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Abstract

These lecture notes, presented as a tutorial at the Euroconference on Modern Trends in Electrochemistry of Molecular
Interfaces, consist of the following sections: (i) elementary transition state theory of reaction rates; (ii) elementary ion solvation
theory; (iii) elementary solvent reorganization theory; (iv) generalizations; (v) extension to the metal | liquid interface; (vi)
extension to the liquid | liquid interface, and (vii) examples of references © 2000 Elsevier Science S.A. All rights reserved.
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1. Individual topics

1.1. Elementary transition state theory of reaction rates

We calculated the rate constant using transition state
theory and the electron transfer theory given in the
subsequent sections.

The kinetic energy along a ‘reaction coordinate’ ¢ is
p?2u, where p = ug, ¢ is dg/dt, and u is an effective
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Fig. 1. Gibbs energy curves of reactants plus environment, G(¢g), and
products plus environment, G,(¢), versus the reaction coordinate g.
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mass for motion along ¢. The number of ‘quantum
states’ for motion along ¢ in the phase space volume
element dg dp is dg dp/h. Accordingly, the probability
of the reacting system being in (¢, ¢+ dg) and (p,
p+dp), Pdqdp, is

e~ G"VKT g —p?/2u kT dg dp

Pdgdp= o~ GI/kT A (1
where G, is the Gibbs energy of the reactants plus
environment, for all coordinates. G.(¢") is the Gibbs
energy at ¢ associated with all coordinates except ¢. (It
does contain the potential energy at ¢, but not the
kinetic energy p>/2u for motion along ¢g.) The probabil-
ity/length along ¢, i.e. the probability density, at g7,
equals the above divided by dg.

To obtain £, we calculated the total reactive proba-
bility flux by multiplying this linear density P dp by the
velocity ¢ and integrating over all p from 0 to co. (Only
positive ps at g =¢" led to the products.) We have

oo = &~ AT f T PR § dp i @)
.

where

AG' = Glq") — G, 3)

But

§ dp = (p/p) dp = d(p /20 )
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Example: suppose that the reaction is intramolecular or
that it is bimolecular but where the two reactants are
‘fixed’ in position. Then on writing G, as the sum of the
value G.(¢q,) at the minimum of the G,(g) curve in Fig.
1 given later and the contribution from the vibration
about ¢, on the G, curve, expressible in terms of a
vibrational partition function k7 /hv, where v is the
vibration frequency at ¢, for ‘vibration’ along ¢ (v is
related to 0°G,/0g* at gT) we have

k

— AGY kT (5)

o GilkT _ E e~ Gian/kT 6)
hv

Note that G.(¢") and G.(g,) have the same number of
coordinates, one less than the total number of
coordinates.

If we denote by G* the difference

AG*EGr(qT) - Gr(qr) (7)
we thus find
krate ~U eiG*/kT (8)

—1

for this case. Typically v~ 10" s

Remarks: (1) Wigner’s deep insight (1938), not usu-
ally discussed in elementary books on reaction rate
theory, into the basic assumption underlying classical
transition state (TS) theory, involves no recrossing of
the TS ‘hypersurface’ by trajectories as a condition for
the validity of TS theory.

(2) We have not discussed, above, the nature of the
reaction coordinate ¢. An appropriate choice includes
contributions from all relevant spatial coordinates and
can be defined globally. It is described briefly later.

1.2. Elementary ion solvation theory (Born, 1920)

The solvation Gibbs energy of an ion, AG,,,, equals
the reversible work to transfer the ion from vacuum to
the solvent. To calculate it using Born’s model of
almost 80 years ago, the ion is treated as a charged
sphere of radius a and of charge e, embedded in the
solvent, which is treated as a dielectric continuum.
Continuum treatments have been very commonly used
for various properties, such as ion solvation, diffusion
constants, diclectric relaxation, the Goiliy—Chapman
model of charge distribution, and capillary waves at
interfaces. Of course, continuum treatments are only
approximate descriptions of the actual molecular
systems.

Let us charge the ion in this continuum solvent of
static dielectric constant ¢. The electrostatic potential
due to the ion and the surrounding solvent, at any
point at a distance r from the center of the ion, is e/egr,
where e is the charge of the ion. The work to change an
ionic charge /e to (4 + dA)e, where / goes from 0 to 1,

is (Le/eqa) (e dA), since the electrostatic potential on the
sphere is Je/ea. (This expression is valid regardless of
whether the charge is at the center of the sphere or
whether it resides on the surface of the sphere.) Integra-
tion over 4, yields e?/2ea. Now, subtract the corre-
sponding electrostatic work for charging the ion in a
vacuum, e2/2a. So,

Gy = — 62<1 - 1) (Born) ©)
2a A

1.3. Elementary ‘reorganization’ theory

Recall first a now common Gibbs energy plot:

We omit for the moment the argument that leads
from multidimensional (thousands of coordinates) po-
tential energy surfaces to Gibbs energy G versus ¢
curves, ¢ being the reaction coordinate. At the intersec-
tion in Fig. 1, ¢ is denoted by ¢, and the electron
transfer occurs at ¢'. (It satisfies thereby both energy
conservation and the Franck—Condon principle.)

On reaching ¢ the system has experienced a major
fluctuation of its various coordinates. In contrast, at ¢,,
the distribution of coordinates of the solvent, and hence
its dielectric polarization function P(r) at each point r,
is in equilibrium with the charges in the reactants’
system. At ¢, the system’s P(r) is in equilibrium, in-
stead, with the charges in the products’ system. At ¢ it
is in equilibrium with neither, i.e. ¢ is associated with
a substantial fluctuation of coordinates of the entire
system from their equilibrium distribution at ¢, or at ¢,
and hence with a fluctuation of P(r) from the value of
the function when ¢ =g, or when g =q,.

Let us calculate the Gibbs energy when the system
(reactants plus environment) is around ¢, and also
when the system, consisting of products and environ-
ment, is around ¢, Then we calculate the Gibbs energy
change required to reach ¢' from ¢, on the G.(g) curve
in Fig. 1, as well as that to reach ¢" from ¢, on the
G,(q) curve. We then use these two quantities, plus a
minimization procedure described below, to calculate
the Gibbs energy barrier to the reaction, G(q¢") — G.(q,)
in Fig. 1.

Consider two reactants fixed in position, a distance R
between their centers, in a solvent free from other
electrolytes. Their Gibbs energy G, (considering only
solvation Gibbs energy plus the sum &'+ &5 of the
electronic energies of reactants) is

201\ B, 1
G, =+ e —e‘<1 —> e2<1 —> +9%2 0 (10)

2a, &) 2a, &) &R’
after including the coulombic interaction of the reac-
tants e,e,/&R. For the products G, we add a p symbol
to the £°'s and to the es. For brevity of presentation, we
have omitted any contribution to G, G, and G(q%)
arising from changes in the vibrational coordinates of
the reactants.
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We now calculate the change in Gibbs energy re-
quired to form a system at any other ¢, i.e. other than
the gs corresponding to ¢, and g, on curves G,(¢) and
G,(¢) in Fig. 1. As indicated above, the dielectric
polarization function P(r) for a system at ¢, is the
equilibrium one for the reactants and environment and
at ¢, it is the equilibrium one for the products and
environment. Elsewhere in this figure, for example at
¢, P(r) is a non-equilibrium dielectric polarization at
each r. We know from thermodynamics that a Gibbs
energy change can be calculated from the reversible
work done along a path that forms that state. That
statement applies even if the state is a non-equilibrium
one in terms of its macroscopic properties, such as the
dielectric polarization function P(r) at each point r in
the system. The secret to calculating it is to find a
reversible path!

To do so we employ a two-stage charging process
along the following reversible path, which forms the
above non-equilibrium state. Let us suppose that at any
point on curve G,(¢q) the distribution of nuclear coordi-
nates of the solvent is that in equilibrium with some
hypothetical charges e,; for reactant 1 and e,, for
reactant 2. What is the solvation Gibbs energy of this
hypothetical system? We consider initially the case
where the ions are far apart (R = o0) and examine one
ion. We first calculate the reversible work to charge the
ion to the above hypothetical charge.

(I) Charge the ion from 0 to a hypothetical charge e,
From our previous result we have

Work done = — e2/2¢,a (11)

(I) Holding the solvent nuclear coordinates fixed,
but allowing the electronic polarization of solvent to
adapt, we change the charge from e, to e, so that in this
reversible charging step we have

e, =e,+ Ale—e,), 4 goes from 0 to 1 (12)

The electrostatic potential at any point distant » from
the center of the ion is
e, Ale—e,
pu=to A (13)
& Eopl’
since only the electronic polarization of the solvent
responds to the change in charge ¢, —e,, i.e. to A(e —
e,), and since the corresponding dielectric constant for
the change in electronic polarization is the optical
dielectric constant ¢,, (about 1.8 for water, whereas the
static dielectric constant ¢, is about 80). The reversible
work done in step II is
! ee—e) (e—e,)
f PN (r=a)de,= ( )+( )
a

A=0 ‘(:s a 280p

(14)

Add it to the work done in step I, e2/2ea. Now
subtracting the work to charge the actual ion in the
solvent under equilibrium solvation conditions, e?/2¢a,

the contribution to the Gibbs energy of solvation for
forming this non-equilibrium dielectric polarization sys-
tem, G909, is

solv »

2 _ _ L2 2
AG?&I;I,ECI — €5 + €O(€ eo) (e eo) o e
2¢e,a &da 2e,,a 2¢,a
(e—e)?(1 1
= —— 15
2a fop & (15)

Now consider two ions 1 and 2 with actual charges e,
and e,, but with a ‘nuclear’ dielectric polarization in
equilibrium with hypothetical charges e,; and e,, and
include the effect of the coulombic interaction of the
ions. Instead of Eq. (15) one finds (not shown here but
can be seen in a reference cited at the end)

(e —e, 1)2 (e;—e, 2)2
AGDOHSq — ) 5.
solv |: 2(11 + 2(12

(e; — eo,l)(e2 - eo,2) 1 1
. T

op ’s

How can we find the e,; and e, , corresponding to the
point ¢t in the Gibbs energy plot? We proceed as
follows:

It can be shown that the condition that the potential
energies in a multidimensional coordinate plot are
equal at the transition state, which is the intersection,
has as a consequence that the two Gibbs energies are
also equal,

Giq") = Gy(q") (17
We can write, however, that

Gig") = Gi(g) + AG™ (18a)
Gplq") = Gplgp) + AGLF P (18b)

where AGL® P is the Gibbs energy required to reach
q" from ¢,. We note as an aside, that both G,(¢") and
G.(q,) each contain the sum of electronic energies,
&'+ &5 (chemical energies) of the reactants, and simi-

larly G,(¢7) and G,(g,) contain those of the products,

gh P4 gsh P,
Inasmuch as we have
G(g,) — G(q,) =AG% (19)

AG% being the ‘standard’ Gibbs energy of reaction at
the separation distance R, we then have

AGS = AGhoned _ A (Ghoneq, p (20)

solv solv

We wish now to find the two unknowns e, ; and e, ,.To
do so we minimize AGL, subject to the condition
imposed by Eq. (17), i.e. subject to the constraint
imposed by the above Eq. (20) for AG%. To perform
this minimization we use the method of Lagrangian
multipliers and solve for e,; and e, ,. In particular, we

vary AG2*? and set 0 G299 =0 (to minimize it):

solv solv
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OAGhoned oGnoneq
0 — 6 AGnoneq _ solv 560 . + solv
: de,

solv
oe, |

oe,, (21

subject to the constraint

a[AGnoneq — AGhonea. p

5 AG?{ — solv ae solv 560’1
o,1
O[AGRonea _ A (Guoneq, p
+ [ solv solv ] 5602 =0 (22)
de, 5 ’

However, the variations in e,; and e,, in Eq. (21) are
not independent, since e,; and e,, are related via Eq.
(20) for AG%. A common method to treat this problem
is to introduce Lagrangian multipliers:

Multiply Eq. (22) by a constant m and add it to the
Eq. (21). Using Eq. (16) and its counterpart for
0 AGY® P an equation of the form

solv
|:31_eo,1+m(€1_€]13) ez_eo,2+m(€2_€5):|
+ 0e,,
a, R ’
e, —ey,)+m(e;—eb) e —e,; +m(e;, —eb
+ |:( 2 ,2) (e, 2)+ 1 1 ( 1 1):|
a, R
0e, (23)
is obtained. Choose m so that the coefficient of, say,
0 e, vanishes. That is,

e — e,y +mle; —ey) n €, — €y, +m(e;, —eb) _

0
a, R
(24a)
Eq. (23) now becomes
|:€2 — €+ m(e, — eb) + e — €, + m(e; — ey) 5602
a, R ’
(24b)

But de,, is arbitrary, so its coefficient has to be zero
also. So we have

€ — ey, +m(e, —eb) n e — e, +m(e; —er) -0
a, R
(24c)

Egs. (24a) and (24c) are two linear equations with two
unknowns, e; — e, ;+ m(e; —e?), i=1, 2. Since the de-
terminant of their coefficients does not vanish (a;a, —
R? #0), it follows that each must be zero. That is

e, =¢e +m(e, —ep) (25a)
and

€y =€+ m(e, —eh) (25b)
It then follows that

AGrrea" = m2(Ae)?) (26a)
and

AGPa" P = (m + 1)2 (26b)

where

S T
and

Ae=eb—e = —(e8—e,) (28)
From Eq. (20) for AG% and Eq. (26) we then obtain
—Q2m+1)i=GS (29)

and from Egs. (26a) and (29) it finally follows that

solv

v A
AGPoRea = Z(l +AGY/A)? (30)
which 1is the desired result.
1.4. Generalizations

The following extensions of the above formulation
are available in the literature.

1. Include reactants’ changes in vibrational coordi-
nates, e.g. bond lengths in each reactant.

2. Use a more general model than a pair of charged
spheres for the reactants.

3. Use more compact notation that includes numerous
models and stresses the linear response aspect of the
theory.

4. Include quantum effects for nuclear motion, e.g.
‘nuclear tunneling’.

5. Use a dielectric dispersion model for the solvent
rather than just a model with two dielectric con-
stants, & and &,,.

6. Replace the dielectric continuum model by statisti-
cal mechanics.

We mentioned that the Gibbs energy versus reaction
coordinate curves were obtained from the plots of the
many-dimensional potential energy surfaces (plots ver-
sus thousands of coordinates). The special reaction
coordinate for doing so was described, denoted here by
¢, in a 1960 Faraday Society Discussion article, cited as
one of the references below. It is actually (or is equiva-
lent to), at any point in the many-dimensional coordi-
nate space, the energy difference between the potential
energy of the products plus environment and that of
reactants plus environment, for the entire system.

Item (3) above is an example of a common experi-
ence that a more compact notation is sometimes not
only more general, but can also be simpler than the one
used for a more specialized case.

1.5. Extension to a metal [ liquid interface

The introduction of the ‘image charge’ in metal en-
sures that the eclectric potential at the metal|liquid
surface is constant in the metal (Fig. 2). We have

¢ (electrostatic potential) = ; — eir (31

s st
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/

Image

metal electrode liquid

Fig. 2. An ion near a planar electrode surface, also showing its image
charge.

where r and r; are the distances to any point from the
center of the ion and from its image. We again use a
charging process to charge the real ion from 0 to e, and
calculate the work done j \@p*de;,, replacing r with a, as
before, and r, with R. (One could include effects of
other ions, e.g. electrical double layer.)

The net result of the above charging and minimiza-
tion is now

A
AGR ="+ AGE da)? (32)

kpy = A~ AORKT (33)

where AG°¢' denotes me(E — E,), E, = the ‘standard’
potential in the prevailing medium, calculated at the
separation distance R, A is the electrochemical £, dif-
ferent somewhat from the 4 in solution but related to it.
A can be found using transition state theory, fre-
quently ~ 10* cm s,

1.6. Extension to a liquid | liquid interface

The electrostatic potential at each point is again
determined by satisfying the boundary conditions at the
interface:

(1) The component of the electric field parallel to the
surface is continuous across the surface.

(2) The component of ‘dielectric displacement’ D
perpendicular to the surface is continuous when no
charge is adsorbed on the surface.

For the case of one ion in phase 1, one finds

= e<1 " 1) (34)

roo&H+éern

where r; denotes the distance of the field point from the
image.

After extending this expression to include the charge
of the other ion, and the interaction between them, one
can obtain the desired electrostatic potential at any

point in the system. To calculate the non-equilibrium
solvation Gibbs energy, a two-stage charging process is
again introduced.

Once again one obtains, after a minimization,
AG% = 2/4(1 + AG%/A)?, but now the expression for A
is more complicated. It contains a,, a,, &, &, &¥, &SP
and the positions of ions.
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