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I. INTRODUCTION

In this chapter we consider the problem of reaction rates in clusters (micro-
canonical) modified by solvent dynamics. The field is a relatively new one,
both experimentally and theoretically, and stems from recent work on well-
defined clusters [1, 2]). We first review some theories and results for the
solvent dynamics of reactions in constant-temperature condensed-phase sys-
tems and then describe two papers from our recent work on the adaptation to
microcanonical systems. In the process we comment on a number of ques-
tions in the constant-temperature studies and consider the relation of those
studies to corresponding future studies of clusters.

A brief review for constant-temperature condensed-phase systems is given
in Fig. 1. The field of solvent dynamics has grown so extensively that it 1S
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Figure 1. Brief survey of some developments in the solvent dynamics field.

difficult for recent reviews [3-5] to keep pace. Only some representative arti-
cles are cited below. The classic paper 1s solvent dynamics, due to Kramers,
appeared in 1940 [6]. Subsequently, apart from some isolated works 1n the
physics literature, such as Langer’s generalization to many coordinates in
1969 [7], there was relatively little follow-up, and particularly little in the
chemical literature, until around 1980. The subsequent developments can
be classified as being largely of three types: (1) those, like Kramers’s, that
are one-coordinate treatments; (2) their many-coordinate extensions; and (3)
treatments having one slow coordinate, the remainder being fast coordinates,
appropriately averaged.
Kramers’s equation, i1t may be recalled, 1s [6]

(1.1)
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where P(p, g, t) is the probability density in phase space, g the reaction coor-
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dinate, p its conjugate momentum, U(q) the potential energy function, and
¢ the frictional coefficient. Kramers’s theory for reactions in liquids, which
includes both the inertial and the overdamped limits, was extended by Grote
and Hynes [8] to include a memory effect, namely, a frequency-dependent fric-
tion {(w). A number of other one-dimensional extensions have also been made
[9]. Some of the ideas were tested experimentally by many investigators 4,
5, 10, 11. Another pioneering one-coordinate extension of Kramers’s analy-
s1s was made for electron transfer reactions by Zusman [12] and Alexandrov
(12} (1980), and further illuminating developments were made by a number of
researchers [13~15]. When there are no relevant “vibrationally assisting”’ coor-
dinates (examples are mentioned later), a one-coordinate approach suffices.

The second approach, a multidimensional one, was given by Langer [7].
Other muitidimensional developments were many [16~18]. McCammon [17]
discussed a variational approach (1983) to seek the best path for crossing the
transition-state hypersurface in multidimensional space and discussed the topic
of saddle-point avoidance. Further developments have been made using vari-
ational transition state theory, for example, by Pollak [18].

The third, and perhaps now the currently major, approach for treating the
experimental data on electron transfer reactions assumes that there is one slow
coordinate, with the remaining coordinates being fast. The equation used, or
coupled with one for the back reaction or further extended by making D a D(t),

IS
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and 1s obtained by an averaging over or adiabatic elimination of the fast
(vibrational) variables. Here, P(X) is the probability density along the slow
coordinate X, D is a diffusion constant in this X space, G(X) is the free
energy to reach any X from the equilibrium value of X, X = 0 for the reactant,
and k(X') 1s a rate constant at any given X for crossing the barrier. The motion
along X is, as seen in (1.2), treated as overdamped.

Using Eq. (1.2) Agmon and Hopfield (Ref. 19; cf. Ref. 23) treated the
dissociation of a ligand from a heme in a protein (1983), and Sumi and Mar-
cus [20] treated electron transfer reactions (1986). For electron transfers the
previous (one-coordinate) treatments neglected the very common case that
solute vibrations play a major role (vibrational assistance) in the transfer
when there are significant changes in vibrational geometry, for example, in
bond lengths. The use of Eq. (1.2) removes that defect. Beginning around
1990 Berezhovskii, Zitserman, and co-workers introduced a number of treat-

ments of the type based on Eq. (1.2) [21].
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The various treatments in the literature based on Eq. (1.2) have differed
primarily in two respects: (1) the expression for the rate constant k(X) 1n Eq.
(1.2) is specific for the process and so may differ from process to process
and (2) the technique for solving Eq. (1.2) differs. For example, Agmon
and Hopfield [19] solved Eq. (1.2) numerically, as did Nadler and Mar-
cus [22], Agmon and co-workers [23], and others. Sumi and Marcus [20]
introduced, instead, a decoupling approximation, which depended on there
being a difference in time scales for the reaction and for the solvent fluc-
tuations. (An excellent summary and an extension of their work is given In
Rasaiah and Zhu [24].) Berezkhovskii et al. introduced an approximation that
divided the X space into two parts, separated by a value of X at which the
escape time 7...(X ) equals the solvent relaxation time 7.;(X) [21]. Fleming
and co-workers treated barrierless electronic energy transfer (1983) [25] and
the corresponding barrierless electron transfer (1990) [26].

For electron transfers various extensions and experimental tests of the
Sumi-Marcus treatment have been introduced. They include a quantum ver-
sion for k(X) (of particular importance in the “inverted region”) [24, 27, 28],
inclusion of forward and reverse reactions [24], and the use of a time-depen-
dent D(2) to allow for several relaxation times [24, 27, 29]. Other experimen-
tal tests or extensions have also been introduced [30]. In experimental tests,
effects such as the dynamic Stokes shift of fluorescence in these polar systems
have been especially invaluable in providing necessary data for relaxation in
these electron transfer systems [31]. Numerical solutions by Yoshihara and co-
workers [29] and by Barbara and co-workers [27], permitting the inclusion of
a D(t), have been important. Use of a D(¢) in general had been made in the
work of Hynes [14] (cf. Ref. 32). Analyses of solvent dynamics, accompa-
nied by computer simulations, of Chandler and co-workers [33] and of Maron-
celli, Fleming, and their co-workers [34] have provided further mnsight. Inertial
effects on solvent dynamics, using a formalism of Mukamel and co-workers
[35], have been incorporated by Barbara and co-workers [36]. Further relevant
solvent dynamics theoretical analyses [37] and measurements using ultrafast
laser spectroscopy have also been described [38]. Earlier theoretical studies of
dynamical spectral shifts of solutes had been made by Bakhshiev, Mazurenko,
and their co-workers [39] and references cited therein.

In the case of electron transfer reactions, besides data on the dynamic Stokes
shift and ultrafast laser spectroscopy, data on the dielectric dispersion e(w) of
the solvent can provide invaluable supplementary information. In the case of
other reactions, such as isomerizations, it appears that the analogous data, for
example, on a solvent viscosity frequency dependence 7(w), or on a dynamic
Stokes fluorescence shift may presently be absent. Its absence probably pro-
vides one main source of the differences in opinion [5, 40—43] on solvent

dynamics treatments of isomerization.
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In the next section we summarize two treatments of microcanonical sys-
tems [2, 44], one of the steady-state Kramers’ one-coordinate type and one
including vibrational assistance. An earlier approach to the problem was given

by Troe [43].

II. MICROCANONICAL SOLVENT
DYNAMICS MODIFIED RRKM THEORY

A. One-Coordinate Type Treatment

The Kramers-type equation corresponding to Eq. (1.1) and adapted in Ref. 2
to the microcanonical case for a system with coordinate g and its conjugate

momentum p 18

aP__T(aS)aP P a 9P

where S,(g) is the local vibrational entropy at g, T,[=1/(dS,/0dE,)] is the
local microcanonical vibrational temperature and is a function of ¢, and P
is the probability distribution in (g, p) space. The adaptation was such as to
permit the equilibrium microcanonical phase-space distribution function to
satisfy the equation identically [2].

In the steady-state approximation, solving Eq. (2.1) for the rate constant
at the given total energy E yields [2]

1 2
krate = ‘5'1'.“‘ (\/(-2{) +wl2 - “g')kRRKM (2.2)

where w'? denotes T,d*S,/dq* at ¢ = q' and is an effective barrier fre-
quency. The krrkm 1S the RRKM (microcanonical) rate constant at the given
energy E.

B. Vibrational Assistance Treatment

A second procedure, based on the vibrational assistance model for cal-
culating the solvent-dynamics-modified rate, is given in Ref. 44. The
reaction—diffusion equation, adapted from Eq. (1.2), is, for the case where
the back reaction is neglected, given by (2.3). The more complete treatment,
where the back reaction (recrossings) is included, is given in Ref. 44:
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The adaptation is such as to permit the equilibrium microcanonical distribu-
tion for the slow coordinate X to be a solution (2.3) when k(X) = 0. The
S,(X) in Eq. (2.3) is the vibrational entropy change needed to reach X from

X =0:

]
S.(X) = pPn o) o const (2.4)

Y

[the constant does not affect the dS,/dX appearing in Eq. (2.3)]; p is the
density (i.e., the number per unit energy) of quantum states of the reactant,

and p(X) is that density at X per unit X. It is given by [44]

2
p)=D G Px=RE-UX)-E"  25)

where Py is the momentum conjugate to X. Throughout we use a mass-
weighted unit for X for notational brevity. Here, E,, is the energy of the
mth quantum state of the reactant for all coordinates but X and U(X) 1s
the potential energy at X at the local equilibrium value of the remaining
coordinates. It is readily verified [44] that (2.5) satisfies j o0(X)dX =1, where
the integral is over the reactant’s region of X space.

We give in Fig. 2 a schematic plot showing contours on which a vibra-
tional entropy S,(g,X) is constant, ¢ is a fast coordinate, and the line C 1s
the transition state in the (X, g) space. This S,(g, X ) can be defined as in an
equation similar to (2.4) in terms of a kgln p(q, X), p(q,X) being the local
density of study, that is, the number per unit energy per unit g and per unit
X. While this plot is not used in the derivation, it can be visually helptul.

The k(X) in Eq. (2.3) is given by an RRKM-like expression for the given
X [44]:

N(X)

2.6
o (X) i

k(X) =

where N(X) is the local number of quantum states (per unit X') for the given
X, along the transition state, with energy equal to or less than E and 1s given
by (2.7), and x is a coordinate that i1s a projection (defined in Ref. 44) on
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Figure 2. Schematic entropic surface as a function of a slow coordinate X and a fast

coordinate ¢. Here, S is a saddle point, the line C is the transition state in this (X, g) space,
and X, lies at its intersection with the X axis.

the transition state space. We have

N(X) = Z M—‘Tﬂ Px= [2(E = Eﬂ' = Uc)]]/2 (27)

Here, E, is the energy of the nth quantum state of the transition state for
all coordinates but X and Q, the reaction coordinate, U.(X) is the potential
energy in the transition state at the point X and at the position of minimum
potential energy with respect to all other coordinates in the transition state,
and p, is the momentum conjugate to x.

From the expressions for k(X) and N(X) it can be shown that the usual
RRKM expression obtains when the diffusion along X is rapid, that is, when
P(X) has its equilibrium value P.q(X)[= p(X)/p]: We have
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krate — j k(X)Peq(X)dX (2-8)

and so trom (2.6) and (2.7)

1 2pydx\ N(E) _
Ky = o ; J ( n ) =~k = KRRKM (2.9)

where the limits on the integral in (2.9) are at the end-points p, = 0. [The
system is now near the X where U .(X) i1s a minimum and so x has become
a vibration.] The second equality in (2.9) arises because the integral there
can be written as an integral over one cycle of the x motion and so equals
§ p. dx/h. The latter is a constant, which we write as / + 3. Semiclassically,
! is an integer for any x quantum state. We now have 1n (2.9) what can be
shown [44] to be a sum over the quantum states (for all coordinates but the
reaction coordinate) with energy equal to or less than E. The sum is denoted
by N(E), and one obtains the usual RRKM expression.

It remains now to solve Eq. (2.3). Here, there are various approaches,
depending on the conditions. When a non-steady-state solution 1s required,
one can introduce the decoupling approximation of Sumi and Marcus, if there
1s the difference in time scales mentioned earlier. Or one can integrate Eq.
(2.3) numerically. For the steady-state approximation either Eq. (2.3) can
again be solved numerically or some additional analytical approximation can
be introduced. For example, one introduced elsewhere [44] i1s to consider
the case that most of the reacting systems cross the transition state in some
narrow window (X;,X; * 7A), narrow compared with the X region of the
reactant [e.g., the interval (O, X.) in Fig. 2]. In that case the k(X) can be
replaced by a delta function, k(X;)Ad(X — X ;). Equation (2.3) is then readily
integrated and the point X; is obtained as the X that maximizes the rate
expression. The A is obtained from the width of the distribution of rates in

that system [44].
A simple expression for the rate constant results:

krate (E ) =& rate (X max) (2 1 0)

where X ..« 1s the X that maximizes k(X ) and hence minimizes the reaction
time 1/k..(X). That time appears in the final expression 1n Ref. 44 as

1 1 |
S T
Krate (X))  kair(X)  kaeX)

(2.11)
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where the diffusion-controlled and activation-controlled rate constants are
given by

Kaier(X ) = =3 > (2.12)
Jo [o/p(X")]dX’
and
k(X)) = 24 (2.13)
hp

[When X ..., occurs at the end-point X, there is a minor change in procedure,
and the system now crosses the transition state in the interval (X, X, — 4),
Equations (2.11)—(2.13) are again obtained.]

The result in (2.11) that the reaction time is the sum of two other times 1s
fairly common in the general reaction—diffusion literature, in which a steady-
state approximation is used and there is a diffusion toward a sink followed
by reaction at that sink. For example, in the scheme A <= B — C, with
forward and reverse rate constants k; and k, for the first step (equilibrium
constant K = k;/k;) and rate constant k3 for the last step, a steady-state
approximation for B yields 1/k;ae(1/k3K)+(1/k;), which has the same func-
tional form as (2.11). The more complete expression, which allows for the
back reaction (recrossings), has a slightly more complicated structure [44].

III. DISCUSSION

At present the body of data on reactions in clusters is insufficient to test
the above two microcanonical approaches. For electron transfers in solution
it seems clear that the vibrational assistance approach, stemming from Eq.
(1.2), with its extensions mentioned earlier, is the one that has been the most
successful [27-30]. For slow isomerizations Sumi and Asano have pointed
out that an analysis based on Eq. (1.2) was again needed [40]. An approach
based on Eq. (1.1) or on its extension to include a frequency-dependent fric-
tion, they noted, led to unphysical correlation times [40]. In investigations of
fast isomerizations the most commonly studied system has been the photoex-
cited trans-stilbene [5, 41-43, 46]. Difficulties encountered by a one-coordi-
nate treatment for that system have been reported [4, 8]. Indeed, coherence
results for photoexcited cis-stilbene have shown a coupling of a phenyl tor-
sional mode to the torsional mode about the C==C bond [42, 47].

Other investigators have used systems that are more apt to represent a one-
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coordinate-like behavior, for example, the isomerization of “stiff-stilbene,”
where the phenyl groups are tethered further to the respective carbon atoms
of the double bond [48], and the conformational change of binaphthyl [10].
In the last study a microviscosity was introduced into the Kramers formula
to obtain the friction coefficient {, instead of using the bulk viscosity of the
solvent, and was inferred from rotational relaxation or translational diffusion
coefficient ({ = kgT/D i1n mass-weighted units). In that case the expected
Kramers function of  (via the Stokes—Einstein equation) was obeyed for the
one-coordinate model. Use of the bulk viscosity led, instead, to an observed
fractional dependence on 7 [10]. A microfriction inferred from a rotational or
translational relaxation time has been similarly successfully used by various
other investigators [41, 43, 49, 50]. An approximate molecular expression
(“ballpark™) for a { for a cluster was given in Ref. 2.

Many questions in the analysis of solvent dynamics effects for isomer-
‘izations in solution have arisen, such as (1) when is a frequency-dependent
friction needed; (2) when does a change of solvent, of pressure, or of tem-
perature change the barrier height (i.e., the threshold energy), and (3) when
is the vibrational assistance model needed, instead of one based on Eq. (1.1)
or its extensions?

In the case of electron transfers in solution there appears to be a greater
cohesiveness of views, and the need for vibrational assistance is well estab-
lished for reactions accompanied by vibrational changes (e.g., changes in
bond lengths). A detailed analysis of the experiments could be made because
of the existence of independent data, which include X-ray crystallogra-
phy, EXAFS, resonance Raman spectra, time-dependent fluorescence Stokes
shifts, among others.

One may inquire as to what this experience with solutions suggests for
the study of reactions in clusters. In the case of electron transfers supple-
mentary information, such as time-dependent fluorescence Stokes shift in
clusters, would again be helpful. Equation (2.3) can be modified to include
a D(t), as in the isothermal case, if needed from the results of such data. For
isomerizations, also, it would be useful to have, for solutions or clusters,
detailed analogous data such as the above Stokes shift. However, because of
the low intensity of such a fluorescence in this case, such data appear to be
absent or scarce.

The questions that have arisen in regard to 1somerizations in solution also
apply to isomerizations in clusters. One of these questions, which has now
been addressed, is the threshold energy and its vanation with size of the clus-
ter. Data on the threshold energies were obtained in the microcanonical study
by Heikal et al. [1]. New questions, however, also arise for clusters: How
rapidly is the energy transferred between the solute and the solvent molecules
in the cluster? Qutside the threshold region a reduction in k,.(£) with
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increasing cluster size was observed experimentally [1]. A principal question
is whether this reduction is due to the increase, with increased cluster size, 1n
the number of coordinates which can share the excess energy or whether it
is due to increased frictional effects by the solvent molecules, or both. If the
solvent molecules outside the first solvent layer in the cluster have little effect
on the frictional forces, then this question can be addressed by comparing the
reaction rates with those clusters that contain more than one solvent layer.
Again, if instead of using stilbene one replaces one of the phenyl groups
attached to the C==C double bond, the solvent viscosity effects should be
less and the energy-sharing role of the extra coordinates more readily dis-
cerned. Yet again, microcanonical studies with molecules deliberately cho-
sen, as in the solution case, to favor a one-coordinate approach would also
be of particular interest.

It is clear that the study of solvent dynamics in solution has proved to be
a rich field. A number of questions remain to be resolved, and the study of
clusters can open new avenues.
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DISCUSSION ON THE REPORT BY R. A. MARCUS
Chairman: E. Pollak

J. Troe: In our own work measuring energy-specific excited stil-
bene lifetimes in stilbene-hexane clusters, we found for larger clusters
that there is no isomerization. We interpreted this as evidence for “boil-
ing off” of the cluster partners, removing energy from stilbene and
thus suppressing the isomerization. This is an alternative to increas-
ing the effective size of the reacting molecule. Which interpretation do
you favor? We also clearly showed that the barrier for isomerization is
decreased by the first cluster partners, as evidenced in our studies of
the thermal reaction between gas and liquid phases.

R. A. Marcus: I understand that the observed effect of a decrease
in rate constant k(E) with increasing cluster size at a fixed E was not
due to a boiling off of the hexane molecules (and hence to a reduced
E), but I refer to my colleague, Ahmed Zewail, for an answer to your
question.

A. H. Zewail: My answer to Prof. Troe is that, in our experiment,
already the cluster with one solvent shows the shift in Ey. As for the
boiling off of solvent molecules in larger clusters this is a nontrivial
problem that we have considered in our paper. Based on the analy-
sis of the translational energy and the kinetics, we concluded that the
exponential decays (rates) are determined by the isomerization [see
Chem. Phys. Lett. 242, 380 (1995)]. In any event, only one solvent
molecule (at most) can be evaporated for the available energy studied
experimentally; recall that the binding energy of hexane is relatively
large.

H. Hamaguchi: I would like to comment on the stilbene photo-
isomerization in solution. We recently found an interesting linear rela-
tionship between the dephasing time of the central double-bond stretch
vibration of S| trans-stilbene, which was measured by time-resolved
Raman spectroscopy, and the rate of isomerization in various solutions.
Although the linear relationship has not been established 1n an exten-
sive range of the isomerization rate, I can point out that the vibra-
tional dephasing time measured by Raman spectroscopy is an impor-
tant source of information on the solvent-induced vibrational dynamics
relevant to the reaction dynamics in solution.

R. A. Marcus: It is good to hear about that; certainly one needs all
types of information to be incorporated.

D. M. Neumark: Prof. Marcus, your theoretical treatment was
“motivated by experimental studies of isomerization in clusters with
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very few solvent molecules (n = 1, 2). How appropriate 1s your theory
to these small clusters? In particular, can one discuss concepts such as

viscosity and solvent friction in small clusters?

R. A. Marcus: The experiments involved hexane rather than argon
and went from n = 0 to » = 5 hexane molecules. In Chem. Phys. Lett.
244, 10 (1995), I considered two limiting cases for the energy sharing
of the trans-stilbene with the modes of the solvent molecules. Exper-
iments comparing results for one and two shells of solvent molecules
in the cluster may provide information on which limiting model might
be the more appropriate. Previous experiments on trans-stilbene in sol-
vents suggest a rapid energy sharing. In the above article I also gave a
rough expression relating the “viscosity” or friction for the cluster to
molecular properties, but I am sure it can be improved upon.

B. Hess: The structure and function of solvent components consti-
tuting the active site of enzymic reactions represent an exciting puzzle
in protein chemistry. In an active pocket, a restricted cluster number
is given by the small set of amino acid residues, mostly hydrophobic,
in the nearest neighborhood to the ligand and its reaction partners. As
Prof. Marcus pointed out, Frauenfelder and his collaborators studied
experimentally the effect of solvent viscosity on protein dynamics. In
case of CO myoglobin they could show that over a wide range in vis-
cosity the transition rates in heme-CO are inversely proportional to the
solvent viscosity and can consequently be described by the Kramers
equation [1]. A complementary study was carried out to explore the
effect of viscosity on the photocycle of bacteriorhodopsin. Here again
the Kramers equation in a modified form was found to be useful [2].
Most recently, the photodissociation of carbon monoxide myoglobin
was studied in crystals at liquid helium temperatures by two different
groups [3]. Schlichting et al. [4] could show that CO dissociation leads
to tilting of the proximal histidine and a decompression and motion of
the F-helix toward its junction with the E-helix. These conformational
changes are linked to an increase of the enthalpic barrier decreasing the
association rate coefficient. It was speculated that the energy stored 1n
this conformation of the residue and its neighbors is released during
structural fluctuations associated with ligand escape. These and other
observations (see also Ref. 5) illustrate the necessity to extend the the-
oretical approach of Prof. Marcus’s theory to the domain of intramolec-
ular interactions in protein dynamics. I would be glad if he could com-
ment on this development.

1. D. Beece, L. Eisenstein, H. Frauenfelder, D. Good, M. C. Morgan, L. Reinisch, A.
H. Reynolds, L. B. Sorensen, and K. T. Yue, Biochemistry 18, 3421 (1979).
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2. D. Beece, S. F. Bowne, J. Czege, L. Eisenstein, H. Frauenfelder, D. Good, M. C.
Marden, J. Marque, P. Ormos, L. Reinisch, and K. T. Yue, Photochem. Photobiol.

43, 171 (1981).
3. G. Petsko, Nature 371, 740 (1994).

4. 1. Schlichting, J. Berendzen, G. N. Phillips, Jr., and R. M. Swwet, Nature 371, 8008
(1994),

5. H. Akiyama, T. Kakitani, Y. Imamoto, Y. Shichida, and Y. Hatano, J. Phys. Chem.
99, 7147 (199)5).

R. A. Marcus: Concerning the issue raised by Prof. Benno Hess,
a number of treatments of the “solvent dynamics” of chemical reac-
tions in proteins or liquid solvents assume one slow (X) and one or
more fast coordinates. The theories then differ in the nature of how a
rate constant k(X ) depends on X. Agmon and Hopfield, for example,
used a k(X) specific for the ligand—heme dissociation process they were
considering. Sumi and I used a k(X ) specific for the electron transfer
reactions we were considering [1]. In today’s talk, which concerns an
isomerization, I used for k(X) the analog of an RRKM rate constant
appropriate to it. These various treatments have in common the same
differential equation for the probability distribution P(X) along X. They
differ in the process considered and in the nature of solution. There is
still much to be done, particularly for systems that deviate from sin-
gle time-exponential behavior, to use some of the existing numerical
solutions, to test various analytical approximations, and to develop new
analytical approximations. It was interesting to hear from Prof. Hess
about the new and detailed structural information becoming available
for the protein systems, and extending the theory will be an interesting
problem.
1. H. Sumi and R. A. Marcus, J. Chem. Phys. 84, 4894 (1986).

W. Hebel: 1 have a rather general question for Prof. Marcus. You
are discussing the complicated solvent dynamics of molecular clusters.
Does this also include large biomolecules such as proteins in aqueous
solutions?

Could you perhaps comment on how far research has gone in ana-
lyzing and understanding the interaction of biopolymers in aqueous sol-
vents?

R. A. Marcus: Even though solvents and solvent—solute interac-
tions or interactions with a protein can be very complicated and the
resulting motion can be highly anharmonic, under a particular condi-
tion there can be a great simplification because of the many coordinates
(perhaps analogous to the central-limit theorem in probability theory).
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The condition is that of linear response of the solvent or protein, for
example, that the change in dielectric polarization of the solvent be
proportional to the change in charge of a solute. With this condition
fluctuations give rise to a quadratic expression for free-energy changes.
This simplification ultimately led, in the case of electron transfer reac-
tions in appropriate atoms or group transfer, to new predicted relation-
ships among rate constants of different reactions. The linear response

approximation for the electron transfer systems was subsequently also
tested by various investigators by computer simulations of solvent and

of proteins.

J. Troe: Professor Marcus, you were mentioning the 2D Sumi-
Marcus model with two coordinates, an intra- and an intermolecu-
lar coordinate, which can provide “saddle-point avoidance.” 1 would
like to mention that we have proposed multidimensional intramolecu-
lar Kramers—Smoluchowski approaches that operate with highly non-
parabolic saddles of potential-energy surface [Ch. Gehrke, J. Schroeder,
D. Schwarzer, J. Troe, and F. Voss, J. Chem. Phys. 92, 4805
(1990)]; these models also produce saddle-point avoidances, but of an
intramolecular nature; the consequence of this behavior is strongly non-
Arrhenius temperature dependences of isomerization rates such as we
have observed in the photoisomerization of diphenyl butadiene.

R. A. Marcus: I used the words saddle-point avoidance, inciden-
tally, to conform with current terminology in the literature. More gener-
ally, one could have said, instead, avoidance of the usual (quasi-equilib-
rium) transition-state region (i.e., the most probable region 1f viscosity
effects were absent).

E. Pollak: In relation to the point discussed by Profs. Troe and Mar-
cus, we have shown that those cases considered as saddle-point avoid-
ance are consistent with variational transition-state theory (VTST). If
one includes solvent modes in the VTST, one finds that the variational
transition state moves away from the saddle point; the bottleneck is
simply no longer at the saddle point.

A. H. Zewail: 1 have a question for Prof. Marcus concerning the
fact that, in the bulk solvation problem, there are two regimes for the
description of solvation, the continuum mode! and the detailed molecular
dynamics. Do you expect that in clusters the friction model will change
as the number of solvent molecules changes from small to large?

R. A. Marcus: In Chem. Phys. Lett. 244, 10 (1995), a very rough
approximate hard-sphere model used for liquids was mentioned to
relate the frictional coefficient to the pair distribution function in the
cluster.
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D. J. Tannor: One would think that as one adds more and more
layers of solvent one is introducing irreversible decay of the correlation
function of the solute—solvent coupling. The main physical content of
the Grote—Hynes expression for the rate constant is that contributions
from this correlation function that are slow compared with the time
scale for reaction do not really contribute to the reaction rate. This
suggests that by starting with a description of only the first solvent
shell and introducing shorter and shorter solvent memory, one will see
a transition that resembles that of adding more and more solvent shells.

R. A. Marcus: About the problem raised by Prof. Tannor, there are
a number of questions to be resolved, such as energy migration to the
solvent in the cluster, the detailed dynamical effect of successive layers
of solvent 1n larger clusters, and comparing with cluster experiments of
other suitably chosen reactants, for example, R|R,C = CR3R4, where
R; and Ry are so small that the molecule has no frictional effect in
solution. Such an isomerization has previously been studied in liquids.
In the present chapter several experiments are suggested to disentangle
the various factors influencing the energy-dependent rate contants.

H. Hamaguchi: What information do you have concerning the
structure and dynamics of the hexane-dressed stilbene molecule? How
flexible or how rigid is the structure?

R. A. Marcus: I personally do not have the information.

A. H. Zewail: To provide a partial answer to the question of Prof.
Hamaguchi, the structure of the 1:1 stilbene-hexane species was deter-
mined with the help of rotational coherence spectroscopy. For higher
clusters we used atom—-atom model potentials and deduced structures.



