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Linear response in theory of electron transfer reactions as an alternative
to the molecular harmonic oscillator model

Yuri Georgievskii, Chao-Ping Hsu, and R. A. Marcus
Noyes Laboratory of Chemical Physics, Mail Code 127-72, California Institute of Technology,
Pasadena, California 91125
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The effect of solvent fluctuations on the rate of electron transfer reactions is considered using linear
response theory and a second-order cumulant expansion. An expression is obtained for the rate
constant in terms of the dielectric response function of the solvent. It is shown thereby that this
expression, which is usually derived using a molecular harmonic oscillator~‘‘spin-boson’’! model,
is valid not only for approximately harmonic systems such as solids but also for strongly
molecularly anharmonic systems such as polar solvents. The derivation is a relatively simple
alternative to one based on quantum field theoretic techniques. The effect of system inhomogeneity
due to the presence of the solute molecule is also now included. An expression is given generalizing
to frequency space and quantum mechanically the analogue of an electrostatic result relating the
reorganization free energy to the free energy difference of two hypothetical systems@J. Chem. Phys.
39, 1734~1963!#. The latter expression has been useful in adapting specific electrostatic models in
the literature to electron transfer problems, and the present extension can be expected to have a
similar utility. © 1999 American Institute of Physics.@S0021-9606~99!01511-1#
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I. INTRODUCTION

Interaction with an environment plays a crucial role
many nonadiabatic processes in condensed phases. Ele
transfer reactions1–3 provide a major example in which
strong electrostatic interaction of a reacting species wit
polar solvent can control both the energetics and the dyn
ics of the process. The theory of nonadiabatic transitions
the presence of strong interaction with the environm
treated quantum mechanically, originates from the paper
Lax4 and Kubo and Toyozawa.5 Their approach was applie
by Levich and Dogonadze6 to calculate the rate of an elec
tron transfer reaction in liquids. In their theory Levich an
Dogonadze, like Lax and Kubo and Toyozawa, used a
lection of harmonic oscillators as a model of the environm
whose fluctuations are responsible for the electronic tra
tion.

In a seemingly different approach Marcus7–9 used a di-
electric continuum approach and showed that the polarity
the solvent is important for understanding the energetics
an ET reaction. Marcus later assumed only a linear dielec
response of the solvent in the vicinity of the reacting spec
and did not use any specific molecular model of the solve9

Vorotyntsevet al.10 related the rate constant to a comple
space- and time-dependent electric susceptibilitye(v,k) in
the framework of a harmonic oscillator model, thus gene
izing Marcus’ theory in this respect, which was purely cla
sical. Jortner and co-workers11–13extended the treatment7 of
Marcus and Levich and Dogonadze6 by using the former for
low frequency modes and the latter for high frequen
modes.

One factor influencing the dielectric properties of po
solvents is the reorientational motion of the solvent m
ecules, a motion which is strongly anharmonic. Thus,
5300021-9606/99/110(11)/5307/11/$15.00
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approach of Levich and Dogonadze, subsequently used
common model to treat quantum aspects of ET reactions,14,15

required justification. One way to resolve this difficulty wa
given by Ovchinnikov and Ovchinnikova,16 who used a
quantum field theoretic method17 to show that the result o
Levich and Dogonadze can be recovered in the long-w
approximation without explicitly invoking a molecular ha
monic oscillator model. In their derivation Ovchinnikov an
Ovchinnikova considered uniform systems, so dielectric i
age effects and any effect of the solute on the propertie
the nearby solvent were not included. Image effects h
been included earlier7–9 on the assumption that the slow an
fast solvent modes allow for a clear separation.

Kornyshev investigated the models with nonlocal diele
tric response,18–20 which was applied earlier to electro
transfer reactions in the framework of a molecular harmo
oscillator model.14,21,22 Song, Chandler, and Marcus23 con-
sidered the effect of the solvent inhomogeneity due to
solute presence using the Gaussian field model, which co
be viewed as a continuum equivalent of a molecular h
monic oscillator model. Fleming and co-workers24–26 used
nonlinear spectroscopy to study the solvation dynamics
chromophoric molecules in the variety of solvents a
glasses. They related the spectral density of the harm
modes to the correlation function of the energy difference
the excited and the ground electronic states of the ch
mophore and used a treatment developed by Mukamel27 to
express the measured spectra in tems of the spectral de
of the effective harmonic oscillators. Berne and co-worker28

have investigated the solvation dynamics and vibronic sp
tra of chromophoric molecules for models in which the h
monic bath frequencies and normal modes are differe
rather than the same, for the initial and final electronic sta
7 © 1999 American Institute of Physics
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In this paper we show that an expression for the r
constant in terms of dielectric dispersion properties, wh
was originally derived using a molecular harmonic oscilla
model,10,14 is also applicable to molecular systems which a
strongly anharmonic, in particular to polar solvents. T
present calculation is based on linear response theory29 and a
second-order cumulant29,30 expansion. The calculation the
relates the rate constant to the dielectric and some struc
properties of the system. An expression is also obtai
@Eqs. ~17!, ~23!, and ~38!# generalizing to frequency spac
and in quantum mechanical terms a result obtain
earlier.31,32The latter related the free energy barrier for rea
tion to a difference in ‘‘free energy’’ of two hypothetica
systems. These two systems have a charge distribution w
is the difference between those of the products’ and the
actants’, but now one system interacts via the solvent die
tric dispersion at frequencyv and the other at the solvent’
optical frequency.

The cumulant expansion approach is the same as
developed by Kubo29 and Mukamel33 to describe the tran
sient fluorescence of large aromatic molecules. A similar
proach was used earlier by Hizhnyakov and co-workers34–36

to describe the spectra of impurity centers in solids. Ther
perhaps also a pedagogical interest in such a treatment,
it provides a simplification and extension over the origin
pioneering and stimulating quantum field theoretic17 deriva-
tion of Ovchinnikov and Ovchinnikova.16 Another alterna-
tive approach to the present one is that given by Chand
who used a path integral formulation.15 The common har-
monic oscillator bulk model can be viewed as one way
visualizing these more rigorous results.

The paper is organized as follows:
The molecular Hamiltonian and the molecular solve

polarization operatorP̂0(r ) are described in Sec. II A. In Sec
II B the standard expression for the nonadiabatic reac
rate constant is given and a generalized coordinateX is in-
troduced.~Use of the latter provides a way of avoiding th
field theoretical treatment.! The correlation function in the
rate constant expression is simplified using a second-o
cumulant expansion and a correlation function ofX. Linear
response theory is introduced in Sec. II C to evaluate
correlation function. TheX is then related in Sec. II D to the

solvent polarization operatorP̂0(r ) and to a certain hypo
thetical electric fieldD12

(0)(r ) and is used to evaluate the so
vent response functionav . Theav is expressed in Sec. II E
in terms of a frequency-dependent ‘‘free energy’’ differen
of two hypothetical systems, Eq.~38!, and the equation for
the rate constant is then given@Eq. ~39!#. Some specific sol-
ute models are discussed in Sec. II F. The relation of
present results to previous work and some other feature
the results are considered in the Discussion, Sec. III. Sev
features are treated in more detail in the appendices:
various electrostatic operators are treated in Appendix A,
relation of a term in the rate expression to the standard
energy of reaction is derived in Appendix B, and the relat
between the electrostatic operators and the time-depen
macroscopic properties is given in Appendix C. In Append
D it is shown how the treatment of the excluded volum
Downloaded 05 Apr 2007 to 131.215.21.81. Redistribution subject to AIP
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effect in the present formulation is related to the one
Ref. 23.

II. THEORY

A. Hamiltonian and molecular polarization operator

The Hamiltonian operator of the system reacta
1solvent in either electronic state can be written as

H j5hj1H01H j8 , j 51,2, ~1!

wherehj is the Hamiltonian of the ‘‘free reactants,’’H0 is
the Hamiltonian of the ‘‘free solvent,’’ andH j8 is the inter-
action between them. TheH j8 depends on the electronic sta
of the reactants. The Hamiltonianhj includes the intramo-
lecular vibrational modes of the reactants. Purely for simp
ity of notation, since the present article focuses on the s
vent effect which is associated withH j8 andH0, we consider
structureless reactants and so treathj as just numbers. The
role of the intramolecular vibrational modes has been ext
sively discussed in the literature12,13,37–39and can be easily
incorporated into the present scheme. The operatorsH0 and
H j8 act on the nuclear wave function of the solvent. We
not use carets in their notation in contrast with other ope
tors @e.g., in Eq.~2! below# since they are used only in thi
sense and so no ambiguity is caused by such notation.

The interaction between the reacting species and the
vent is approximately separated into electrostatic and n
electrostatic interactions. Nonelectrostatic interaction
cludes van der Waals attraction, short range repulsion,
hydrogen bonding. This interaction is assumed here to
independent of the electronic state of the solute and is
cluded inH0. However, it should be noted that the last a
sumption probably breaks down for the reactions in whic
bond of the solute to a solvent molecule~including a hydro-
gen bond! is formed or broken when the electronic state
the reacting species changes. Such an effect could prob
be included later, instead, as a state-specific contribu
to hj .

Because of the complex interactions of dipoles, perm
nent and induced, of the solvent there are many subtletie
their analysis. In an excellent article written in 1958, Mand
and Mazur40 have described these terms as well as previ
errors in the literature. The electrostatic interaction betwe
the reactants and the solvent can be written, as show
Appendix A @cf. Eq. ~A6!#, as16

H j852E Dj
~0!~r !•P̂0~r !d3r , j 51,2, ~2!

whereDj
(0)(r ) is the electric field at pointr , created by the

reacting species in vacuum for thej th electronic state and
P̂0(r ) is the operator representing the molecular solvent
larization at the same point, when the solute charge distr
tion r(r ) is set equal to zero. We use a caret notation
P̂0(r ) to stress that it is an operator acting on the nucl
wave function of the solvent. Although we do not explicit
use the following expression forP̂0(r ) in Eq. ~2! it could be
defined in a long-wave approximation as a weighted sum
the individual dipole moments of the solvent molecules:
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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P̂0~r !5(
n

d~r2 r̂n!d̂n[(
n

d~r2 r̂n!~ d̂n
01d̂n8!. ~3!

In this equation the coordinates of the center of mass of
nth solvent molecule are denoted byr̂n and its net dipole
moment byd̂n . This d̂n is not only a function of the interna
nuclear configuration of thenth solvent molecule but also o
the other solvent molecules, since they induce an electr
polarization in it. As a result, the solvent polarization ope
tor P̂0(r ) itself consists of two parts, one part arising from
the unperturbed dipole operatorsd̂n

0 of the solvent molecules
and the second part related tod̂n8 being a collective electronic
response to the first part.

r̂n and d̂n are quantum mechanical operators which
on the wave function in the configurational space of
nuclear degrees of freedom of the solvent, after an avera
over the total electronic wave function of the solvent h
been performed. This averaging assumes a fast electr
response. It may be stressed that no averaging over
nuclear motion of the solvent, such as over the intermole
lar or intramolecular vibrations of the solvent molecules,
performed in Eqs.~2! and~3!. Instead, the molecular solven
polarization operatorP̂0(r ) is a complicated function of al
nuclear coordinates of the solvent.P̂0(r ) is a part of the total
polarization operatorP̂(r )5P̂0(r )1Pop(r ) @cf. Eq. ~C4!#,
which also includes the electronic responsePop(r ) to the
solute charge distribution. The total polarization opera
P̂(r ) is distinguished from the standard41 macroscopic polar-
ization P(r ), which is an average ofP̂(r ) over local solvent
nuclear fluctuations@cf. Eq. ~C1!#.

Since the molecular solvent polarization operatorP̂0(r )
in Eq. ~2! was defined in Eq.~3! using a hypothetical neutra
state of the solute with a charge distributionr(r )50, it is,
therefore, a function of the solvent state only. In particular
does not depend on the electronic state of the solute. In
pendix A it is shown that the expression for the electrosta
interaction between the solute and the solvent, given by
~2!, is valid under rather general conditions.

B. Rate constant in terms of correlation function of a
generalized coordinate X

The HamiltoniansH j , j 51,2, describe the collective
motion of the system in the initial~reactant! and final~prod-
uct! electronic states of the solute. To describe the transi
between the two one must introduce the nondiagonal ma
elementD which couples the two electronic states. This m
trix element is sometimes small and is assumed to be in
pendent of the nuclear configuration for statistically imp
tant configurations~Condon approximation!. Non-Condon
effects could be of importance for solvated electrons a
solutes with weekly localized electronic clouds,42,43 but not
for tight redox couples. Then, in first-order perturbati
theory the rate constantk for a nonadiabatic transition be
tween the two electronic states of a reactant or reactants fi
in position can be written as5
Downloaded 05 Apr 2007 to 131.215.21.81. Redistribution subject to AIP
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k5D2E
2`

1`

dt^eitH 1e2 i tH 2&, ~4!

~throughout units in which\51 are used!, where the aver-
aging is taken over the initial state:

^•••&5
Tr@•••e2bH1#

Tr@e2bH1#
, b51/kBT. ~5!

It is convenient to rewrite the expression for the cor
lation function in Eq.~4! in terms of the formalism of time-
ordered exponents:4

eitH 1te2 i tH 25e
1

2 i *0
t X~t!dt

, ~6!

where

X5H22H1 ~7!

is the energy difference of the system in the final and ini
electronic states of the solute~the nuclear kinetic energy op
erator cancels inX) and where the time-evolution occurs
the initial state,

X~t!5exp~ i tH1!X exp~2 i tH1!. ~8!

One can then use a cumulant expansion29 to represent
the correlation function̂eitH 1e2 i tH 2&:

^eitH 1e2 i tH 2&5expH (
n51

`
~2 i !n

n! E
2`

1`

•••E
2`

1`

dt1•••dtn

3^T@X~t1!,•••,X~tn!#&cJ , ~9!

whereT@•••# denotes the time-ordering operator and the
erage^•••&c in the nth term of the power of exponent de
notes the cumulant of thenth order. As an approximation
using a cumulant expansion and retaining only the terms
to second order, we have30

^eitH 1e2 i tH 2&5expH 2 i t ^X&2E
0

t

dt1E
0

t1
dt2 C~t12t2!J ,

~10!

where

C~t!5^dX~t!dX~0!&, ~11!

anddX5X2^X& is the variation ofX from its average value
^X& in the initial state. The expressions for the first two c
mulants were used:

^X&c5^X&,

^X~t!X~0!&c5^X~t!X~0!&2^X&25^dX~t!dX~0!&. ~12!

Equation~10! shows that in this approximation the co
relation function^eitH 1e2 i tH 2& is expressed in terms of th
correlation functionC(t). In a molecular harmonic oscillato
model the higher cumulants vanish exactly4,5 if X is a linear
combination of the normal modes and Eq.~10! then becomes
exact for that model.

To express Eq.~11! in terms of a spectral density
namely Eq.~15! below, a Fourier transformC̃(v) is intro-
duced,
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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C̃~v!5E
2`

1`

C~ t !eivt dt, ~13!

which is a real and positive function ofv. It can be shown
that C̃(v) satisfies the relation

C̃~v!5evbC̃~2v!. ~14!

The last equation is a direct consequence of the fluctuat
dissipation theorem.29

The spectral densityJ(v) can be defined by

J~v!5 1
2@C̃~v!2C̃~2v!#. ~15!

The following standard expression for the correlation fun
tion C(t) is then readily obtained:

C~ t !5
1

pE0

`

dv J~v!@coth~bv/2!cosvt2 i sinvt#. ~16!

From Eqs.~4!, ~10!, and ~16! a standard expression for th
nonadiabatic reaction rate5,6,14,16follows:

k5D2E
2`

`

dt expF2 i tDG0

1
1

pE0

`

dv
J~v!

v2

cosh~bv/22 ivt !2cosh~bv/2!

sinh~bv/2! G , ~17!

whereDG0 is shown in Appendix B to be the standard fr
energy of reaction.

C. Relation of the correlation function of X, C„t …, to
the generalized susceptibility av

The correlation functionC(t) for the anharmonic mo-
lecular system is next expressed in terms of the dielec
properties of the solvent. To this end linear response the
is used, after introducing an effective HamiltonianHeff(t):

Heff~ t !5H12X f~ t !. ~18!

Here, the energy differenceX plays the role of a generalize
coordinate~reaction coordinate! and f (t) is a generalized
dimensionless force. Thereby,Heff can evolve fromH1 to
H2, if f (t) is chosen to tend to zero ast→2` and to be-
come unity ast→1`.

A nonequilibrium density matrixR(t) which evolves ac-
cording to a Liouville equation with the HamiltonianHeff(t),
Eq. ~18!, is next introduced,

d

dt
R~ t !52 i @Heff~ t !,R~ t !#, ~19!

and used to define a time-dependent averageX̄(t) at time t,

X̄~ t !5Tr@XR~ t !#. ~20!

In linear response theory, the average value of the g
eralized coordinateX̄(t) is linearly related to the generalize
force:29

X̄~ t !2^X&5dX̄~ t !5E
0

`

a~ t ! f ~ t2t!dt, ~21!
Downloaded 05 Apr 2007 to 131.215.21.81. Redistribution subject to AIP
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where the generalized susceptibilitya(t) is given in terms
of a commutator ofX(t) andX(0)29

a~t!5^@dX~t!,dX~0!#&522 ImC~t!. ~22!

The second part of Eq.~22! follows directly from the defini-
tion of the correlation functionC(t) in Eq. ~11!. In passing,
we note that we have been setting\51. With ordinary units
of \, the left side of Eq.~22! would reada(t)\.

Comparing Eqs.~15!, ~16!, and~22! the spectral density
J(v) is seen to coincide with the negative imaginary part
the Fourier component of the linear response functionav

5*0
`a(t)exp(ivt)dt:

J~v!52Im av . ~23!

D. Relation of C„t … and J „v… to dielectric properties

C(t) and J(v) are molecular statistical mechanic
properties. We turn next to their calculation in terms of t
dielectric properties of the solvent, in the long waveleng
~local response! approximation for the solvent. Upon subst
tuting Eqs.~1! and ~2! into Eq. ~7! the following expression
for the reaction coordinateX is obtained:

X52E D21
~0!~r !•P̂0~r !d3r , ~24!

whereD21
(0) is the difference of the vacuum electric fields

the initial and final states of the solute,

D21
~0!~r !5D2

~0!~r !2D1
~0!~r !. ~25!

Equations~18! and ~24! yield

Heff5H12E D~0!~r ,t !•P̂0~r !d3r , ~26!

where

D~0!~r ,t !5D21
~0!~r ! f ~ t !, ~27!

is the vacuum electric field formed by the external, tim
dependent charge distributionr(r ,t). The latter is a linear
combination of the charge distributions of the solute in
initial and final electronic states:

r~r ,t !5r21~r ! f ~ t !, r21~r !5r2~r !2r1~r !. ~28!

The effective Hamiltonian~26! describes the interaction
of the solvent with the external charge distributionr(r ,t).
Thus, the calculation of the correlation functionC(t) is re-
duced to finding the linear dielectric response of the solv
to the time-dependent external electric fieldD(0)(r ,t) given
by Eq. ~27!.44 The standard ‘‘macroscopic’’ treatment ca
then be used to calculate the average electric fieldE(r ,t) and
the average electric displacementD(r ,t) which arise in the
solvent in response to the external time-dependent ele
field D(0)(r ,t). In Appendix C it is shown howE(r ,t) and
D(r ,t) are related to the solvent polarization operatorP̂0(r )
in terms of the molecular model of the solvent. These fie
E(r ,t) and D(r ,t) coincide with the corresponding macro
scopical fields in the standard electrostatic and electro
namic treatments.41,45

As a result the standard electrostatic equations forE(r ,t)
andD(r ,t) can be used:45
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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¹–D~r ,t !54pr~r ,t !, ¹3E~r ,t !50. ~29!

E(r ,t) and D(r ,t) are coupled via the solvent electric su
ceptibility e(r ,r 8t), which is generally nonlocal in both th
space and time domains,

D~r ,t !5E
0

`

dtE dr 8e~r,r 8,t!E„r ,t2t). ~30!

We will use a standard, long-wave approximation f
e(r ,r 8,t) in which

e~r ,r 8,t!.e~r ,t!d3~r2r 8!, ~31!

whered3(r ) is the three-dimensional delta-function.
One feature of Eqs.~29!–~31! is the inhomogeneity of

the dielectric environment reflected ine(r ,t), since the
HamiltonianH1 includes the nonelectrostatic interaction b
tween the solvent and the reacting species which defines
structural properties of the solvent in the vicinity of the r
actants.

The solution of Eqs.~29!–~31! is facilitated by taking
the time-Fourier transform and so going over to the f
quency domain. As a result, Eqs.~29!–~31! are reduced to
electrostatic-like equations in which the usual static elec
susceptibilitye0 is replaced by its frequency analogev(r )
5*0

`e(r ,t)exp(ivt)dt

¹–Dv~r !54pr21~r !, ¹3Ev~r !50,
~32!

Dv~r !5ev~r !Ev~r !,

where Ev(r ) and Dv(r ) denote the corresponding Fouri
components of the electric field and electric displacement
unit f v :

Ev~r !5
1

f v
E

2`

`

E~r ,t !exp~ ivt !dt,

~33!

Dv~r !5
1

f v
E

2`

`

D~r ,t !exp~ ivt !dt.

Here, f v5*2`
` f (t)exp(ivt)dt is the Fourier component o

the generalized forcef (t) @cf. Eq. ~21!#. Ev(r ) andDv(r ) so
defined are independent of the functionf (t).46

The spatial inhomogeneity of the solvent enters into E
~32! via the spatial dependence ofev(r ). In the presence o
any sharp boundaries in the problem, the appropriate bou
ary conditions for the electric fieldEv(r ) and electric dis-
placementDv(r ) must be used to solve Eqs.~32!.

Using the expression for the reaction coordinateX, Eq.
~24!, and Eqs.~C4!–~C10!, the following expression for the
Fourier component of the averaged reaction coordin
dX̄v5*2`

` dX̄(t)exp(ivt)dt, is readily obtained:

dX̄v52 f vE D21
~0!~r !•@Pv~r !2Pop~r !#d3r , ~34!

wherePv is the Fourier component of the total average s
vent polarization, Eq.~C10!, andPop(r ) is a part of the elec-
tronic polarization which is induced by the external char
distribution, Eq.~C5!. The differencePv(r )2Pop(r ) reflects
the induced nuclear polarization of the solvent.Pv(r ) tends
to Pop whenv approaches the optical frequency region.
Downloaded 05 Apr 2007 to 131.215.21.81. Redistribution subject to AIP
r

-
he

-

ic

er

s.

d-

e,

-

e

On comparing Eqs.~34! and ~21! an expression follows
for the Fourier component of the linear response funct
av5*0

`a(t)exp(ivt)dt:

av5E D21
~0!~r !–Pop~r !d3r 2E D21

~0!~r !•Pv~r !d3r . ~35!

Equations~32! and ~35! permit the calculation of the linea
response functionav and, using Eq.~23!, the spectral den-
sity J(v).

E. Representation of av in terms of a ‘‘free energy’’
difference

To facilitate the calculation ofav it is first noted that
each term in Eq.~35! is related to a ‘‘free energy’’ of the
dielectric with the dielectric response functionev(r ) or
eop(r ) in the external electric fieldD12

(0)(r ). Specifically, the
‘‘free energy’’ Fv associated with a charge distributionr12

interacting with a dielectric with polarizationPv(r ) and a
dielectric response functionev(r ), is given by45

Fv5
1

8pE Dv~r !–Ev~r !d3r

5
1

8pE ev~r !@Ev~r !#2 d3r . ~36!

It can be shown45 that thisFv equals

Fv5
1

8pE @D21
~0!~r !#2 d3r2

1

2E Pv~r !•D21
~0!~r !d3r , ~37!

and so Eq.~35! can be rewritten as

av52~Fv2Fop!, ~38!

whereFop is the free energy, Eq.~36!, of the charge distri-
butionr21(r ) in the dielectric environment with the dielectri
response functioneop(r ). Equation~38! was derived from
molecular considerations and so still represents a molec
statistical mechanical expression, in the long wavelength
proximation for treating the solvent.

Equation~38! is a useful generalization in two respect
in frequency domain and in treating the problem quant
mechanically, of a result obtained earlier.31,32 The latter re-
lated the reorganization energy of the reaction to the~free!
energy difference of two hypothetical systems, one of wh
responds to a difference in charge distributions of the re
tant and product states via a static dielectric response
another via an electronic one.

Only the frequencies which correspond to the solv
nuclear motion must be considered, since the solvent e
tronic motion has been taken into account implicitly in t
form of the solvent electronic dielectric responseeop(r ). As
a result, the rate constantk of the reaction, Eq.~4!, can be
rewritten as

k5\22D2E
2`

`

dt expF2 i tDG0/\2
2

pE0

vop
dv

3
ImF v

\v2

cosh~\bv/22 ivt !2cosh~\bv/2!

sinh~\bv/2! G , ~39!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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where the standard units, in which\Þ1, have been used
The frequencyvop corresponds to the transparency regi
which separates the frequency region of the solvent nuc
motion and the one of the solvent electronic motion.

The above expression for the rate, Eq.~39!, can be con-
siderably simplified by estimating the time-integral in E
~39! using a saddle point method16,47 and by dividing the
whole frequency range of integration into two regions:10,48

the low frequency region corresponding tov,4kBT/\ and
the high frequency region withv.4kBT/\.48 We leave this
calculation for a future work.

F. Specific solute models

Calculations based onFv can be used for realistic solut
charge distributions, i.e., those not containing point charg
In some idealized models based on point charges, Eq.~36!
would yield an infinity which cancels whenFv2Fop is cal-
culated. To avoid this infinity, it is useful to introduce th
energyFv8 of the ‘‘dielectric’’ in the external electric field
D21

(0)(r ):45

Fv8 5Fv2
1

8pE @D21
~0!~r !#2 d3r

52
1

2E Pv~r !–D21
~0!~r !d3r . ~40!

That is, Fv8 differs from Fv only by the frequency-
independent self-interaction term in Eq.~40!. When the sol-
ute can be modeled with point chargesqj , the representation
Fv8 in terms of an electrostatic potentialf(r ) is convenient,
Eq. ~40! corresponds to

Fv8 5
1

2(j
qjfv8 ~r j !, ~41!

wherefv8 (r ) is the part of electrostatic potential created
the solvent polarization with the dielectric functionev(r ). In
the case when the solute is modeled by a point dipoled0 , it
is more convenient to expressFv8 in terms of an electric
field,

Fv8 52 1
2d0Rv , ~42!

whereR is the reaction field, equal to2¹fv8 (r ), created by
the solvent at the site of the dipole.

Any spatial dependence ofev reflects the structural in
homogeneity of the solvent in the vicinity of the reactin
species. In the simplest approximation, the polarizability
the solute is neglected and it is so assumed thatev(r )51 in
the region occupied by the reactants. An improved appro
mation for the electronic polarizability of the solute would
ec.2 inside the cavity, corresponding approximately to
electronic polarizability of the solvent.41 As an example, the
donor and acceptor have been modeled as spheres of raa
separated by distancer 0. The charge distributionr21 consists
of two point chargesq (q is an elementary charge! which are
situated at the centers of the spheres. It will also be assu
for simplicity that the donor and acceptor are sufficien
Downloaded 05 Apr 2007 to 131.215.21.81. Redistribution subject to AIP
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distant from each other,r 0@a, so that their dielectric image
effect can be neglected. Then using Eqs.~38! and~41! it can
readily be shown thatav is

av52q2~eop
212ev

21!~a212r 0
21!. ~43!

Using this equation, the analytical properties ofev , and the
expression for the reorganization energyl in terms of the
spectral densityJ(v),24,48,49

l5
1

pE0

`J~v!

v
dv, ~44!

the standard expression forl is obtained7

l5q2~eop
212e0

21!~a212r 0
21!, ~45!

wheree0 is the static dielectric constant of the solvent.
The dielectric properties of the solvent enter into E

~43! in the form of a factor 1/ev . Such a form corresponds t
a homogeneous solvent and has been commonly used in
theory of electron transfer reaction rates1,2,14 and nonlinear
spectroscopy.27 This form, however, is modified when ac
count is taken of the inhomogeneity of the system near
solute molecule.50

Another example is the Onsager model,51 which has
been used in the spectroscopy of static and dynam
solvatochromism.52 In this model the solute has a spheric
shape but the charge distribution is approximated by a dip
d0 in the center of a polarizable sphere of radiusa and the
electronic dielectric constantec inside the sphere. The effec
tive dipole which would be seen from outside of such
sphere in vacuum53 is d53d0 /(ec12). The solution of the
electrostatic equations for this problem is well known.51,53

Using Eq.~42! one then obtains that theav in Eq. ~35! in
this case is54

av5
~ec12!2

3

d2

a3 F 1

2eop1ec
2

1

2ev1ec
G . ~46!

Comparing Eqs.~46! and ~43! one can see that the facto
1/ev for the homogeneous medium is changed to the fac
1/(2ev1ec) in the Onsager model. This change is a result
an inhomogeneity in the system, i.e., it is due to the prese
of the solute cavity in the solvent. It can modify the longit
dinal relaxation time in the dynamics of the Stokes shift.33,55

Often ec.2 is used.41

III. DISCUSSION

Linear response theory has frequently been used to re
the fluctuations of the electromagnetic field in the entire
vironment, with the dielectric properties of the environme
e.g., as in Refs. 16, 17, and 56. The approach in the pre
paper is somewhat different and simpler, because attentio
focused on the calculation of the fluctuations of only a sin
variable, the reaction coordinateX. In this sense our ap
proach is similar to the one used by Mukamel33 and by Flem-
ing and co-workers26 to treat the state-specific solvation d
namics of chromophoric molecules excited by a sequenc
ultrashort laser pulses. The reaction coordinateX, defined in
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Eq. ~7! as an energy difference of the system in two el
tronic states has been used by earlier workers37,57,58in more
classical treatments of the rate constant.

Equation ~16! formally coincides with the correlation
function of the collection of molecular harmonic oscillato
if one introduces forJ(v) the spectral density of their nor
mal modes,49,59which justifies the usage of this title~spectral
density! for J(v). The spectral density of the harmonic sy
tem is temperature-independent. For real nonlinear syst
the spectral density was found to depend strongly on
temperature for low frequency component ofJ(v) ascribed
to diffusive motion of the solvent molecules.24 It is worth-
while noting also that while for a harmonic oscillator solve
the spectral density is, of course, the same in classical
quantum mechanics, classical and quantum mechanics
give different results forJ(v) of a real nonlinear solvent.

The spectral density which enters into Eq.~16! can be
readily rewritten as a Fourier transform of the imaginary p
of the correlation functionC(t):

J~v!52E
0

`

dt Im@C~ t !#sinvt. ~47!

Using this equation asa definitionof a spectral density o
effective harmonic oscillators a real anharmonic syst
could be mapped, if one wished, onto the harmonic oscilla
model.26,30 The present considerations show that the res
obtained in the framework of such a model would be valid
the second-order cumulant expansion approximation.

In the present paper we considered electron transfe
actions. Our considerations, however, are applicable to o
nonadiabatic processes in a polar environment in which
change of a charge distribution occurs in the process o
nonadiabatic transition. Mukamel30 showed in a similar fash
ion that the correlation functionC(t), Eq. ~11!, enters the
final expressions for different order nonlinear optical p
cesses. The present Eqs.~16!, ~35!, and~23! can be used to
calculateJ(v) andC(t) for an appropriate model of a chro
mophoric solute molecule.

In the dielectric continuum models, such as those in S
II F, the inhomogeneity of the system is taken into accoun
the simplest possible way, namely the solvent is assume
be homogeneous up to the boundary of the solute cavity w
ev(r )5ev , which does not depend onr . The last assump
tion does not take into account molecular nature of the
vent. As a result, one could expect that more realisticev(r )
changes smoothly on a molecular length scale from its b
value inside the solvent toec at the solute boundary~we
neglect polarizability of the solute!. One approximate way o
including molecular effects is given in Ref. 23. As a possi
way of dealing with this problem, the mean spheric
approximation60–63 may be applied. The present treatme
also includes an excluded volume effect as discussed in
pendix D and as was discussed earlier by Songet al.23

By using Eq.~32! it is assumed that the dielectric re
sponse which appears in this equation in terms of the ele
susceptibilityev is local in space. This assumption may n
be accurate for a field which varies considerably on a m
lecular scale and one can use a spatially nonlocal diele
response function18 to calculate the electric field in the vicin
Downloaded 05 Apr 2007 to 131.215.21.81. Redistribution subject to AIP
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ity of the solute. At present, however, only nonlocal spat
dependence~or, equivalently, ak-dependence in the Fourie
space! of the static electric susceptibility has been estimat
namely from neutron diffraction measurements.64–66 Use of
the spatially nonlocal dielectric response function for the
homogeneous solvent would, of course, complicate the s
tion of Eqs. ~32!.67 The static counterpart of Eq.~38! has
been applied to various problems, e.g., Refs. 68 and 69.
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APPENDIX A: DERIVATION OF EXPRESSION FOR
SOLUTE-SOLVENT INTERACTION ENERGY

Equation ~2! describes the electrostatic interaction b
tween the solute characterized by the charge distribu
r j (r ) and the solvent in the particular nuclear configuratio
which is characterized by the solvent polarization opera
P̂0(r ). To justify it one can calculate the workW which must
be done to charge the solute from the hypothetical neu
state withr(r )50 to the actualj th state with the charge
distributionr(r )5r j (r ) while the solvent nuclear configura
tion is kept fixed. At any specified solvent nuclear config
ration the solvent polarization operatorP̂0(r ), which refers
to the hypothetical neutral state of the solute, can be view
as a real function ofr and not only as an operator.

The electronic part of the Hamiltonian operatorHel,
which acts on the electronic wave functionC of the solvent
and which describes the solvent interacting with itself a
with the charge distributionr(r ), can be written as

H ~el!5H0
~el!1E r~r !f̃~r !d3r , ~A1!

where f̃(r ) is the electrostatic potential. Thef̃(r ) in Eq.
~A1! must be considered as a quantum mechanical oper
~actually, as an operator function parametrically depend
on r ) acting on the electronic wave functionC. The tilde
notation is used in this section to denote operators acting
the electronic wave functionC. In Eq. ~A1! H0

(el) is an op-
erator which refers to the solvent and includes the interac
of the electrons with the nuclei and with themselves and
kinetic energy operator of the electrons of the solvent. T
part of the solute-solvent interaction which is not solu
state-specific is also treated as being included inH0

(el) . H0
(el)

does not include the kinetic energy operator for the nuclei
accord with the Born–Oppenheimer approximation.

The solvent electronic wave functionC will change in
the process of charging. As a result, the energy of the sys
^CuH (el)uC& will change too. To calculate this change on
notes that the electrostatic potentialf̃(r ) is actually a~func-
tional! derivative ofHel overr(r ) @cf. Eq.~A1!#. Then, using
the Hellman–Feynman theorem on the derivative of the
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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ergy with respect to a parameter for the system with
parameter-dependent Hamiltonian,70 one readily obtains the
following expression for the workW to charge the solute in
this case,

W5E d3rE
r50

r5r j
dr~r !f̂r~r !, ~A2!

where f̂r(r )5^Cuf̃(r )uC& is the average of the electro
static potentialf̃(r ) over the ground state electronic wav
function C corresponding to the solute charge distributi
r(r ). It is an operator which acts on the nuclear wave fu
tion.

The electrostatic potentialf̂r(r ), i.e., the average o
f̃(r ) over C, can be written as a sum of two terms,

f̂r~r !5f̂0~r !1fr8~r !, ~A3!

where the electrostatic potentialf̂0(r ) corresponds tor(r )
50 and arises fromP̂0„r …:

f̂0~r !5E P̂0~r 8!–¹
1

ur2r 8u
d3r 8. ~A4!

The second term in Eq.~A3!, fr8(r ), describes the additiona
electronic solvent response to the external electric field c
responding to the charge distributionr(r ). @P̂0(r ) contains
the electronic response in the absence of that field.#

As a consequence of Eq.~A3!, the workW can be writ-
ten as

W5W01W8, ~A5!

whereW0 is the contribution fromf̂0(r ) andW8 is the con-
tribution from fr8(r ). ReexpressingW0 in terms of the
vacuum electric fieldDj

(0)(r ) and the solvent polarization
operator P̂0(r ), using arguments similar to those used
macroscopic electrostatics,45 it follows that

W05E r j~r !f̂0~r !d3r52E Dj
~0!~r !•P̂0„r …d

3r , ~A6!

which is the term denoted byH j8 in Eq. ~2! in the text.
It is usually assumed that the response infr8(r ) depends

negligibly on the nuclear configuration of the solvent. As
result, the corresponding contributionW8 to the workW in
Eq. ~A2! depends negligibly on the solvent nuclear config
ration either and therefore can be added to the solute en
hj , renormalizing it. If one wished, one could readily es
mateW8 in terms of the electronic dielectric response fun
tion eop(r ), obtaining as a result,45

W85
1

8pE eop~r !@Ej ,op~r !#2d3r2
1

8pE @Dj
~0!~r !#2d3r ,

~A7!

whereEj ,op(r ) is the electric field in the environment wit
the dielectric response functioneop(r ). Ej ,op(r ) satisfies Eq.
~C3! below, with r j (r ) replacing r(r,t ) in the right-hand
side of the first equation in Eq.~C3!.

It is useful to relate Eqs.~1! and ~2! @also Eq.~A6!# to
the insightful molecular treatment of Mandel and Mazur40

and obtain, thereby, the electrostatic contribution tohj , H0,
Downloaded 05 Apr 2007 to 131.215.21.81. Redistribution subject to AIP
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and H j8 in Eq. ~1!. They obtained Eq.~A8! for the total
electric energy of molecules having permanent and indu
dipoles~we omit our carets for notational simplicity!:

V5 1
2m

0
–T–m2m–D02 1

2D
0
–A–D0, ~A8!

wherem andm0 are 3N-dimensional vectors~whose compo-
nents in the three-dimensional subspace of solvent mole
n aredn anddn

0). D0 is a 3N-dimensional vector with three
components ofD(0)(rn) at each moleculen and arises from
the solute charges,T is a symmetric tensor of order 3N
33N with elementsTmn@5¹m¹n(1/r mn) if mÞn] in three-
dimensional subspace, and withTmm50. A is a symmetric
tensor related toT by A5a–(I1a–T…21, where a is the
polarizability of a solvent molecule andI is a unit tensor of
order 3N33N. @The expression is readily generalized wh
a is a tensor of order 3N33N, and one obtains the tensoria
producta–(I1a–T)21 for A.] ¹n is the gradient with re-
spect to the coordinates of moleculen.

In Eq. ~A8! the second term on the right is equivalent
a term2*P̂0„r …–D

(0)(r )d3r , when one notes the definition o
P̂0(r ) in Eq. ~3!. The first term in the right is independent o
D„0…

„r … and so is the electrostatic contribution to theH0 in
Eq. ~1!. The last term in Eq.~A8! does not contain the per
manent dipolesdn

0 and so is insensitive to nuclear position.
contributes to thehj in Eq. ~1!.

APPENDIX B: EXPRESSION FOR THE STANDARD
FREE ENERGY OF REACTION

The constantDG0 in Eq. ~17! is seen from Eqs.~10!,
~16! and ~44! to be

DG05^X&2l. ~B1!

It can be shown that thisDG0 coincides with the standard
free energy of reactionDG0, as follows. The standard fre
energy of reactionDG0 is defined by

e2bDG0
5

Tr@e2bH2#

Tr@e2bH1#
5^e1

2*0
bX̃~t!dt

&,

X̃~t!5etH1Xe2tH1. ~B2!

Using the second-order cumulant expansion29 one finds from
Eq. ~B2! that

DG0.^X&2b21E
0

b

dtE
0

t

dt8C̃~t8!,

C̃~t!5^dX̃~t!dX̃~0!&5C~2 i t!. ~B3!

Substituting Eq.~16! into Eq. ~B3! and integrating overt8
and t one finds thatDG0 in Eq. ~B2! is the same as tha
given by Eq.~B1!.

APPENDIX C: MACROSCOPIC POLARIZATION P AND
MACROSCOPICAL FIELDS E AND D IN TERMS
OF THE MOLECULAR MODEL OF THE SOLVENT

In this Appendix we relate the average electric fie
E(r ,t) and electric displacementD(r ,t) to the relevant op-
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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erators@Eqs. ~C2!–~C8!# in terms of our molecular model
We first note that the average polarizationP(r ) at r is given
by

P~r ,t !5Tr@P̂0~r !R~ t !#, ~C1!

where the operatorP̂0(r ) of the solvent polarization is de
fined by Eq.~3! and the time-dependent density matrixR(t)
is given by Eq.~19!.

We next introduce an electric field operatorÊ(r ,t) as

Ê~r ,t !52¹E P̂0~r 8!–¹
1

ur2r 8u
d3r 81Eop~r ,t !. ~C2!

The first term in Eq.~C2! is an electric field generated by th
solvent polarizationP̂0„r …. The second termEop(r ,t) is an
additional electric field which is due to the external char
and to the instantaneous electronic response of the solve
that external charge distributionr(r ,t). ~See also the discus
sion in Appendix A.! The electric fieldEop(r ,t), which is
assumed to be independent on the solvent nuclear config
tion, satisfies the equations:

¹–Dop~r ,t !54pr~r ,t !, ¹3Eop~r ,t !50,
~C3!

Dop~r ,t !5eop~r !Eop~r ,t !,

wherer(r ,t) is defined in Eq.~28!, eop(r ) is the electronic
dielectric susceptibility of the solvent atr , and Dop(r ,t) is
the electronic electric displacement associated withr(r ,t).

We note that the operatorP̂(r ,t) of the total solvent
polarization can be written as a sum of two terms

P̂~r ,t !5P̂0~r !1Pop~r ,t !. ~C4!

The first termP̂0„r … is the operator of the molecular solve
polarization P̂0„r …, Eq. ~3!, which corresponds to a hypo
thetical neutral state of the solute withr(r )50. P̂0„r … itself
consists of two parts, one part arising from all the unp
turbed dipole moments of the solvent molecules, and
second part being a collective electronic response to the
part @cf. the discussion after Eq.~3!#.

The second term in Eq.~C4!, Pop(r ,t), is an additional
electronic polarization at fixed positions of the solvent nuc
which arises as a collective response of the solvent elect
to the solute electric fieldD(0)(r ,t), Eq. ~27!. We note that
Pop(r ,t) in Eq. ~C4! can be written in the conventional wa
as

Pop~r ,t !5
1

4p
@Dop~r ,t !2Eop~r ,t !#5

eop21

4p
Eop~r ,t !. ~C5!

We next define an electric displacement operatorD̂(r ,t)
~motivated by the standard macroscopical electrost
description41,45! as

D̂~r ,t !5Ê~r ,t !14pP̂~r ,t !, ~C6!

which can be rewritten using Eqs.~C2!, ~C4!, and~C5! as

D̂~r ,t !5Dop~r ,t !2¹E P̂0~r 8!•¹
1

ur2r 8u
d3r 814pP̂0~r !.

~C7!
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In this equation the first term is an electric displacem
which is associated with the solvent electronic response o
The last two terms in Eq.~C7! represent the electric field du
to the solvent polarization~the second term! and the solvent
polarization operator term itself~the third term!.

The average electric fieldE(r ,t) and electric displace-
mentD(r ,t) can then be defined as

E~r ,t !5Tr@Ê~r ,t !R~ t !#, D~r ,t !5Tr@D̂~r ,t !R~ t !#, ~C8!

where, as noted earlier, the time-dependent density ma
R(t) is given by Eq.~19!. One could use a bar notation fo
E(r ,t) and D(r ,t), as in Eq.~20!, but since they coincide
with the conventionally used macroscopic fields,41 we omit
it. Equation ~C8! completes the definition ofE(r ,t) and
D(r ,t) in terms of the operators defined in Eqs.~C2! and
~C7! and P̂(r ). They are used in the text in Eqs.~29!–~30!.

The Fourier component of the average value of the to
polarization per unitf v @cf. Eq. ~33!#,

Pv~r !5
1

f v
E

2`

`

Tr@R~ t !P̂~r ,t !#exp~ ivt !dt, ~C9!

is related in a standard way to the corresponding Fou
component of the average electric field@cf. Eq. ~32!#

Pv~r !5
ev~r !21

4p
Ev~r !. ~C10!

Using Eqs.~C4!, ~C5!, and ~C10! one readily obtains Eq
~34!.

APPENDIX D: EQUATION FOR THE GENERALIZED
SOLVENT SUSCEPTIBILITY x̃ „m … IN THE
PRESENCE OF A SOLUTE CAVITY

Two dipolar solvent molecules correlate with each oth
not only directly via the dipole–dipole interaction betwe
them, but also indirectly via the interaction with other mo
ecules of the solvent. As a result, the correlation betw
orientations of the two solvent molecules in the vicinity
the solute is modified in comparison with the bulk because
the absence of the fluctuating solvent polarization at
place of the solute. This excluded volume effect leads
modification of the dielectric response of the solvent to
external electric field.23 In this Appendix we show how this
excluded volume effect naturally appears in the present
mulation and demonstrate that the resulting equation,
~D14!, coincides with Eq.~3.11! in Ref. 23.

For our purposes, it is convenient to rewrite the elect
static equations~32! in a different form. We will assume tha
each term in Eqs.~D1!–~D14! refers to an arbitrary fre-
quencyv and will omit the indexv for notational simplicity,

P~r !5xE~r !,

E~r !5D~0!~r !1E
out

d3r 8 T~r2r 8!P~r 8!, ~D1!

wherex5~e21!/4p is the dielectric polarizability of the sol
vent, D~0!~r ! is the external electric field,E~r ! is the local
electric field at the pointr , andT~r2r 8!P~r 8! is given by Eq.
~D2!, T being a tensor:
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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T~r2r 8!P~r 8!5
3P~r 8!•~r2r 8!~r2r 8!

ur2r 8u5
2

P~r 8!

ur2r 8u3
. ~D2!

Equation~D2! gives the electric field produced at the poinr
by a dipoleP~r 8! at the pointr 8. The integration in Eq.~D1!
is over the volume outside of the solute.

ExpressingE~r ! in terms ofP~r ! from the first part in
Eq. ~D1! and substituting it into the second part one arriv
at the following result relating the solvent polarizationP~r !
to the external electric fieldD(0)(r ):

D~0!~r !5E
out

d3r 8 x̃21~r2r 8!P~r 8!, ~D3!

where x̃21(r2r 8) is a tensor, the inverse generalized su
ceptibility of the bulk solvent in our model. It is defined a

x̃21~r2r 8!5x21Id3~r2r 8!2T~r2r 8!, ~D4!

whereI is a unit tensor. It is convenient to use the followin
symbolic shorthand notation for Eq.~D4! and subsequen
equations:

Dout
~0!5x̃out,out

21 Pout, ~D5!

where the two indices ‘‘out’’ indicate that bothr and r 8 in
the corresponding integral equation are in a region outs
the solute cavity. We will also use the index ‘‘in’’ to imply
that the corresponding variable is inside the cavity. The
tation x̃out,out

21 means~x̃21!out,out and not~x̃out,out!
21.

In Eq. ~D3! both r and r 8 are the points outside th
solute cavity. We can includer and r 8 in the cavity, taking
P~r 8!50 for r 8 in the cavity, which in our shorthand notatio
is simply Pin50, and treatingr as being everywhere, and s
extend Eq.~D3! to the whole space,

D~0!~r !5E
all space

d3r 8 x̃21~r2r 8!P~r 8!, ~D6!

which can be rewritten in a shorthand notation as~the ab-
sence of in and out subscripts denotesr andr 8 in all space!,

D ~0!5x̃21P. ~D7!

The last equation can be easily solved by the Fourier tra
form method. The solution can be written in our shortha
notation as

P5x̃D ~0!. ~D8!

The solvent polarization can be then written as

Pout5x̃out,outDout
~0!1x̃out,inD in

~0!. ~D9!

To find D in
~0! it is noted that

05Pin5x̃ in,outDout
~0!1x̃in,inD in

~0!, ~D10!

which yields

D in
~0!52~ x̃ in,in!21x̃ in,outDout

~0!. ~D11!

It is useful to note that the operator (x̃ in,in)
21 is the inverse

of the operatorx̃ in,in and cannot be obtained fromx̃21, but
that the appropriate integral equation, represented symb
cally by

~ x̃ in,in!21x̃ in,in5I in,in ~D12!
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must be solved.
Substituting Eq.~D11! into Eq. ~D9! one arrives at Eq.

~3.11! in Ref. 23, which in our notation is

Pout5x̃out,out
~m! Dout

~0!,
~D13!

x̃out,out
~m! 5x̃out,out2x̃out,in~ x̃ in,in!21x̃ in,out

or, in the standard notation, is

x̃~m!~r ,r 8!5x̃~r2r !2E E
in

d3r 9d3r-x̃~r2r 9!

3x̃ in
21~r 9,r-!x̃~r-2r 8!. ~14!
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