JOURNAL OF CHEMICAL PHYSICS VOLUME 110, NUMBER 11 15 MARCH 1999

Linear response in theory of electron transfer reactions as an alternative
to the molecular harmonic oscillator model

Yuri Georgievskii, Chao-Ping Hsu, and R. A. Marcus
Noyes Laboratory of Chemical Physics, Mail Code 127-72, California Institute of Technology,
Pasadena, California 91125

(Received 21 October 1998; accepted 16 December)1998

The effect of solvent fluctuations on the rate of electron transfer reactions is considered using linear
response theory and a second-order cumulant expansion. An expression is obtained for the rate
constant in terms of the dielectric response function of the solvent. It is shown thereby that this
expression, which is usually derived using a molecular harmonic oscilt&pm-boson”) model,

is valid not only for approximately harmonic systems such as solids but also for strongly
molecularly anharmonic systems such as polar solvents. The derivation is a relatively simple
alternative to one based on quantum field theoretic techniques. The effect of system inhomogeneity
due to the presence of the solute molecule is also now included. An expression is given generalizing
to frequency space and quantum mechanically the analogue of an electrostatic result relating the
reorganization free energy to the free energy difference of two hypothetical syske@ieem. Phys.

39, 1734(1963]. The latter expression has been useful in adapting specific electrostatic models in
the literature to electron transfer problems, and the present extension can be expected to have a
similar utility. © 1999 American Institute of PhysidsS0021-960609)01511-1]

I. INTRODUCTION approach of Levich and Dogonadze, subsequently used as a
common model to treat quantum aspects of ET reactibits,
Interaction with an environment plays a crucial role in required justification. One way to resolve this difficulty was
many nonadiabatic processes in condensed phases. Electigijen by Ovchinnikov and Ovchinnikov&, who used a
transfer reactiors® provide a major example in which quantum field theoretic methbto show that the result of
strong electrostatic interaction of a reacting species with @ avich and Dogonadze can be recovered in the long-wave
polar solvent can control both the energetics and the dynamypproximation without explicitly invoking a molecular har-
ics of the process. The theory of nonadiabatic transitions, ifnsnic oscillator model. In their derivation Ovchinnikov and
the presence of strong interaction with the environmengy,chinnikova considered uniform systems, so dielectric im-

tre)a;[ed guantt)um n(;echanic?l\lg, ﬁriginates frohm the paplfarj %{ge effects and any effect of the solute on the properties of
Lax" and Kubo and ToyozawaTheir approach was applie the nearby solvent were not included. Image effects have

by Levich and Dogongdfgto_calculate the rate of an elec- oo, inciuded earliér® on the assumption that the slow and
tron transfer reaction in liquids. In their theory Levich and .
fast solvent modes allow for a clear separation.

Dogonadze, like Lax and Kubo and Toyozawa, used a col- Kornyshev investigated the models with nonlocal dielec-

lection of harmonic oscillators as a model of the environmen%riC responsd®2 which was applied earlier to electron
whose fluctuations are responsible for the electronic transi- P N . bp .
tion transfer reactions in the framework of a molecular harmonic

In a seemingly different approach Marét&used a di- °Scillator modef*#!* Song, Chandler, and Marciiscon-

electric continuum approach and showed that the polarity ofid€red the effect of the solvent inhomogeneity due to the
the solvent is important for understanding the energetics of©!ute Presence using the Gaussian field model, which could
an ET reaction. Marcus later assumed only a linear dielectri@® Viewed as a continuum equivalent of a moleé:ular har-
response of the solvent in the vicinity of the reacting species1onic oscillator model. Fleming and CO'WQVk%‘r_SZ used
and did not use any specific molecular model of the sol¥ent."onlinear spectroscopy to study the solvation dynamics of
Vorotyntsevet all” related the rate constant to a complex, chromophoric. molecules in the variety of solvents and
space- and time-dependent electric susceptibéip,k) in ~ 9lasses. They related the spectral density of the harmonic
the framework of a harmonic oscillator model, thus generalmodes to the correlation function of the energy difference in
izing Marcus’ theory in this respect, which was purely clas-the excited and the ground electronic states of the chro-
sical. Jortner and co-workéfs3extended the treatmémof ~ mophore and used a treatment developed by Mukdnel
Marcus and Levich and Dogonadzey using the former for express the measured spectra in tems of the spectral density
low frequency modes and the latter for high frequencyof the effective harmonic oscillators. Berne and co-woriers
modes. have investigated the solvation dynamics and vibronic spec-
One factor influencing the dielectric properties of polartra of chromophoric molecules for models in which the har-
solvents is the reorientational motion of the solvent mol-monic bath frequencies and normal modes are different,
ecules, a motion which is strongly anharmonic. Thus, theather than the same, for the initial and final electronic states.
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In this paper we show that an expression for the rateeffect in the present formulation is related to the one of
constant in terms of dielectric dispersion properties, whichRef. 23.
was originally derived using a molecular harmonic oscillator
modell®4is also applicable to molecular systems which are
strongly anharmonic, in particular to polar solvents. Thell. THEORY
present calculation is based on linear response theang a
second-order cumulait® expansion. The calculation then o
relates the rate constant to the dielectric and some structural 1N€ Hamiltonian operator of the system reactants
properties of the system. An expression is also obtained Solvent in either electronic state can be written as
[Egs. (17), (23), and (38)] generalizing to frequency space Hj=h;+Hy+ Hj’ . =12, (D
and in quantum mechanical terms a result obtained . — . T
earlier®*2The latter related the free energy barrier for reac-Whereh; is the Ham|lto‘r‘1|an of the f,r,ee rez,:lc_tantsl-_lo IS
tion to a difference in “free energy” of two hypothetical the. Hamiltonian of the fre{ze solvent,” ané is the 'T“er'
systems. These two systems have a charge distribution Whi&ft'ﬁn between therr:\. The; .<|jep<.ands_ OT t:e elﬁctr.onlc state
is the difference between those of the products’ and the rel%ct e reactants. The Hamiltonian) includes the intramo-
actants’, but now one system interacts via the solvent dielec-

ular vibrational modes of the reactants. Purely for simplic-
tric dispersion at frequency and the other at the solvent's ity of notation, since the present article focuses on the sol-
optical frequency.

vent effect which is associated with, andH,, we consider
. . structureless reactants and so treas just numbers. The
The cumulant expansion approach is the same as ONe . of the | lecular vibrational modes has b
developed by Kub® and Mukamet® to describe the tran- role of the intramolecular vi ""“022‘7 moaes has been exten-
. . - sively discussed in the literatdfe!®*’~*%and can be easily
sient fluorescence of large aromatic molecules. A similar ap-

. : ~ incorporated into the present scheme. The operaigrand
proach was used earlier by Hizhnyakov and co-workerS _Hj’ act on the nuclear wave function of the solvent. We do

to describe the spectra qf im-purity cgnters in solids. There. 'Rot use carets in their notation in contrast with other opera-
perhaps also a pedagogical interest in such a treatment, SiNESo [e.g., in Eq.(2) below] since they are used only in this

it provides a simplification and extension over the original, <o and so no ambiguity is caused by such notation
pioneering and stimulating quantum fgaeﬁld theoréideriva- The interaction between the reacting species and the sol-
tion of Ovchinnikov and Ovchinnikova: Another altema- yent s approximately separated into electrostatic and non-
tive approach to the present one is that given by Chandlegjectrostatic interactions. Nonelectrostatic  interaction  in-

who used a path integral formulat|6?1_.The common har-  ¢judes van der Waals attraction, short range repulsion, and
monic oscillator bulk model can be viewed as one way Ofyyqrogen bonding. This interaction is assumed here to be
visualizing these more rigorous results. independent of the electronic state of the solute and is in-
The paper is organized as follows: cluded inHy. However, it should be noted that the last as-
The molecular Hamiltonian and the molecular solventsymption probably breaks down for the reactions in which a
polarization operatoPy(r) are described in Sec. Il A. In Sec. bond of the solute to a solvent moleculacluding a hydro-
1B the standard expression for the nonadiabatic reactiogen bondl is formed or broken when the electronic state of
rate constant is given and a generalized coordiXai® in-  the reacting species changes. Such an effect could probably
troduced.(Use of the latter provides a way of avoiding the be included later, instead, as a state-specific contribution
field theoretical treatmentThe correlation function in the to h;.
rate constant expression is simplified using a second-order Because of the complex interactions of dipoles, perma-
cumulant expansion and a correlation functionXofLinear  nent and induced, of the solvent there are many subtleties in
response theory is introduced in Sec. IIC to evaluate thigheir analysis. In an excellent article written in 1958, Mandel
correlation function. The& is then related in Sec. 11D to the and Mazuf® have described these terms as well as previous
solvent polarization operatd?,(r) and to a certain hypo- €rrors in the literature. The electrostatic in.teraction betweep
thetical electric fieldD{9(r) and is used to evaluate the sol- the reactants and the solvent can be written, as shown in

vent response functioa,, . The a,, is expressed in Sec. IIE Appendix A[cf. Eq. (AB)], as®

in terms of a frequency-dependent “free energy” difference .

of two hypothetical systems, E¢38), and the equation for Hj= —f DI?(r)-Po(r)d®r, j=1.2, ()

the rate constant is then givgBq. (39)]. Some specific sol- O)or o _

ute models are discussed in Sec. IIF. The relation of thd'hereD;(r) is the electric field at point, created by the
present results to previous work and some other features §f2cting species in vacuum for théh electronic state and
the results are considered in the Discussion, Sec. IIl. Sever&b(r) is the operator representing the molecular solvent po-
features are treated in more detail in the appendices: Thigrization at the same point, when the solute charge distribu-
various electrostatic operators are treated in Appendix A, thé0n p(r) is set equal to zero. We use a caret notation for
relation of a term in the rate expression to the standard freBo(r) to stress that it is an operator acting on the nuclear
energy of reaction is derived in Appendix B, and the relationwave function of the solvent. Although we do not explicitly
between the electrostatic operators and the time-dependense the following expression fét,(r) in Eq. (2) it could be
macroscopic properties is given in Appendix C. In Appendixdefined in a long-wave approximation as a weighted sum of
D it is shown how the treatment of the excluded volumethe individual dipole moments of the solvent molecules:

A. Hamiltonian and molecular polarization operator
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Po(r)=2, 8(r—ry)dn="2, 8(r—ry)(d°+d;). (3) k=A2f+ocdt(e“H1e‘“H2>, (4)

. . . (throughout units in whichh =1 are usej] where the aver-
In this equation the coordinates of the center of mass of thgging is taken over the initial state:

nth solventAmoIecuIAe are denoted by and its net dipole R
moment byd, . Thisd, is not only a function of the internal ()= e ]
nuclear configuration of theth solvent molecule but also of Trle A1)
the °.the'f so!ve_nt molecules, since they inducg an electronic It is convenient to rewrite the expression for the corre-
poIeA\rlzatmn in it. As a result, the solvent polarization OPera-|tion function in Eq.(4) in terms of the formalism of time-
tor Py(r) itself consists of two parts, one part arising from all 5, qered exponents:

the unperturbed dipole operatcﬂ%of the solvent molecules,
and the second part related&p being a collective electronic
response to the first part.

R N W
r, andd, are quantum mechanical operators which act
on the wave function in the configurational space of all X=H;—H; (7)

nuclear degrees of freedom of the solvent, after an averaging he energy difference of the system in the final and initial

over the total electrc_)nic wave function of the solvent haselectronic states of the solutthe nuclear kinetic energy op-
been performed. This averaging assumes a fast electronigaior cancels ix) and where the time-evolution occurs in
response. It may be stressed that no averaging over anje initial state

nuclear motion of the solvent, such as over the intermolecu- _ _

lar or intramolecular vibrations of the solvent molecules, is ~ X(7)=explirH)X exp(—i7Hy). 8
performed in Eqs(2) ?nd(B). Instead, the molecular solvent One can then use a cumulant expan&ldo represent
polarization operatoPy(r) is a complicated function of all the correlation functiome'tHle*'tHZX

nuclear coordinates of the solveR¥(r) is a part of the total 2 (=) [ i

pol_arization _operat0|P(r)=Po(r)+_P0p(r) [cf. Eq. (C4)], <eitHle_itH2>:eX[{ > - f f dry---dr,
which also includes the electronic resporfag(r) to the n=1 Tt J-o -

, B=1KkgT. (5)

i i —ifEX(nd
gltHate |tH2=e+|f0 (1) g ©6)

here

solute charge distribution. The total polarization operator

P(r) is distinguished from the stand&tdnacroscopic polar- X{T[X(71), *, X( Tn)]>cJ , 9
ization P(r), which is an average d¥(r) over local solvent

nuclear fluctuationgcf. Eq. (C1)]. whereT][ - - -] denotes the time-ordering operator and the av-

Since the molecular solvent polarization operd®gfr) ~ €rage(:--). in the nth term of the power of exponent de-
in Eq. (2) was defined in Eq(3) using a hypothetical neutral notes the cumulant of theth order. As an approximation,
state of the solute with a charge distributipfr)=0, itis,  Using a cumulant expansion and retaining only the terms up
therefore, a function of the solvent state only. In particular, itto second order, we hatfe
does not depend on the electronic state of the solute. In Ap- _ t "
pendix A it is shown that the expression for the eIectrostatic(e"Hle"H2>=exp< —it(X)— f drlj dr, C(r— 7-2)] ,
interaction between the solute and the solvent, given by Eq. 0 0

(2), is valid under rather general conditions. (10
where
C(7)=(8X(7)5X(0)), 11
B. Rate constant in terms of correlation function of a . L .
generalized coordinate X and 5X=X—(X) is the variation ofX from its average value
o . ] ) (X) in the initial state. The expressions for the first two cu-
The HamiltoniansH;, j=1,2, describe the collective mjants were used:

motion of the system in the initidreactant and final(prod-

uct) electronic states of the solute. To describe the transitiofX)c=(X),

between the two one must introduce the _nondlagonal_ matr%x( TIX(0))e=(X(T)X(0)) = (X)2=(8X(7)6X(0)). (12
elementA which couples the two electronic states. This ma-

trix element is sometimes small and is assumed to be inde- Equation(10) shows that in this approximation the cor-
pendent of the nuclear configuration for statistically impor-relation function(e'1e~"""2) is expressed in terms of the
tant configurations(Condon approximation Non-Condon  correlation functiorC(t). In a molecular harmonic oscillator
effects could be of importance for solvated electrons andnodel the higher cumulants vanish exatfiyf X is a linear
solutes with weekly localized electronic cloutfé>but not ~ combination of the normal modes and E&0) then becomes
for tight redox couples. Then, in first-order perturbationexact for that model.

theory the rate constarkt for a nonadiabatic transition be- To express Eq(11) in terms of a spectral density,
tween the two electronic states of a reactant or reactants fixathmely Eq.(15) below, a Fourier transforn®(w) is intro-
in position can be written as duced,
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Clw)= jMC(t)ei“’tdt, (13

which is a real and positive function @f. It can be shown
that C(w) satisfies the relation

C(w)=e"PC(— w). (14)

Georgievskii, Hsu, and Marcus

where the generalized susceptibiligf 7) is given in terms
of a commutator oiX(7) andX(0)%°

a(7)={[6X(7),6X(0)])=—2ImC(7). (22

The second part of Eq22) follows directly from the defini-
tion of the correlation functiol©(7) in Eq. (11). In passing,
we note that we have been settifagr 1. With ordinary units

The last equation is a direct consequence of the fluctuatiorf 72, the left side of Eq(22) would reada(7)f.

dissipation theorerf®
The spectral density(w) can be defined by

J(@)=3C(w)—C(—w)]. (15)

The following standard expression for the correlation func-

tion C(t) is then readily obtained:

C(t)=%f;dw J(w)[ coth Bw/2)coswt—i sinwt]. (16)

Comparing Eqs(15), (16), and(22) the spectral density
J(w) is seen to coincide with the negative imaginary part of
the Fourier component of the linear response functign
= [y a(t)explwt)dt:

Jw)=—Ima,. (23

D. Relation of C(t) and J(w) to dielectric properties

C(t) and J(w) are molecular statistical mechanical
properties. We turn next to their calculation in terms of the

From Egs.(4), (10), and(16) a standard expression for the giglectric properties of the solvent, in the long wavelength

nonadiabatic reaction rat&'*%follows:

k=A2J | dtexp[—imc;o

+ijwdw.](w) cosi Bw/2—iwt) —cosi Bw/2) an
7Jo

sinh(Bw/2)

(1)2

(local responseapproximation for the solvent. Upon substi-

tuting Egs.(1) and(2) into Eq. (7) the following expression

for the reaction coordinat¥ is obtained:
X=—f DY (r) - Po(r)d®r, (24)

whereD{Y is the difference of the vacuum electric fields in

whereAGP is shown in Appendix B to be the standard free the initial and final states of the solute,

energy of reaction.

C. Relation of the correlation function of X, C(1), to

the generalized susceptibility «,,

The correlation functiorC(t) for the anharmonic mo-

lecular system is next expressed in terms of the dielectric

properties of the solvent. To this end linear response theory D®(r,t)=D3(r)f(t),

is used, after introducing an effective Hamiltonilg(t):
Her(t)=H— Xf(1). (18

Here, the energy differenceé plays the role of a generalized
coordinate(reaction coordinajeand f(t) is a generalized
dimensionless force. Therebid. can evolve fromH; to
H,, if f(t) is chosen to tend to zero &s»— and to be-
come unity ag— + oo,

A nonequilibrium density matriR(t) which evolves ac-
cording to a Liouville equation with the Hamiltonidih.«(t),
Eq. (18), is next introduced,

d
G RO=—Her(0,RV], 19

and used to define a time-dependent avepé@ at timet,

X(t) =TI XR(t)]. (20)

D&Y(r)=DY(r)—D{(r). (25)

Equations(18) and(24) yield
HeﬁzHl—j DO(r,t) - Py(r)dqr, (26)
(27)

is the vacuum electric field formed by the external, time-
dependent charge distributigi(r,t). The latter is a linear
combination of the charge distributions of the solute in its
initial and final electronic states:

p(r,t)=po(r)f(t), paa(r)=pa(r)—py(r). (29)

The effective Hamiltoniari26) describes the interaction
of the solvent with the external charge distributip(r,t).
Thus, the calculation of the correlation functi@{t) is re-
duced to finding the linear dielectric response of the solvent
to the time-dependent external electric fi@&)(r,t) given
by Eq. (27).** The standard “macroscopic” treatment can
then be used to calculate the average electric &€idt) and
the average electric displacemddfr,t) which arise in the
solvent in response to the external time-dependent electric
field D©(r,t). In Appendix C it is shown hovE(r,t) and
D(r,t) are related to the solvent polarization operef?g(fr)

In linear response theory, the average value of the gerin terms of the molecular model of the solvent. These fields
eralized coordinatX(t) is linearly related to the generalized E(r,t) and D(r,t) coincide with the corresponding macro-

force?®

s}

X(t)—(X)= 5Y(t)=f a(t)f(t—r)dr, (21)

0

scopical fields in the standard electrostatic and electrody-
namic treatment$:4°

As a result the standard electrostatic equationg&fort)
andD(r,t) can be use8®
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V-D(r,t)=4mp(r,t), VXE(r,t)=0. (29 On comparing Eqs(34) and(21) an expression follows
) ) for the Fourier component of the linear response function
E(r,t) andD(r,t) are coupled via the solvent electric sus- = [Za(t)explaot)dt:

ceptibility e(r,r’ 7), which is generally nonlocal in both the
space and time domains,

aw=f DSY(r) -Poy(r)dr —f D3Y(r)-P,(Nd3.  (35)
D(r,t)= fo dTJ dr'e(r,r’,7)E(r,t—1). (300 Equations(32) and (35) permit the calculation of the linear
response functiom, and, using Eq(23), the spectral den-

We will use a standard, long-wave approximation forsity J(w).
e(r,r’,7) in which

e(r,r’,T):e(r,7)63(r—r’), (31 E. Representation of «,, in terms of a “free energy”
where 5%(r) is the three-dimensional delta-function. difference
One feature of Eqs(29)—(31) is the inhomogeneity of To facilitate the calculation ofy,, it is first noted that

the dielectric environment reflected ie(r,7), since the each term in Eq(35) is related to a “free energy” of the
HamiltonianH; includes the nonelectrostatic interaction be-dielectric with the dielectric response function,(r) or
tween the solvent and the reacting species which defines the o) in the external electric f|e|dD(o)(r) Specifically, the
structural properties of the solvent in the vicinity of the re- “free energy” F,, associated with a charge distributipg,
actants. interacting with a dielectric with polarizatioR,,(r) and a

The solution of Eqs(29)—(31) is facilitated by taking dielectric response functioa,(r), is given by®
the time-Fourier transform and so going over to the fre-

guency domain. As a result, EqR9)—(31) are reduced to F :iJ' D, (r)-E,(r)d3
electrostatic-like equations in which the usual static electric “ 8 ¢ ¢

susceptibility eq is replaced by its frequency analeg,(r) 1

=[oe(r,7)explwn)dr =§f €.(N[E,(r)1*d%. (36)

V-Dulr)=4mpzq(r),  VXE,()=0, It can be showf? that this 7, equals

32
Du(1)= €,(NE(1), (32 o 1 o
243, — . 3
where E(r) and D,(r) denote the corresponding Fourler f[D (N]7dr 2f Pu(r)-Dar (Nd-r, (37)
E?]T?onents of the electric field and electric displacement pernd so Eq(35) can be rewritten as
o0 awzz(]:w_]:op)a (38)
E,(r)=+ fﬁmE(f,t)eXﬁiwt)dt, where 7, is the free energy, Eq36), of the charge distri-
fo bution p,4(r) in the dielectric environment with the dielectric
(33 X X .
o ) response functiore,,(r). Equation(38) was derived from
D (r)— I D(r,t)expli wt)dt. molecular considerations and so still represents a molecular

w—oo

statistical mechanical expression, in the long wavelength ap-
Here, f,= [, f(t)exp{wt)dt is the Fourier component of proximation for treating the solvent.
the generalized forcg(t) [cf. Eq.(21)]. E,(r) andD(r) so Equation(38) is a useful generalization in two respects,
defined are independent of the functif(t).*® in frequency domain and in treating the problem quantum

The spatial inhomogeneity of the solvent enters into Eqsmechanically, of a result obtained earffér? The latter re-

(32) via the spatial dependence ef(r). In the presence of |ated the reorganization energy of the reaction to (fnee)
any sharp boundaries in the problem, the appropriate boun@nergy difference of two hypothetical systems, one of which
ary conditions for the electric fiel&,(r) and electric dis- responds to a difference in charge distributions of the reac-

placemenD,(r) must be used to solve EqR2). tant and product states via a static dielectric response and
Using the expression for the reaction coordingteEq.  another via an electronic one.
(24), and Eqs(C4)—(C10, the following expression for the Only the frequencies which correspond to the solvent
Fourier component of the averaged reaction coordinatenuclear motion must be considered, since the solvent elec-
5Xw=f°fm6Y(t)eprwt)dt, is readily obtained: tronic motion has been taken into account implicitly in the
form of the solvent electronic dielectric respongg(r). As
5Xw:_fwf DY (r)-[P,(r)— Pop(r)1d%r, (34 a re§ult, the rate constaktof the reaction, Eq(4), can be
rewritten as

whereP,, is the Fourier component of the total average sol- " 2 fo
vent polarization, Eq(C10), andP,(r) is a part of the elec- k=4 2A2 dtex;{ —itAGY% — _f Pdo
tronic polarization which is induced by the external charge — mJo
distribution, Eq.(C5). The differenceP,(r) — Py,(r) reflects
the induced nuclear polarization of the solveRj(r) tends Imj-“ coshif Bw/2—iwt) — costih fuwi2)
to P,, When w approaches the optical frequency region. ﬁw2 sinh(% Bw/2)

: (39
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where the standard units, in whidh# 1, have been used. distant from each othery>a, so that their dielectric image
The frequencyw,, corresponds to the transparency regioneffect can be neglected. Then using E@8) and(41) it can
which separates the frequency region of the solvent nucleaeadily be shown that, is
motion and the one of the solvent electronic motion. 1 -1, 1

The above expression for the rate, E89), can be con- aw=2q2(eop —e, )@ =rgh. (43)
siderably simplified by estimating the time-integral in Eq. Using this equation, the analytical propertiesegf, and the
(39) using a saddle point methti” and by dividing the  expression for the reorganization energyin terms of the
whole frequency range of integration into two regidfé®  spectral density(w),244849
the low frequency region corresponding de<4kgT/# and
the high frequency region with > 4kgT/%.%® We leave this \= EJ'
calculation for a future work. mJo

dew, (44)
®

the standard expression faris obtained

N2l —1\pa-1_ -1

F. Specific solute models A=0%(€eq —€p)(@ =T ), (45)

Calculations based aofi. can be used for realistic solute wheree, is the static dielectric constant of the solvent.
w

charge distributions, i.e., those not containing point charges. "€ dielectric properties of the solvent enter into Eq.
In some idealized models based on point charges,(&g). (43) in the form of a factor 1, . Such a form corresponds .to
would yield an infinity which cancels whefi, — 7, is cal- a homogeneous solvent and has been commonly used in the

culated. To avoid this infinity, it is useful to introduce the theory of ele(;,tror! transfer reaction raﬁ*éé“ and nonlinear
energy 7, of the “dielectric” in the external electric field spectr(_)scopﬁ. This form, however, is modified when ac-
DO)(r):% count is taken of the inhomogeneity of the system near the
2 solute molecul&?
. 1 (0)/\12 43 Another example is the Onsager modelwhich has
Fo=Fo~ QJ [Dar'(r)]=dr been used in the spectroscopy of static and dynamical
solvatochromismi? In this model the solute has a spherical
shape but the charge distribution is approximated by a dipole
do in the center of a polarizable sphere of radauand the
] . electronic dielectric constart, inside the sphere. The effec-
That is, 7, differs from 7, only by the frequency- (e dipole which would be seen from outside of such a
independent self-lnterz_ictlon_ term in E40). When the s<_)l- sphere in vacuufi is d=3d,/(e.+2). The solution of the
ute can be modeled with point charggs the representation  gjectrostatic equations for this problem is well knoWa?

F., in terms of an electrostatic potenti@(r) is convenient, Using Eq.(42) one then obtains that the,, in Eq. (35) in
Eg. (40) corresponds to this case i¥

:—%J P,(r)-D(r)dr. (40)

1 2 42
Fu=52 ebur), (41) gl 1t 46
j @ 3 ad|2epptec  2€,t €]

where ¢/ (r) is the part of electrostatic potential created byComparing Eqs(46) and (43) one can see that the factor
the solvent polarization wit.h the dielectric func_tieg)(_r). |!’l 1/e,, for the homogeneous medium is changed to the factor
the case when the solute is modeled by a point didgleit  1/(2¢_+ ¢.) in the Onsager model. This change is a result of
is more convenient to expresk, in terms of an electric g inhomogeneity in the system, i.e., it is due to the presence
field, of the solute cavity in the solvent. It can modify the sI:%ni:_’lgsitu—

b1 dinal relaxation time in the dynamics of the Stokes shift.

Fo=720R,, (“42) Often e,=2 is used'
whereR is the reaction field, equal te V¢, (r), created by
the solvent at the site of the dipole.
Any spatial dependence ef, reflects the structural in- ;| piscussioN

homogeneity of the solvent in the vicinity of the reacting
species. In the simplest approximation, the polarizability of  Linear response theory has frequently been used to relate
the solute is neglected and it is so assumed ¢hat)=1 in  the fluctuations of the electromagnetic field in the entire en-
the region occupied by the reactants. An improved approxivironment, with the dielectric properties of the environment,
mation for the electronic polarizability of the solute would be e.g., as in Refs. 16, 17, and 56. The approach in the present
e.~2 inside the cavity, corresponding approximately to anpaper is somewhat different and simpler, because attention is
electronic polarizability of the solvefit. As an example, the focused on the calculation of the fluctuations of only a single
donor and acceptor have been modeled as spheres ofaradivariable, the reaction coordinaé. In this sense our ap-
separated by distancg. The charge distributiop,; consists  proach is similar to the one used by Mukafieind by Flem-
of two point charges) (q is an elementary chargehich are  ing and co-worker? to treat the state-specific solvation dy-
situated at the centers of the spheres. It will also be assumetamics of chromophoric molecules excited by a sequence of
for simplicity that the donor and acceptor are sufficientlyultrashort laser pulses. The reaction coordingtelefined in
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Eq. (7) as an energy difference of the system in two elec4ty of the solute. At present, however, only nonlocal spatial
tronic states has been used by earlier worke¥s®in more  dependencéor, equivalently, &-dependence in the Fourier
classical treatments of the rate constant. space of the static electric susceptibility has been estimated,
Equation (16) formally coincides with the correlation namely from neutron diffraction measureme?fts®® Use of
function of the collection of molecular harmonic oscillators the spatially nonlocal dielectric response function for the in-
if one introduces fod(w) the spectral density of their nor- homogeneous solvent would, of course, complicate the solu-
mal mode$>°which justifies the usage of this titlepectral  tion of Egs.(32).6” The static counterpart of Eq38) has
density for J(w). The spectral density of the harmonic sys- been applied to various problems, e.g., Refs. 68 and 69.
tem is temperature-independent. For real nonlinear systems
the spectral density was found to depend strongly on th%CKNOWLEDGMENTS
temperature for low frequency componentJi») ascribed
to diffusive motion of the solvent moleculéslt is worth- It is a pleasure to acknowledge the support of the Na-
while noting also that while for a harmonic oscillator solventtional Science Foundation and the Office of Naval Research.
the spectral density is, of course, the same in classical ani@ne of us(Y.G.) would like to acknowledge the support of
quantum mechanics, classical and quantum mechanics wilthe James W. Glanville Postdoctoral Scholarship in Chemis-
give different results fod(w) of a real nonlinear solvent.  try at Caltech. We would also like to thank Shaul Mukamel,
The spectral density which enters into E¢6) can be  Bruce Berne, and David Chandler for helpful comments.
readily rewritten as a Fourier transform of the imaginary part

of the correlation functiorC(t): APPENDIX A: DERIVATION OF EXPRESSION FOR
SOLUTE-SOLVENT INTERACTION ENERGY

J(w)=2f dtIm[C(t)]sinwt. (47) ) . L .
0 Equation (2) describes the electrostatic interaction be-

) _ i - ) tween the solute characterized by the charge distribution
Using this equation aa definitionof a spectral density of pj(r) and the solvent in the particular nuclear configuration,

effective harmonic oscillators a real anharmonic systemyich is characterized by the solvent polarization operator

could be mapped, if one wished, onto the harmonic oscillatolg S e .
’ Lo r). To justify it one can calculate the wok which must
model?®3° The present considerations show that the result%O( ) Justify

. . ~". "De done to charge the solute from the hypothetical neutral
?hbtalnedrllr; thr%fr?mi\:v?n(n?f iucf;a} rzodel:/vgil::]d fi)envalld Nstate with p(r)=0 to the actualjth state with the charge
€ second-order cumulant expansion approximation. distributionp(r) = p;(r) while the solvent nuclear configura-

. . . ; Sion is kept fixed. At any specified solvent nuclear configu-
actions. Our considerations, however, are applicable to other P y sp 9

nonadiabatic processes in a polar environment in which thE2tion the solvent polarization operatg(r), which refers
change of a charge distribution occurs in the process of Io the hypothepcal neutral state of the solute, can be viewed
nonadiabatic transition. Mukani@kshowed in a similar fash- 35 @ real functloq of and not only as an (_)perator. |
ion that the correlation functio®€(t), Eqg. (11), enters the .The electronic part Of, the Ham|ltqn|an operatdif®,
final expressions for different order nonlinear optical pro-WhICh a_cts on the electronic wave_functldﬁof th_e s_olvent
cesses. The present Eq&6), (35), and(23) can be used to ar_ld which descnpes_ th_e solvent |nteract|_ng with itself and
calculateJ(w) andC(t) for an appropriate model of a chro- with the charge distributiop(r), can be written as
mophoric solute molecule. e (e ~ 3

In the dielectric continuum models, such as those in Sec. H~ =Ho +f p(r)¢(r)d-r, (A1)
II'F, the inhomogeneity of the system is taken into account in - -
the simplest possible way, namely the solvent is assumed t§here ¢(r) is the electrostatic potential. The(r) in Eq.
be homogeneous up to the boundary of the solute cavity withA1) must be considered as a quantum mechanical operator
e,(r)=e€,, which does not depend an The last assump- (actually, as an operator function parametrically dependent
tion does not take into account molecular nature of the solon r) acting on the electronic wave functioli. The tilde
vent. As a result, one could expect that more realistjr) notation is used in this section to denote operators acting on
changes smoothly on a molecular length scale from its bullhe electronic wave functio®. In Eq. (A1) H{ is an op-
value inside the solvent te, at the solute boundarfwe erator which refers to the solvent and includes the interaction
neg|ect po|ar|zab|||ty of the So|u):eOne approximate way of of the electrons with the nuclei and with themselves and the
including molecular effects is given in Ref. 23. As a possiblekinetic energy operator of the electrons of the solvent. The
way of dealing with this problem, the mean sphericalpart of the solute-solvent interaction which is not solute
approximatiofi®®3 may be applied. The present treatmentstate-specific is also treated as being includeblgﬂ). ng')
also includes an excluded volume effect as discussed in Agloes not include the kinetic energy operator for the nuclei, in
pendix D and as was discussed earlier by Sengl 2 accord with the Born—Oppenheimer approximation.

By using Eq.(32) it is assumed that the dielectric re- The solvent electronic wave functiob will change in
sponse which appears in this equation in terms of the electrithe process of charging. As a result, the energy of the system
susceptibilitye,, is local in space. This assumption may not (¥ |H®)|¥) will change too. To calculate this change one
be accurate for a field which varies considerably on a monotes that the electrostatic potentig(r) is actually a(func-
lecular scale and one can use a spatially nonlocal dielectritonal) derivative ofH® overp(r) [cf. Eq.(A1)]. Then, using
response functiofi to calculate the electric field in the vicin- the Hellman—Feynman theorem on the derivative of the en-
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ergy with respect to a parameter for the system with @and H in Eq. (1). They obtained Eq(A8) for the total
parameter-dependent Hamiltoni&hone readily obtains the electric energy of molecules having permanent and induced
following expression for the workV to charge the solute in dipoles(we omit our carets for notational simplicjty
this case, Lo 0 1m0 0
V=5u’-T-u—u-D°—3D".A.D" (A8)
P=pj -
sz d3rf B op(r)e,(r), (A2)  whereu and u® are N-dimensional vectoréwhose compo-
-0 nents in the three-dimensional subspace of solvent molecule
where &D(r)=<‘1'|2>(r)|‘l'> is the average of the electro- N ared, and d%). D is a 3N-dimensional vector with three

). 0 .
static potentialg(r) over the ground state electronic wave components oD )(rn)_ at each molecula and arises from
function W corresponding to the solute charge distributiont® solute charges] is a symmetric tensor of orderN3

p(r). Itis an operator which acts on the nuclear wave func-< 3N With elementsT,, [ =V ;,V(1/r ) if m#n] in three-
tion. dimensional subspace, and with,,=0. A is a symmetric

tensor related toI by A=a-(I+a-T)"!, wherea is the
polarizability of a solvent molecule ardis a unit tensor of
order AN X 3N. [The expression is readily generalized when
b (r)=do(r)+ ¢'(1), (A3 ais a tensor of order 83N, and one obtains the tensorial
P %o % R producta-(I1+«-T) ! for A.] V,, is the gradient with re-
where the electrostatic potentigl(r) corresponds tep(r) spect to the coordinates of molecule

The electrostatic potentiaib,,(r), i.e., the average of
$(r) over¥, can be written as a sum of two terms,

=0 and arises fronPy(r): In Eq. (A8) the second term on the right is equivalent to

aterm— [Py(r)-D(r)d%, when one notes the definition of

(},O(r):f Po(r’)-V d3r’. (A4) Po(r) in Eq. (3). The first term in the right is independent of
lr—r'] DO(r) and so is the electrostatic contribution to tHg in

The second term in EGA3), ¢/(r), describes the additional Eq. (1). The Iastoterm in Eq(A8) does not contain the per-
electronic solvent response to the external electric field cormanent dipolesl, and so is insensitive to nuclear position. It

responding to the charge distributigr). [I50(r) contains contributes to thé; in Eq. (1).
the electronic response in the absence of that field.

As a consequence of E(A3), the workW can be writ-  AbpeNpIX B: EXPRESSION FOR THE STANDARD
ten as FREE ENERGY OF REACTION

W=Wo+ W', (AS) The constanAG° in Eq. (17) is seen from Eqs(10),

whereW, is the contribution fromp,(r) andW’ is the con-  (16) and(44) to be
tribution from ¢/(r). Reexpressing/, in terms of the AGO=(X)—X\. (B1)
vacuum electric fieldD{°)(r) and the solvent polarization

operator Py(r), using arguments similar to those used in
macroscopic electrostatiésjt follows that

It can be shown that thiAGP coincides with the standard
free energy of reactiod G, as follows. The standard free
energy of reactioldG° is defined by

Wo= f pi(r) do(r)d¥r=— f D{%(r)-Po(r)dr,  (A) opaco_ TP (o,

—BH; + '

which is the term denoted Uylj’ in EQ. (2) in the text. e ]
It i_s usually assumed that 'Fhe re_sponsqbg(r) depends X(7)=e™ixe ™1, (B2)

negligibly on the nuclear configuration of the solvent. As a ]

result, the corresponding contributiol’ to the workW in Using the second-order cumulant expan$iame finds from

Eq. (A2) depends negligibly on the solvent nuclear configu-Eq- (B2) that

ration either and therefore can be added to the solute energy o (" T

h;, renormalizing it. If one wished, one could readily esti- ~ AG =(X)~ 8 fo deodT'C(T'),

mateW'’ in terms of the electronic dielectric response func-

tion e4(r), obtaining as a resuff, C(r)=(X(1)8X(0))=C(—i7). (B3)
Substituting Eq(16) into Eq. (B3) and integrating over’

1 1
r— , 243, _ = (0)/ 117243
w 877] €onlLEj opl 1) 17T 87rf (D7 (N aT, and 7 one finds thatAG® in Eq. (B2) is the same as that
(A7)  given by Eq.(B1).

where E;j ,(r) is the electric field in the environment with
the dielectric response functian(r). E; o,(r) satisfies Eq.
(C3) below, with p;(r) replacingp(r,t) in the right-hand
side of the first equation in E4C3).

It is useful to relate Eqsl) and (2) [also Eq.(A6)] to
the insightful molecular treatment of Mandel and Ma#ur, In this Appendix we relate the average electric field
and obtain, thereby, the electrostatic contributiotoH,, E(r,t) and electric displacememd(r,t) to the relevant op-

APPENDIX C: MACROSCOPIC POLARIZATION P AND
MACROSCOPICAL FIELDS E AND D IN TERMS
OF THE MOLECULAR MODEL OF THE SOLVENT
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erators[Egs. (C2—(C8)] in terms of our molecular model. In this equation the first term is an electric displacement
We first note that the average polarizatiéfr) atr is given  which is associated with the solvent electronic response only.
by The last two terms in EqC7) represent the electric field due
. to the solvent polarizatiofthe second terjnand the solvent
P(r,t)=Tr[Po(r)R(D)], (CD)  polarization operator term itselthe third tern.
The average electric fiel&(r,t) and electric displace-

where the operatoP,(r) of the solvent polarization is de- ,
mentD(r,t) can then be defined as

fined by Eq.(3) and the time-dependent density matRt)

is given by Eq.(19). E(r,t)=THE(r,HRM)], D(r,H)=TrD(r,HR(t)], (CY

We next introduce an electric field operafefr,t) as _ _ : .
perafo(t, 1) where, as noted earlier, the time-dependent density matrix

R . 1 R(t) is given by Eq.(19). One could use a bar notation for
E(r,t)= —Vf PO(r/)'VTdsrl_‘_Eop(rut)- (C2  E(r,t) andD(r,t), as in Eq.(20), but since they coincide
r=r’] with the conventionally used macroscopic fiefdsye omit
The first term in Eq(C2) is an electric field generated by the it. Equation (C8) completes the definition oE&(r,t) and
solvent polarizatiorPy(r). The second temtE,(r,t) is an  D(r.t) in terms of the operators defined in E4€2) and
additional electric field which is due to the external charge(C7) andP(r). They are used in the text in Eq29)—(30).
and to the instantaneous electronic response of the solventto The Fourier component of the average value of the total
that external charge distributigr(r,t). (See also the discus- polarization per unif , [cf. Eq. (33)],
sion in Appendix A) The electric fieldE,y(r,t), which is 1 [
assumed to be independent on the solvent nuclear configura- p_(r)=—| T R(t)P(r,t)]expiwt)dt, (C9
tion, satisfies the equations: f *

wd —

V-DoyfF,t)=4mp(r,t), VXEqfr,t)=0, is related in a standard way to the corresponding Fourier
(C3) component of the average electric fig¢d. Eq. (32)]
Dop(r’t)zfop(r)Eop(rat)n e, (N —1
wherep(r,t) is defined in Eq(28), e(r) is the electronic Pu(r)=—4——Eu.(n). (C10
dielectric susceptibility of the solvent at and Dy(r,t) is ) ) )
the electronic electric displacement associated w{tht). Using Egs.(C4), (C5), and (C10 one readily obtains Eqg.

We note that the operatd?(r,t) of the total solvent (34).

polarization can be written as a sum of two terms
N A APPENDIX D: EQUATION FOR THE GENERALIZED
P(r,t)=Po(r)+Poy(r,t). (€4 SOLVENT SUSCEPTIBILITY (™ IN THE

The first termlso(r) is the operator of the molecular solvent PRESENCE OF A SOLUTE CAVITY

polarization Py(r), Eq. (3), which corresponds to a hypo- Two dipolar solvent molecules correlate with each other
thetical neutral state of the solute wigifr)=0. Py(r) itself ~ not only directly via the dipole—dipole interaction between
consists of two parts, one part arising from all the unperthem, but also indirectly via the interaction with other mol-
turbed dipole moments of the solvent molecules, and th€cules of the solvent. As a result, the correlation between
second part being a collective electronic response to the firgtrientations of the two solvent molecules in the vicinity of
part[cf. the discussion after E¢3)]. the solute is modified in comparison with the bulk because of
The second term in EqC4), Poy(r,t), is an additional the absence of the fluctuating solvent polarization at the
electronic polarization at fixed positions of the solvent nucleiplace of the solute. This excluded volume effect leads to
which arises as a collective response of the solvent electrorigodification of the dielectric response of the solvent to the
to the solute electric field©)(r,t), Eq.(27). We note that €xternal electric field® In this Appendix we show how this
Pop(r,1) in Eq. (C4) can be written in the conventional way excluded volume effect naturally appears in the present for-

as mulation and demonstrate that the resulting equation, Eq.
1 1 (D14), coincides with Eq(3.11) in Ref. 23.
€op™ For our purposes, it is convenient to rewrite the electro-
P.(r,t)=—[Dg(r,t) —Egyr,t)]= —E4r,t). (C5 . ) o .
o1 = 7 (Do)~ Eoglr D)1= = o1, (€9 static equation$32) in a different form. We will assume that

each term in Egs(D1)—(D14) refers to an arbitrary fre-

We next define an electric displacement operax,) guencyw and will omit the indexw for notational simplicity,

(motivated by the standard macroscopical electrostati
descriptiot**9 as P(r)=xE(r),

D(r,t)=E(r,t)+4mB(r 1), (C6)

E(r)=D<°>(r)+f d3’ T(r—r")P(r"), (D1)
which can be rewritten using Eq&C2), (C4), and(C5) as out
where y=(e—1)/4 is the dielectric polarizability of the sol-
B(r,t)=D, (r,t)—Vf By(r')-V 1 &3r' +amPyr). vent, DI9(r) is the external electric fieldE(r) is the local
P [r—r’| electric field at the point, andT(r—r")P(r’) is given by Eq.
(C7) (D2), T being a tensor:
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3P(r’)'(r_r,)(r_r/) P(rr) must be SOlved - .
T(r—r")P(r")= TS — 3 (D2 Substituting Eq(D11) into Eq. (D9) one arrives at Eq.
[r=r'] Ir=r’| (3.1 in Ref. 23, which in our notation is
Equation(D2) gives the electric field produced at the paint _7(m RO
by a dipoleP(r’) at the pointr’. The integration in Eq(D1) out™ Xout out- our D13
is over the volume outside of the solute. X ou= X outour= Xoutin Xinin) ™ “Xin.out (B13)
ExpressingE(r) in terms of P(r) from the first part in . . .
Eqg. (D1) and substituting it into the second part one arrives”” " the standard notation, is
at the following result relating the solvent polarizatiB(r) ~(me pry 33~ ,
to the external electric fiel®©)(r): X )—X(r—r)—J’ J'ind (=
DO = [ % He-rpa), (D3 XX R 1), (14
out
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