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Pressure effects on bimolecular recombination and unimolecular
dissociation reactions
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The treatment of pressure effects on bimolecular recombinations and unimolecular dissociations is
discussed. The analysis of recombination and dissociation reactions is made by showing how the
nonequilibrium energy(E) and angular momentum(J)-dependent steady-state population
distribution functions for the two reactions are related to each other and to the equilibrium
population distribution function at the givdhandJ. As a special case a strong collision model is
then used for the collisional rotational angular momentum transfer, and a ladder model for the
collisional energy transfer. An analytical result is obtained for states below the dissociation
threshold. The extension to recombinations with two exit channels is described, for application to
ozone formation and isotopic effects. @01 American Institute of Physics.
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I. INTRODUCTION clude the strong collision approximation for rotations and a
Unimolecular dissociations and bimolecular association?tepl"’ldder model for the collisional energy transfer, so lead-

have been intensively studied in the literature, and have bedhY to,:em analytical expression for the dlffu§ lon in "‘energ)_/
treated in well-known texts, monographs, and artiéiést ~ SPace below the reaction threshold for dissociation. This

has been recognized for many years that weak collisions plagoddeldre_zduces 5|g_n|f||C?ntI)t/ thet nlumsber (I)\f/ ?hua?tun: sta:e_s
a significant role in the activation—deactivation process an eeded in a numercat freatment. 1n Sec. © treatment 1S

are needed to explain the detailed experimental results Oﬂxten(;l(ef\ioz th)eé;:;se ;)(ert\\/(v% d'St'ngli('ih;b)I(e#;X't c$ﬁnnels,
pressure effects?¢~8 An important quantity in these colli- €9+ - - or ( ). e

sions is the average energy of transiefe, (AE), for the present (aaquation§, or their equ.ivalent, are utiIize_d
deactivating collisions and, determined by microscopic re_elsewheré. Isotopic exchange reactions are discussed in
versibility, the average energy transfer in upweéadtivating Sec. V.

collisions. Studies have revealed that apart from rare

“supercollisions’®~!! the results for the energy transfer de-

pend mainly on{AE) (and the microscopic reversibility re- 1l. THEORETICAL CONSIDERATIONS

lated upward averageand are relatively insensitive to the
precise form of the collisional energy transfer function
w(E—E’').}2 In a recent study we have noted that an un-  For the recombination of two particlesandY Z, where
usual “mass-independent” effect in recombination rates inX may denote an atom or larger particle and may denote
“scrambled” systems and unconventional “mass- a diatomic or larger particle, the reaction sequence for re-
dependent” effects in unscrambled ones, may, in the intercombination can be written as

pretation given there, provide information on the dependence

A. Recombination

ka(EJ)

of (AE) on temperaturé’ We discuss this particular aspect X+Y7 XY Z(EJ) 2.1
elsewheré? using the formalism in the present paper, as ' ’
well as using an alternative “exponential-down” model for w(E—E',J=0")
the collisional deactivatiof. These applications of the XYZEJ)) —— XYZE'D), 2.2
present paper are to recombinatidfisto their isotopic Ka(EJ)
effects;>'®and to isotopic exchange reactiofs. XY Z(EJ) X+YZ, 2.3

The formalism is first given in Sec. |l for the case of one .

b

distinguishable exit channel, i.e., for a systenX+YX
—XYX*—XY+X, the asterisk denoting an energetic mol- ~ XYZEJ) —— XY+Z, (2.9

ecule. In Sec. Il the relation of the steady-state distributionnare the energf and the total angular momentuiof the
functions, as a function of the energyand angular momen- . jjiging particlesX andY Z are constants of motion in Egs.
tum J, is described for the recombination and d|ssomat|on(2_1) (2.3), and(2.4), and where, depending of{), either
reactions, both to each other and to the equilibrium distribuy . 5k (,EJ) andk’b(EJ) may vanish. Reactior(Q’.:%) and
tion function. The treatment is specialized in Sec. Il to in- (2.4 tacietlly includeXY Z(E'J")’s since theEJ in Eq. (2.1)
can be arE’J’ and the double integration later in Eq2.7)
3Electronic mail: ram@caltech.edu and(2.13 is over allE, J, E’, andJ’.
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In addition to the first sted2.1) a different reaction The bimolecular recombination rate consthkgtis given
productXZY(EJ) may also be formed, with its own subse- by
guent sequence of collisional and dissociation steps. It can be
treated separatefy:® Kpi= f f [KL(EJ)—g(EIk(EJ)]dE dJ (2.13
The collisional frequencw(E—E’,J—J") for E andJ
transfer is typically proportional to the concentration of thewhich with Eqgs.(2.8) and(2.11) yields
ambient gas. The componegtof the angular momentum of

XY Zalong a major symmetry or near-symmetry axixXofZ Kpi= f f k,(EJ)f(EJ)AE dJ (2.19
may or may not be approximately constant during the life-
time of XY Z We shall consider the latter caé&ctive ro- The rate constark,; is calculated by solving Eq2.12)

tation” K), and integrate oveK in calculating the density of for f(EJ) and introducing it into Eq(2.14), or alternatively
guantum states of aKY Z of given E and J. We first con- by calculating the net collisional downward diffusion of the
sider the case where there is only one distinguishable exiholeculeXY Z in energy space to form a fully deactivated
channel, i.e., wher&@=X in Egs.(2.1)—(2.4). XY Z molecule.

We letc(EJ) be the concentration oY Z(EJ) arising
from reaction (2.1), abbreviate w(E—E’,J—J') by  B. Unimolecular dissociation

©(EJ,E'J"), and write We denote byC(EJ) the concentration of energetically

s ) excitedX'Y Zmolecules arising in the unimolecular dissocia-
fE, L,“’(EJ’E J)dE d) = o, (2.9 tion and introduce a population distribution functiBiE J)
. . _ defined by
wherew is the total collision frequency. We define a popu-
lation distribution functiong(EJ): F(EJ)=C(EJ/(XY 2, (2.19
g(Ed)=c(EI/(X)(Y2), (2.6) where XY 2) is the concentration aKYZ The unimolecu-

) lar dissociation rate is given by
where(X) and (Y 2) denote concentrations. In a steady-state

approximation forg(EJ) we havé® kuni(XYZ):f f k.(EJ)C(EJ)AE dJ (2.16
d
0= - 9(EJ) =ki(E) ~[Ka(EJ) + 0]g(EJ) and so
+f f w(E'Y ,EJg(E'I)dE dJ. (2.7 k“”‘:ffka(EJ)F(EJ)dEdJ' (1

Before proceeding with the equations leading to the ana-
log of Egs.(2.12 and(2.14) for unimolecular reactions we
first note that when there is an equilibrium betweénY Z
and XY Z, the equilibrium concentration of excitedy Z at
any (EJ), ce{EJ), is the sum of two terms:

This equation can be rewritten by defining an equilibrium
population distribution functioge(EJ), such that when in-
troduced into Eq(2.7) the forward and reverse reaction rate
constants are equal

Ka(EJ)ged EJ) =k;(EJ) (28 Ced EJ)=C(EJ)+C(EJ), (2.18
(microscopic reversibility, while the collision terms are also wherec(EJ) consists of markeX Y Z molecules(labeled by
equal(again, microscopic reversibility a dagger, saywhich originated fromX+Y Z, and of differ-

ently markedXY Z molecules(labeled by two daggersof
wgeq(EJ)=f j o(E'J",EJ)geE'J')ME dJ'. (2.9  concentrationC(EJ), which originated fromXYZ Each
marked (dagger or two daggersnolecule may either con-
Equation(2.7) then becomes tinue on to the reactants or products region. This progress is
_ followed only until it has reached either destination, at which
[ka(EJ) 0]l ged B ~9(EI)] point it loses its label. If it leaves again, it is with a mark
appropriate to the new departure point, dagger or two dag-
:f f w(E'JEJ)[ged E'I")—9(E'J")]dE" dJ'. gers. That is, the equilibrium populatiaa{EJ) consists of
(2.10  moleculesXYZ" which arose fromX+YZ and molecules

Tt \whi i
We denote the difference between the equilibrium popu-XYZ which arose fromXY'Z, but where neither of them

. o . has yet arrived with its current label at a destination. In this
lation distribution functiorge{ EJ) andg(EJ) by f(EJ), way)\//ve consider in the equilibrium populatior,{ EJ), the

f(EJ)=0eq EJ) —Q(EJ). (2.1)  point of origin of theXY Z(EJ) and so include in our con-
siderations the forward and reverse reactions.
We have introduced expressions for the concentrations
in terms of population distribution functions and note that at
. o equilibrium the ratio KY2)/(X)(Y2) equalsK}%5, the
[ka(E‘]H“’]f(EJ):f f o(E'J,ENHT(EJ)DE dJ". equilibrium constant. From Ed2.6) we haveceq(EJ)/(X)
(2.12 X(YZ)=ge{EJ). Then, upon dividing both sides of Eq.

Thereby, Eqs(2.10 and (2.11) yield a “master equation”
for f(EJ),
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(2.18 by the product of the concentrationX)(XY), then

introducing the equilibrium constant to relatX)(Y 2) to

(XY 2 and using the definitio2.15 of F(EJ), we have
Jeq EN=9g(EJ) +F(EHKX 5. (2.19

Inasmuch a$(EJ) is given by Eq(2.11), it is seen from Eq.
(2.19 that the population distribution functidn(EJ) for the

unimolecular dissociation is given by
F(EJ)=f(EJ/KXZ, (2.20

a result used in the following.

We consider next for unimolecular reactions the analog

Bimolecular recombination 9809
chooseN as the value corresponding g, lying in an inter-
val of AE whose lower limit is at the threshold for dissocia-
tion. Later we integrate over eadh, in its relevant energy
interval AE. For the distribution functiorf(E,J), obtained
from Eq.(2.12, Eq. (3.2, and the stepladder model we have

Pga(wa,n—lfn—l"—wd,n+1fn+1)

F(End)= Ka(End) + @ ’ 33
where
fn=J’ f(E,J")dJ, (3.9

of Eq. (2.6) and the subsequent equations. In the steady—stat@d is the deactivation collision frequency(E, E,_,),

we havé!

0=%F(EJ)=[ka(EJ)+w]F(EJ)

—ffw(E’J’,EJ)F(E'J’)dE’ dJ.

(2.21)
That is,

[ka(EJ)+w]F(EJ)=f f w(E'J',EJ)F(E'J")dE’ dJ'.
(2.22
It is seen from Eqs(2.12 and(2.22 thatf(EJ) andF(EJ)
obey the same equation relating values at Bdeo those at
the otherEJ’s. Indeed, they should, by virtue of E.20.

The unimolecular rate constaky,; given by Eq.(2.17)
thus also equals

kunizf f f(EJko(ENAEAIKL . (2.23
Thereby,
Kuni=Kpi /KX 7 (2.24

as expected. Thie,; or k,,; can equally be obtained by solv-
ing master equations fof(EJ) or F(EJ), since the latter

two functions differ only by a factoK} 5.

Ill. SOLUTION OF THE MASTER EQUATION
A. Master equation and stepladder model

In the master equation fof(EJ) we first introduce a
strong collision approximation for rotation by writing

w(E'Y,EJ)=w(E',E)P, (3.1
where P59 denotes the equilibrium distribution dfs. Equa-
tion (2.12 now reads

[K,(EJ)+ w]f(EJ)= PJeQJ w(E",E)f(E'J")dE' dJ'.

(3.2

We next introduce a stepladder model for the collisional

energy transfer, the steps being of energiggn=_0 to«) of
step sizeAE. We note that in the stepladder mod@E)

which will be assumed to be independentroih the region
of interest(n close toN),?? and w, ,_; is the collision fre-
quency for the reversgctivation step(theain w, -, de-
notes activation The two are related by microscopic revers-
ibility, as in Eq.(3.13 given later.

Summed over the steps of energigg Eq,..., thetotal
net incoming fluxS; for a givenJ is
$= 2 Su Su=ka(En Df(En.), (35

the lower summation limit arising since tkg(E,J)’s vanish
for n<N. To obtaink; one then integrates the, in each
S,jover an energy interval E and sumgor integratesover
J. We then have

kb,=n§N ijanEndJ.

Alternatively, ky,; is obtained from the net downward diffu-
sional flux in energy space far<N via Eq. (3.15 in the
following.

A master equation is obtained for tife upon integrat-
ing Eq. (3.3 overJ:

(3.6

fn:An(wa,n—lfn—l"'wd,n+1fn-¢—l)v (37)
where
An:f [ka(EnJ)+w]_1P§GdJ (3.8
J

andf, is defined by Eq(3.4). This A, becomesw ! for n
<N.

When the master equatidi3.7) is solved for thef,’s,
subject to the appropriate boundary conditioh§:,J) is
obtained from EQq.(3.3), and ky; is then obtained. Two
boundary conditions are needed since &47) is a second-
order difference equation. One boundary condition is to take
the population distribution function at the lowest stgpto
be zero. The second condition is the conservation of 8jix
We first show in Sec. Il B that the equation relating thés
for n=<N can be solved analytically.

B. Flux below the dissociation threshold

For energie<,, below E\ the net downward flug" of

becomesAE. If E, is an energy in a deactivation/activation the energetiX'Y Zs along the energy stepladder can be writ-

collision stepladder, theik,=Ey—(N—n)AE, where we

ten as
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SUT = PeY 49— wan_19n-1] (N<N), (3.9 wan_ 1Py 1Ka(Epd)
3 51 ®q9n— wan-19n-1] S,=Suy=ko( End)f(Ex 1) = aN-1P3 Tn-1Ka(En '
where Ka(End) + @
3.19
gnsf g(E,J)dJ. (3.10  where the termwg v 1fn+ 1 in EQ. (3.3 is now absent, since
stateN is the highest state considered in this one-reactive
The microscopic reversibility equation is state model.
Equations(3.9) (for n=N), (3.19, and (3.17) contain
wygr= ")dj Jed En,J)dJ the unknowngyy andgy-,. Equating these expressions for

S; yields two equations. Since there are two unknowns,

On_1 andgy, one can solve fogy . Use of Eq.(3.15 then
Ewa,n—lf get{En—l-J)d‘] yields a
= wan-102,, (3.11) InN=OR'wdKa/ (0gkat okg), Ka=ki(EJ).  (3.18

Further, for this model of only one reactive stale w, y
, must vanish and se, which equalswg+ w, N, equalswy.
PSYye= gecﬁEnJ):p(En\])e*En/kBT/QX’YZEe*Gn/kBT_ Equations(3.§), (3.19, (3.18 and the first equality in Eq.
(3.12 (3.12, then yield

TheJ-depe_ndent part_ (_)f the en_ergyX)TYZis included inE, ‘ '_J J' ka(ENJ)k('}ﬁgeq( End)
and Qy yz |s_the partmon_ function forX + Y_Z. [The_ actu_al bi L ka(ENJ)_"kgliff

energy of this molecule i&,+ D, whereD is the dissocia- _ o _
tion energy. To simplify the notation we have denoted thiswhere theEy integration is over an intervalE.

where it can be shown tHAt

dEy dJ, (3.19

p(E,+D,J) by p(E,J).] In the last equality in Eq(3.12 _In the strong collision Iimiikyiff equals its fir_st tgrm ina
we have defined a free energy tef®], a function ofE,  series expansion of Ed3.16, namely wq, which in turn
andJ. now equalsw. Equation(3.19 then reduces to the usual

We next rewrite Eq(3.11) in terms of the free energy strong collision expression, on takinge to be very large.
difference,G,_,—G}:

Wan-1=0qeXP(Gp_1—Gp)/kgT). (3.13

) D. Case of any number of reactive steps
Thereby, using Eq(3.9),

gt e 5 5 We consider next the case Wh_ere there are reactiv_e states
Si" =P%4(9n—9n-1€Xp(Gy_1— Gp)/kgT)) N, N+1, N+2,.., whereEy, lies in (OAE) andEy.,, in
(N=N). (3.14 [nAE,(n+1)AE]. The contribution of these particular en-
ergies to the fluxS at a givenJ is given by Eq.(3.5), and
On multiplying Eq.(3.14) by expGy/ksT) and summing over Egs.(3.6)—(3.16) also apply. Equationés.5), (3.3), and(3.7)
nfromn=1 ton=N we have yield

Sy=P5%Gin(9n— Go eXP (G~ GR)/keT)) = Pk _y _KalEDPST, "
315 ST A AKED Tl 1320

noting thatwqy 41 €qualswy in the present approximation.
N N 3 The f,’s for n>N can be expressed in terms &gf by solv-
Kt = @d nzl exp((G;,—GN)/ksT) (3.16  ing the master equatiof8.7). Upon then equating th8; in
Eqg. (3.20 to the Sy in Eq. (3.15), gy is obtained. Theky,
and where we have treated the-0 state as a sink by setting equals the downward flug; in Eq. (3.19, integrated over
go=0. TheP$%cancels in the differend8;— Gy, and sothe AE and summedor integrated over J:
ki in Eqg. (3.16 does not depend oh

wherekl}, is defined by

kbi:f ; PS%irgn dEy - (3.21)

C. Case of only one reactive step N in the ladder IV. TWO REACTION EXIT CHANNELS a, b

We first consider for simplicity the case where only one
recombination stepl in the ladder for theX'Y Z formation in
reaction(2.1) contributes significantly. In this case there is We consider now reactionf.1)—(2.4) where Z+# X.
no need to solve the master equati8t¥), since there is only Equation(2.8) now serves as a definition of a quantity which
one reactive stathl and a solution for all other states<N  we again write agle(EJ):
was obtained analytically in terms @fy, namely, via Eg.

A. Master equation

(3.15. e EJ) =KL(EJ)/K(EJ). 4.1
The net incident fluxg; from reactantXandY Zfor this ~ This go{EJ) is thereby an equilibrium population distribu-
Ey andJ, using Eqs(3.5 and(3.3), is given by tion function.
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Equation(2.7) is replaced by i
Sh= ., =k, (E,,))f(E.J). 4.9
0=K.(EJ) —[Ka(EJ) +kp(EJ) + w]g(EJ) 1= & S S k(B D) (
The flux outgoing in channdd, S, is given by
+f f w(E'Y ,EJ)g(E'I)dE’ dJ, 4.2)

= L, L=ky(E,,Ig(ELD). 4.1
and so with Egs(2.8) and (2.11) we then have, instead of J nZN he Sna=Ko(En J)9(End) (4.10

Ea.(2.12, The downward diffusional fluSa™ is again given by Eq.
[Ka(EJ)+Ky(EJ)+ w]f(EJ) —kp(EIGAEJ) (3.19 and conservation of flux yields
=5+, (4.13
— p€¢ ’ ! ’ ’
—ijf o(E",B)f(E'J)dE"dJ’, (43 which serves as a boundary condition for solution of the

h h in introduced he bimolecul master equation, by providing an equation fgy. Equation
where we have again introduced E§.1). The bimolecular (4.6) then yieldsk?

recombination rate constant fé+Y Z— XY Zis given, fol- This material balance equatiéf.11) can also be written

lowing Eq@s.(2.11) and(2.13, by equivalently as

. ‘

bi= f f ka(EDT(EJ)IE dJ 4 3 [kalEnd)+ko(End) +kiit]0(End)
wheref(EJ) now satisfies the master equatigh3). m

Upon introducing the stepladder model for the colli- _ E Ko(Ed)gSYE,J). (4.12
sional energy transfer, E¢4.3) becomes n=N
eq ot odf Tk (E.DNGAE.J The present equations, or their equivalent, are utilized
f(EJ)=—2 (@an 1k2(énJ(;)i E;(lén\])i(wn Jo™Ey ), elsewhere in a treatment of isotopic effetts®
(4.5 B. Special case of one reactive step N

wheref, is again given by Eq(3.4). The bimolecular rate An expression fogy, is obtained from Eqg3.9), (3.12),

constant is again obtained from the downward diffusional3.15), (4.5, and (4.9 —(4.11). From Eq.(4.6) and the first
probability flux given by Eq(3.5), integrated oveEy and  equality in(3.12 one then obtains

summed overJ. Thereby, the bimolecular rate constant, Ko(End)KY EJ)

which we now denote bk, to indicate that the entrance kg,:f f a( EnI)KaitGed —dEydJ.  (4.13
channel in the example ia, is again given by Eq(3.6), ' JeyJ 3 Ka(End) + Kp(End) + Kt

namely

On letting AE become very largél), reduces towy and
hence tow as before, and the result obtained in Ref. 18 is

a=> J PS%k[ ondEy . (4.6)  recovered. Further, Eq4.13 reduces to Eq(3.22 when

J k,(EnJ) Vanishes. The equation fkﬁi is obtained from Eq.

A master equation for thé,’s obtained by integrating (4.13 by interchanginga’'s andb's.
f(EqJ) in Eq. (4.4) overJ, is now V. ISOTOPIC EXCHANGE REACTIONS

fh=Bp(wan-1fn-1t wgfn+1)+Cp, 4.7 The isotopic exchange reactions
where X+YZ—-XY+2Z, (5.0
PidJ whereX, Y, Z are isotopes, are typically studied at low pres-

Bn:j 7 ” , sures, where the newly formed vibrationally hoY Z* typi-
a(End) +Kp(End) + @ cally dissociates before it can undergo a collision with the

ky(End) g% E,J)dJ (4.8 bath gas. The r_e§ults are then independent of whether the
n:f K(EJ) +tKi(EJ) T o deactivating collisions are strong or weak, and so the equa-
arv=n bi=n @ tions given in Refs. 18 and 19 apply.

We note that the two exit channels WI||. have sllghtly d|ffer-' ACKNOWLEDGMENT
ent energy thresholds, because of a difference in zero-point

energies ofY ZandXY, and the integration in Eq4.6) over

Ey is intended to begin at the lower threshold of the two.
The master equatiof.?) is first solved for thef’s in ter_ms !R. G. Gilbert and S. C. SmitiTheory of Unimolecular and Recombina-
of f\y and hence ofjy. Then, as beforegy can be obtained  tion ReactiongBlackwell Scientific, Boston, 199pand references cited
from the boundary condition describing flux conservation. therein. Section (6.10 for unimolecular reactions prompted the

J-averaging used in Eq3.2).
We proceed as follows. 2K. A. Holbrook, M. J. Pilling, and S. H. Robertsoblnimolecular Reac-

The net flux entering via channalfor a givenJ, S7, is tions (Wiley, New York, 1996, 2nd ed., and references cited therein.
the same as Ed3.5 and so we have 3T. Baer and W. L. Haselnimolecular Reaction Dynamics, Theory and
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vidual terms enhancing or decreasiR(¢EJ) in the rate expressiof2.21).
Accordingly, dC(EJ)/dt typically equals zero to a good approximation.

2The total collision frequency» of an ozone molecule in stateis wqy

+w, 0t 0o Where the 0 label indicates the possibility that there is no net
energy transfer. We note in passing that the approximation that in the
neighborhood oh=N, w4 can be treated as constant whilg , obeys

Eq. (3.4) can have some implications for the behavioreof

#We have P55%= PSY ge(En,J')dJ. We write gefE,,J") as (2

+1)pyin(En—Ey)C, whereC=exp(—E,/ksT)/Qxvz. Here,E,—E; (in
turn, a shorthand fob +E,,—Ey—Ej/) is the vibrational energgy, ,
and sop,i,(E,—Ej/) is the vibrational density of states. Then writikg
as E,—E,;+E; and integrating overd’ one obtains P$%,,(Elp)
X exp(—Ejy/kT)/Qxyz, Wwhich can be rewritten asp(E,,J)
X exp(—E,/KgT)/Qxyz, i.€., asge((Ep,J), as in the text.
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