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Application of the z-transform to composite materials
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Applications of theztransform were made earlier to interfacial electron transfer involving
semi-infinite solids, e.g., semiconductor/liquid and metal/liquid interfaces and scanning tunneling
microscopy. It is shown how the method is readily adapted to treat composite materials, such as
solid/solid interfaces or “molecular wire"/solid interfaces. @001 American Institute of Physics.
[DOI: 10.1063/1.1416127

I. INTRODUCTION to focusing on local regions;'*such as defects or surfaces.
It is adaptable to thermal averaging, and there are well-
The electronic structure of solids having surfaces haslefined procedures for treating Green functions and sum-
been of much interest in a variety of physical and chemicaming over formal expansions. The wave function approach
studiest™* Among the simple theoretical methods used forhas been more commonly used in chemical studies, particu-
treating the electronic properties of solids the tight-bindinglarly in the form of a slab or cluster approach, since it has
approach is considered the simplest that is also reliable fopermitted very detailed electronic structure calculations. The
approximate calculation’s’ In the implementation of this Green function has been extensively used in recent years in
method to solids with surfaces, the solids can be consideretthe treatment of “molecular wires” and related systetfs.
as consisting of coupled atomic layers parallel to the surface. In earlier studies, the-transform was applied to the
The system can then be simplified as a one-dimensionateatment of semi-infinite solid®,including electron transfer
chain, with each unit representing a principal lay®The reactions for scanning tunneling microscdpy®
principal layers are then treated separately using the twosemiconductor/liquitf and metal/attached monolayer
dimensional space group symmetry. systems. In the present paper the method is extended to
Various methods have been developed in tight-bindingcomposite systems, such as solid/solid interfaces. The exten-
studies of solids having surfaces. In the “slab” methdde  sion also applies to “molecular wire”/solid interfaces, as a
solid is treated as consisting of a finite number of principalparticular example of a composite system. Interfaces be-
layers parallel to the surface and the electronic structure dfveen a metal and a semiconductor and that between two
such a slab is usually obtained by direct diagonalization ofemiconductors have been studied extensively in the
the Hamiltonian. The elements of the Hamiltonian are exditerature’®=2°and reflect the scientific and technological in-
pressed in terms of atomic or molecular orbitals and theiterest in such systems. Their electronic structures have been
interactions within and between layers. Other methods fostudied by Green function techniques, using tight-bindifig
semi-infinite  solids include the transfer maff and  or pseudopotential methodsdn the present paper the elec-
scattering-theoretic formalisms, which usually employ tronic wave function of such systems is obtained by intro-
Green function techniques. ducing separate-transforms for the coefficients of both sol-
Instead of the Green function method, zaransform ids and using the interaction parameters between the two
method has also been used to treat the electronic structure 8lids. Both bulk and interfacial states can be studied in this
a semi-infinite solid® The ztransform, also known as the manner.
discrete Laplace transforfh,had been applied earlier in
electrical engineering and_ aIIied.fi(.eI(-js. The trgnsform e THE ZTRANSEORM METHOD FOR TREATING
duces the prOblem of SO|V|ng an infinite Set of ||-near differ- SEMI-INFINITE SOLIDS AND SOLID/SOLID
ence equations to an algebraic equation. This transforn\NTERFACES
method can be applied to multi-band and/or complex inter-
acting systems and still be transparent in its mathematicl
results. It was recently used to obtain the electronic wave We have noted earlier the use of “principal layers,”
functions of single elemeriSi) and compound elemefinP)  which are parallel to the surface, and the subsequent treat-
semiconductor$? The calculated electronic wave functions ment of the system is one-dimensional, each unit being a
were then used to calculate the electronic coupling matriprincipal layer In the following, we first consider the tight-
element for electron transfer reactions at semiconductofdinding wave functions for a one-dimensional solid—solid
liquid interfaces. The-transform method proved to be effi- interface, and show how thetransform method can be ap-
cient and the results showed good agreement with those g@lied to it. For its application to solid/solid interfaces, it is
the slab method in those studies. useful to first illustrate the-transform method by applying it
The Green function approach lends itself quite naturallyto electronic wave functions of a semi-infinite solid. A more

z transform
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detailed derivation is given in Ref. 10. In this approach the
tight-binding type HamiltoniaH and electronic wave func-
tions ¥, can be written as

H=al|1>(1|+anz2 [n){n|+ anl [n+ 1>(n|+c.c.),
D

(W= 2, cnkIn), @
where a;=(1|H|1), a=(n[H|n) (for n=2), B=(n
+1|H|n) (for n=1), and the coefficient,(k) in Eq. (2) is
the solution of an infinite set of linear equations,

B*chi1+(a—E)c,+Bc,_1=0, n=2, (3
with the boundary condition

B*cy+(ay—E)c,=0. 4
In the notation th&k-dependence of the, is suppressed for

brevity.
To solve the linear equations given by E(), the
z-transform forc,, is defined by

Z<cn>=n§l c, 2t "=F(2), (5)

which, using Eqs(3) and(4), can be shown to yiefd

(a—ay)z+ B*2?
‘24 (a—E)z+ B

F(z)=c (6)

The coefficientsc,, are recovered using the invergdrans-
form of F(2),

1
_ n—2
Cn oy ﬁ:F(z)z dz, (7)
that is
_C (a—ay)+p*z
=2t Fep 2t (a—E)zr B ®
cB*z°+(a—E)z+ B

The latter is readily integrated using Cauchy’s residue theo- ~ Sn-1-n=7 Im B~ Cho14Ch,

rem. Theztransform is applied to solid/solid interfaces in
the next section. For simplicity, the solid/solid interfaces will

be studied using mainly one-dimensional models, but the re-

sults are immediately generalized to the 3D case. Ideal inte
faces and reconstructed interfaces are treated separately
the following. The constant; can be evaluated by normal-
izing the wave function to a delta functidf.

B. Flux, transmission and reflection coefficients

In the present study we shall need expressions for th
probability flux in the tight-binding approximation and for
transmission and reflection coefficients at an interface. The
are readily obtained: From the time-dependent Sdinger
equation i d|W)/st=H|¥), and a wave function|¥)
=3 Cm(t)[n) and operating on the left byn| we have
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FIG. 1. Schematic picture of the interface formed by two semi-infinite linear
chains:(a) an ideal interface(b) a reconstructedcoated interface.«, 3,

and y are the interaction parameters. The sites on the left-hand side are
denoted by negative numbers and the sites on the right-hand side are de-
noted by positive numbers.

Jc
iﬁ(9—t"=(n|H|n+1>cn+1+<n|H|n—1>cn_l

+(n[H[n)c,. (€)

Upon multiplying byc} and subtracting the complex conju-
gate we have

d , 1 .
E|Cn| :m[«n_ 1[H[n)cy_1ch—c.c)

—({n|H|n+1)crc,1—c.c)]. (10

The right-hand side has the form of the fl&_,_,, from
siten— 1 into siten minus the fluxS,_,,. 1 out of siten into
siten+1. We have

2
Si-1-n=7 IM(n—1[H|n)c}_,c,, (11)
where Im denotes the imaginary part. In the limit where the
cy(t) in Eq. (10) vary ase™'EY" in Eq. (10) yields the usual
tight-binding equation, and the time dependence in (&)
for the fluxS,_,_,, disappears. Equatidil) can be written
in a form reminiscent of the continuum caSe:

(12

whereAc, is the first-order difference,—c,_;.

The transmission coefficieri at the interface of two
golids is given by the ratio of the transmitted and reflected
flyxes

T=Syans Sinc» (13

while the reflection coefficierR is the ratio of reflected and
incident fluxes S, being negative

R= |Srefl|/sinc- (14

e . . .
C. ldeal interface between two one-dimensional

gne-band systems

The one-dimensional model of the composite interface is
illustrated in Fig. 1a). The wave function of such a system
can be written in terms of localized atomic orbitals
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- 72%c_,+(a,—E)zc_1+28,C_
[Py= > cun) (n#0), (15) F’(z)=ﬁ2 ! 2( 2 1+ 2P0 (solid 2.
n=—c B2z +(a2—E)Z+B§
where|n) again denotes the orbital localized at thi site. (23
The tight-binding Hamiltonian of this system can be Equations(18) and (20)—(23) yield
written as
-1 -1 c1Biz*—c 1yz
F'(2)= (solid 1), (24)
H= 2 as|ny(n|+ nz Bo|n){(n—1|+c.c. Y22+ (a;—E)z+ B,
- ” _ C_1B2°—C1y*Z .
+ ny(n|+ n+1)(n|+c.c. F ()= (solid 2). (25)
ngl al| >< | r;l Bl| >< | ﬂ222+(a2_E)Z+ﬂ§

+(y|1){—1|+c.c), (16)
where B, and B, are the interaction parameter&n

The coefficients obtained by the inveras&ransform are

+1[H|[n) between the neighboring sites within each of the ~ Ca=5_— CF+(Z)Zn72 dz (solid1, n>0), (26)
two semi-infinite chains, denoted by positive and negative

numbers, respectively; and«, are the corresponding Cou-

lombic parameters, ang(=(1|H|—1)) is the interaction Ch=5 CF*(Z)Z*”*2 dz (solid 2, n<0). (27)

parameter between the two adjacent sites 1 addof the
two chains. As can be seen from the Hamiltonian, it is asfor n=1 and n=—1, integration of Eqs(26) and (27)
sumed here for simplicity that the interface consists of onlyyie|dsc,=c, andc_,=c_,, as they should.

two sites (-1 and 3, and at first the Coulombic parameter To obtain solutions which are propagating to infinity in
for each of the two sites at the interface is given the sam@oth sides of the solic;, andc_, should neither vanish nor
potential parameters; and «, are different from their |ater) We thus require that the poles of the integrand in Egs.

bulk values and/or when the interaction involves more thanoe) and(27) lie on the unit circle, a result which implies that
the nearest neighbors, the same derivation is applicable, byle solutionz= z, of

the final formulas are more complicated.

Using the same strategy as that used in the semi-infinite T72%+(ay—E)z+ B,=0 (28
solid case a set of difference equations is obtained for the o
coefficientsc,’s, N=1,2, . .. & and a set for the other coef- 2nd the solutiorz=2z; of
ficient.s, n=-1-2,...,—, instead of just one's'et of Bo2%+ (a—E)z+ B =0 (29)
equations. These two sets are coupled by the coeffictents
andcq, both lie on the unit circle. In a simple case whgrgand 8,
" B _ are real, the solutions of Eq&8) and (29) are both of the
Breneat(ar=B)Cn+ Bin1=0, type e*'?, but each typically has a different value @f We
n=2,3,4... (solidl), (17) thenhave
BicCo+ (a1 —E)cy+yc_ =0, (18 E—a;=p4(e""+e ") =2p,cos 6, (30
and and
B;Cn+1+(a2_E)Cn+ﬂ2cnf1:01 E—a2=2B200802, (31)
n=-2-3-4,... (solid2, (19  which also serve to relate, to ¢, .22
y* 1+ (ap—E)C_ 1+ BoC. =0, (20) The ¢, for n>0, as discussed earlier, is given by Eq.

The respective transforms for solid 1 rf=1) and solid 2
(n<-1) are
Fr(2=2 cz" "F (2= X c,z''™" (2D
n=1 n=-1

With these definitionsF*(z) and F~(z) converge when

|zl<1 andn—« andn— —, respectively. Application of
the z transform to the two sets of difference equations, Egs.

(17), (19), and(21) yield
Biz°ci+(a;—E)zc +2zB% ¢y
- 122+ (a1 —E)z+ By

F'(2) (solid1), (22

(26). (The extension to complex values is readily madée
poles of the integrand of the right-hand side of E86)
occur atz=exp(#,) andz=exp(—i#;). The former gives a
term exp{né,) and the latter exp{iné,). After evaluating the
residues, we have

o (c1B1—c_rye 'f1)enh
n 2i B4sinf,

(C1B1—cC_pye' e "
2iBsin 64

(n>0, solid 7).

(32

Similarly, from Eq.(27), we have
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(C_1B,—crye 'P2)e "%

Ch= - -
n 2i B,sing,
(C_1B2—cyye'%2)en% .
— - - (n<0, solid 2.
2i B,sin 6,
(33
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At both metal-semiconductor and semiconductor—
semiconductor interfacés$ bound interfacial states are com-
mon and are known to play an important role in determining
physical features such as conduction behafi@nd the
Schottky barrier height® The bound interfacial states have
been studied extensively using the Green function method.
In the following it is seen that the-transform method simi-

The constantg; andc_; are obtained by a normalization larly provides an examination of conditions and energy val-
and by satisfying a boundary condition at infinity. For ex- ues for these interfacial states.

ample, if a traveling wave in solid 2%, is incident from

To illustrate the use of thetransform method for this

the left in Fig. 1, and is partially reflected at the interface,purpose, we again model such a situation by a one-

and a purely outgoing wave!"’1, occurs in solid 1 then the
boundary condition is to set the coefficient of #1e" %1 term
(n>0) in Eq.(32) equal to zero. Thereby,

CiB1=c_qye'’, (34

and so from Eq(33), denoting thec, for the transmitted

wave in solid 1 byc?", we have

trans

Cn zclei(nfl)(’l

(n>0). (35)

Thec, for the incident wave part of E¢33) in solid 2 is

denoted b)cir?c and, using Eq(34), is given by

inc_ _ G

Ch m (n<0).

(36)

The ¢, for the reflected wave in solid 2 at the interface is

(ﬁlﬂze—lal_ ,yzel (-)2)ein 02

refl_ G

- _iol— 2 —i02 —in6’2
n 2i 7B2 sin az(ﬁlBZe ye )e

(n<0).
(37)
The incident flux, using Eq11), is

|c4/?

SinCZMWZB—SmG[ﬁfB%— 231B27* cog 0;+ 6,) + y*].
2 2
(39
The reflected flux is
S =—L[Bzﬂ2—2ﬁ B2v?
efl 4%y2B, sin o, 1P2 1P2
X cog 6~ 01) + "] (39
and the transmitted flux is
|c4|?B4 sin 6,
rans:T' (40)

It is readily verified thatS;,;+ Sien= Syans: Sreft D€ING Nega-
tive. The ratiosT andR in Egs. (13) and (14) are immedi-
ately obtained from Eqg38)—(40).

Two limiting cases are readily retrieved from E¢32)—
(34): In the limiting case where/=0, the two semi-infinite

dimensional chain, again taking ti#¥s andy to be real, for
simplicity. In this case, the solutions of Eq28) and(29) are
both of the formz=e™ 12, where the real parts @, and 6,

are positive. Since’: is also a solution of Eq28), in order

to avoid ¢, increasing as increases, the integrand of Eq.
(26) is such that the numerator has-e’t as a factor to
cancel a corresponding term in the denominator. Thus we
require that

01,812-}- C_1y0<2—801 (41)
which yields

C1 Y

= a0 42

C1 B1 42
Similarly, we have that

C1 Y e

—=——pa 72 43

C1 B2 43

from the requirement that,,(n<0) decreases asdecreases.
Comparison of Eqs42) and (43) finally yields

2

BBz

The interfacial states can exist only if E@L4) is satisfied,
and thus y%/B8,8, must exceed unity. These results are
readily extended to three-dimensional cases and complex-
valued B's and y. The ztransform method proves to be a
simple method for obtaining the existing condition of inter-
facial states.

e(91+(92: (44)

D. One-dimensional one-band systems
with a reconstructed and /or coated interface

When two solids form a heterojunction, the interface is
frequently reconstructed. In many cases one of the solids is
coated by some other material beforehand. Such systems
have usually been treated by the Green function techrfique.
This situation is readily modeled by treating the interface as
a different unit from the two bulk phases, as illustrated in
Fig. 1(b). One type of atom occupies sites from I¢pthose
of the other type occupy 1 to —«, and the interface occu-

solids are uncoupled, and the above expressions yield wavges site 0. Using the same parameteis a,, 58;, and 3,

functions which are those of semi-infinite chaind. The

other limiting case is where the two semi-infinite chains are

the same, so that=8,=8,, a1=a,, and ;= 6,=6. We
then have an infinite one-dimensional chain of sites, @nd
=¢e'"’c, for all n.

tacitly defined in Eq(16) and introducing
ao=(0[H|0), y1=(1[H[0), ¥,=(O[H|-1), (45

the following linear equations are obtained for this system by
the same method as that described earlier,
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Bicniit(ar=E)Cy+ Bicy1=0, N=234...,
(46)
BiCo+ (ay—E)cy+ y160=0, (47)
and
B;Cn+1+(a2_E)Cn+ﬁ2Cn71:Oa n:_21_31
—4,..., (48)
¥3Cot (az—E)c_;+ Bc_,=0. (49

Electronic wave functions of such a system can again b'i:'hfi

obtained using the-transform method, again treating tBé&

and vy as real, for simplicity. Using the boundary condition,

_CiyitCo1y2

Co E—ay (50
the tight-binding coefficients are obtained as
2
M) YiY2 | _p-1
1 jﬂ%([ﬁz E—ag C‘lE—ao)Z .
"o2mi Je B1Z%+ (a;—E)z+ By ’
(51
7% Y172
_ _ —(n+1)
1 [Cl(ﬁzz = o) ClE—ao)Z
Ch=5— dz
2mi C [3222+(a2—E)Z+,6’2
(52)
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The condition for the existence of bound surface states can
be obtained by applying the above equalities to E§S). and
(56),

a1~ a’0=,81601, 01>0 (58)
which can be rewritten as

a1~ &g

—>1,

B1

and is in agreement with the known restdf.

Another limiting case occurs when two identical semi-
nite linear chains form an interface

1=Bo=v1= 72, a1=as. (60)

It then readily follows that the condition for the existence of
bound interfacial states is

a1~ ag>0, (61)

(59

i.e., that the surface states below the allowed band of the
infinite chain can exist only if thexy is more negative than
aq.

IlI. CONCLUDING REMARKS

In the present study thetransform method has been
applied to composite materials, such as solid/solid interfaces.
The existing condition for bound interfacial states is obtained
in terms of tight-binding solid state parameters, treating both
reconstructed and ideally nonreconstructed interfaces.zThe

The condition for the existence of bound interfacial transform and the models introduced in the present paper can
states can be found in a way similar to that discussed in thB€ applied to systems of experimental interest, including
preceding section. For bound interfacial states there shoulgharge transfer through diodes and molecular wires. In par-
only be terms of exponentially decaying waves in the expresticular, it can be applied, using the tight-binding wave func-
sion forc,,. Accordingly, terms that increase asncreases tions, to study the interface between a “molecular wire” and
are made to vanish. As in the preceding section, one obtairs Metallic surfac® and the contact between nanotubes and

) metals®®
V1 P Y172
— 1| =
1l g g, Pr® ) Cla—E’ (53 ACKNOWLEDGMENTS
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