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Pressure effects on bimolecular recombination and unimolecular
dissociation reactions

R. A. Marcusa) and Yi Qin Gao
Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125

~Received 22 January 2001; accepted 19 March 2001!

The treatment of pressure effects on bimolecular recombinations and unimolecular dissociations is
discussed. The analysis of recombination and dissociation reactions is made by showing how the
nonequilibrium energy ~E! and angular momentum~J!-dependent steady-state population
distribution functions for the two reactions are related to each other and to the equilibrium
population distribution function at the givenE andJ. As a special case a strong collision model is
then used for the collisional rotational angular momentum transfer, and a ladder model for the
collisional energy transfer. An analytical result is obtained for states below the dissociation
threshold. The extension to recombinations with two exit channels is described, for application to
ozone formation and isotopic effects. ©2001 American Institute of Physics.
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I. INTRODUCTION

Unimolecular dissociations and bimolecular associati
have been intensively studied in the literature, and have b
treated in well-known texts, monographs, and articles.1–5 It
has been recognized for many years that weak collisions
a significant role in the activation–deactivation process
are needed to explain the detailed experimental results
pressure effects.1,2,6–8 An important quantity in these colli
sions is the average energy of transferDE, ^DE&, for the
deactivating collisions and, determined by microscopic
versibility, the average energy transfer in upward~activating!
collisions. Studies have revealed that apart from r
‘‘supercollisions’’9–11 the results for the energy transfer d
pend mainly on̂ DE& ~and the microscopic reversibility re
lated upward average!, and are relatively insensitive to th
precise form of the collisional energy transfer functi
v(E→E8).1,2 In a recent study we have noted that an u
usual ‘‘mass-independent’’ effect in recombination rates
‘‘scrambled’’ systems and unconventional ‘‘mas
dependent’’ effects in unscrambled ones, may, in the in
pretation given there, provide information on the depende
of ^DE& on temperature.12 We discuss this particular aspe
elsewhere,13 using the formalism in the present paper,
well as using an alternative ‘‘exponential-down’’ model f
the collisional deactivation.2 These applications of the
present paper are to recombinations,14 to their isotopic
effects,15,16 and to isotopic exchange reactions.17

The formalism is first given in Sec. II for the case of o
distinguishable exit channel, i.e., for a systemX1YX
→XYX* →XY1X, the asterisk denoting an energetic mo
ecule. In Sec. II the relation of the steady-state distribut
functions, as a function of the energyE and angular momen
tum J, is described for the recombination and dissociat
reactions, both to each other and to the equilibrium distri
tion function. The treatment is specialized in Sec. III to

a!Electronic mail: ram@caltech.edu
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clude the strong collision approximation for rotations and
stepladder model for the collisional energy transfer, so le
ing to an analytical expression for the diffusion in ‘‘energ
space’’ below the reaction threshold for dissociation. T
model reduces significantly the number of quantum sta
needed in a numerical treatment. In Sec. IV the treatmen
extended to the case of two distinguishable exit chann
e.g., X1YZ→XYZ* →X1YZ or XY1Z(XÞZ). The
present equations, or their equivalent, are utiliz
elsewhere.13 Isotopic exchange reactions are discussed
Sec. V.

II. THEORETICAL CONSIDERATIONS

A. Recombination

For the recombination of two particlesX andYZ, where
X may denote an atom or larger particle andYZ may denote
a diatomic or larger particle, the reaction sequence for
combination can be written as

X1YZ ——→
ka8~EJ!

XYZ~EJ!, ~2.1!

XYZ~EJ! ——→
v~E→E8,J→J8!

XYZ~E8J8!, ~2.2!

XYZ~EJ! ——→
ka~EJ!

X1YZ, ~2.3!

XYZ~EJ! ——→
kb~EJ!

XY1Z, ~2.4!

where the energyE and the total angular momentumJ of the
colliding particlesX andYZ are constants of motion in Eqs
~2.1!, ~2.3!, and~2.4!, and where, depending on (EJ), either
or bothka(EJ) andkb(EJ) may vanish. Reactions~2.3! and
~2.4! tacitly includeXYZ(E8J8)’s since theEJ in Eq. ~2.1!
can be anE8J8 and the double integration later in Eqs.~2.7!
and ~2.13! is over allE, J, E8, andJ8.
7 © 2001 American Institute of Physics
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In addition to the first step~2.1! a different reaction
productXZY(EJ) may also be formed, with its own subs
quent sequence of collisional and dissociation steps. It ca
treated separately.18,19

The collisional frequencyv(E→E8,J→J8) for E andJ
transfer is typically proportional to the concentration of t
ambient gas. The componentK of the angular momentum o
XYZalong a major symmetry or near-symmetry axis ofXYZ
may or may not be approximately constant during the li
time of XYZ. We shall consider the latter case~‘‘active ro-
tation’’ K!, and integrate overK in calculating the density o
quantum states of anXYZ of given E and J. We first con-
sider the case where there is only one distinguishable
channel, i.e., whereZ5X in Eqs.~2.1!–~2.4!.

We let c(EJ) be the concentration ofXYZ(EJ) arising
from reaction ~2.1!, abbreviate v(E→E8,J→J8) by
v(EJ,E8J8), and write

E
E8
E

J8
v~EJ,E8J8!dE8 dJ85v, ~2.5!

wherev is the total collision frequency. We define a pop
lation distribution functiong(EJ):

g~EJ!5c~EJ!/~X!~YZ!, ~2.6!

where~X! and (YZ) denote concentrations. In a steady-st
approximation forg(EJ) we have20

05
d

dt
g~EJ!5ka8~EJ!2@ka~EJ!1v#g~EJ!

1E E v~E8J8,EJ!g~E8J8!dE8 dJ8. ~2.7!

This equation can be rewritten by defining an equilibriu
population distribution functiongeq(EJ), such that when in-
troduced into Eq.~2.7! the forward and reverse reaction ra
constants are equal

ka~EJ!geq~EJ!5ka8~EJ! ~2.8!

~microscopic reversibility!, while the collision terms are als
equal~again, microscopic reversibility!:

vgeq~EJ!5E E v~E8J8,EJ!geq~E8J8!dE8 dJ8. ~2.9!

Equation~2.7! then becomes

@ka~EJ!1v#@geq~EJ!2g~EJ!#

5E E v~E8J8,EJ!@geq~E8J8!2g~E8J8!#dE8 dJ8.

~2.10!

We denote the difference between the equilibrium po
lation distribution functiongeq(EJ) andg(EJ) by f (EJ),

f ~EJ!5geq~EJ!2g~EJ!. ~2.11!

Thereby, Eqs.~2.10! and ~2.11! yield a ‘‘master equation’’
for f (EJ),

@ka~EJ!1v# f ~EJ!5E E v~E8J8,EJ! f ~E8J8!dE8 dJ8.

~2.12!
Downloaded 05 Apr 2007 to 131.215.21.81. Redistribution subject to AIP
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The bimolecular recombination rate constantkbi is given
by

kbi5E E @ka8~EJ!2g~EJ!ka~EJ!#dE dJ, ~2.13!

which with Eqs.~2.8! and ~2.11! yields

kbi5E E ka~EJ! f ~EJ!dE dJ. ~2.14!

The rate constantkbi is calculated by solving Eq.~2.12!
for f (EJ) and introducing it into Eq.~2.14!, or alternatively
by calculating the net collisional downward diffusion of th
moleculeXYZ in energy space to form a fully deactivate
XYZ molecule.

B. Unimolecular dissociation

We denote byC(EJ) the concentration of energeticall
excitedXYZ molecules arising in the unimolecular dissoci
tion and introduce a population distribution functionF(EJ)
defined by

F~EJ!5C~EJ!/~XYZ!, ~2.15!

where (XYZ) is the concentration ofXYZ. The unimolecu-
lar dissociation rate is given by

kuni~XYZ!5E E ka~EJ!C~EJ!dE dJ ~2.16!

and so

kuni5E E ka~EJ!F~EJ!dE dJ. ~2.17!

Before proceeding with the equations leading to the a
log of Eqs.~2.12! and ~2.14! for unimolecular reactions we
first note that when there is an equilibrium betweenX1YZ
and XYZ, the equilibrium concentration of excitedXYZ at
any (EJ), ceq(EJ), is the sum of two terms:

ceq~EJ!5c~EJ!1C~EJ!, ~2.18!

wherec(EJ) consists of markedXYZ molecules~labeled by
a dagger, say! which originated fromX1YZ, and of differ-
ently markedXYZ molecules~labeled by two daggers! of
concentrationC(EJ), which originated fromXYZ. Each
marked~dagger or two daggers! molecule may either con
tinue on to the reactants or products region. This progres
followed only until it has reached either destination, at whi
point it loses its label. If it leaves again, it is with a ma
appropriate to the new departure point, dagger or two d
gers. That is, the equilibrium populationceq(EJ) consists of
moleculesXYZ† which arose fromX1YZ and molecules
XYZ†† which arose fromXYZ, but where neither of them
has yet arrived with its current label at a destination. In t
way we consider in the equilibrium population,ceq(EJ), the
point of origin of theXYZ(EJ) and so include in our con
siderations the forward and reverse reactions.

We have introduced expressions for the concentrati
in terms of population distribution functions and note that
equilibrium the ratio (XYZ)/(X)(YZ) equals KX,YZ

XYZ , the
equilibrium constant. From Eq.~2.6! we haveceq(EJ)/(X)
3(YZ)5geq(EJ). Then, upon dividing both sides of Eq
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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~2.18! by the product of the concentrations (X)(XY), then
introducing the equilibrium constant to relate (X)(YZ) to
(XYZ) and using the definition~2.15! of F(EJ), we have

geq~EJ!5g~EJ!1F~EJ!KX,YZ
XYZ . ~2.19!

Inasmuch asf (EJ) is given by Eq.~2.11!, it is seen from Eq.
~2.19! that the population distribution functionF(EJ) for the
unimolecular dissociation is given by

F~EJ!5 f ~EJ!/KX,YZ
XYZ , ~2.20!

a result used in the following.
We consider next for unimolecular reactions the ana

of Eq. ~2.6! and the subsequent equations. In the steady-s
we have21

05
d

dt
F~EJ!5@ka~EJ!1v#F~EJ!

2E E v~E8J8,EJ!F~E8J8!dE8 dJ8.

~2.21!

That is,

@ka~EJ!1v#F~EJ!5E E v~E8J8,EJ!F~E8J8!dE8 dJ8.

~2.22!

It is seen from Eqs.~2.12! and~2.22! that f (EJ) andF(EJ)
obey the same equation relating values at oneEJ to those at
the otherEJ’s. Indeed, they should, by virtue of Eq.~2.20!.

The unimolecular rate constantkuni given by Eq.~2.17!
thus also equals

kuni5E E f ~EJ!ka~EJ!dEdJ/KX,YZ
XYZ . ~2.23!

Thereby,

kuni5kbi /KX,YZ
XYZ , ~2.24!

as expected. Thekbi or kuni can equally be obtained by solv
ing master equations forf (EJ) or F(EJ), since the latter
two functions differ only by a factorKX,YZ

XYZ .

III. SOLUTION OF THE MASTER EQUATION

A. Master equation and stepladder model

In the master equation forf (EJ) we first introduce a
strong collision approximation for rotation by writing

v~E8J8,EJ!5v~E8,E!PJ
eq, ~3.1!

wherePJ
eq denotes the equilibrium distribution ofJ’s. Equa-

tion ~2.12! now reads

@ka~EJ!1v# f ~EJ!5PJ
eqE v~E8,E! f ~E8J8!dE8 dJ8.

~3.2!

We next introduce a stepladder model for the collisio
energy transfer, the steps being of energiesEn ~n50 to `! of
step sizeDE. We note that in the stepladder model^DE&
becomesDE. If En is an energy in a deactivation/activatio
collision stepladder, thenEn5EN2(N2n)DE, where we
Downloaded 05 Apr 2007 to 131.215.21.81. Redistribution subject to AIP
g
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l

chooseN as the value corresponding toEN lying in an inter-
val of DE whose lower limit is at the threshold for dissoci
tion. Later we integrate over eachEn in its relevant energy
interval DE. For the distribution functionf (EnJ), obtained
from Eq.~2.12!, Eq. ~3.2!, and the stepladder model we hav

f ~EnJ!5
PJ

eq~va,n21f n211vd,n11f n11!

ka~EnJ!1v
, ~3.3!

where

f n5E f ~EnJ8!dJ8, ~3.4!

vd is the deactivation collision frequencyv(En8En21),
which will be assumed to be independent ofn in the region
of interest~n close toN!,22 and va,n21 is the collision fre-
quency for the reverse~activation! step~the a in va,n21 de-
notes activation!. The two are related by microscopic rever
ibility, as in Eq. ~3.13! given later.

Summed over the steps of energiesE0 , E1 ,..., thetotal
net incoming fluxSJ for a givenJ is

SJ5 (
n5N

`

SnJ , SnJ5ka~En ,J! f ~En ,J!, ~3.5!

the lower summation limit arising since theka(EnJ)’s vanish
for n,N. To obtainkbi one then integrates theEn in each
SnJ over an energy intervalDE and sums~or integrates! over
J. We then have

kbi5 (
n5N

` E E SnJdEn dJ. ~3.6!

Alternatively, kbi is obtained from the net downward diffu
sional flux in energy space forn,N via Eq. ~3.15! in the
following.

A master equation is obtained for thef’s upon integrat-
ing Eq. ~3.3! over J:

f n5An~va,n21f n211vd,n11f n11!, ~3.7!

where

An5E
J

@ka~EnJ!1v#21PJ
eqdJ ~3.8!

and f n is defined by Eq.~3.4!. This An becomesv21 for n
,N.

When the master equation~3.7! is solved for thef n’s,
subject to the appropriate boundary conditions,f (EnJ) is
obtained from Eq.~3.3!, and kbi is then obtained. Two
boundary conditions are needed since Eq.~3.7! is a second-
order difference equation. One boundary condition is to ta
the population distribution function at the lowest stepg0 to
be zero. The second condition is the conservation of fluxSJ .
We first show in Sec. III B that the equation relating thef n’s
for n<N can be solved analytically.

B. Flux below the dissociation threshold

For energiesEn belowEN the net downward fluxSJ
diff of

the energeticXYZ’s along the energy stepladder can be wr
ten as
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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SJ
diff5PJ

eq@vdgn2va,n21gn21# ~n<N!, ~3.9!

where

gn[E g~EnJ!dJ. ~3.10!

The microscopic reversibility equation is

vdgn
eq[vdE geq~En ,J!dJ

[va,n21E geq~En21 ,J!dJ

[va,n21gn21
eq , ~3.11!

where it can be shown that23

PJ
eqgn

eq5geq~EnJ!5r~EnJ!e2En /kBT/QX,YZ[e2Gn
J/kBT.
~3.12!

TheJ-dependent part of the energy ofXYZ is included inEn

and QX,YZ is the partition function forX1YZ. @The actual
energy of this molecule isEn1D, whereD is the dissocia-
tion energy. To simplify the notation we have denoted t
r(En1D,J) by r(EnJ).# In the last equality in Eq.~3.12!
we have defined a free energy termGn

J , a function ofEn

andJ.
We next rewrite Eq.~3.11! in terms of the free energy

difference,Gn21
J 2Gn

J :

va,n215vd exp~~Gn21
J 2Gn

J!/kBT!. ~3.13!

Thereby, using Eq.~3.9!,

SJ
diff5PJ

eqvd~gn2gn21 exp~~Gn21
J 2Gn

J!/kBT!!

(n<N). ~3.14!

On multiplying Eq.~3.14! by exp(Gn
J/kBT) and summing over

n from n51 to n5N we have

SJ5PJ
eqkdiff

N ~gN2g0 exp~~G0
J2GN

J !/kBT!!5PJ
eqkdiff

N gN ,

~3.15!
wherekdiff

N is defined by

kdiff
N 5vdY (

n51

N

exp~~Gn
J2GN

J !/kBT! ~3.16!

and where we have treated then50 state as a sink by settin
g050. ThePJ

eq cancels in the differenceGn
J2GN

J , and so the
kdiff

N in Eq. ~3.16! does not depend onJ.

C. Case of only one reactive step N in the ladder

We first consider for simplicity the case where only o
recombination stepN in the ladder for theXYZ formation in
reaction~2.1! contributes significantly. In this case there
no need to solve the master equation~3.7!, since there is only
one reactive stateN and a solution for all other statesn,N
was obtained analytically in terms ofgN , namely, via Eq.
~3.15!.

The net incident fluxSJ from reactantsX andYZ for this
EN andJ, using Eqs.~3.5! and ~3.3!, is given by
Downloaded 05 Apr 2007 to 131.215.21.81. Redistribution subject to AIP
s

SJ[SNJ5ka~ENJ! f ~EN ,J!5
va,N21PJ

eqf N21ka~ENJ!

ka~ENJ!1v
,

~3.17!

where the termvd,N11f N11 in Eq. ~3.3! is now absent, since
stateN is the highest state considered in this one-reac
state model.

Equations~3.9! ~for n5N!, ~3.15!, and ~3.17! contain
the unknownsgN andgN21 . Equating these expressions fo
SJ yields two equations. Since there are two unknow
gN21 andgN , one can solve forgN . Use of Eq.~3.15! then
yields a

gN5gN
eqvdka /~vdka1vkdiff

N !, ka[ka~EJ!. ~3.18!

Further, for this model of only one reactive stateN, va,N

must vanish and sov, which equalsvd1va,N , equalsvd .
Equations~3.6!, ~3.15!, ~3.18! and the first equality in Eq.
~3.12!, then yield

kbi5E
EN

E
J

ka~ENJ!kdiff
N geq~ENJ!

ka~ENJ!1kdiff
N dEN dJ, ~3.19!

where theEN integration is over an intervalDE.
In the strong collision limitkdiff

N equals its first term in a
series expansion of Eq.~3.16!, namelyvd , which in turn
now equalsv. Equation ~3.19! then reduces to the usua
strong collision expression, on takingDE to be very large.

D. Case of any number of reactive steps

We consider next the case where there are reactive s
N, N11, N12,...̀ , whereEN lies in (0,DE) and EN1n in
@nDE,(n11)DE#. The contribution of these particular en
ergies to the fluxS at a givenJ is given by Eq.~3.5!, and
Eqs.~3.6!–~3.16! also apply. Equations~3.5!, ~3.3!, and~3.7!
yield

SJ5 (
n5N

` ka~EnJ!PJ
eqf n

An@ka~EnJ!1v#
, ~3.20!

noting thatvd,n11 equalsvd in the present approximation
The f n’s for n.N can be expressed in terms off N by solv-
ing the master equation~3.7!. Upon then equating theSJ in
Eq. ~3.20! to the SJ in Eq. ~3.15!, gN is obtained. Thekbi

equals the downward fluxSJ in Eq. ~3.15!, integrated over
DE and summed~or integrated! over J:

kbi5E (
J

PJ
eqkdiff

N gN dEN . ~3.21!

IV. TWO REACTION EXIT CHANNELS a,b

A. Master equation

We consider now reactions~2.1!–~2.4! where ZÞX.
Equation~2.8! now serves as a definition of a quantity whic
we again write asgeq(EJ):

geq~EJ!5ka8~EJ!/ka~EJ!. ~4.1!

This geq(EJ) is thereby an equilibrium population distribu
tion function.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Equation~2.7! is replaced by

05ka8~EJ!2@ka~EJ!1kb~EJ!1v#g~EJ!

1E E v~E8J8,EJ!g~E8J8!dE8 dJ8, ~4.2!

and so with Eqs.~2.8! and ~2.11! we then have, instead o
Eq. ~2.12!,

@ka~EJ!1kb~EJ!1v# f ~EJ!2kb~EJ!geq~EJ!

5PJ
eqE v~E8,E! f ~E8J8!dE8 dJ8, ~4.3!

where we have again introduced Eq.~3.1!. The bimolecular
recombination rate constant forX1YZ→XYZ is given, fol-
lowing Eqs.~2.11! and ~2.13!, by

kbi
a 5E E ka~EJ! f ~EJ!dE dJ, ~4.4!

where f (EJ) now satisfies the master equation~4.3!.
Upon introducing the stepladder model for the co

sional energy transfer, Eq.~4.3! becomes

f ~EnJ!5
PJ

eq ~va,n21f n211vdf n11!1kb~EnJ!geq~EnJ!

ka~EnJ!1kb~EnJ!1v
,

~4.5!

where f n is again given by Eq.~3.4!. The bimolecular rate
constant is again obtained from the downward diffusio
probability flux given by Eq.~3.5!, integrated overEN and
summed overJ. Thereby, the bimolecular rate constan
which we now denote bykbi

a to indicate that the entranc
channel in the example isa, is again given by Eq.~3.6!,
namely

kbi
a 5(

J
E PJ

eqkdiff
N gNdEN . ~4.6!

A master equation for thef n’s obtained by integrating
f (EnJ) in Eq. ~4.4! over J, is now

f n5Bn~va,n21f n211vdf n11!1Cn , ~4.7!

where

Bn5E PJ
eqdJ

ka~EnJ!1kb~EnJ!1v
,

~4.8!

Cn5E kb~EnJ!geq~EnJ!dJ

ka~EnJ!1kb~EnJ!1v
.

We note that the two exit channels will have slightly diffe
ent energy thresholds, because of a difference in zero-p
energies ofYZ andXY, and the integration in Eq.~4.6! over
EN is intended to begin at the lower threshold of the tw
The master equation~4.7! is first solved for thef’s in terms
of f N and hence ofgN . Then, as before,gN can be obtained
from the boundary condition describing flux conservatio
We proceed as follows.

The net flux entering via channela for a givenJ, SJ
a , is

the same as Eq.~3.5! and so we have
Downloaded 05 Apr 2007 to 131.215.21.81. Redistribution subject to AIP
l

,

int

.

.

SJ
a5 (

n5N

`

SnJ
a , SnJ

a 5ka~En ,J! f ~EnJ!. ~4.9!

The flux outgoing in channelb, SJ
b , is given by

SJ
b5 (

n5N

`

SnJ
b , SnJ

b 5kb~En ,J!g~EnJ!. ~4.10!

The downward diffusional fluxSJ
diff is again given by Eq.

~3.15! and conservation of flux yields

SJ
a5SJ

b1SJ
diff , ~4.11!

which serves as a boundary condition for solution of t
master equation, by providing an equation forgN . Equation
~4.6! then yieldskbi

a .
This material balance equation~4.11! can also be written

equivalently as

(
n5N

`

@ka~EnJ!1kb~EnJ!1kdiff
N #g~EnJ!

5 (
n5N

`

ka~EnJ!geq~EnJ!. ~4.12!

The present equations, or their equivalent, are utiliz
elsewhere in a treatment of isotopic effects.12,13

B. Special case of one reactive step N

An expression forgN is obtained from Eqs.~3.9!, ~3.12!,
~3.15!, ~4.5!, and ~4.9!–~4.11!. From Eq.~4.6! and the first
equality in ~3.12! one then obtains

kbi
a 5E

EN

E
J

ka~ENJ!kdiff
N geq~EJ!

ka~ENJ!1kb~ENJ!1kdiff
N dEN dJ. ~4.13!

On letting DE become very largekdiff
N reduces tovd and

hence tov as before, and the result obtained in Ref. 18
recovered. Further, Eq.~4.13! reduces to Eq.~3.22! when
kb(ENJ) vanishes. The equation forkbi

b is obtained from Eq.
~4.13! by interchanginga’s andb’s.

V. ISOTOPIC EXCHANGE REACTIONS

The isotopic exchange reactions

X1YZ→XY1Z, ~5.1!

whereX, Y, Z are isotopes, are typically studied at low pre
sures, where the newly formed vibrationally hotXYZ* typi-
cally dissociates before it can undergo a collision with t
bath gas. The results are then independent of whether
deactivating collisions are strong or weak, and so the eq
tions given in Refs. 18 and 19 apply.
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lecular reaction and we return to this point in Ref. 21.
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dC(EJ)/dt. We have, using Eq.~2.15!, 052@C(EJ)/(XYZ)2#d(XYZ)/
dt1(dC(EJ)/dt)/(XYZ). But the first term equals 2@C(EJ)/
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1va,n1v08 where the 0 label indicates the possibility that there is no
energy transfer. We note in passing that the approximation that in
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Eq. ~3.4! can have some implications for the behavior ofv.

23We have PJ
eqgn

eq5PJ
eq*geq(En ,J8)dJ8. We write geq(En ,J8) as (2J8

11)rvib(En2EJ8)C, whereC5exp(2En /kBT)/QX,YZ. Here,En2EJ8 ~in
turn, a shorthand forD1En2EN2EJ8! is the vibrational energyEvib

n ,
and sorvib(En2EJ8) is the vibrational density of states. Then writingEn

as En2EJ81EJ8 and integrating overJ8 one obtains PJ
eqrvib(Evib

n )
3exp(2Evib

n /kT)/QX,YZ , which can be rewritten as r(En ,J)
3exp(2En /kBT)/QX,YZ, i.e., asgeq(En ,J), as in the text.
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