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Nonadiabatic Electron Transfer at Metal Surfaces
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The present article treats the role of the density of electronic stateshe Fermi level of a metal in affecting

the rate of nonadiabatic electron transfer. The rate conktans$ calculated for the electron transfer across

an alkanethiol monolayer on platinum and on gold. phef platinum is about 7.5 times that of gold, the
difference being mainly due to the d band of Pt. In spite of this difference, the electron transfer rate constant
ket calculated in the present paper increases only by a factor of about 1.8, instead of the factor of about 7.5
expected usingg alone. Implications of these results for present and past experiments are described. Bands
which are weakly coupled (e.g., the d-band of Pt in the present case) contribute much less to the rate constant
than is suggested by their density of stgiesThereby ket is approximately independent pf in two cases:

(1) adiabatic electron transfer and (2) nonadiabatic electron transfer when thgrastdaie to the d electrons.
Experiments which can test the latter are discussed.

1. Introduction nonadiabatic. Studies with such a system would help differenti-
ate between the two explanations for the rate constant depen-

In this paper, we ;tudy how the rate of electron transfer IS dence on the density of states given above, by providing
affected by the densitypf) and the nature of electronic states i tormation on the coupling by d versus s electrons.
of the metal at the Fermi level, in particular how the exchange | this paper, the electron transfer rate constaat is

current is affected. There have been some experiments pergcylated for an alkanethiol with 15 methylene units, with the
formgd investigating the variation o_f the rate constant Wlth the redox agent Ru(NEJsPy2* tethered to it. A monolayer of the
density of states of 'the metal not using monolayerand Wlth alkanethiol (HS(CH)1sCONHCHPYRuU(NH)2") is then coated
monolayers:® Iwasita et al. measured the electrochemical 4 metal. We estimate how changing the metal from Pt to Au
exchange currerity for the Ru(NH)e** —Ru(NHs)s>* couple changes the rate constant and hence the exchange current.
at several metal electrodes. They found thaivas the same, The theoretical model is described in section 2. To treat the
even Wh_en the density of electronic states differed by an order ,qta) electrode, a tight binding (TB) approach is used in the
of magnitude. calculations. Parameters available from a fit to band structure
The first explanation that comes to mind for such experi- of the metal are used. The extended:-ekel method is used
mentd~2 is that the electron transfer reaction is adiabatic. The tg treat the alkanethiol bridge and its coupling to the acceptor
exchange currerity is expected to be proportional g only and to the metal. The bridge part is parametrized to fit
for nonadiabatic electron transfers, namely, in the limit of weak experimental band structure of long chain alkanes. In a recent
coupling of the redox agent to the metal. In the adiabatic case, article 1°it was found that this parametrization was sufficiently
iex should be independent pf. However, there is an alternative  accurate for the calculation of the distance-dependence of long-
explanation for the results. The assumption flats propor- range electron transfer rates in similar systems.
tional topr in a nonadiabatic process is based on the assumption  |n treating the metal, the Z-transfothi” method is used,
that the different electronic orbitals in the metal, s, p, and d, which facilitates the use of a semi-infinite model for the
which contribute tgr contribute equally tdex. The large value  electrode and allows for easy calculation of metal wave functions
of pr in metals such as Pt or Pd arises because their d orbitalswith tight-binding parameters. This method is summarized in
lie near the Fermi level. If the d electrons are much less coupled Appendix A and is applied there to the present problem. In the
to the acceptor than the s electrons (which domin&téor present paper we use it to explore héwr changes with a
metals such as Au or Ag), the exchange rate would not be change inog, namely, how it changes with the metal electrode,
proportional to the totapr even for a nonadiabatic process.  and examine particularly the relative contributions of d and s
In recent years, there has been much experimental work with electronic states to the rate constant. The results are discussed
monolayers coated on metal surfaeegmainly gold). Such in section 3 and compared with available experimental data.
experiments have been used to study features such as th&he present approach, like that in our earlier pajgéfon long
distance dependence of the rate of electron transfer, therange electron transfer, is a pragmatic one, namely, to use an
reorganization energy and the coupling between the redox agenapproximate but simple method which has no arbitrarily
and the metal. When a sulfficiently thick monolayer is present, adjustable parameters and see whether it is in agreement with
for example, sufficiently long alkyl chains in the case of a the trends in the available experimental results.
thioalkane monolayer, the coupling between the metal and the
acceptor is weak and the rate of electron transfer is clearly 2- Theoretical Model

The standard expression for the first-order rate constant for
*To whom correspondence should be addressed. a nonadiabatic electron transfer (weak electronic coupling limit)
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for reactants fixed in position i$

21

Ker = FFC|HDA|2 (1)

whereFC is the Franck Condon factor ahtha is the electronic
coupling between the donor and the acceptor.

We consider a donor (or acceptor) attached to the electrode

by a thioalkane bridge monolayer. When a continuum of donor
or acceptor levels is involved in the electron transfer, as is the

case in a metal electrode, the right hand side of eq 1 is integrated
appropriately over these levels. The rate constant for electron

transfer can then be written44°
o (-ertoarksT

e

and the units oker are s. For the Franck Condon factor we
have substituted a classical value (the final ratidgefs for
different metals will be insensitive to this approximation),

2

= V()I*f(e)

Ker = (2

e—(l—er]+e)2/4lkBT
(4rkgT) "

where/ is the reorganization energgijs the electronic charge,
and# is the overpotential. In eq 4(¢) is the Fermi-Dirac
distribution withe measured relative @, the chemical potential
of the electrode,

®)

elkgT

e
Q="

“4)
The square of the coupling matrix elemef\(¢)|2 denotes an
integral over all the wave vectokswhich contribute to a given
energy,

V(e)I? = [d*k|Ha*0(e(k) — €) ()

|Hkal is W|HWaOand describes the electronic coupling
between the redox agemt)(and a particular electronic state of
wave vectork of the electrode (which may have contributions
from many bands). The integral over wave vectors in eq 5 is
intended to include all such states and banBigand W, are

the wavefunctions of the electrode and the redox agent,
respectivelyW, is normalized in the usual way and has units
of A=32, For Wy a box normalization is used, i.e.,

W, (N)|¥, ()t 1 6

v (6)
whereV is the unit cell volume an@limplies integration over
a unit cell volume. ThusW(r) has no units andWy|HWAO
acquires units of eV A2, |Hyal2 has units of e¥ A3 (eV2wave
vector-3), and so|V(¢)|2 has units of eV.
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where
IVI? = kg TIHyal o ®)
the square of the couplin|g;-IkA|2 denotes
; JIK[Ha? 0(e(k) — €p)
[Heal” = 3 )
Sk O(e(k) — &)
and pr is the density of statéat the Fermi level,
pr= Ak (e(k) — &) (10)

We use the volume of the unit cell (with a one atom basis when
appropriate as in the present case) as the unit volume and the
units of pr become eVv? atont.

In a multiband case, more than one band contributes to the
density of states. If the summation over different bands is

included in|HkA|2 and pg includes densities from all bands, eq

7 is still applicabIeJHkA|2 has contributions from all bands and
depends on how the states are distributed over the bands and
how each band couples to the acceptor. Because of this feature,

|HkA|2 can vary from metal to metal, and so the rate constant is
not merely proportional tpg, although egs #9 remain valid.
Clearly, the electronic states of bands weakly coupled to the
redox agent will not contribute as much to the rate constant as
those from bands strongly coupled to it.

To obtainket (eqs 79) a calculation ofHga at the Fermi
energy €r) is needed. This matrix element is the coupling
between the metdW| and the acceptgiPastates. To find
the form of the[W| states of the metal we use the Z-transform
method. This method is outlined in Appendix A.

3. Calculation and Results

The metals Au and Pt have very different densities of states
at the Fermi level, the difference being largely due to the
presence of the d electron band in Pt. The vdloégr = 2.20/
atom/eV for Pt anghe = 0.29/atom/eV for Au are used in the
present calculation. The Fermi enerdiegPt and Au are taken
to be 8.68 and 7.32 eV, respectively, and the lattice pararféters
are 2.77 A for Pt and 2.88 A for Au. Literature val@es the
TB parameters for the metals are used to calcllate These
parameters were obtained by a fit to accurate band structure
calculations. The extended-kkel theory is used to calculate
the energy and overlap matrix elements of the bridge and the
acceptor. The structure of the acceptor is estimated from the
structure of X-ray data of similar compountfsOnly one
alkanethiol chain is used instead of the entire monolayer. It was
shown by comparison with added alkanethiol molecules that
this approximation gave a reasonable and for our purposes
adequate description of the coupliHtA parametrization of the

The exchange current can be obtained from the rate constantridge, and the sequential formula of Hsu and Mateugere

with # set to 0 and then integrating over a unit area of the metal

used to calculate the coupling elemétita,. Some details on

surface. Equation 2 is readily modified when the redox reagent the sequential formula, including the key recursion equations

is not attached to the monolayer.
For a single band casg,= 0 and/l > ¢ (as is typically the
case), eq 2 simplifies 8

o D
ker = F(4niksT) e T v)? @

used to obtain the matrix elements, are given in Appendix B.
The |Hkal?'s were averaged over 60vectors?® Thesek vectors

were chosen randomly and included contributions from all
bands. Thus|Hal? is averaged over all bands apd is the

total density of states. To make the calculations of Hsu one
needs the difference in energies of a virtual superexchange state
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4. Discussion

It is seen both experimentally and theoretically that the
nonadiabatic rate of electron transfer is not simply proportional
to the total density of states. It depends, instead, on the density
of states modulated by the square of the coupling. Accordingly,
it is necessary that the various bands from which the density of
states arise be also considered.

A more detailed analysis of the results provides some insight
into the nature of the similarity of electron transfer rates for Pt
and Au, their large difference in density of states at the Fermi
energy notwithstanding. With a density of states at the Fermi
energy of 29.9 in no. of states/Rydberg/atom, the density of sp

Figure 1. Band structure of Au and Pt with the Fermi energies of
each set to Op is in units of no. of states per atom per eX)(gives
the density of states for Pt and) gives the density of states for Au.

states of Pt is 0.6 and that of d states is ZA\Bith a density

of states of 4.0 for Au at the Fermi energy, the density of sp
states was 1.6 and that of the d states was® Ecom these
results it can be inferred that while the d states in Pt are not
ineffective for coupling, their effectiveness is far below that of
the sp states. If for a rough estimate the ratio of individual
coupling effectiveness of an sp state afa@a state in Pt were
taken to be roughly the same as in Au, then the calculated ratio
of 1.8 for the rate constants leads from the above figures to a
relative effectiveness of sp states to d states of 11.2.

There has been some concérthat the extended-Hikel
method gives very narrow d-bands, which are more localized
than in reality. In the present calculation, the metal is modeled
using TB parameters which are not taken from extendéckelu
and give good band structure res¥Sigure 1). The d couplings
we used for the PtS, Au—S and bridge-acceptor were,
however, obtained from an extendeddKal calculation using
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Figure 2. Ratio of rates at zero overpotential vs number of methylene

units.
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the standard parameters available with the program.

The fact that the d orbitals are localized and not strongly
coupled to the environment is well-known from field emission
experiments$3 Thus, even though the d electrons are present at
the Fermi level, they interact very weakly with external fields

or ions and these electrons tunnel out from the metal much less
than s electrons at the same energy. This fact has been observed
in field emission as well as in ion neutralization experiméfts.

It is thus perhaps, not surprising that this d electron localization
also manifests itself in a reduced contribution to the rate constant
in electron transfer experiments.

The rate constants were calculated as a function of the number
of methylene units for the two metals. Regarding the results in
Figure 2 we note that the ratio of the rate constants of Pt and
Au changes little with number of methylene units.

We also calculate the overpotential dependence of the ratio
of rate constants using eqs-2 (Figure 3). We find that the
and the donor/acceptor state at the transition state. Thisratio peaks close to the Fermi level and decreases weakly for
difference can be calculated using a forndtiigiven in ref 10. positive overpotentials. This result is understood using the band

Our result for the rate constants of the two metals for a 15 structure of the two metals (Figure 1): the density of electronic
methylene unit alkanethiol monolayer gives a value of 1.8 for states of Pt is the highest close to Fermi level (zero overpo-
ke/kau. This result is consistent with unpublished experiméfits.  tential), slopes gradually for negative energies relative to the
The ratio of the densities of electronic states of the two metals Fermi energy and decreases sharply for positive energies while
is 7.5. the density of states of Au is almost constant over the whole

The ratio of the exchange rate constants as a function of overpotential range. The change in ratio of rate constants with
number of methylene units for the two metals is given in Figure change in overpotential is very small for the anodic and cathodic
2. The number of methylene units is varied from 3 to 20. This parts of the curve. This small change should not cause any
ratio gives the distance dependence of the d orbital coupling. significant asymmetry in the rate vs overpotential curves,
The overpotential dependence of the ratio is also calculated andbecause of the large direct effect of the overpotential in the
is plotted in Figure 3. The dependence is found assuming a valueexponent of eq 2.
of 1.2 e\®82%for 1. The same monolayer shields the acceptor  The observation of the importance of the type of states for
in the solution from the metal surface, so we assume that thethe present study rather than only the density of states has its
reorganization energyl] does not change on going from Au  counterpart in studies of intramolecular vibrational relaxafion
to Pt. To perform this calculation a value of 0.025 eV ke, where the total density of states does not play a direct role in
and the expression of the rate constant from eq 2 were usedthe rate of relaxation. It is rather a local density of coupled

kpy/kaw 1+ B

1 1 L 1

0
15 1 0.5 0 0.5 1 15
n(eV)

Figure 3. Ratio ofkp;andkay vs overpotentialif), assuming an equal
A for the two metals.
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vibrational states which is important. In surface physics too, wherec,;is a factor, which we will find using the Z-transform.
the concept of local density of states is useful to understandj is summed over the number of orbitals per unit cell, here
spectra where contributions from different layers parallel to the numbered 1 tal. n is summed over as many layers as the

surface might be differerié problem requires, for example;eo to +oo for a bulk crystal, 1
to +oo for a bulk crystal with a surface, and 1 to a finitefor
5. Conclusions a slab. The range efimposes boundary conditions on the wave

In this paper, we have calculated the effect of the metal function, and we will examine later how these conditions affect

density of electronic states on the rate of electron transfer. We (e wavefunction. For now, we takeo be a problem-dependent
find that the rate constant is not simply proportional to the duantity. _ _ . .
density of states. Instead, we need to consider the individual Using tAhe Schrpedlnggr equation, m“'“F,"y'”g by a particular
electronic coupling elements for each of the bands. The coupling i — NRp) and integrating over we obtain

matrix elements significantly reduce the effect of the extra B SO

density of states of weakly coupled bands, such as the d band. [@,(r = WR)IHIW\ L= el@,(r = R)IW\ L (AS)

We find, consistent with electron emission resditsd electron For the present problem, where the rate constant is being

transfer experiments? that the d band states couple weakly to evaluated at the Fermi level (in the “normal region” for rate

the outside environment and, thus, the fate constant for elemmnconstants)g equalser and from eqs A2 A5 we have
transfer does not reflect only the density of states.

Acknowledgment. We thank Professors Finklea and Forster Z{ [@\(r = MRYIHIP(r — nRy)L-
for insightful discussions and kindly sharing their data with us.
It is a pleasure to acknowledge the support of this research by
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e[ @,(r — NR)|P,(r — nR)Jc,; =0 (A6)
The above equation can be written in matrix form,
SM ("R, nR))c, =0 (A7)
n

Appendix A: The Z-Transform Model for Semi-Infinite
Metals

The Z-transform is a generalization of the discrete Fourier WhereM is aJ x J matrix (J is the number of orbitals per
transform and is commonly used in the field of signal process- atom) andc, becomes a column vector withcomponents, its
ing.1” The periodicity of crystals makes them very similar to jth component beingy;. Using the tight-binding (TB) ap-
discrete signals and, therefore, the Z-transform can be appliedProximation, we assume that any given plane interacts within
very easily to crystalline solids to obtain their wave functions. itself,

It is especially useful in the application of the tight-binding
approximationt!

We consider a crystal as being built up of planes with two-
dimensional translational symmetry. LB; and R, > be the
unit vectors which lie in the plane. Henceforth, we denote any

MR, nR) = A (A8)

and with its nearest neighbors,

= 5\ — pt

vectof® lying in the plane by M(nR, (N — 1)R;) =B (A9)

R,=nR;+ R, (with integern, andnz)( ) M(nR,, (n+1)R) =B (A10)

' ’ Al
A, B, andB" areJ x J matrices (with] same as above) which

When we sum oveR, we imply a double sum over; andn;. can be calculated from TB parameters of the m&t&h, being
k; in the subsequent notation denotes a wave vector conjugatethe self-interaction of the plane, is Hermitian. When a plane is
to Ry. not at the boundary, and so, both its neighboring planes are

Let R, be the third unit vector for the unit cell, directed from  present, we have
one of the above planes to the next. With this notation each

plane has a wave function of the form B'c, ,+ Ac,+Bc,,, =0 (Al1)
o Sincen is discrete, we use the Z transform
O(r—Ry= z exp(k,'R)O,(r — R, — R (A2)
Ri== F(2 = Zz”cn (A12)
with "

. wherezis a complex variable ané(z) a column vector withl
R,=nR, (A3) components. Only whenis of the form expi@) with real 6,
doesF(2) reduce to the familiar discrete Fourier transform. From
wherej is an index which labels the orbitals for each atom and eqs A11 and A12 we see that
Oj(r — Ry — Ry) denotes the orbital centeredrat= R, + Ry

The crystals of both Au and Pt have a one atom basis (one +F(2) .
atom in the unit cell) and so we use that basis here, but this B 7 +AF(2 +BF(92=0 (A13)
method is easily generalized to a larger basis. _ o

The wave function of the crystal is To obtain a nontriviaF(2) we set

A t
W () = > (r = nR,)C, (A4) de(% +A+ Bz) =0 (A14)
nj
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This equation hasZroots. Taking the complex conjugate of

J. Phys. Chem. B, Vol. 104, No. 9, 2002071

In this situationk and —k (wherez = exp(k)), both contribute

the above equation to see the symmetry of the roots, we haveto the wavefunction and a simf)-like wave function § being

de(g +At+BZ) =0 (A15)
SinceA is Hermitian, we see that fis a root then & is also
a root and so the number of roots wjth < 1 equals the number
with |z > 1.

The most general form of, is obtained by inverting the
Z-transform (eq Al12):

6= 3 @)z (A16)

where the sum is over the number of rootd)(2he z,, and

Fm(zm) are the eigenvalues and eigenvectors of eq A13, and the

an can be determined from the boundary conditions and the

normalization. The boundary conditions are considered next.
(1) Bulk. Any solution to eq A13z = zy, which has|z,| >

1 or|zy < 1 will diverge at+co or —co respectively, and itan,

is set to 0. Therefore onljz,| = 1 roots contribute to eq A16,

S0Zm = exp(ikm) with realky,2° and there is a three-dimensional

translational symmetry of the wave function. The final wave

function is then of the form

W) =5 expinkyanFy(expink )@ — nR,)
n,m,)
(A17)

whereFy,; is thejth component of, and the remainingm,'s

can be determined by normalization. The numbeWgfequals

the number ofa,'s found from normalization. The number of
Wy also equals twice the number of bands present at that energy
Physically, thes&Vy represent forward and backward propagat-
ing waves.

(2) Surface.The crystal planes are denotedioy: 1 to +co.
Two conditions are imposed dHy: (a) Wk should not diverge
atn = +o and (b)co = 0, since there is no crystal plane there.
Condition (a) requires that only tHen| < 1 contribute toWy.
Theay's associated with thig,| > 1 roots (the same in number
as the|zy| < 1 roots) are set to 0. Condition (b) requires that

SaFn@)=0  (z/=Llj=1t0) (AL8)
mj

To satisfy (b) we need at least as many solutions of eq A13
(i.e. zn's) as there are orbitals (i.el,or components of) and
thusJ of theay's are determined from the boundary condition.
The most general form of the wave function is

P =3 > ) anFn(Z) i - Ry (A19)
n=1m,}

Wy has two parts, one witfz,| = 1 which propagates into the
bulk, and one with contributions fromz, < 1, which
approaches zero after a few layé¥$n eq A19,J of theay, are
determined by the boundary condition, eq A18, and the
remainder are determined by normalizationl lhands lie at
the energyr (eq A5) thenl solutionsWy exist andl of the an,
need to be determined by the normalization.

Two special cases may arise: (i) Due to the symmetry of the
particular crystal (and the particular surface) under consideration
none of the decaying solutions contribute to the wave function,
e.g., as in the case of Au(111) modeled with only s orb#&ls.

the nth layer from the origin) satisfies the boundary condition.
(ii) At some particular values dk;| (eq A2) noz with |z| =
1 will exist. In this case the boundary conditions may still be
satisfied but the resulting wavefunction decays after a few layers,
yielding a pure surface state.
In metals with a surface, the most common type of states are
of the type given in eq A19. We use such states to calculate
(W HWAl

Appendix B: The Sequential Formula

In this appendix we outline the derivation of the sequential
formula of Hsu and Marcud8 and give the key recursion
relations which are used in the calculationHhfx. Consider a
bridge consisting of identical units (in the present case of an
alkanethiol monolayer the unit would beCH,—) each having
mmolecular orbitals. Le¢ be anm x m diagonal matrix which
represents the Hamiltonian of the bridge unit in a basis which
diagonalizes it, i.e.,

€ 0
0 €y oo
Do .
0 e

-0
0

(B1)
0 Em
Letv be the coupling between the bridge units in the same basis
and VT be its transpose. Both andv' arem x m matrices.
With these definitions and the tight-binding assumption the

Hamiltonian of the total bridge becomes

e v 000
' vie v 0.t
HY=10 T e v | (B2)
P |0
O eee oo 0v'|e

The partitions in the above equation spi&) into two parts
H$ andH {” where

e v 0 O0--|0
T .
Vv e \Y 0 eee |

" H™™|0

Hy' =10 vl e v i |= (B3)

. . . . 0 e
: ¢ |0
O eee eoe 00

and

(B4)

so thatH® = HY + H?. HY is the Hamiltonian of a
bridge with g — 1) coupled units and 1 uncoupled unit while
H (" is the coupling between thex (— 1)st unit and thenth
unit.
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Treating H g-n) as a perturbation téd g]), the Green’s func- (9) Hoffmann, RJ. Chem. PhySL963 39, 1397. We use the foIIowi_ng
tion for HM can be rewritten exactly as program: Whangbo, M. Hextended Hakel Molecular Crystal Properties

Package(QCPE Program No. 571).

(10) (a) Hsu, C.-P.; Marcus, R. A. Chem. Physl997, 106, 584. (b)
G"=E1-HMT=EL-HP -H)™ Hsu, C.-P.J. Electroanal. Cheml997, 438 27.
(11) Marcus, R. AJ. Chem. Physl993 98, 5604 and references therein.

_~(n N~ (My—1 (12) Stuchebrukhov, A. A.; Marcus, R. Al. Phys. Chem1995 99,
=61 -HPG6) (BS) 7581,
(13) Siddarth, P.; Marcus, R. Al. Phys. Chem1993 97, 6111.
where G gl) is the Green’s function corresponding td o (14) Marcus, R. AJ. Chem. Physl965 43, 679 and references therein.

(15) This expression for the rate constant includes the assumption that

namely, the solvent’s dielectric polarization is not “sluggish”.
(16) The density of states at a given eneegg
(" m-1_ ("0
COW=EL-H) = (B6) [ _
0 0 0 A p= [k o(e(k) —€)
i ; This density can be calculated using the above equation in conjunction with
andA is them x m matrix, eqg A5. A grid is set up ifk-space to choode-vectors; eq A5 is then solved
A=El—e (B7) to obtain eigen energies and a binning technique is used to obtain the density

of states from the eigen energies using the above expressign lioithe
. Z-transform formulation a reverse procedure is used, in which for any given
whereE is the energy of the electron. energye, thek; values are used to fing by solving eq A13 in Appendix
The tight binding model is used in this formulation, and so A. (Thek; determine theB', A, andB that appear in eq A13.)

only that block of the Green’s function which relates to the _ (17) Oppenheim, A.V.; Wilsky A. S.; Young, | Bignals and Systems

. . . Prentice-Hall, Inc.: New Jersey, 1983.
transition of the electron from the 1st unit to thén is needed (18) A capital letter used here for a vector indicates a vector which can

to calculateHya This m x m block is Gﬁ?n)- After some take otr; dri]scretﬁvalues il.e., a vector which points from one atom to another
; : ; P n) atom both, in the crystal.
man!pulatlon of eq B5 a recursion relation fﬁﬁlm can be (19) Slater, J. C.. Koster, G. Phys. Re. 1954 94, 1498.
obtained, (20) If there is three-dimensional translational symmetry (in bulk), we
speak of a 3-D wave vector. In this derivation we kgéo denote the part
N — m-1) “1q4 _ \,T(n—1) -L-1 of the wavevector parallel to the plane, akglto denote the part of the
G(lvn) (1vh*l)VA (1—-v G(nflyﬂfl)vA ) (B8) wave vector along the third axis of the unit cell, frequently perpendicular

to the plane, ifizl = 1. In general, if a surface is present it mixegs and

and km is not a good quantum number.
(21) Lee, D. H.; Joannopoulos, J. Bhys. Re. B 1981, 23, 4988.
M — A1 _ \Tr(-1) -1\—1 (22) Lide, D. R., EdA.CRC Handbook of Chemistry and Physizdth
G =A (1 =V Gpip-yyVA ) (B9) ed.; CRC Press: 19934

(23) Ou-Yang, H.; Kallebring, B.; Marcus, R. A. Chem. Physl993

G" is the q,n)th block of GM. The initial condition of the 98, 7145.

(n,n) . . . . . .
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