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Abstract

These lecture notes, presented as a tutorial at the Euroconference on Modern Trends in Electrochemistry of Molecular
Interfaces, consist of the following sections: (i) elementary transition state theory of reaction rates; (ii) elementary ion solvation
theory; (iii) elementary solvent reorganization theory; (iv) generalizations; (v) extension to the metal � liquid interface; (vi)
extension to the liquid � liquid interface, and (vii) examples of references © 2000 Elsevier Science S.A. All rights reserved.
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1. Individual topics

1.1. Elementary transition state theory of reaction rates

We calculated the rate constant using transition state
theory and the electron transfer theory given in the
subsequent sections.

The kinetic energy along a ‘reaction coordinate’ q is
p2/2m, where p=mq; , q; is dq/dt, and m is an effective

mass for motion along q. The number of ‘quantum
states’ for motion along q in the phase space volume
element dq dp is dq dp/h. Accordingly, the probability
of the reacting system being in (q, q+dq) and (p,
p+dp), P dq dp, is

P dq dp=
e−G(q†)/kT e−p2/2m kT

e−Gr/kT

dq dp
h

(1)

where Gr is the Gibbs energy of the reactants plus
environment, for all coordinates. Gr(q†) is the Gibbs
energy at q† associated with all coordinates except q. (It
does contain the potential energy at q, but not the
kinetic energy p2/2m for motion along q.) The probabil-
ity/length along q, i.e. the probability density, at q†,
equals the above divided by dq.

To obtain krate we calculated the total reactive proba-
bility flux by multiplying this linear density P dp by the
velocity q; and integrating over all p from 0 to �. (Only
positive ps at q=q† led to the products.) We have

krate=e−DG†/kT &�
0

e−p2/2m kT q; dp/h (2)

where

DG†=Gr(q†)−Gr (3)

But

q; dp= (p/m) dp=d(p2/2m) (4)

so

Fig. 1. Gibbs energy curves of reactants plus environment, Gr(q), and
products plus environment, Gp(q), versus the reaction coordinate q.
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krate=
kT
h

e−DG†/kT (5)

Example: suppose that the reaction is intramolecular or
that it is bimolecular but where the two reactants are
‘fixed’ in position. Then on writing Gr as the sum of the
value Gr(qr) at the minimum of the Gr(q) curve in Fig.
1 given later and the contribution from the vibration
about qr on the Gr curve, expressible in terms of a
vibrational partition function kT/h6, where 6 is the
vibration frequency at qr for ‘vibration’ along q (6 is
related to (2Gr/(q2 at q†) we have

e−Gr/kT=
kT
hn

e−Gr(qr)/kT (6)

Note that Gr(q†) and Gr(qr) have the same number of
coordinates, one less than the total number of
coordinates.

If we denote by G* the difference

DG*�Gr(q†)−Gr(qr) (7)

we thus find

krate�6 e–G*/kT (8)

for this case. Typically 6�1013 s−1.
Remarks: (1) Wigner’s deep insight (1938), not usu-

ally discussed in elementary books on reaction rate
theory, into the basic assumption underlying classical
transition state (TS) theory, involves no recrossing of
the TS ‘hypersurface’ by trajectories as a condition for
the validity of TS theory.

(2) We have not discussed, above, the nature of the
reaction coordinate q. An appropriate choice includes
contributions from all relevant spatial coordinates and
can be defined globally. It is described briefly later.

1.2. Elementary ion sol6ation theory (Born, 1920)

The solvation Gibbs energy of an ion, DGsolv, equals
the reversible work to transfer the ion from vacuum to
the solvent. To calculate it using Born’s model of
almost 80 years ago, the ion is treated as a charged
sphere of radius a and of charge e, embedded in the
solvent, which is treated as a dielectric continuum.
Continuum treatments have been very commonly used
for various properties, such as ion solvation, diffusion
constants, dielectric relaxation, the Goüy–Chapman
model of charge distribution, and capillary waves at
interfaces. Of course, continuum treatments are only
approximate descriptions of the actual molecular
systems.

Let us charge the ion in this continuum solvent of
static dielectric constant os. The electrostatic potential
due to the ion and the surrounding solvent, at any
point at a distance r from the center of the ion, is e/osr,
where e is the charge of the ion. The work to change an
ionic charge le to (l+dl)e, where l goes from 0 to 1,

is (le/osa) (e dl), since the electrostatic potential on the
sphere is le/osa. (This expression is valid regardless of
whether the charge is at the center of the sphere or
whether it resides on the surface of the sphere.) Integra-
tion over l, yields e2/2osa. Now, subtract the corre-
sponding electrostatic work for charging the ion in a
vacuum, e2/2a. So,

Gsolv= −
e2

2a
�

1−
1
os

�
(Born) (9)

1.3. Elementary ‘reorganization’ theory

Recall first a now common Gibbs energy plot:
We omit for the moment the argument that leads

from multidimensional (thousands of coordinates) po-
tential energy surfaces to Gibbs energy G versus q
curves, q being the reaction coordinate. At the intersec-
tion in Fig. 1, q is denoted by q†, and the electron
transfer occurs at q†. (It satisfies thereby both energy
conservation and the Franck–Condon principle.)

On reaching q† the system has experienced a major
fluctuation of its various coordinates. In contrast, at qr,
the distribution of coordinates of the solvent, and hence
its dielectric polarization function P(r) at each point r,
is in equilibrium with the charges in the reactants’
system. At qp the system’s P(r) is in equilibrium, in-
stead, with the charges in the products’ system. At q† it
is in equilibrium with neither, i.e. q† is associated with
a substantial fluctuation of coordinates of the entire
system from their equilibrium distribution at qr or at qp,
and hence with a fluctuation of P(r) from the value of
the function when q=qr or when q=qp.

Let us calculate the Gibbs energy when the system
(reactants plus environment) is around qr, and also
when the system, consisting of products and environ-
ment, is around qp. Then we calculate the Gibbs energy
change required to reach q† from qr on the Gr(q) curve
in Fig. 1, as well as that to reach q† from qp on the
Gp(q) curve. We then use these two quantities, plus a
minimization procedure described below, to calculate
the Gibbs energy barrier to the reaction, Gr(q†)−Gr(qr)
in Fig. 1.

Consider two reactants fixed in position, a distance R
between their centers, in a solvent free from other
electrolytes. Their Gibbs energy Gr (considering only
solvation Gibbs energy plus the sum o1

el+o2
el of the

electronic energies of reactants) is

Gr=o1
el+o2

el−
e1

2

2a1

�
1−

1
os

�
−

e2
2

2a2

�
1−

1
os

�
+

e1e2

osR %
(10)

after including the coulombic interaction of the reac-
tants e1e2/osR. For the products Gp we add a p symbol
to the o els and to the es. For brevity of presentation, we
have omitted any contribution to Gr, Gp and G(q†)
arising from changes in the vibrational coordinates of
the reactants.
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We now calculate the change in Gibbs energy re-
quired to form a system at any other q, i.e. other than
the qs corresponding to qr and qp, on curves Gr(q) and
Gp(q) in Fig. 1. As indicated above, the dielectric
polarization function P(r) for a system at qr is the
equilibrium one for the reactants and environment and
at qp it is the equilibrium one for the products and
environment. Elsewhere in this figure, for example at
q†, P(r) is a non-equilibrium dielectric polarization at
each r. We know from thermodynamics that a Gibbs
energy change can be calculated from the reversible
work done along a path that forms that state. That
statement applies even if the state is a non-equilibrium
one in terms of its macroscopic properties, such as the
dielectric polarization function P(r) at each point r in
the system. The secret to calculating it is to find a
reversible path!

To do so we employ a two-stage charging process
along the following reversible path, which forms the
above non-equilibrium state. Let us suppose that at any
point on curve Gr(q) the distribution of nuclear coordi-
nates of the solvent is that in equilibrium with some
hypothetical charges eo,1 for reactant 1 and eo,2 for
reactant 2. What is the solvation Gibbs energy of this
hypothetical system? We consider initially the case
where the ions are far apart (R=�) and examine one
ion. We first calculate the reversible work to charge the
ion to the above hypothetical charge.

(I) Charge the ion from 0 to a hypothetical charge eo.
From our previous result we have

Work done= −eo
2/2os a (11)

(II) Holding the solvent nuclear coordinates fixed,
but allowing the electronic polarization of solvent to
adapt, we change the charge from eo to e, so that in this
reversible charging step we have

el=eo+l(e−eo), l goes from 0 to 1 (12)

The electrostatic potential at any point distant r from
the center of the ion is

fl
II=

eo

osr
+

l(e−eo)
oopr

(13)

since only the electronic polarization of the solvent
responds to the change in charge el−eo, i.e. to l(e−
eo), and since the corresponding dielectric constant for
the change in electronic polarization is the optical
dielectric constant oop (about 1.8 for water, whereas the
static dielectric constant os is about 80). The reversible
work done in step II is& 1

l=0

fl
II(r=a)del=

eo(e−eo)
os a

+
(e−eo)2

2oop a
(14)

Add it to the work done in step I, eo
2/2osa. Now

subtracting the work to charge the actual ion in the
solvent under equilibrium solvation conditions, e2/2osa,

the contribution to the Gibbs energy of solvation for
forming this non-equilibrium dielectric polarization sys-
tem, G solv

noneq, is

DG solv
noneq=

eo
2

2os a
+

eo(e−eo)
os a

+
(e−eo

2)2

2oop a
−

e2

2os a

=
(e−eo)2

2a
� 1

oop

−
1
os

�
(15)

Now consider two ions 1 and 2 with actual charges e1

and e2, but with a ‘nuclear’ dielectric polarization in
equilibrium with hypothetical charges eo,1 and eo,2 and
include the effect of the coulombic interaction of the
ions. Instead of Eq. (15) one finds (not shown here but
can be seen in a reference cited at the end)

DG solv
noneq=

�(e1−eo,1)2

2a1

+
(e2−eo,2)2

2a2

+
(e1−eo,1)(e2−eo,2)

R
n� 1

oop

−
1
os

�
(16)

How can we find the eo,1 and eo,2 corresponding to the
point q† in the Gibbs energy plot? We proceed as
follows:

It can be shown that the condition that the potential
energies in a multidimensional coordinate plot are
equal at the transition state, which is the intersection,
has as a consequence that the two Gibbs energies are
also equal,

Gr(q†)=Gp(q†) (17)

We can write, however, that

Gr(q†)=Gr(qr)+DG solv
noneq (18a)

Gp(q†)=Gp(qp)+DG solv
noneq, p (18b)

where DG solv
noneq, p is the Gibbs energy required to reach

q† from qp. We note as an aside, that both Gr(q†) and
Gr(qr) each contain the sum of electronic energies,
o1

el+o2
el (chemical energies) of the reactants, and simi-

larly Gp(q†) and Gp(qp) contain those of the products,
o1

el, p+o2
el, p.

Inasmuch as we have

G(qp)−G(qr)=DG°R% (19)

DG°R being the ‘standard’ Gibbs energy of reaction at
the separation distance R, we then have

DG°R=DG solv
noneq−DG solv

noneq, p (20)

We wish now to find the two unknowns eo,1 and eo,2.To
do so we minimize DG solv

noneq, subject to the condition
imposed by Eq. (17), i.e. subject to the constraint
imposed by the above Eq. (20) for DG°R. To perform
this minimization we use the method of Lagrangian
multipliers and solve for eo,1 and eo,2. In particular, we
vary DG solv

noneq and set d G solv
noneq=0 (to minimize it):
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0=d DG solv
noneq=

(DG solv
noneq

(eo,1

deo,1+
(G solv

noneq

(eo,2

deo,2 (21)

subject to the constraint

d DG°R=
( [DG solv

noneq−DG solv
noneq, p]

(eo,1

deo,1

+
( [DG solv

noneq−DG solv
noneq, p]

(eo,2

deo,2=0 (22)

However, the variations in eo,1 and eo,2 in Eq. (21) are
not independent, since eo,1 and eo,2 are related via Eq.
(20) for DG°R. A common method to treat this problem
is to introduce Lagrangian multipliers:

Multiply Eq. (22) by a constant m and add it to the
Eq. (21). Using Eq. (16) and its counterpart for
d DG solv

noneq, p an equation of the form�e1−eo,1+m(e1−e1
p)

a1

+
e2−eo,2+m(e2−e2

p)
R

n
d eo,1

+
�(e2−eo,2)+m(e2−e2

p)
a2

+
e1−eo,1+m(e1−e1

p)
R

n
d eo,2 (23)

is obtained. Choose m so that the coefficient of, say,
d eo,1 vanishes. That is,

e1−eo,1+m(e1−e1
p)

a1

+
e2−eo,2+m(e2−e2

p)
R

=0

(24a)

Eq. (23) now becomes�e2−eo,2+m(e2−e2
p)

a2

+
e1−eo,1+m(e1−e1

p)
R

n
deo,2

(24b)

But deo,2 is arbitrary, so its coefficient has to be zero
also. So we have

e2−eo,2+m(e2−e2
p)

a2

+
e1−eo,1+m(e1−e1

p)
R

=0

(24c)

Eqs. (24a) and (24c) are two linear equations with two
unknowns, ei−eo,i+m(ei−e i

p), i=1, 2. Since the de-
terminant of their coefficients does not vanish (a1a2−
R2"0), it follows that each must be zero. That is

eo,1=e1+m(e1−e1
p) (25a)

and

eo,2=e2+m(e2−e2
p) (25b)

It then follows that

DG solv
noneq†

=m2(De)2l (26a)

and

DG solv
noneq†%, p

= (m+1)2l (26b)

where

l= (De)2� 1
2a1

+
1

2a2

−
1
R
�� 1

oop

−
1
os

�
(27)

and

De=e1
p−e1= − (e2

p−e2) (28)

From Eq. (20) for DG°R and Eq. (26) we then obtain

− (2m+1)l=G°R (29)

and from Eqs. (26a) and (29) it finally follows that

DG solv
noneq†

=
l

4
(1+DG°R/l)2 (30)

which is the desired result.

1.4. Generalizations

The following extensions of the above formulation
are available in the literature.
1. Include reactants’ changes in vibrational coordi-

nates, e.g. bond lengths in each reactant.
2. Use a more general model than a pair of charged

spheres for the reactants.
3. Use more compact notation that includes numerous

models and stresses the linear response aspect of the
theory.

4. Include quantum effects for nuclear motion, e.g.
‘nuclear tunneling’.

5. Use a dielectric dispersion model for the solvent
rather than just a model with two dielectric con-
stants, os and oop.

6. Replace the dielectric continuum model by statisti-
cal mechanics.

We mentioned that the Gibbs energy versus reaction
coordinate curves were obtained from the plots of the
many-dimensional potential energy surfaces (plots ver-
sus thousands of coordinates). The special reaction
coordinate for doing so was described, denoted here by
q, in a 1960 Faraday Society Discussion article, cited as
one of the references below. It is actually (or is equiva-
lent to), at any point in the many-dimensional coordi-
nate space, the energy difference between the potential
energy of the products plus environment and that of
reactants plus environment, for the entire system.

Item (3) above is an example of a common experi-
ence that a more compact notation is sometimes not
only more general, but can also be simpler than the one
used for a more specialized case.

1.5. Extension to a metal � liquid interface

The introduction of the ‘image charge’ in metal en-
sures that the electric potential at the metal � liquid
surface is constant in the metal (Fig. 2). We have

f (electrostatic potential)=
e

osr
−

e
osri

(31)
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Fig. 2. An ion near a planar electrode surface, also showing its image
charge.

point in the system. To calculate the non-equilibrium
solvation Gibbs energy, a two-stage charging process is
again introduced.

Once again one obtains, after a minimization,
DGR

† =l/4(1+DG°R/l)2, but now the expression for l

is more complicated. It contains a1, a2, o1, o2, o1
op, o2

op

and the positions of ions.

1.7. Examples of references

Many references are given in reviews such as

1. R.A. Marcus, N. Sutin, Biochim. Biophys. Acta
811 (1985) 265.
R.A. Marcus, in: D.S. Bendall (Ed.), Protein2.
Electron Transfer, Bios Scientific, Oxford, 1996,
Ch. 10. Applications to organic chemistry are
described in L. Eberson, Electron Transfer Re-
actions in Organic Chemistry, Springer-Verlag,
New York, 1987, and to electrochemistry and
related areas in J. Albery, Electrode Kinetics,
Clarendon, Oxford, 1975 and J.M. Savéant,
Adv. Phys. Org. Chem. 26 (1990) 1, among oth-
ers.

For Sections 1.3 and 1.5
3. R.A. Marcus, in: P.B. Rock (Ed.), Special Top-

ics in Electrochemistry, Elsevier, Amsterdam,
1977, p. 151.

The compact notation mentioned in Section 1.4 is
given in

R.A. Marcus, J. Phys. Chem. 98 (1994) 7170.4.
A recent reference to the dielectric dispersion men-
tioned in Section 1.4 is

X. Song, R.A. Marcus, J. Chem. Phys. 995.
(1993) 7768, which also contains references to
the pioneering work of Ovchinnikov and
Ovchinnikova (1969) and to the subsequent ex-
tensions by Dogonadze and co-workers. The
Russian work is also described in J. Ulstrup,
Charge Transfer in Condensed Media, Springer–
Verlag, Berlin, 1979.

References to the reaction coordinate q mentioned
in Section 1.4 are
6. R.A. Marcus, Discuss. Faraday Soc. 29 (1960)

21.
7. A. Warshel, J. Am. Chem. Soc. 86 (1982) 2218.
For Section 1.6
8. (a) R.A. Marcus, J. Phys. Chem. 94 (1990)

4152. (b) R.A. Marcus, J. Phys. Chem. 94
(1990) 7742. (c) R.A. Marcus 99 (1993) 5742
(corrections).

where r and ri are the distances to any point from the
center of the ion and from its image. We again use a
charging process to charge the real ion from 0 to e, and
calculate the work done 	1

0f
ldel, replacing r with a, as

before, and r2 with R. (One could include effects of
other ions, e.g. electrical double layer.)

The net result of the above charging and minimiza-
tion is now

DGR
† =

lel

4
(1+DG°R, el/lel)2 (32)

kET=Ae−DGR
† /kT (33)

where DG°,el
R denotes me(E−Eo), Eo= the ‘standard’

potential in the prevailing medium, calculated at the
separation distance R, lel is the electrochemical l, dif-
ferent somewhat from the l in solution but related to it.
A can be found using transition state theory, fre-
quently�104 cm s−1.

1.6. Extension to a liquid � liquid interface

The electrostatic potential at each point is again
determined by satisfying the boundary conditions at the
interface:

(1) The component of the electric field parallel to the
surface is continuous across the surface.

(2) The component of ‘dielectric displacement’ D
perpendicular to the surface is continuous when no
charge is adsorbed on the surface.

For the case of one ion in phase 1, one finds

f=
e
o1

�1
r
−

o2−o1

o2+o1

1
ri

�
(34)

where ri denotes the distance of the field point from the
image.

After extending this expression to include the charge
of the other ion, and the interaction between them, one
can obtain the desired electrostatic potential at any

.


