Erratum: "On the theory of the strange and unconventional isotopic effects in ozone formation" [J. Chem. Phys. 116, 137 (2002)]

Yi Qin Gao and R. A. Marcus

Noyes Laboratories, 127-72, California Institute of Technology, Pasadena, California 91125

[DOI: 10.1063/1.1458540]

The values of the abscissa (pressure) in Fig. 8 should be divided by 2. Neither the discussion nor the conclusions are affected.

Erratum: "Equations of state for fluids: The Dieterici approach revisited" [J. Chem. Phys. 115, 1460 (2001)]

Richard J. Sadus

Centre for Molecular Simulation and School of Information Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia

[DOI: 10.1063/1.1455624]

The vapor-liquid equilibria calculations reported for Eq. (5) used values of a = 2.99679 RT^cV^c and y = 0.357057 for the equation of state parameters. These values were identified incorrectly as being valid at the critical point, and the critical compressibility factor was stated incorrectly as $Z^c = 0.2705$. The correct values at the critical point, obtained by applying the critical conditions to Eq. (5), are a = 3.19960 RT^cV^c and y = 0.382132. The correct value for the critical

compressibility factor predicted by Eq. (5) is $Z^c = 0.2545$. Using these values would result in the coexisting vapor and liquid phases being located at different densities. In general, this means that the quality of agreement with experiment reported in Figs. 1, 3, 4, and 5 would decline slightly for the vapor and liquid phases. The comparison with experiment for the coexistence pressure illustrated in Fig. 2 would not cross the experimental curve.