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Application of the z-transform to composite materials
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Applications of the z-transform were made earlier to interfacial electron transfer involving
semi-infinite solids, e.g., semiconductor/liquid and metal/liquid interfaces and scanning tunneling
microscopy. It is shown how the method is readily adapted to treat composite materials, such as
solid/solid interfaces or ‘‘molecular wire’’/solid interfaces. ©2001 American Institute of Physics.
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I. INTRODUCTION

The electronic structure of solids having surfaces
been of much interest in a variety of physical and chem
studies.1–4 Among the simple theoretical methods used
treating the electronic properties of solids the tight-bind
approach is considered the simplest that is also reliable
approximate calculations.1,3 In the implementation of this
method to solids with surfaces, the solids can be conside
as consisting of coupled atomic layers parallel to the surfa
The system can then be simplified as a one-dimensio
chain, with each unit representing a principal layer.5,6 The
principal layers are then treated separately using the t
dimensional space group symmetry.

Various methods have been developed in tight-bind
studies of solids having surfaces. In the ‘‘slab’’ method7 the
solid is treated as consisting of a finite number of princi
layers parallel to the surface and the electronic structure
such a slab is usually obtained by direct diagonalization
the Hamiltonian. The elements of the Hamiltonian are
pressed in terms of atomic or molecular orbitals and th
interactions within and between layers. Other methods
semi-infinite solids include the transfer matrix6,8 and
scattering-theoretic9 formalisms, which usually employ
Green function techniques.

Instead of the Green function method, az-transform
method has also been used to treat the electronic structu
a semi-infinite solid.10 The z-transform, also known as th
discrete Laplace transform,11 had been applied earlier i
electrical engineering and allied fields. The transform
duces the problem of solving an infinite set of linear diffe
ence equations to an algebraic equation. This transf
method can be applied to multi-band and/or complex in
acting systems and still be transparent in its mathema
results. It was recently used to obtain the electronic w
functions of single element~Si! and compound element~InP!
semiconductors.12 The calculated electronic wave function
were then used to calculate the electronic coupling ma
element for electron transfer reactions at semiconduc
liquid interfaces. Thez-transform method proved to be effi
cient and the results showed good agreement with thos
the slab method in those studies.

The Green function approach lends itself quite natura
9920021-9606/2001/115(21)/9929/6/$18.00
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to focusing on local regions,13,14 such as defects or surface
It is adaptable to thermal averaging, and there are w
defined procedures for treating Green functions and s
ming over formal expansions. The wave function approa
has been more commonly used in chemical studies, part
larly in the form of a slab or cluster approach, since it h
permitted very detailed electronic structure calculations. T
Green function has been extensively used in recent yea
the treatment of ‘‘molecular wires’’ and related systems.14

In earlier studies, thez-transform was applied to the
treatment of semi-infinite solids,10 including electron transfer
reactions for scanning tunneling microscopy,15,16

semiconductor/liquid12 and metal/attached monolaye
systems.17 In the present paper the method is extended
composite systems, such as solid/solid interfaces. The ex
sion also applies to ‘‘molecular wire’’/solid interfaces, as
particular example of a composite system. Interfaces
tween a metal and a semiconductor and that between
semiconductors have been studied extensively in
literature,18–20and reflect the scientific and technological i
terest in such systems. Their electronic structures have b
studied by Green function techniques, using tight-binding3,18

or pseudopotential methods.2 In the present paper the elec
tronic wave function of such systems is obtained by int
ducing separatez-transforms for the coefficients of both so
ids and using the interaction parameters between the
solids. Both bulk and interfacial states can be studied in
manner.

II. THE z-TRANSFORM METHOD FOR TREATING
SEMI-INFINITE SOLIDS AND SOLID ÕSOLID
INTERFACES

A. z transform

We have noted earlier the use of ‘‘principal layers
which are parallel to the surface, and the subsequent tr
ment of the system is one-dimensional, each unit bein
principal layer.5 In the following, we first consider the tight
binding wave functions for a one-dimensional solid–so
interface, and show how thez-transform method can be ap
plied to it. For its application to solid/solid interfaces, it
useful to first illustrate thez-transform method by applying i
to electronic wave functions of a semi-infinite solid. A mo
9 © 2001 American Institute of Physics
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detailed derivation is given in Ref. 10. In this approach
tight-binding type HamiltonianH and electronic wave func
tions Ck can be written as

H5a1u1&^1u1a (
n52

`

un&^nu1S b (
n51

`

un11&^nu1c.c.D ,

~1!

uCk&5 (
n51

`

cn~k!un&, ~2!

where a15^1uHu1&, a5^nuHun& ~for n>2!, b5^n
11uHun& ~for n>1!, and the coefficientcn(k) in Eq. ~2! is
the solution of an infinite set of linear equations,

b* cn111~a2E!cn1bcn2150, n>2, ~3!

with the boundary condition

b* c21~a12E!c150. ~4!

In the notation thek-dependence of thecn is suppressed fo
brevity.

To solve the linear equations given by Eq.~3!, the
z-transform forcn is defined by

Z~cn!5 (
n51

`

cnz12n[F~z!, ~5!

which, using Eqs.~3! and ~4!, can be shown to yield10

F~z!5c1

~a2a1!z1b* z2

b* z21~a2E!z1b
. ~6!

The coefficientscn are recovered using the inversez trans-
form of F(z),

cn5
1

2p i RC
F~z!zn22 dz, ~7!

that is

cn5
c1

2p i RC

~a2a1!1b* z

b* z21~a2E!z1b
zn21 dz. ~8!

The latter is readily integrated using Cauchy’s residue th
rem. Thez-transform is applied to solid/solid interfaces
the next section. For simplicity, the solid/solid interfaces w
be studied using mainly one-dimensional models, but the
sults are immediately generalized to the 3D case. Ideal in
faces and reconstructed interfaces are treated separate
the following. The constantc1 can be evaluated by norma
izing the wave function to a delta function.10

B. Flux, transmission and reflection coefficients

In the present study we shall need expressions for
probability flux in the tight-binding approximation and fo
transmission and reflection coefficients at an interface. T
are readily obtained: From the time-dependent Schro¨dinger
equation i\]uC&/]t5HuC&, and a wave functionuC&
5(mcm(t)un& and operating on the left bŷnu we have
Downloaded 05 Apr 2007 to 131.215.21.81. Redistribution subject to AIP
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]cn

]t
5^nuHun11&cn111^nuHun21&cn21

1^nuHun&cn . ~9!

Upon multiplying bycn* and subtracting the complex conju
gate we have

]

]t
ucnu25

1

i\
@~^n21uHun&cn21* cn2c.c.!

2~^nuHun11&cn* cn112c.c.!# . ~10!

The right-hand side has the form of the fluxSn21→n from
siten21 into siten minus the fluxSn→n11 out of siten into
site n11. We have

Sn21→n5
2

\
Im^n21uHun&cn21* cn , ~11!

where Im denotes the imaginary part. In the limit where t
cn(t) in Eq. ~10! vary ase2 iEt/\ in Eq. ~10! yields the usual
tight-binding equation, and the time dependence in Eq.~11!
for the fluxSn21→n disappears. Equation~11! can be written
in a form reminiscent of the continuum case:21

Sn21→n5
2

\
Im b* cn21* Dcn , ~12!

whereDcn is the first-order differencecn2cn21 .
The transmission coefficientT at the interface of two

solids is given by the ratio of the transmitted and reflect
fluxes

T5Strans/Sinc , ~13!

while the reflection coefficientR is the ratio of reflected and
incident fluxes,Srefl being negative

R5uSreflu/Sinc . ~14!

C. Ideal interface between two one-dimensional
one-band systems

The one-dimensional model of the composite interface
illustrated in Fig. 1~a!. The wave function of such a system
can be written in terms of localized atomic orbitals

FIG. 1. Schematic picture of the interface formed by two semi-infinite line
chains:~a! an ideal interface,~b! a reconstructed~coated! interface.a, b,
and g are the interaction parameters. The sites on the left-hand side
denoted by negative numbers and the sites on the right-hand side ar
noted by positive numbers.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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uCk&5 (
n52`

`

cnun& ~nÞ0!, ~15!

whereun& again denotes the orbital localized at thenth site.
The tight-binding Hamiltonian of this system can b

written as

H5 (
n52`

21

a2un&^nu1S (
n52`

21

b2un&^n21u1c.c.D
1 (

n51

`

a1un&^nu1S (
n51

`

b1un11&^nu1c.c.D
1~gu1&^21u1c.c.!, ~16!

where b1 and b2 are the interaction parameterŝn
11uHun& between the neighboring sites within each of t
two semi-infinite chains, denoted by positive and negat
numbers, respectively,a1 anda2 are the corresponding Cou
lombic parameters, andg(5^1uHu21&) is the interaction
parameter between the two adjacent sites 1 and21 of the
two chains. As can be seen from the Hamiltonian, it is
sumed here for simplicity that the interface consists of o
two sites (21 and 1!, and at first the Coulombic parametera
for each of the two sites at the interface is given the sa
value as that in each semi-infinite solid. When the interfac
potential parametersa1 and a21 are different from their
bulk values and/or when the interaction involves more th
the nearest neighbors, the same derivation is applicable
the final formulas are more complicated.

Using the same strategy as that used in the semi-infi
solid case a set of difference equations is obtained for
coefficientscn’s, n51,2, . . . ,̀ and a set for the other coe
ficients, n521,22, . . . ,2`, instead of just one set o
equations. These two sets are coupled by the coefficientsc21

andc1 ,

b1* cn111~a12E!cn1b1cn2150,

n52,3,4, . . . ~solid 1!, ~17!

b1* c21~a12E!c11gc2150, ~18!

and

b2* cn111~a22E!cn1b2cn2150,

n522,23,24, . . . ~solid 2!, ~19!

g* c11~a22E!c211b2c2250. ~20!

The respectivez transforms for solid 1 (n>1) and solid 2
(n<21) are

F1~z!5 (
n51

`

cnz12n,F2~z!5 (
n521

2`

cnz11n. ~21!

With these definitions,F1(z) and F2(z) converge when
uzu<1 andn→` and n→2`, respectively. Application of
the z transform to the two sets of difference equations, E
~17!, ~19!, and~21! yield

F1~z!5
b1* z2c11~a12E!zc11zb1* c2

b1* z21~a12E!z1b1

~solid 1!, ~22!
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F2~z!5
b2z2c211~a22E!zc211zb2c22

b2z21~a22E!z1b2*
~solid 2!.

~23!

Equations~18! and ~20!–~23! yield

F1~z!5
c1b1* z22c21gz

b1* z21~a12E!z1b1

~solid 1!, ~24!

F2~z!5
c21b2z22c1g* z

b2z21~a22E!z1b2*
~solid 2!. ~25!

The coefficients obtained by the inversez transform are

cn5
1

2p i RC
F1~z!zn22 dz ~solid 1, n.0!, ~26!

cn5
1

2p i RC
F2~z!z2n22 dz ~solid 2, n,0!. ~27!

For n51 and n521, integration of Eqs.~26! and ~27!
yields c15c1 andc215c21 , as they should.

To obtain solutions which are propagating to infinity
both sides of the solid,cn andc2n should neither vanish no
become infinite asn→`. ~We treat bound interfacial state
later.! We thus require that the poles of the integrand in E
~26! and~27! lie on the unit circle, a result which implies tha
the solutionz5z1 of

b1* z21~a12E!z1b150 ~28!

and the solutionz5z2 of

b2z21~a22E!z1b2* 50 ~29!

both lie on the unit circle. In a simple case whereb1 andb2

are real, the solutions of Eqs.~28! and ~29! are both of the
type e6 iu, but each typically has a different value ofu. We
then have

E2a15b1~eiu1e2 iu!52b1cosu1 ~30!

and

E2a252b2cosu2 , ~31!

which also serve to relateu2 to u1 .22

The cn for n.0, as discussed earlier, is given by E
~26!. ~The extension to complex values is readily made.! The
poles of the integrand of the right-hand side of Eq.~26!
occur atz5exp(iu1) and z5exp(2iu1). The former gives a
term exp(inu1) and the latter exp(2inu1). After evaluating the
residues, we have

cn5
~c1b12c21ge2 iu1!einu1

2ib1sinu1

2
~c1b12c21geiu1!e2 inu1

2ib1sin u1
~n.0, solid 1!.

~32!

Similarly, from Eq.~27!, we have
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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cn5
~c21b22c1ge2 iu2!e2 inu2

2ib2sinu2

2
~c21b22c1geiu2!einu2

2ib2sin u2
~n,0, solid 2!.

~33!

The constantsc1 and c21 are obtained by a normalizatio
and by satisfying a boundary condition at infinity. For e
ample, if a traveling wave in solid 2,einu2, is incident from
the left in Fig. 1, and is partially reflected at the interfac
and a purely outgoing wave,einu1, occurs in solid 1 then the
boundary condition is to set the coefficient of thee2 inu1 term
(n.0) in Eq. ~32! equal to zero. Thereby,

c1b15c21geiu1, ~34!

and so from Eq.~33!, denoting thecn for the transmitted
wave in solid 1 bycn

trans, we have

cn
trans5c1ei (n21)u1 ~n.0!. ~35!

Thecn for the incident wave part of Eq.~33! in solid 2 is
denoted bycn

inc and, using Eq.~34!, is given by

cn
inc52

c1

2igb2 sin u2
~b1b2e2 iu12g2eiu2!einu2 ~n,0!.

~36!

The cn for the reflected wave in solid 2 at the interface is

cn
refl5

c1

2igb2 sin u2
~b1b2e2 iu12g2e2 iu2!e2 inu2 ~n,0!.

~37!

The incident flux, using Eq.~11!, is

Sinc5
uc1u2

4\g2b2sin u2

@b1
2b2

222b1b2g2 cos~u11u2!1g4#.

~38!

The reflected flux is

Srefl52
uc1u2

4\g2b2 sin u2

@b1
2b2

222b1b2g2

3cos~u22u1!1g4# ~39!

and the transmitted flux is

Strans5
uc1u2b1 sin u1

\
. ~40!

It is readily verified thatSinc1Srefl5Strans, Srefl being nega-
tive. The ratiosT and R in Eqs. ~13! and ~14! are immedi-
ately obtained from Eqs.~38!–~40!.

Two limiting cases are readily retrieved from Eqs.~32!–
~34!: In the limiting case whereg50, the two semi-infinite
solids are uncoupled, and the above expressions yield w
functions which are those of semi-infinite chains.1,10 The
other limiting case is where the two semi-infinite chains
the same, so thatg5b15b2 , a15a2 , andu15u25u. We
then have an infinite one-dimensional chain of sites, andcn

5einuc1 for all n.
Downloaded 05 Apr 2007 to 131.215.21.81. Redistribution subject to AIP
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At both metal–semiconductor23 and semiconductor–
semiconductor interfaces,19 bound interfacial states are com
mon and are known to play an important role in determin
physical features such as conduction behavior18 and the
Schottky barrier height.19 The bound interfacial states hav
been studied extensively using the Green function metho24

In the following it is seen that thez-transform method simi-
larly provides an examination of conditions and energy v
ues for these interfacial states.

To illustrate the use of thez-transform method for this
purpose, we again model such a situation by a o
dimensional chain, again taking theb ’s andg to be real, for
simplicity. In this case, the solutions of Eqs.~28! and~29! are
both of the formz5e2u1,2, where the real parts ofu1 andu2

are positive. Sinceeu1 is also a solution of Eq.~28!, in order
to avoid cn increasing asn increases, the integrand of Eq
~26! is such that the numerator hasz2eu1 as a factor to
cancel a corresponding term in the denominator. Thus
require that

c1b1z1c21g}z2eu1 ~41!

which yields

c1

c21
52

g

b1
e2u1. ~42!

Similarly, we have that

c21

c1
52

g

b2
e2u2 ~43!

from the requirement thatcn(n,0) decreases asn decreases.
Comparison of Eqs.~42! and ~43! finally yields

eu11u25
g2

b1b2
. ~44!

The interfacial states can exist only if Eq.~44! is satisfied,
and thus g2/b1b2 must exceed unity. These results a
readily extended to three-dimensional cases and comp
valuedb ’s and g. The z-transform method proves to be
simple method for obtaining the existing condition of inte
facial states.

D. One-dimensional one-band systems
with a reconstructed and Õor coated interface

When two solids form a heterojunction, the interface
frequently reconstructed. In many cases one of the solid
coated by some other material beforehand. Such syst
have usually been treated by the Green function techniqu20

This situation is readily modeled by treating the interface
a different unit from the two bulk phases, as illustrated
Fig. 1~b!. One type of atom occupies sites from 1 to`, those
of the other type occupy21 to 2`, and the interface occu
pies site 0. Using the same parametersa1 , a2 , b1 , andb2

tacitly defined in Eq.~16! and introducing

a05^0uHu0&, g15^1uHu0&, g25^0uHu21&, ~45!

the following linear equations are obtained for this system
the same method as that described earlier,
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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b1* cn111~a12E!cn1b1cn2150, n52,3,4, . . . ,
~46!

b1* c21~a12E!c11g1c050, ~47!

and

b2* cn111~a22E!cn1b2cn2150, n522,23,

24, . . . , ~48!

g2* c01~a22E!c211b2c2250. ~49!

Electronic wave functions of such a system can again
obtained using thez-transform method, again treating theb ’s
andg as real, for simplicity. Using the boundary condition

c05
c1g11c21g2

E2a0
, ~50!

the tight-binding coefficients are obtained as

cn5
1

2p i RC

H c1S b1z2
g1

2

E2a0
D 2c21

g1g2

E2a0
J zn21

b1z21~a12E!z1b1

dz,

~51!

cn5
1

2p i RC

H c21S b2z2
g2

2

E2a0
D 2c1

g1g2

E2a0
J z2(n11)

b2z21~a22E!z1b2

dz.

~52!

The condition for the existence of bound interfac
states can be found in a way similar to that discussed in
preceding section. For bound interfacial states there sh
only be terms of exponentially decaying waves in the expr
sion for cn . Accordingly, terms that increase asn increases
are made to vanish. As in the preceding section, one obt

c1S g1
2

E2a0
2b1eu1D 5c21

g1g2

a02E
, ~53!

c21S g2
2

E2a0
2b2eu2D 5c1

g1g2

a02E
. ~54!

In order for there to be a nontrivial solution forc1 andc21 ,
the determinant of the coefficients in Eqs.~53! and~54! van-
ishes, yielding

g1
2

b1
e2u11

g2
2

b2
e2u25E2a0 . ~55!

The requirement that the wave functions decay in both s
of the solid yields the following condition for the existenc
of bound interfacial states, obtained by requiring that
poles in Eqs.~51! and ~52! be of the formz5eu1 and eu2,
respectively,

E5a112b1 coshu15a212b2 coshu2 ,u1.0, u2.0.
~56!

It is readily verified that the expected results can be obtai
for several limiting situations.

A simple semi-infinite system is achieved by setting

g15b1 , g25b250, a250. ~57!
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The condition for the existence of bound surface states
be obtained by applying the above equalities to Eqs.~55! and
~56!,

a12a05b1eu1, u1.0 ~58!

which can be rewritten as

a12a0

b1
.1, ~59!

and is in agreement with the known result.1,10

Another limiting case occurs when two identical sem
infinite linear chains form an interface

b15b25g15g2 , a15a2 . ~60!

It then readily follows that the condition for the existence
bound interfacial states is

a12a0.0, ~61!

i.e., that the surface states below the allowed band of
infinite chain can exist only if thea0 is more negative than
a1 .

III. CONCLUDING REMARKS

In the present study thez-transform method has bee
applied to composite materials, such as solid/solid interfa
The existing condition for bound interfacial states is obtain
in terms of tight-binding solid state parameters, treating b
reconstructed and ideally nonreconstructed interfaces. Tz
transform and the models introduced in the present paper
be applied to systems of experimental interest, includ
charge transfer through diodes and molecular wires. In p
ticular, it can be applied, using the tight-binding wave fun
tions, to study the interface between a ‘‘molecular wire’’ a
a metallic surface25 and the contact between nanotubes a
metals.26
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