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The present article treats the role of the density of electronic statesFF at the Fermi level of a metal in affecting
the rate of nonadiabatic electron transfer. The rate constantkET is calculated for the electron transfer across
an alkanethiol monolayer on platinum and on gold. TheFF of platinum is about 7.5 times that of gold, the
difference being mainly due to the d band of Pt. In spite of this difference, the electron transfer rate constant
kET calculated in the present paper increases only by a factor of about 1.8, instead of the factor of about 7.5
expected usingFF alone. Implications of these results for present and past experiments are described. Bands
which are weakly coupled (e.g., the d-band of Pt in the present case) contribute much less to the rate constant
than is suggested by their density of statesFF. Thereby,kET is approximately independent ofFF in two cases:
(1) adiabatic electron transfer and (2) nonadiabatic electron transfer when the extraFF is due to the d electrons.
Experiments which can test the latter are discussed.

1. Introduction

In this paper, we study how the rate of electron transfer is
affected by the density (FF) and the nature of electronic states
of the metal at the Fermi level, in particular how the exchange
current is affected. There have been some experiments per-
formed investigating the variation of the rate constant with the
density of states of the metal not using monolayers1-3 and with
monolayers.4,5 Iwasita et al.1 measured the electrochemical
exchange currentiex for the Ru(NH3)6

2+-Ru(NH3)6
3+ couple

at several metal electrodes. They found thatiex was the same,
even when the density of electronic states differed by an order
of magnitude.

The first explanation that comes to mind for such experi-
ments1-3 is that the electron transfer reaction is adiabatic. The
exchange currentiex is expected to be proportional toFF only
for nonadiabatic electron transfers, namely, in the limit of weak
coupling of the redox agent to the metal. In the adiabatic case,
iex should be independent ofFF. However, there is an alternative
explanation for the results. The assumption thatiex is propor-
tional toFF in a nonadiabatic process is based on the assumption
that the different electronic orbitals in the metal, s, p, and d,
which contribute toFF contribute equally toiex. The large value
of FF in metals such as Pt or Pd arises because their d orbitals
lie near the Fermi level. If the d electrons are much less coupled
to the acceptor than the s electrons (which dominateFF for
metals such as Au or Ag), the exchange rate would not be
proportional to the totalFF even for a nonadiabatic process.

In recent years, there has been much experimental work with
monolayers coated on metal surfaces6,7 (mainly gold). Such
experiments have been used to study features such as the
distance dependence of the rate of electron transfer, the
reorganization energy and the coupling between the redox agent
and the metal. When a sufficiently thick monolayer is present,
for example, sufficiently long alkyl chains in the case of a
thioalkane monolayer, the coupling between the metal and the
acceptor is weak and the rate of electron transfer is clearly

nonadiabatic. Studies with such a system would help differenti-
ate between the two explanations for the rate constant depen-
dence on the density of states given above, by providing
information on the coupling by d versus s electrons.

In this paper, the electron transfer rate constantkET is
calculated for an alkanethiol with 15 methylene units, with the
redox agent Ru(NH3)5Py2+ tethered to it. A monolayer of the
alkanethiol (HS(CH2)15CONHCH2PyRu(NH3)5

2+) is then coated
on a metal. We estimate how changing the metal from Pt to Au
changes the rate constant and hence the exchange current.

The theoretical model is described in section 2. To treat the
metal electrode, a tight binding (TB) approach is used in the
calculations. Parameters available from a fit to band structure
of the metals8 are used. The extended-Hu¨ckel method9 is used
to treat the alkanethiol bridge and its coupling to the acceptor
and to the metal. The bridge part is parametrized to fit
experimental band structure of long chain alkanes. In a recent
article,10 it was found that this parametrization was sufficiently
accurate for the calculation of the distance-dependence of long-
range electron transfer rates in similar systems.

In treating the metal, the Z-transform11,17 method is used,
which facilitates the use of a semi-infinite model for the
electrode and allows for easy calculation of metal wave functions
with tight-binding parameters. This method is summarized in
Appendix A and is applied there to the present problem. In the
present paper we use it to explore howkET changes with a
change inFF, namely, how it changes with the metal electrode,
and examine particularly the relative contributions of d and s
electronic states to the rate constant. The results are discussed
in section 3 and compared with available experimental data.
The present approach, like that in our earlier papers12,13on long
range electron transfer, is a pragmatic one, namely, to use an
approximate but simple method which has no arbitrarily
adjustable parameters and see whether it is in agreement with
the trends in the available experimental results.

2. Theoretical Model

The standard expression for the first-order rate constant for
a nonadiabatic electron transfer (weak electronic coupling limit)* To whom correspondence should be addressed.
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for reactants fixed in position is14

whereFC is the Franck Condon factor andHDA is the electronic
coupling between the donor and the acceptor.

We consider a donor (or acceptor) attached to the electrode
by a thioalkane bridge monolayer. When a continuum of donor
or acceptor levels is involved in the electron transfer, as is the
case in a metal electrode, the right hand side of eq 1 is integrated
appropriately over these levels. The rate constant for electron
transfer can then be written as14,15

and the units ofkET are s-1. For the Franck-Condon factor we
have substituted a classical value (the final ratio ofkET’s for
different metals will be insensitive to this approximation),

whereλ is the reorganization energy,e is the electronic charge,
and η is the overpotential. In eq 2,f(ε) is the Fermi-Dirac
distribution withε measured relative toµ, the chemical potential
of the electrode,

The square of the coupling matrix element,|V(ε)|2 denotes an
integral over all the wave vectorsk which contribute to a given
energy,

|HkA| is 〈Ψk|H|ΨA〉 and describes the electronic coupling
between the redox agent (A) and a particular electronic state of
wave vectork of the electrode (which may have contributions
from many bands). The integral over wave vectors in eq 5 is
intended to include all such states and bands.Ψk andΨA are
the wavefunctions of the electrode and the redox agent,
respectively.ΨA is normalized in the usual way and has units
of Å-3/2. For Ψk a box normalization is used, i.e.,

whereV is the unit cell volume and〈 〉 implies integration over
a unit cell volume. Thus,Ψk(r ) has no units and〈Ψk|H|ΨA〉
acquires units of eV Å3/2, |HkA|2 has units of eV2 Å3 (eV2wave
vector-3), and so|V(ε)|2 has units of eV.

The exchange current can be obtained from the rate constant
with η set to 0 and then integrating over a unit area of the metal
surface. Equation 2 is readily modified when the redox reagent
is not attached to the monolayer.

For a single band case,η ) 0 andλ . ε (as is typically the
case), eq 2 simplifies to10

where

the square of the coupling|HkA|2 denotes

andFF is the density of states16 at the Fermi level,

We use the volume of the unit cell (with a one atom basis when
appropriate as in the present case) as the unit volume and the
units of FF become eV-1 atom-1.

In a multiband case, more than one band contributes to the
density of states. If the summation over different bands is

included in|HkA|2 andFF includes densities from all bands, eq

7 is still applicable.|HkA|2 has contributions from all bands and
depends on how the states are distributed over the bands and
how each band couples to the acceptor. Because of this feature,

|HkA|2 can vary from metal to metal, and so the rate constant is
not merely proportional toFF, although eqs 7-9 remain valid.
Clearly, the electronic states of bands weakly coupled to the
redox agent will not contribute as much to the rate constant as
those from bands strongly coupled to it.

To obtainkET (eqs 7-9) a calculation ofHkA at the Fermi
energy (εF) is needed. This matrix element is the coupling
between the metal〈Ψk| and the acceptor|ΨA〉 states. To find
the form of the〈Ψk| states of the metal we use the Z-transform
method. This method is outlined in Appendix A.

3. Calculation and Results

The metals Au and Pt have very different densities of states
at the Fermi level, the difference being largely due to the
presence of the d electron band in Pt. The values8 of FF ) 2.20/
atom/eV for Pt andFF ) 0.29/atom/eV for Au are used in the
present calculation. The Fermi energies8 of Pt and Au are taken
to be 8.68 and 7.32 eV, respectively, and the lattice parameters24

are 2.77 Å for Pt and 2.88 Å for Au. Literature values8 of the
TB parameters for the metals are used to calculateΨk. These
parameters were obtained by a fit to accurate band structure
calculations. The extended-Hu¨ckel theory is used to calculate
the energy and overlap matrix elements of the bridge and the
acceptor. The structure of the acceptor is estimated from the
structure of X-ray data of similar compounds.25 Only one
alkanethiol chain is used instead of the entire monolayer. It was
shown by comparison with added alkanethiol molecules that
this approximation gave a reasonable and for our purposes
adequate description of the coupling.10 A parametrization of the
bridge, and the sequential formula of Hsu and Marcus10 were
used to calculate the coupling elementHkA. Some details on
the sequential formula, including the key recursion equations
used to obtain the matrix elements, are given in Appendix B.
The|HkA|2’s were averaged over 60k vectors.26 Thesek vectors
were chosen randomly and included contributions from all
bands. Thus,|HkA|2 is averaged over all bands andFF is the
total density of states. To make the calculations of Hsu one
needs the difference in energies of a virtual superexchange state

kET ) 2π
p

FC|HDA|2 (1)

kET ) 2π
p
∫dε

e-(λ-eη+ε)2/4λkBT

(4πλkBT)1/2
|V(ε)|2f(ε) (2)

FC ) e-(λ-eη+ε)2/4λkBT

(4πλkBT)1/2
(3)

f(ε) ) eε/kBT

1 + eε/kBT
(4)

|V(ε)|2 ) ∫d3k|HkA|2δ(ε(k) - ε) (5)

〈Ψk(r )|Ψk(r )〉
V

) 1 (6)

kET ) 2π
p

(4πλkBT)-1/2e-λ/4kBT|V|2 (7)

|V|2 ) πkBT|HkA|2FF (8)

|HkA|2 )
∫d3k|HkA|2 δ(ε(k) - εF)

∫d3k δ(ε(k) - εF)
(9)

FF ) ∫d3k δ(ε(k) - εF) (10)
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and the donor/acceptor state at the transition state. This
difference can be calculated using a formula27 given in ref 10.

Our result for the rate constants of the two metals for a 15
methylene unit alkanethiol monolayer gives a value of 1.8 for
kPt/kAu. This result is consistent with unpublished experiments.4,5

The ratio of the densities of electronic states of the two metals
is 7.5.

The ratio of the exchange rate constants as a function of
number of methylene units for the two metals is given in Figure
2. The number of methylene units is varied from 3 to 20. This
ratio gives the distance dependence of the d orbital coupling.
The overpotential dependence of the ratio is also calculated and
is plotted in Figure 3. The dependence is found assuming a value
of 1.2 eV28,29 for λ. The same monolayer shields the acceptor
in the solution from the metal surface, so we assume that the
reorganization energy (λ) does not change on going from Au
to Pt. To perform this calculation a value of 0.025 eV forkBT,
and the expression of the rate constant from eq 2 were used.

4. Discussion

It is seen both experimentally and theoretically that the
nonadiabatic rate of electron transfer is not simply proportional
to the total density of states. It depends, instead, on the density
of states modulated by the square of the coupling. Accordingly,
it is necessary that the various bands from which the density of
states arise be also considered.

A more detailed analysis of the results provides some insight
into the nature of the similarity of electron transfer rates for Pt
and Au, their large difference in density of states at the Fermi
energy notwithstanding. With a density of states at the Fermi
energy of 29.9 in no. of states/Rydberg/atom, the density of sp
states of Pt is 0.6 and that of d states is 29.3.8 With a density
of states of 4.0 for Au at the Fermi energy, the density of sp
states was 1.6 and that of the d states was 2.4.8 From these
results it can be inferred that while the d states in Pt are not
ineffective for coupling, their effectiveness is far below that of
the sp states. If for a rough estimate the ratio of individual
coupling effectiveness of an sp state and of a d state in Pt were
taken to be roughly the same as in Au, then the calculated ratio
of 1.8 for the rate constants leads from the above figures to a
relative effectiveness of sp states to d states of 11.2.

There has been some concern20 that the extended-Hu¨ckel
method gives very narrow d-bands, which are more localized
than in reality. In the present calculation, the metal is modeled
using TB parameters which are not taken from extended Hu¨ckel
and give good band structure results8 (Figure 1). The d couplings
we used for the Pt-S, Au-S and bridge-acceptor were,
however, obtained from an extended-Hu¨ckel calculation using
the standard parameters available with the program.9

The fact that the d orbitals are localized and not strongly
coupled to the environment is well-known from field emission
experiments.33 Thus, even though the d electrons are present at
the Fermi level, they interact very weakly with external fields
or ions and these electrons tunnel out from the metal much less
than s electrons at the same energy. This fact has been observed
in field emission as well as in ion neutralization experiments.34

It is thus perhaps, not surprising that this d electron localization
also manifests itself in a reduced contribution to the rate constant
in electron transfer experiments.

The rate constants were calculated as a function of the number
of methylene units for the two metals. Regarding the results in
Figure 2 we note that the ratio of the rate constants of Pt and
Au changes little with number of methylene units.

We also calculate the overpotential dependence of the ratio
of rate constants using eqs 2-5 (Figure 3). We find that the
ratio peaks close to the Fermi level and decreases weakly for
positive overpotentials. This result is understood using the band
structure of the two metals (Figure 1): the density of electronic
states of Pt is the highest close to Fermi level (zero overpo-
tential), slopes gradually for negative energies relative to the
Fermi energy and decreases sharply for positive energies while
the density of states of Au is almost constant over the whole
overpotential range. The change in ratio of rate constants with
change in overpotential is very small for the anodic and cathodic
parts of the curve. This small change should not cause any
significant asymmetry in the rate vs overpotential curves,
because of the large direct effect of the overpotential in the
exponent of eq 2.

The observation of the importance of the type of states for
the present study rather than only the density of states has its
counterpart in studies of intramolecular vibrational relaxation31

where the total density of states does not play a direct role in
the rate of relaxation. It is rather a local density of coupled

Figure 1. Band structure of Au and Pt with the Fermi energies of
each set to 0.F is in units of no. of states per atom per eV. (]) gives
the density of states for Pt and (+) gives the density of states for Au.

Figure 2. Ratio of rates at zero overpotential vs number of methylene
units.

Figure 3. Ratio ofkPt andkAu vs overpotential (η), assuming an equal
λ for the two metals.
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vibrational states which is important. In surface physics too,
the concept of local density of states is useful to understand
spectra where contributions from different layers parallel to the
surface might be different.32

5. Conclusions

In this paper, we have calculated the effect of the metal
density of electronic states on the rate of electron transfer. We
find that the rate constant is not simply proportional to the
density of states. Instead, we need to consider the individual
electronic coupling elements for each of the bands. The coupling
matrix elements significantly reduce the effect of the extra
density of states of weakly coupled bands, such as the d band.
We find, consistent with electron emission results33 and electron
transfer experiments,4,5 that the d band states couple weakly to
the outside environment and, thus, the rate constant for electron
transfer does not reflect only the density of states.
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Appendix A: The Z-Transform Model for Semi-Infinite
Metals

The Z-transform is a generalization of the discrete Fourier
transform and is commonly used in the field of signal process-
ing.17 The periodicity of crystals makes them very similar to
discrete signals and, therefore, the Z-transform can be applied
very easily to crystalline solids to obtain their wave functions.
It is especially useful in the application of the tight-binding
approximation.11

We consider a crystal as being built up of planes with two-
dimensional translational symmetry. LetR̂|,1 and R̂|,2 be the
unit vectors which lie in the plane. Henceforth, we denote any
vector18 lying in the plane by

When we sum overR| we imply a double sum overn1 andn2.
k| in the subsequent notation denotes a wave vector conjugate
to R|.

Let R̂p be the third unit vector for the unit cell, directed from
one of the above planes to the next. With this notation each
plane has a wave function of the form

with

wherej is an index which labels the orbitals for each atom and
Θj(r - Rp - R|) denotes the orbital centered atr ) Rp + R|.
The crystals of both Au and Pt have a one atom basis (one
atom in the unit cell) and so we use that basis here, but this
method is easily generalized to a larger basis.

The wave function of the crystal is

wherecn,j is a factor, which we will find using the Z-transform.
j is summed over the number of orbitals per unit cell, here
numbered 1 toJ. n is summed over as many layers as the
problem requires, for example,-∞ to +∞ for a bulk crystal, 1
to +∞ for a bulk crystal with a surface, and 1 to a finitem for
a slab. The range ofn imposes boundary conditions on the wave
function, and we will examine later how these conditions affect
the wavefunction. For now, we taken to be a problem-dependent
quantity.

Using the Schroedinger equation, multiplying by a particular
Φj(r - nR̂p) and integrating overr we obtain

For the present problem, where the rate constant is being
evaluated at the Fermi level (in the “normal region” for rate
constants),ε equalsεF and from eqs A2-A5 we have

The above equation can be written in matrix form,

whereM is a J × J matrix (J is the number of orbitals per
atom) andcn becomes a column vector withJ components, its
jth component beingcn,j. Using the tight-binding (TB) ap-
proximation, we assume that any given plane interacts within
itself,

and with its nearest neighbors,

A, B, andB† areJ × J matrices (withJ same as above) which
can be calculated from TB parameters of the metal.8,19A, being
the self-interaction of the plane, is Hermitian. When a plane is
not at the boundary, and so, both its neighboring planes are
present, we have

Sincen is discrete, we use the Z transform17

wherez is a complex variable andF(z) a column vector withJ
components. Only whenz is of the form exp(iθ) with real θ,
doesF(z) reduce to the familiar discrete Fourier transform. From
eqs A11 and A12 we see that

To obtain a nontrivialF(z) we set

R| ) n1R̂|,1 + n2R̂|,2 (with integern1 andn2)
(A1)

Φj(r - Rp) ) ∑
R|)-∞

+∞

exp(ik|‚R|)Θj(r - Rp - R|) (A2)

Rp ) nR̂p (A3)

Ψk(r ) ) ∑
n,j

Φj(r - nR̂p)cn,j (A4)

〈Φl(r - n′R̂p)|H|Ψk〉 ) ε〈Φl(r - n′R̂p)|Ψk〉 (A5)

∑
n,j

{〈Φl(r - n′R̂p)|H|Φj(r - nR̂p)〉 -

εF〈Φl(r - n′R̂p)|Φj(r - nR̂p)〉}cn,j ) 0 (A6)

∑
n

M (n′R̂p, nR̂p)cn ) 0 (A7)

M (nR̂p, nR̂p) ) A (A8)

M (nR̂p, (n - 1)R̂p) ) B† (A9)

M (nR̂p, (n + 1)R̂p) ) B (A10)

B†cn-1 + Acn + Bcn+1 ) 0 (A11)

F(z) ) ∑
n

zncn (A12)

B†F(z)
z

+ AF(z) + BF(z)z ) 0 (A13)

det(B†

z
+ A + Bz) ) 0 (A14)
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This equation has 2J roots. Taking the complex conjugate of
the above equation to see the symmetry of the roots, we have

SinceA is Hermitian, we see that ifz is a root then 1/z* is also
a root and so the number of roots with|z| < 1 equals the number
with |z| > 1.

The most general form ofcn is obtained by inverting the
Z-transform (eq A12):

where the sum is over the number of roots (2J), the zm and
Fm(zm) are the eigenvalues and eigenvectors of eq A13, and the
am can be determined from the boundary conditions and the
normalization. The boundary conditions are considered next.

(1) Bulk. Any solution to eq A13,z ) zm, which has|zm| >
1 or |zm| < 1 will diverge at+∞ or -∞ respectively, and itsam

is set to 0. Therefore only|zm| ) 1 roots contribute to eq A16,
sozm ) exp(ikm) with realkm,20 and there is a three-dimensional
translational symmetry of the wave function. The final wave
function is then of the form

whereFm,j is the jth component ofFm and the remainingam’s
can be determined by normalization. The number ofΨk equals
the number ofam’s found from normalization. The number of
Ψk also equals twice the number of bands present at that energy.
Physically, theseΨk represent forward and backward propagat-
ing waves.

(2) Surface.The crystal planes are denoted byn ) 1 to +∞.
Two conditions are imposed onΨk: (a) Ψk should not diverge
at n ) +∞ and (b)c0 ) 0, since there is no crystal plane there.
Condition (a) requires that only the|zm| e 1 contribute toΨk.
Theam’s associated with the|zm| > 1 roots (the same in number
as the|zm| < 1 roots) are set to 0. Condition (b) requires that

To satisfy (b) we need at least as many solutions of eq A13
(i.e. zm’s) as there are orbitals (i.e.,J or components ofc0) and
thusJ of theam’s are determined from the boundary condition.
The most general form of the wave function is

Ψk has two parts, one with|zm| ) 1 which propagates into the
bulk, and one with contributions from|zm| < 1, which
approaches zero after a few layers.21 In eq A19,J of theam are
determined by the boundary condition, eq A18, and the
remainder are determined by normalization. Ifl bands lie at
the energyεF (eq A5) thenl solutionsΨk exist andl of theam

need to be determined by the normalization.
Two special cases may arise: (i) Due to the symmetry of the

particular crystal (and the particular surface) under consideration
none of the decaying solutions contribute to the wave function,
e.g., as in the case of Au(111) modeled with only s orbitals.23

In this situationk and-k (wherez ) exp(ik)), both contribute
to the wavefunction and a sin(nk)-like wave function (n being
thenth layer from the origin) satisfies the boundary condition.

(ii) At some particular values of|k|| (eq A2) noz with |z| )
1 will exist. In this case the boundary conditions may still be
satisfied but the resulting wavefunction decays after a few layers,
yielding a pure surface state.

In metals with a surface, the most common type of states are
of the type given in eq A19. We use such states to calculate
〈Ψk|H|ΨA〉.

Appendix B: The Sequential Formula

In this appendix we outline the derivation of the sequential
formula of Hsu and Marcus10 and give the key recursion
relations which are used in the calculation ofHkA. Consider a
bridge consisting ofn identical units (in the present case of an
alkanethiol monolayer the unit would be-CH2-) each having
mmolecular orbitals. Letebe anm× mdiagonal matrix which
represents the Hamiltonian of the bridge unit in a basis which
diagonalizes it, i.e.,

Let v be the coupling between the bridge units in the same basis
and vT be its transpose. Bothv and vT are m × m matrices.
With these definitions and the tight-binding assumption the
Hamiltonian of the total bridge becomes

The partitions in the above equation splitsH(n) into two parts
H 0

(n) andH 1
(n) where

and

so that H(n) ) H 0
(n) + H 1

(n). H 0
(n) is the Hamiltonian of a

bridge with (n - 1) coupled units and 1 uncoupled unit while
H 1

(n) is the coupling between the (n - 1)st unit and thenth
unit.

det(B
z*

+ A† + B†z* ) ) 0 (A15)

cn ) ∑
m

(zm)namFm(zm) (A16)

Ψk(r ) ) ∑
n,m,j

exp(inkm)amFm,j(exp(inkm))Φj(r - nR̂p)

(A17)

∑
m,j

amFm,j(zm) ) 0 (|zm| e 1, j ) 1 to J) (A18)

Ψk(r ) ) ∑
n)1

∞

∑
m,j

(zm)namFm,j(zm)Φj(r - nR̂p) (A19)

e ) (ε1 0 · · · 0
0 ε2 · · · 0
··· l ··· ···
0 0 · · · εm

) (B1)

H(n) ) (e v 0 0 · · · 0

vT e v 0 · · · ···
0 vT e v · · · ···
···

···
···

···
· · · 0

0 · · · · · · 0 vT e
) (B2)

H 0
(n) ) (e v 0 0 · · · 0

vT e v 0 · · · ···
0 vT e v · · · ···
···

···
···

···
· · · 0

0 · · · · · · 0 0 e
)≡ (H(n-1) 0

0 e) (B3)

H 1
(n) ) (0 0 0 0 · · · 0

0 0 0 0 · · · 0

0 0 0 0 · · · 0
···

···
···

···
· · · v

0 · · · · · · 0 vT 0
) (B4)
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TreatingH 1
(n) as a perturbation toH 0

(n), the Green’s func-
tion for H(n) can be rewritten exactly as

where G 0
(n) is the Green’s function corresponding toH 0

(n),
namely,

and∆ is them × m matrix,

whereE is the energy of the electron.
The tight binding model is used in this formulation, and so

only that block of the Green’s function which relates to the
transition of the electron from the 1st unit to thenth is needed
to calculateHkA. This m × m block is G(1,n)

(n) . After some
manipulation of eq B5 a recursion relation forG(1,n)

(n) can be
obtained,

and

G(n,n)
(n) is the (n,n)th block of G(n). The initial condition of the

recursion, namelyG(1,2)
(2) andG(2,2)

(2) can be obtained by directly
solving eq B5 as a 2m × 2m matrix equation.

From G(1,n)
(n) , HkA can be obtained using an equation derived

in ref 10:

whereVk,1 is the coupling of the metalk-states to the bridge
andVn,A is the coupling of the bridge to the acceptor.
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