump—probe spectra, a coordinate transformation of the .
Hamiltoniag)to the equilibrium position of thelth PES is  Where a transition amplitudB(t) was introduced:
used. Thepyyy(t,0) arises from the second-order ground state . . At
populationpO%)(t) and therefore no coordinate transforma- B(t)_trVib{Ue(t)Weq(e)dTUO(t)}
tion is needed there. The equations of motion, E4st1)—

D<t>=§ AmBumo(t), (E7)

(4.43, are then obtained from the quantum master equation, :% P(M) fimtryinf Ue(t) Wee(M)[M)(OJU (1)}
Egs.(B1) and(B2). For this purpose the secular approxima-
tion, Eq. (B10), for the dissipative terms, and the Markov (E8

approximation for the off-diagonal part of the exciton—\ye have
vibrational coupling are again introduced, and one $gts
=ty in Eg. (B2). This choice oft, takes into account that
before the delta function probe pulse act$athe statistical

operator of excitons and vibrations factorizes due to fast vi- ) .
brational relaxation In case of a two-level system an exact analytical solution for

the propagation of the statistical operamféig(M)|M><O|

appearing in Eq(E8) can be obtained. However, for the

multi-level system considered here an approximate solution
APPENDIX E: DERIVATION OF EQUATION is used. The latter is obtained using the density matrix theory
FOR THE FLUORESCENCE SPECTRUM considered in this paper. In this case the transition amplitude

é<0>=% p(M) ip[M)(0]. (E9)

The fluorescence spectrui{w) is obtained from a Bumo(t) is
Fourier—Laplace transform of the dipole—dipole correlation g t)=p(M) iy pmo(t), (E10

function D (t),
and from Eq.(E9) it follows that

|(w)ocRef:dre‘MD(r), (ED pmo(0)=1. (E1y

The fluorescence signal then is obtained from the real part of

where the transfornpyo(w) as

D()=Tr{d" d(7)Wee)}, (E2)

| M 2Rep : E12
W((€) is defined below, and the dipole operator, (w)OCEM: P(M) e Pmol @) (E12
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Using the concept of excitonic PES introduced in Appendix t—tg ,
D to take into account vibrationally relaxed excitonic StateS,é,_tPML(t”diss:ZE Yux RGJ dr{e'xC(7)p,,(t—17)

the equation of motion for the density matix,o(t) reads,
using a POP description, as

d N ! (i, T
mPMO(t):_leOPMO(t)_IdT D Ymke MK
0o |KFm

XC(7)+ YMMC*(T)}PMO('[)- (E13

which vyields the fluorescence signal in Eq4.27 and

(4.28.

Alternatively, a COP description for the dissipative parts

gives

mPMO(t)Z_iwII\AOPMO(t)
t .
_j dT[ > Ymk€ ko"C(7)
0 |K&m

‘*’YMMe_iw':"OTC*(T)}PMO(t_T)- (E149

The transform of the above equation is
—iwpmo(®) — pmo(t=0)
(E19

with the T'},(w) given later in Eq(F9). By introducing this
result forpyo(w) and Eq.(E1Y) into Eq.(E12), Eq. (F8) for

= —loyepmo(@) —I'y(®)pumo(w),

0
_einKTC(T)pMM(t—T)}. (F3

The dissipative part for the off-diagonal elements is

9 nFEV

t=tp .
Ep,u,v|diss= _fO dT{EK(e IwKVTYMKC(T)

ey, C¥ (1)
- 27VV;L,(1, R(—:{C( T)}}pp,v(t —7).

The coupling constanty,,, and v,,,, in Egs.(B12) and
(B13) were used. To solve the integro-differential equations
for the density matrix the Fourier—Laplace transform,

(F4)

F(w)=Iim J’mdt elflo=OtE(t),
0

e—0

L (F5)
F(t)= 5= Lcdw e 1 (w),

is used. In an alternative approach auxiliary functfidmmve
been introduced to transform the set of integro-differential
equations for the density matrix into a set of ordinary differ-
ential equations. The coupling to the external light field in
Ref. 25 was included nonperturbatively, and a Lorentzian
form of the spectral density was assumed. The present ap-
proach includes the external pump and probe fields in third-

the fluorescence lineshape is obtained, taking into accourjrger perturbation theory and neglects the field dependence

Eq. (4.27).

APPENDIX F: TREATMENT OF PHENOMENA
USING THE CHRONOLOGICAL
ORDERING PRESCRIPTION (COP)

The dissipative part of the equation of motion, E89),
using a COP read%as

J 1 [t-t
ﬁp(t”diss:_ﬁfo dr

X <Eex-vib(t)eiiﬁex(t7 7-)Eex-vib( T))P( 7),
(FD
and in the exciton representation,
Jd t—tg .
Epuv|dissz _g fO dT(e IwKVTC,uKK)\(T)p)\V(t_ T)

+e ' uTCl o (Tpu(t—7) —[e7 T

XCy ()71 ™CE L (7)]pa(t—1),
(F2)

whereC,,,,(t) denotes the exciton-vibrational correlation
function, Eq.(B3). Applying a secular approximation as dis-

of dissipation. However, an arbitrary functional form of the
spectral density is treated here. An alternative weak field
perturbation approach, which is also not restricted to a spe-
cial type of spectral density, employs an expansion in terms
of Laguerre polynomialé®?’

1. Calculation of linear absorption, circular dichroism
and fluorescence

The COP lineshape function for linear absorption and
circular dichroism &

D CcoO Liyl)
ML COD e TH (@) 2+ T @)
(F6)
where thel" () function is defined by
Tu(©)=2 yukClo—axo)- (F7)

As shown in Appendix E, the lineshape functi@, (o),
entering the formula for fluorescence, £4.27), becomes in
the COP description,

L)

(0= 00— 1™ (0))?+ (T w))?’
(F8)

D/,(w,COP =

cussed in Appendix B the dissipative part for the diagonal

elementsp,,,(t) becomes

with
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, N , ~ is solved, wheré{¢¥ is the asymptotic solution of EGF12)
FM(w)ZK;M YMkC(@— ko) + YMmC* (0yo— o). for t—, and is obtained as

(F9 e fiomo /KT

p{sd= t = 0), (F16

2. Calculation of pump—probe spectra u = Pan (1=99) = Sye Fono kT 2 kk(0),  (F16
As in the POP case discussed in the text, a perturbatiofhere the detailed balance,

theory for the coupling to external fields is used and the _ . KRR

equation of motion for the off-diagonal elemepf§)(t) then CRYw)=e "/KTCRe) — w), (F17

is following from Eqs(4.15 was used.
In terms of a transform of Eq(F15 and using Egs.

nFV S : :
g PSB(U = —lw,wp(n)(t)—f dr{S, (e_'vaTy C(7) (F12) and(F16) the APy (w) is given by

+e_iw#K77VKC*(T))_27yVMM Re{C(T)}} —i wAIiM(w) +2N7MN{’EC(G)MN+~(D)
+C* (wun— ) APy (@)~ (Cloyu+ o)

d
(n) —
y(t=7)+ — ot P,uu(t)lex rads (F10 +E*(wNM—w))AﬁN(w)}

where the field partd/ dt) p'f)(t)| ex.raqiS given in Eq.(4.37).

i
o _plea)L _ p(eq) ¢
The Fourier—Laplace transform of the above equation is PuP+ —Pu Znymn(Clount )

uEv. +C* (oyn—w)]—e /KT C oy + o)
—i0pN(w) = =10, P (@) {2 (7, Clo—0,,)

+ yVK(C(w;LK_ (.0))* )

2%, REC(O) D))

+C* (oyw— o))+ S (w), (F18

where ${2),(w) is the Fourier—Laplace transform of the
source termS{2),(t) in Eq. (F13. There is no singularity at
»=0 in the second term on the rhs, since the subsequent
bracket vanishes ab=0 because of the detailed balance,
Eq. (F17.

In addition to the above off-diagonal elements an equation AS before, a delta function probe pulse tgt and fast

for the second-order diagonal elemetg(t)= p (t) has Intra- exciton PES relaxation are assumed in the calculation
to be solved, which is of the pump—probe signal, E44.35. The three contribu-
tions in Eq.(4.44) then are

+J dTeleﬁt PL“Z( )|ex—rad- (F1D)

J t )
EPM(”:_ZE”W(LMR* ICnPu(t= ) GB(w) =~ (4ulf")?Du(w,COP S P(ty), (F19

_Re{einMTC(T)}pK(t_T) +SI(VI2l)VI(t)’ where Dy, (w,COP) is the COP absorption lineshape, Eq.
(F6),
(F12 S (a2
SHw)=— )2D{,(w,COPPy(ty), (F20
with the source term H M (et u mltor
2 with the COP fluorescence lineshapg (w,COP), Eq(F8),
Siin(t)= 7 uif” Im(e'Prdpay(1)). (F13  and

The p{}(t) on the right is obtained as the inverse Fou-

ESA(w)= 2 (14”20 *Dion(@, COPPu(ty),
rier transform of{1)(w) which is obtained from Eq(F11) M.2N

as (F21)
(PR - where  the gxcited state  absorption lineshape
(), N M Equ(w Qpu) Duy_on(w,COP) is
Abmo( @)= w—wyo+ily(w)’ (F14 1
Dy_on(@w,COP = —1Im ; — . (F22

where thel'y, function is given in Eq.(F7) and Eﬂpu(w
— ) is the transform of the pump pulse envelcﬁqepu(t).
To ensure existence of the integral in EF5), the F(t)

there should tend to zero &s>oc. With this goal ensured an T ()= E Yonak C(

equation of motion for

APy(1) =Py (1) = Pi;?, (F19)

w— oyt n(w)

The damping functiod ) (w) is

! !

w_wéKM)_"; 7MK6(wéNK_ o)

+ ¥hnanCl@— @), (F23
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where they,yox and yon,n are given in Eqs(4.55, (D14).
The shifted one-exciton energieg,, are those in Eq4.25,
the two—exciton energies,,, are defined in Eq(4.52 and

’ N N
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