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A recursion relation is formulated for the Green’s function for calculating the effective electron
coupling in bridge-assisted electronic transfer systems, within the framework of the tight-binding
Hamiltonian. The recursion expression relates the Green’s function of a chain bridge to that of the
bridge that is one unit less. It is applicable regardless of the number of orbitals per unit. This method
is applied to the system of a ferrocenylcarboxy-terminated alkanethiol on ttiElBusurface. At

larger numbers of bridge units, the effective coupling strength shows an exponential decay as the
number of methylenle-CH,—) units increases. This sequential formalism shows numerical stability
even for a very long chain bridge and, since it uses only small matrices, requires much less computer
time for the calculation. Identical bridge units are not a requirement, and so the method can be
applied to more complicated systems.1®97 American Institute of Physics.
[S0021-960627)01802-3

I. INTRODUCTION estimates of the decay coefficiénf:!1*2Separability of the
] electronic and nuclear factors is assumed in @&gy.
Electron transfdET) over long distances has been stud- The effective coupling element can be defined as the

ied e>_<tensive|y in recent expe_rimental and theoretical Workscoupling between the eigenstdtgy) and the zeroth-order
both in homogeneous systeln¥and across monolayers on state |n), namely, (¥p|H|da). Using the partitioning
electrode$™® Some of the work addressed the importance Ofiechnique® it can be shown that this definition of effective
the role played by long range ET reactions in biological pro-¢qsjing is the off-diagonal element after mapping the over-
cesses while others demonstrated the underlying fundameqy Hamiltonian onto an effective 22 Hamiltonian matrix

tal properties of such reactions. Many of these studies sugst yonor and acceptor states only. In an equivalent approach,

gest that typically the rate has exponential dependence on theansfer operatdF can be defined from scattering thebry
distance between donod and acceptorA. Theoretical

studieé'® on molecular wires with one orbital representing ~ T=V+VGV, 2

each site of the wires, show exponential dependence of thv?/hereG is the Green'’s function for the Hamiltoniat. The

conductance with the length of wire when the electron is a‘atter is composed of an unperturbed and a perturbation
an energy.outsidg of the_ Wire’s_energy band, and large cony whereH? is the Hamiltonian for non-interacting donor
ductance is obtained with oscillatory dependence on er%r,idge and acceptor states, avidis the interaction among,

length for the energy of an electron inside the wire’s band. . : . 2
sequential treatment is formulated here for electron transétrr]em' By making use of the Lippman-Schwinger equation, it

through a linear chain bridge that is allowed to have more " be shoud tha’.{ the matrix elementdp|T| $,) is thg
o : same as the effective coupliq@g|H|¢,), and the latter is
than one orbital in each site. When the energyDoind A ; !
. » " . . denotedH, throughout this article.
states lies out of the “energy band” of a long chain bridge,

: . McConnell gave an early molecular derivation of the
the well known exponential dependence of the matrix ele- . )
) . exponential decay factdf.He showed that for a single-band
ment on distance is expected.

For the coupling of the electronic and nuclear motion aproblem, where there is only one orbital per bridge site, the

i . - tiight-binding Hamiltonian is tri-diagonal and the effective
Golden rule treatment has given a satisfactory description o : . : . :
. . ; : coupling matrix elemenHp, for a bridge withn repeating
the non-adiabatic reaction rate for weéle., long rangge g
. . units Is
coupling. In this case, the rate constlrfor electron transfer
from an electronic state of the donor to a state of the acceptor
is given by: Hpa*

E—a 3)

B)”

2w 5 when |[E—«|>2|8|. Here, B is the interaction between
k= 7|HDA| (FO), (1) neighboring orbitalsg is the energy of an individual orbital
in the bridge, andt is the energy of the electron to be trans-
where (FC) is the Franck-Condon factor, andp, is the  ferred, namely, the energy of the donor orbital, which, in
effective electronic coupling. Various approaches for treatingurn, equals the energy of the acceptor orbital when the sys-
the electronic coupling matrix elemehty, have provided tem is at the transition state of the reaction.
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Further studies on the single-band case have appeareential dependence is found either for off-resonant, suffi-
recently?® Their analytic expression fdfip, can be written  ciently long uniform bridge chains or for energies far moved
as follows: from the bridge band.

N 1aned In the present paper we consider a more general case,

Hoo— BaBo(—B)" 2" (4y  Which is not limited to systems with a single orbital in each

PAT (E—a+ )" 1= (E—a—0)"" 1 bridge site or to a large system. For convenience and sim-
plicity, the term “band” will be used in a loose sense and
where refers to the region where energy levels are concentrated or

(= ((E—a)?—4p2)12 ) where the agtual bgnd of. an .in.finite chain would be, even

though we will be discussing finite systems only. In Section

wheren,E,a and 8 have the same definition as in EQ), Il, a sequential expression for the Green'’s function is ob-
and Bp(B,) is the interaction matrix element between don-tained. The Green’s function of bridge units is written in
or(acceptoy and the bridge unit it is attached to. In Hd) it ~ terms of that fom—1 units. The derivation does not require
has been assumed that the basis formed by orbitals of don##at the bridge units be identical, and they are also allowed to
and acceptor and orbitals on every site of bridge is orthonorhave different numbers of orbitals. In Section IlI, this

malized. Otherwise one can always find a new set of basis bjpethod is applied to calculating the electron transfer rate
the transformation similar to that described in Ref. 15. between an electro-active group on an adsorbed alkane thiol

There are two cases when the expression in(Bdends Molecule and the electrode to which it is attached. The effect
to be exponentiaL One is for far off-resonance, name]y, of additional parallel chains of alkane thiol molecules was
also treated and, together with the comparison between our
|E—al>2|B]. (6)  sequential method and the direct summation over the bridge
. eigenstates, the results are discussed in Section IV. Conclud-
Then,  is very close tE—a| and so one of the two terms 4 remarks are given in Section V. The Appendix consists

in the denominator vanishes under this condition. In this casgy the graphical derivation of the sequential formula and its
McConnell's expressiofEq. (3)) is obtained. The other case possible generalization.

is from the observation that the absolute values of the two

terms in the denominator of E¢4) differ when{ is a non-

zero real number, which requires that Il. THE SEQUENTIAL FORMULA FOR GREEN'S
FUNCTION

[E-al>2/A| Y L
The tight-binding Hamiltonian is considered with only
This condition, together with the condition thabe large, is  the nearest-neighbor interaction, namely, between neighbor-
a weaker condition on the energy of the electron or on théng bridge units, between the first unit and the donor orbital,
coupling strength. The inequality?) also serves, for large and between the last unit and the acceptor. An expression for
n, as the off-resonance condition, since a tight-bindingthe Green'’s function for the whole space by the method pro-
Hamiltonian of an infinite chain with one orbital per site hasvided below can always be developed, but the expression for
an energy band which lies between-28 and a+28. If the bridge Green'’s function is much simpler to introduce and
Eq. (7) holds andn is large, the denominator of E4) is  for off-resonant systems it provides a satisfactory approxi-
dominated by one of the two terms that has larger absoluteation. Thereby, it is assumed here that the matrix elements
value for the case that is large. Consequently, exponential of the Green’s function needed in Eg) are approximately
behavior is obtained in the limit of long chain bridges, wherethose of the Green’s function for the bridge part only. The
the attenuation factor is close to, but not exactly the same aarror from such an approximation should usually be rela-
the B/(E— «) in Eq. (3). tively small when compared to other approximations made in
Beratan and Hopfieftused another approach with which the tight-binding calculation.
they were able to treat more realistic systems, i.e. several- Itis always possible to calculate the Green’s function for
band systems. Their method is readily understood if we notshort bridge chains, given the explicit Hamiltonian matrix
that surface states exist when the energy of the surface atoelements. Therefore, we have explored solving the problem
(donor/acceptor orbitaldies outside the energy band of the for general chain lengths, assuming that the Green’s function
infinite chair(bridge.’® The usual Bloch states have complex is known for a chain with one less bridge unit and then, for
eigenvalues with unit moduli for the translation operator thatonger bridge chains, obtaining the recursion equations and
commutes with the Hamiltonian of the infinite chain, while iterating them until the desired length. This iteration process
such surface states have real eigenvalues for the translatiamvolves mostly matrix multiplication and inversion. All the
operator. Since the wavefunctions must be square-integrablmatrices involved will be seen to have dimensions deter-
the wavefunction for a surface state must be decaying rathenined by the number of molecular orbitals on each related
than growing exponentially as it penetrates the infinitely longbridge unit. These numbers are finite and are independent of
bridge. The energy and the corresponding decaying factahe number of units of the entire bridge, and so the iteration
were solved by fitting the boundary condition at each endprocess for longer bridge chains can be executed without
Thereby, the exponential behavior was built into their solu-solving a large linear problem. For notational simplicity, the
tion. As discussed above, for a single band bridge, the expaderivation is given for systems with uniform bridge units.
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The generalization to arbitrary different bridge units can be
made without difficulty and is discussed in Section IV. The
derivation given below for the bridge’s Green’s function is
non-perturbative with respect to the magnitude of the intra-

bridge interactions.
It is supposed here that there arebridge units in the
problem, and that each bridge unit hmsmolecular orbitals.

Using the basis that diagonalizes the Hamiltonian within

each bridge unit® the Hamiltonian for a chain bridge is

e v O 0 ---|O0
vie v O
HV= 0 VI e v , (8)
%
0 e e 0 VT e
wheree is anmXxm diagonal matrix
€1 O 0
0 €9 0
e= i , 9
0 O €m
and v' is the transpose of the interaction matnix that

couples adjacent bridge units. The lines in Eg). partition

the matrix into four blocks. The upper left one, a large square

block, corresponds to the Hamiltonian for- 1 bridge units.

The elements in the two off-diagonal blocks arise as a per-

turbation designated below a&{" . The elements in the two
diagonal blocks form the zeroth-order Hamiltonia#{" .
Thereby, 7" and.7{" are defined as

e v 0O 0 ---|O0
vioe v
W= 0 Vv e
0
0 0 0 |e
HMD |0
ot ) 10
and
0 0 O 0
0 0 O 0
M= 0 0 0 O 0], (11
- - Y
o --- ---. 0 VIlo

so thatH ™= 72"+ 74" . The 7" is seen in Eq(10) to
refer to a fully coupledif— 1)-unit bridge plus an uncoupled
nth bridge unit attached.

The Green’s function corresponding to thé"™ in Eq.
(8) is then rewritten as

C.-P. Hsu and R. A. Marcus: Bridge-assisted electron transfer

GMW=(E1-HM) t=(E1- 7" - 7M1

== et (12

where G(" is the Green’s function for the tight-binding
n-unit bridge system, and{" is the Green'’s function cor-
responding to7zZ{" :

GVl o
.zgmz(El—%“))l:( o T ) (13)
hereA denotes the diagonahxX m matrix
A=El-e (14
The term (—. 72" £{") can be written as
1- Vg =| =0 1
]1 70 _Ml 1m 3 ( 5)

wherel;,, 1) and1, denote unit square matrices of dimen-
sions given by subscript. THd, andM, are given by

(nl
)

T~(n—-1) T~(n—-1
Mi=(V ngfl,l) v GEn—l?Z) Gin-1n-1)

and

0

' 1
2 o | 17
vA~l
in which v, vT, A~ and G{';") all representnx m matri-
ces. Specifically,G{_1’, is the (1—1,1) block in the
Green’s funcnonG(n 1 for n—1 bridge units. The inverse
of the matrix in Eq.(15) can be written as

_ _ 1m(n—1) M2
R B

((1—M2M1>—1 |0
o Tammy )
a8

as can be verified by multiplying both sides of Ef5) to the

left or to the right with the matrix in Eq18). Since there is
negligible direct coupling between the donor and acceptor
states in the long-range electron transfer, the effective cou-
pling is calculated from the second term in HE). Also
because the tight-binding model is used, only one block of
the Green’s functionG™ is needed in that expression,
namely, the block relating transition from the first bridge unit
to the nth one. It is denoted b}G( and is a block of
dimensionanxm. The Green’s funct|0|G(”) is obtained by
introducing Eqs(13) and(18) into Eq. (12) and performing

the matrix multiplication in terms of blocks. For the desired
(1,n) block, we obtain

1)—1_

Giln=G{1n VA H(L-VIG{ 1, 1A~ (19
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In order to iterate Eq(19) further for G{J7 ), an expres-

sion for Gy, is needed. Thisnxm block matrix can be
obtained similarly fromG(™ but selecting ther{,n) block,
ng?n)z

“HA-VIG T vATH L (20)

Equation(20) is a recursion expression f@& . However,

587
N 1 Var?-1 L (1-2r7)N;,
nT52T T o2 tan tan —_2_4r =
_ 1
+(n—2)\/4r2—1) , if |r|>§, (26)

it would be desirable to convert the expression to one inyith
which a dimensionless quantity represents the deviation from

the first-order term in the expansion of H42).!” With this
goal in mind, we define amXxXm block N,

N,=AG!)

(n,n)

(21)

A recursion expression fdd, then follows from Eq.(20):

Ny=(1-Vv'A"IN,_,vA~ 11 (22
Equation(19) then becomes
G{Th =GP VAT IN,. (23)

The initial condition for the iteration ofN,} is taken as
N,; N, can be obtained by inverting them2<2m tight-
binding Hamiltonian, together with E§R1). Since the above

In the former caselN,, approaches a constant msncreases,
while in the latter casé\,, has an oscillating behavior arising
from equally spaced poles on the rembxis. Basically this
result is the solution of a single-band problem. When com-
pared to Eq(4), Egs.(23) and(25) give the same exponen-
tial factor for the off-resonance case. It should be noted that
the bridge Green’s function was used here, while in obtain-
ing Eq. (4) the full tight-binding Hamiltonian, including do-
nor and acceptor states, is used instead. The general solution
of Eq. (23) for multi-band Green’s functiofG{})}, was
also obtained without iteration, but the solution we obtained

derivation does not introduce any explicit assumption thatnyolves the inverse of the sum of the-{ 3)th power of two

vA~1is small, i.e. Eqs(22) and(23) were not derived per-

matrices forn=3, making it numerically unstable to calcu-

turbatively, Eqs(22) and(23) are mathematically exact for |ate whemn is large in its present form. The result is given in

finite n.

Ref. 18. Practically, the sequential formula, EQ2), is

The factorvA~! in Eq. (23) resembles McConnell’s es- straightforward and stable to use.

timate of the scalar decay fact@/(E— «) (Eq. (3)). If the

By observing the result of numerical iteration, the be-

matrixN, becomes essentially a constant matrix after a nuUmnayior of N,, can be described for most cases. As in the

ber of iterations, then the overall trend f&}, is to be-

corresponding single-band case, the matdix tends to a

come an exponential asincreases. The sequential formula constant matrix if the energf is outside all the bridge
of N, (Eq. (22)) is a non-linear first order difference equation “hands.” In this case, all of the eigenvalues wh ~IN,, lie

for matrices.

inside the unit circle of the complex plane and one or two of

Itis instructive, for understanding the general propertieshem dominate the final decay factor asbecomes large,
of Eq. (22), to examine the solution of this difference equa- namely the one with the largest modulus. If there is only one

tion for m=1, whereN, becomes a scalar. In this cad¢,
can now be solved by the transformation:

1-2r2N,
a,=—,
" 1-4r?
so Eq.(22) yields
ap—an-1 Y
anan—lil_\”l 4r?|, (29

wherer is defined as the scalaA ! (=8/(E— «)) and the

negative sign is taken ifr|<1/2 and the positive sign, oth-

erwise. Equation(24) can be solved by writinga, as

tantb, (or tarb,) and making use of the addition formula of

the hyperbolic tangentor tangenk function. The following
solution is then obtained:
NL= 1 1—4r2t t h_1(1—2r2)N2
n_?_ —2—2r an an —’—1—4r2
(25)

1
+(n—2)\/1—4r2> i Ir <3

dominating eigenvalue, an exponential decay in the coupling
strength with respect ta would be obtained. If the eigen-
values with the largest modulus are a pair of complex con-
jugate numbers the decay is modified by a periodic oscilla-
tion. For the cases whekelies inside the bridge bands, Egs.
(22) and(23) are still mathematically applicable with a com-
plicated dependence df, andG{}),) onn, but physically the
assumption of approximating the overall Green’s function
with the Green’s function for the bridge part is not a good
one. Therefore, it is inappropriate to discuss the on-
resonance condition using the sequential formula in its
present form.

We have also obtained a graph-based method of deriving
Egs. (22) and (23) which is potentially useful for compli-
cated bridge systems. It is outlined in the Appendix. In this
graph-based method, an infinite series is obtained, but its
summation yields the same equation as that obtained in the
above derivation. Since the latter did not involve any infinite
series, it is seen that analytical continuation of the series can
be used to obtain valid results in a region where the original
infinite series of the graph-based method diverges. This
property, if it still holds in more complicated problems, en-
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larges the scope of the graph-based method beyond its infiion as a weighting factor. In general, a summation over en-

nite series approach, permitting its use in other applicationsergy bands of the metal electrode is needed in 2§).
However, since in the present work we only consider the

Ill. APPLICATION contribution from thes-band of the gold electrode, the sum-

mation over energy bands is omitted for simplicity. “Work
The recent development of self-assembled monolayer 1120 . . AT
erms”™" are also omitted in Eq27) for simplicity of nota-

of alkane thiol molecules on a gold surface has provided fion. One sees that because of the delta function normaliza-
convenient approach for studying electron transfer betweeﬁOn and the above definition 1o, , the|V(z)|2 in Eq. (28)

an electroactive group and an electrode, where the electroaﬁ:,71 s units of energy
tive group is held at a fixed distance from electrode surface, The electron tr.ansfer rate under electrochemical ex-
or, if in solution, is separated from the electrode by a fixed hange current conditior@e., forward rate equal to reverse
monolaye® Chidsey measured the voltage dependent E'Ifate can be obtained by se.lttingzo By notingA>& we
rate of the ferrocenylcarboxy-terminated alkane thiol/goldC n drop the quadratic term efin the.exponent of Eq27)
surface system including the rate under the exchange curreﬁlie integration ove is performed by approximatiRy ’
condition (corresponding to the case where th&° for the 9 P y app
electrode process is zgrand a reorganization energywas w 1
estimated by fitting the data to an equation whose functionaJ o KaT o or%gT 1 (8)de
form is similar to Eq.(27) below. o
A study involving electrodes coated with self-assembly %
monolayers ofw-hydroxy thiols of various lengthéhe n’s —f g(e)f(e)de
of (— CH,—) are 6 to 1] was performed by Becka and -
Miller.® The electron transfer current of anions in solution °c o
was measured and after corrections for diffusion and other = f(0) J_wg(s)dSJ“f'(o)f_w9(8)8d8+ "‘
effects were made, the authors reported the length depen-
dence factor8=1.08+0.20 per methylene unif Carter ~ kg Tf(0), (29
etal® studied, for different lengths of thiol molecules . , . . )
(n=8,12,16), the system investigated by Chid4eyhe S|'nce.g(s) here is a symmetric, positive dgf!nlte function
length dependence over the above range was obtained alifilh its weight concentrated around the origin. From Egs.
the decay factor was reported As- 1.44+0.12 per methyl- (27 @nd(29), the following expression is obtained:
ene unit. 20 e
A. The nonadiabatic reaction rate Kiate = = (4mh kgT) ™ V2o MeT|v|?, (30
A mathematical form for the nonadiabatic rate betweethere
an electron donor group and an electrode, in the high tem-

perature limit, is given b8P — R R _
V= kT [ d% Mo 20(e(K) = mksTTHolpr.

27 ~172
krate:7(477)\kBT) (31
, eolkgT with
X delV(s 29—()\—e17+s) /ANKgT , 2 . R
f Vel rremar (27 [Hod 2= JdkIHpk|*8(e (k)
where|V(¢)|? is O rdBka(s(R)),
|V(8)I2=J d%Kk|Hpyl?8(e (k) — &), (28  and
in which Hp, is used to denote theffectivecoupling ele- pfzf d3lZ5(s(IZ)).

ment between statd®| and k), with the definition similar

to that ofHp, described in Sec. I, the YVaver[‘Ctif’h@ are  Namely, |Hp,/? is the effective coupling strength averaged
normalized to a Dirac delta functiofk|k’) = 8(k—k’), e is  over the k's on the Fermi surface and has units of
the energy of an electron in metal with respect to the Fermi(energy? (wave vectoy 2 or (energy? (volume?® because
energy,e(Kk) is the energy of the electronic stdte of the  of the normalization ofk) described earlier , whilp; is the
metal, \ is the reorganization energjncluding both inner  density of states at the Fermi surface, with units of
and outer contribution and » is the overpotential (energy ! (wave vecto. In the present work, the unit

(E—E®), namely the difference between the applied poteniength is chosen to be the nearest-neighbor distance of the
tial and the standard potential of the electrode. The abovec lattice of Au atoms, and so(wave vectoX equals
Eg. (27) is an integral of the non-adiabatic electron transfer(number of atoms *.

rate expressidi over all the possible stat¢E> and all pos- To calculate theoretically the effective coupling matrix
sible energieg in a metal, using the Fermi-Dirac distribu- elementHp, between the ferrocenylcarboxyl group and the
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gold electrode and compare with the experimental data, two i
of the schemes(@) and (b), which are developed from Eg.
(2), assuming no direct coupling, are listed.

(@ A direct summation over all bridge molecular orbitals

can be made by using the following expression: Free Energy ABG) Do M
VbeVek ¢ :
Tod=Hp) =2 == (32
g E-Eg

where{B} denotes the set of molecular orbitals of the
bridge. It can be shown that the matrix elem&gt, of

the transfer operator equals the effective coupling
Hpk,1* as discussed in Section I. The bridge Green’s
function is used to replace the overall Green’s function. :
Also, the perturbatiorV is regarded as the interaction ¢
of any state of the entire bridge with the donor and with

the acceptor. Namelypg is the interaction matrix €l- g 1. Free energys. reaction coordinate for the reactafutirve ) and

ement between the donor state and the orliitaf the  product(curve I)) states of the bridge-mediated electron transfer reaction at
entire bridge. an electrode. Curve lll is the superexchange off-resonant state for an elec-

Th ntial formul rived in tion(Has. (22 tron transfer schemé is the donor molecule, a ferrocenylcarboxyl group
(b) ang(SZZ?)uecanabeousgdé derived in Sectior( as (22) in the present casA E(q") is the energy difference of curves | and Il at the

transition state.

Hok=Vp1G{1h Vo k. (33

whereVp ; andV,, ¢ denote interaction between donor

state and the molecular orbitals in the first bridge unitan electron transfeiFor a hole transfer, a curve representing

and between those in theth bridge unit and the state p+B* (unsolvategh M(e) should be used insteadThe

|I2) of the metal electrode, respectively. For a bridgeenergetics for | and Il for the free ener@(q) as a function

with more than one orbital on each si; ; denotes a  of q are described by:

row vector,GE'{?n) a matrix, andv, , a column vector. G/(q)=Gp(q) +Ep (35)

In both cases, the wavefunctions used for theg1Ad) —

surface are linear combinations of atorsiorbitals obtained Gu()=Cp+(q, SO+ pmFe¢hs, (36
with the tight-binding approximatioff, and to evaluate Eq. whereEy is the energy of the electronic orbital of dorr
(31), the coupling strength of 60 wave vectolls) (fandom  With respect to vacuunGp(q) is the solvation free energy
sampled over the Fermi surface were calculated and aveff D, as a function ofy, andGp+(q, solv) is similarly the
aged to obtaifHp,|2. All of the interaction matrix elements solvation free energy oD *; up is the electrochemical po-
were obtained using an extendeddial progrant* The co-  tential (Fermi leve) of an electron inM, and is equal to
ordinates of atoms in the alkane thiol portion of the systemim—€ém. The ¢'s denote electrostatic potentialthe so-
are those of Klein and coworkers, who employed a molecucalled inner electric potentialor the Galvani potentia®>)
lar dynamics calculation in conjunction with structural for the metal eletrodedy) and in solution ;).
data®®?® The geometry of the ferrocenylcarboxyl group is  The bridgeB can become 8™ (or aB") in the virtual
obtained from the crystal structure of similar molecufieln  State which occurs in the superexchange mechanism, but be-
the supplemental materfiwe deposited the full Cartesian cause of the off-resonance condition this supertrandent

coordinates for the molecules being used in the present worll B~ can be regarded as unsolvated. There may be some
interaction of this virtual electronic state with the electrons in

the surrounding medium, but we will neglect such details

here. If the potential change,,— ¢ occurs across the ad-
To calculate the denominator of E(B2) or the Green's  sorbed monolayeB, then a first approximation would be to

functionG{}} of Eq.(33), itis necessary to know the energy treat the energy levels @& as being at a mean electrostatic

of the various electronic states of the bridBg(relative to  potential (¢, + ¢)/2. In that case we have, for the electron-

the Fermi level of the metal{). We consider the free en- transfer scheme,

ergy vs. the reaction coordinatg diagram in Fig. 1, which

describes the reaction which involves transfer of an electron g, (q,B,)=Gp+(q, SON)+ Eg;+eds— §(¢m+ b,

from D to a specific orbital IZ) at the Fermi energy in the

metal?! (37
whereEg; is the energy of théth orbital of the bridge in the
absence of an electrostatic potential.

Curves | and Il describe the left side and the right side of Eq.  The vertical difference between | and Il at the transition
(34) respectively. Curve lll corresponds to the superex-state is denoted bpaE(q") in Fig. 1. It is seen from Egs.
change state denoted y" + B~ (unsolvategH M, if it is (35) and(37) to be

© D'(solv) + B + Mfe)

Reaction Coordinate ¢

B. The energy difference at transition state

D+B+M—D" (solvated+B+M(e). (34
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590 C.-P. Hsu and R. A. Marcus: Bridge-assisted electron transfer

AE(qNH=G(q") -Gy (a")=G,(q") -Gy (q") (39 electrode potential with its reference state being an electron
at rest in vacuum close to the surface of the solution, as
discussed by Trasatti in Refs. 30 and 32. The absolute po-
tential for some of the commonly used reference electrodes
o are also listed in Ref. 32. With these datg, the absolute po-
— 0 . _ Z(40_ 40 tential for the electrode described by Chidsiyestimated to
#m~ Eei 2(¢m st 0 be 5.13 V, if the standard potenti&P is taken as 0.08 V
sinceG,=G, in the transition stateg=q". In Eq. (40) the ~ above the Agl mM AgCIO,, 1 M HCIO,) reference elec-
over-potential » has been defined agy,— ps— 2+ ¢° trode. Togethtser with thg work function of the QQJ) sur-
while (62— ¢?) is the standard metal-solution potential dif- fCe; 5631 63,3, we obtain—0.18 V for the potential differ-
ference of the electrode. From Fig. 1 and E38), AE(q") is ~ €Nce.¥m— ¢ With these quantities, Eq40) becomes
seen to be independent of the reorganizational energipce AE(q")=-5.22 e+ ¥y—A¥¢ (44)
the solvational free energies of the intermediate s(Hte
and the final statéll) are the saméfor D" ion) and so the
reorganizational energy cancels in Bgq")— Gy, (q") dif-
ference.n equals zero for the exchange current condition.
In EqQ. (39 both ,u?n andEg; are negative quantities that
describe the energy required to move the electron from th
neutral materials to vacuum at infinity, while e¢,, and
—'e(¢>m+ <{>S)/2 gdjust that energy for the effect of the elec- C. Energy of bridge states
tric potential. This process of moving an electron to vacuum
at infinity can also be described as occurring in the following ~ For use in both the summation and the sequential meth-
two steps: the electron is first moved to just outside the surods in the present calculation, the energy eigenvalues for a
face of the material in vacuum, and then it is moved fromlong alkane chain ((CkJ,, n=40 or morg were obtained
that point to infinity. The energy needed in the first step isfrom either the extended-tdkel or the tight-binding Hamil-
the definition of the work function of the materffiand that ~ tonian, for comparison with the experimental data on the
for the second step is the electronic charge timesotiter ~ band structure of polyethylene. To obtain a better agreement
potential ¢ (termed also th&/olta potentia),2®32namely, the ~ With those data, adjustments of the Hamiltonians are given
electric potential of the material due to its total charge. Thebelow. Such adjustments are then applied to each alkanethiol
inner potentiakp’s and outer potential’s differ by a surface  bridge in the calculation.
term which is due to the dipolar distribution of charge atthe  In the direct summation calculation, a full extended-
surface of the material. If the work function of the metal is Huckel calculation was performed. As noted in Ref. 34, in
denoted¥,, (a positive quantity and the corresponding describing__the valence band structure of polyethylene, the
quantity for the bridge molecule i, the ionization poten- extended-Hakel method itself does surprisingly well. By
tial, we have the following relations for metal and bridge comparing the distribution of calculated energy lev#g.
respectively, equating the two ways of accounting for the2, part ) with the experimental valence band structtfteve
energy of the electron in the material relative to its valueconcluded that the following adjustments were needed for

0 e
=pum—Egi— E(d’m_ bs) (39

for the ith molecular orbital of the bridgeAE(q') is the
quantity that is needed both in the denominator of E&§)
and the Green’s function of EQq(33). The quantity
— W+ Ag; representing the energy of tia bridge state, is
gbtained in the following section.

when at rest in vacuum at infinity: the position of each bridge lev@lenoted byEg in Eq. (32)):
first, a factor of 0.7 is used to multiply the energies of the
0 epn=—V,—ey (42) . . \
Hm m m m> levels in thefilled extended-Huokel band formed from C

e e 2p and H Is orbitals(denoted bya) in Fig. 2, part ) so that
Eg (HOMO)— §(¢m+ ¢s)=—Vg— §(¢m+ ¥s), (42)  the bandwidth is closer to that given by experiment, and then
the two valence band§a) and (b) in Fig. 2, part ) are
and for other molecular states By the same energy differ- shifted to fit the experimental band edges for each Band.
enceA¢,(=Eg;— Eg (HOMO)) can be added to both sides Prior to any adjustment, the position of the lower edge of
of Eq. (42). band (c) is calculated to be about-0.6 eV relative to
With Egs.(41) and(42), Eq. (40) can be written as fol- vacuum, and the resulting band gap agrees very well with the
lows: (for the exchange current condition, the over-potentialexperimentally measured band gap of polyethyfeifg—9
7 has been set to zero eV). No adjustment was made therefore for the energies of
e the states in the unfilled bandband (c) in Fig. 2 and the
AE(QN)=—V—e(y2—yd)+¥g— A+ E(‘”%‘ ) higher energy band not sh(_)wn th)ar@he interaction be-_
tween donor(acceptoy and bridge orbitals and the composi-
e tion (coefficientg of molecular orbitals are obtained directly
=—eEgpyt E(l//%— ¢2)+\I’B—Aei, (43)  from the extended-Hikel calculation without any adjust-
ment.
wherey? denotes the corresponding outer potential when the  For the sequential method, the tight-binding Hamiltonian
potential of the electrode is at the standard potential of thés obtained from the same extendeddKel program, but all
redox species, anB 5=V m/e+ (¥m— ) is the absolute the interactions beyond nearest neighbors are now ignored
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I. No. of states/eV 1. No. of States/eV
before 30 before adjustment 20
adjustment 25
15
20
15 1
(©) 0
10
5.
(a) (b) 5/"
=30 =20 -10 0 10 -50 -40 =30 -20 -10 0 10
Energy (eV) Energy (eV)
I1. No. of states/eV TI. No. of States/eV
30 ) 25
after after adjustment
adjustment 25 20
20
15
15¢ :
. 10
10
|3 )
30 =20 ~10 0 10 250 -40 -30 -20 -10 0 10
Energy (eV) Energy (eV)

FIG. 2. The statistics of the energy levels of,,€lgy, from the extended FIG. 3. Similar to Fig. 2. Part | shows the statistics of the energy levels of
Huckel calculation. Part | shows the statistics of the energy levels before anyC,y Hgo from the tight-binding Hamiltonian, while part Il shows the statis-
adjustment. Part Il shows these energy levels after the adjustment describ&ids of the energy levels after the adjustment described in text. From 30 eV
in text. The thick bar indicates the position of the energy of the electronto 35 eV, there is another unfilled band which is not shown. The cell size is
being transferred at the transition stateq.22 e\j. Bands(a) and (b) are now 0.45 eV.

valence bands. There is a band located between 26 eV and 72 eV that is not

shown in this figure. It and ban@) are conduction bands. In the counting

the energy axis was divided into cells of 0.66 eV. . .

eV, which are moderately close to the above experimental
values. The MO energies after the above adjustments are
now used as the diagonal matrix elements in B). The
fhteraction matrix elements between nearest neighbors, de-
_hoted byv in Section Il, are obtained from the extended-
%4iickel calculation using the MQO'’s of each bridge unit as the
basis. The distribution of energy levels from the adjusted
$Hamiltonian is plotted in Fig. 3, part II.

unit only. The molecular orbitals of individual bridge units

Fig. 3, part | shows the distribution of energy levels from
such a tight-binding Hamiltonian. It is necessary to ensur

that both the upper edge of the valence bée: HOMO The trend of coupling strength with length of chain cal-

and the lower edg‘? of the cond_uction béftie LUMO) of culated from the sequential method is shown in Fig. 4. The
the bridge agree with the experimental values. From the ob-

served band gaf8—9 e\)*® and the ionization potenti#B.8
eV)** of the bridge, these values areB.8 eV and—0.8 to
0.2 eV, respectively. The calculated band gap is only 6.2 eV 0.01

in Fig. 3, part I, which is smaller than experimental values. 5

To obtain a better agreement with the band gap measure% 1. 10
ment, some of the six molecular orbital energies of a,CH } 12
unit was adjusted. The third and fourth statgse CH, ;l 10
HOMO and LUMO, respectivelywere found to have a large 5 -17
effect on the states close to the band edges, those two ener”%' te 10
gies were shifted by-1 eV and+1 eV, respectively, an 3. 10722

adjustment which served to give a larger band gag eV). ..
All of the six MO energies were then shifted upward by 2.0 1. 10 0 ) 20 30 20 50
eV so that the upper band edge of the highest filled band
agrees with the ionization potential of polyethyleri&his
shift has no effect on the band gapVith these corrections  rg, 4. semi-log plot fofHp/2 as a function of number of methylene units
the HOMO of the bridge is-8.8 eV and the LUMO is=1.4  in the bridge. Results are obtained from the sequential formula.

Number of methylene units
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592 C.-P. Hsu and R. A. Marcus: Bridge-assisted electron transfer

(Ref. 37 is used instead, one would obtain a reaction rate
that is a factor of 6 larger. The reaction rates calculated
-1sr . ° above roughly agree, within one order of magnitude, with the
1.25 sec! measured from the electrochemical exchange
current voltage by Chidséey.

The sequential method is numerically easy to calculate
with good precision. In Fig. 4 the coupling strength calcu-
lated by the sequential method is shown for up to 50 bridge
units (~CH,—).>® It can be seen that for longer bridge chains,
there is an excellent exponential decay, while for shorter
chains, the decay is modulated with an initial oscillation.
Fitting the electronic coupling of the long chains
(n=30—-50) with a term proportional to exp(8n) yields
FIG. 5. A plot for log]Hp? vs. different bridge lengths. ©" denotes that /=1.05 per methylene unit. For eveﬁ-numbered short chains
for direct summation, ®” from the sequential formula. The difference (n_:6_20) the value calculated fg# is 1.00 per methylene
between the two sets of data is mainly due to their Hamiltonians. See textinit.
for the discussions. The direct summation method gives an electronic cou-
pling strength for short chains similar to that for the sequen-

its of both the direct i d tial meth G{ial method. The linear fit for the result of the direct summa-
resutts ot both the direct summation anc sequential methoGg, , yields 8=1.27 per methylene unit far=6—20. These
are given in Fig. 5. Various aspects of there results are di

d and d i data decay witn slightly differently from that of sequential

cussed and compared next. » method because the Hamiltonian for both cases is not exactly

we hgve als_,o calgulated the effect of additional paraIIeL[he same. For the present form of the sequential method we
a:(kat\t?e thiol (?Slalns usfmg tht(_a StI’UthUI't(; frofm KIé?chTr org)e Ineed to use a tight-binding approximation which neglects all
° e28 possible conformations ot Ihe Ierrocenyicarboxyly, » ineraction beyond nearest neighbor units. For the direct
group;™ the effective coupling calculated from direct sum- o\, 1 -vion calculation, on the other hand, all Hamiltonian
mation method for different numbers of additional chains ismatrix elements gener’ated by the extendé’&tkéu program
listed in Table I were included. It should be stressed, however, that since the

sequential formula for the bridge Green'’s functi@ys.(22)

IV. DISCUSSION and(23)) is mathematically exact and numerically stable, the

In the following discussion, we first consider and com-;'fferetﬂcec;f‘ﬁthe two ?etthf tdata DO'(T'[T 'S Flgl.t 5 arises 'I?r?ly
pare the results shown in Figs. 4 and 5 and in Table 1. wefom the difierence in the two model Hamiltonians. ihe
then discuss the generalization to a more complicated bridgg@miltonians have been adjusted independently, as described
system that has different bridge units or that has a complel Section Ill C, to agree better with the experimental band
geometrical structure instead of being a linear chain. Thélructure measurements. _
flexibility of the graph-based method described in the Ap- ~ We also calculated the coupling strength through hole
pendix will be discussed in the end of that section. transfer mechanism by doing the direct summation only over

Using Eqgs.(30), (31), the sequential formuléEgs. (22) the filled states of brldge part. Our _result shows that the hole
and (23)), Eq. (33) and the experimental value af’ 0.85 trgnsfer scheme provides the majoor pathways of the cou-
eV, we obtained a coupling strengtfiHp,J?) of about pling, and it yields more than 89% of the total coupling
5,610 ** ev* atglm forn =16, which ylelds a rate constant Strerll?)trh;a\ long chain bridge, direct summation method per
of about 0.11 sec. In obtaining the latter, the density of s ' Hernn B
states of gold electrode was estimated from the tight-bindinér‘:gri‘r? Zﬂ?rrgstia%]fgr?:eo?dcg;gﬁ;et:gnnlglt;/?gﬁjagogriﬁu\l;lue
formalism by a Monte Carlo method. At the Fermi energy of '
gold, the vzlue 0.0%0.002/eV/atom was obtained. Agsya So numerically it requires more care for the number of sig-
comparison, if the density of states of Au at the Fermi |eve|,n|f|cant figures of interaction matrix elements as well as the

obtained from low temperature specific heat, 0.3/eV/atonfOefficients in describing MO’s with atomic orbitals, and the
method can be expected to fail when the effective coupling
strength is smaller than the significant digits of the numbers

TABLE I. The effective coupling strengths for=12, with additional thiol  being summed. The direct summation calculation, even after

-12.5f0

|
[y
~J
(&)
¢]

1n (coupling strength)
NN
RN
« N e
(G2 & N 6]

o

(e}

©

|
w
o

[J
6 8 10 12 14 16 i8 20

Number of methylene units

molecules. all the bridge states were pre-diagonalized, also still required
— 4 ) at least ten times more computer time than that for the se-
No. of additional effective coupling )
thiol chains [Ho2X 10°, eV atom quential method.

Our sequential calculation is based on a tight-binding

0 2.15 Hamiltonian. Matrix elements and overlap integrals from the
1 1.88 | X

5 195 extended-Hakel program are not always the best choice for
3 1.94 the tight-binding model. In our calculation we found that the

band gap obtained in this tight-binding model is too srfall
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ferent bridge units with either the same or a different number
T T of orbitals,v is now a square or rectangular matrix, respec-
5 tively, describing the interaction between specific neighbor-
21, 10 ing bridge sitesn and (h—1) in Egs.(22) and(23) , and the
g 1 diagonal matrixA must be then labeled with a subscript
gl 10 e.g..A,. Egs.(22) and(23) now become
4 -43 1
2 1. 10 '.... Nn:(1_V;rn—]_’n)Aﬁ—1Nn—lv(n—l,n)An 1) l, (45)
[¢] .
© -55 _ _
1. 10 '..." GEE,)n):Gé?,npl)v(nfl,n)An an1 (46)
1107 5 0 =3 30 19 '5'0 where v(,_1,,) denotes the interz_;lction ma_\tr_b_( betwee_r_l the
number of methylene wnits (n—1)th and thenth bridge units. The initial condition

G(lzz) is defined as the corresponding matrix between the first
FIG. 6. Semi-log plot for the same calculation as in Fig. 4, except thednd the second bridge units. In this way, the Green’s func-
energy of the electron is shifted to another region for the purpose of demtion can be obtained for an arbitrary tight-binding linear
onstrating the effect of oscillation caused by the pair of conjugate comple)&hain bridge without solving a |arge linear system There are
eigenvalues of the matrixA ~IN,, . o . ;

already strategies for solving such a large set of linear equa-

tions, e.g., that of Stuchebrukhoand others?! and it will

is about 6.2 ey compared with that from experimef—9 be interesting to compare those methods with the present
eV Ref. 35. The band structure of the tight-binding model sequ_enthl method, both with respect to computation and
also does not resemble that from full extendetskal cal-  Physical |nS|ght. , .

culation. Since the energy of the electron being transferred _Formally in applying the sequential formula the only
lies between the conduction band and the valence band dffit on the range of energy of transferred electron is that it

. . . l
polyethylene, the position of the band edges are a most cr@nould not be coincident with the poles af~ and of the

; , eigen , !
cial factor in determining the effective coupling across thefinal Green's fqnctlorG( . However, the Green's function
hydrocarbon chain. In the sequentiakarest-neighbor tight- fOr the bridge is not a good approximation for the overall
binding calculation we adjusted the position of two of the Gr€en’s function when the energy is close to one of the en-
MO energies of Ch, as described in Section I1l, so that the €9y levels of the bridge. Also, the physical situation of an
band gap is larger than the 6.2 eV, namely 7.4 eV, which i©n-résonant system is quite different. It may not even in-
fairly close to that of experiments. In applying this method toVolve an electron transfer from a state localized on the donor

other systems, the tight-binding Hamiltonian for the bridgel© One localized on the acceptor. _
part used should fit band structure measurements. A further generalization can be made for more compli-
Turning now to the effect studied in Table I, there is catgd structures of brujges using the graph-based method de-
seen to be little effect from additional chains. This resultScribed in the Appendix.
indicates that in this system electron transfer occurs mainly
through the chain covalently bondeq to the redox act'lvevl CONCLUSION
group. The closest atom-to-atom distance from the first
added alkane thiol molecule to the ferrocenylcarboxyl group  The sequential formuléEqgs.(22) and(23)) developed in
is 1.6 A28 Even with such close contact between moleculesthe present paper is numerically stable even for the case of a
the additional thiol chains still do not effectively provide an large number of bridge orbitals. Since it involves only the
alternate route for the electron to be transferred to the eledaversion and multiplication of small matrices whose sizes
trode, according to the results in Table I. are independent of the chain length, it is also much less
In Fig. 6 is a test of the condition discussed at the end otomputationally time-consuming than the direct summation
Section Il, where the energy of electron is deliberatelymethod.
shifted to a place where the matricsd “IN,} are almost This new method can be applied to various kinds of
constant with respect to the iteratidiq. (22)), but where bridge molecules and, we believe, by extending the one-
two of the important eigenvalues are a pair of conjugateorbital per site case to many orbitals per site, as in the
complex numbers. For this alkane bridge chain the energpresent paper, provides added physical insight into various
needed for this effect to occur is not physically accessibleeffects. To the best of our knowledge, the present work ap-
but it is still possible for other homogeneous chain bridges tgpears to be the first that rigorously treats a multiple band,
have this kind of oscillatory length dependence. Moreovertight-binding Hamiltonian and, thereby, the origin of and the
there is no corresponding trend in a single-band model: in agondition for the exponential dependence for such cases. As
off-resonance, single-band systefuA ~*N,} is a scalar se- seen in the calculation, by investigating conditions for con-
ries, and therefore the magnitude @ﬂ?n) (which is also a stancy ofN,, in the case of a uniform bridge, it directly
scalar now decays monotonically asA !N, goes to a reflects the origin of any exponential or other regular depen-
small constant real or complex number. dence(Fig. 6) for multiband systems. This exponential de-
As mentioned earlier, in the derivation in Section Il it is pendence for an off-resonant bridges was assumed, and rea-
not required to have a bridge of identical subunits. For dif-sonably so, in earlier workFor a linear bridge, no further
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594 C.-P. Hsu and R. A. Marcus: Bridge-assisted electron transfer

assumption need be made for the calculation of the coupling

strength, apart from the tight-binding Hamiltonian and, in the

present case, using the Green'’s function for bridge subspace

instead of that of the whole donor-bridge-acceptor system. ; 5 5 4

The method can be applied to a wide class of systems, in-

C_:|Ud|n9 non'umform bridges and (_30”|d.be extended to NONE|G. 7. Graph representation for the multiple-band tight-binding Hamil-

linear bridge molecules, perturbatively if necessary. tonian. Each vertical column represents a bridge unit. The dots in each
column correspond to molecular orbitals in each bridge unit. Lines connect-
ing two dots represent the coupling between the two orbitals, represented by

ACKNOWLEDGMENTS the pair of dots. The lines only connect dots in nearest-neighbor columns.
To evaluate the Green’s function, all possible pathways from one dot to the
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tional Science Foundation, the Office of Naval Research, and

NEDO (Japan, and the very helpful comments of Mark Rat-

n-1 n

ner and Aseem Mehta. whereG,, the Green'’s function correspondinghfy, is now
the inverse of a diagonal matrix
APPENDIX Go=(E1-Hq) ™™, (A4)
1. A graph-based approach or,
Another approach of deriving the sequential formula, us- (Go) —5 s 1 (A5)
ing a graph representation for the terms in the expansion of O/ pmmy iy my = g oy Ty, my E—en’

the Green’s function, is given in this Appendix. This method
yields the same final answer as that derived in Section |
(Egs.(22) and(23)), and it provides a physical picture of the
coupling scheme. Thereby, this graph-based method ma
prove useful in generalizing the calculation for more com-!
plex structures of the bridge.

Wwheren; is the index for then;th bridge unit, so the indices
n; and n; refer to the block matrix atr(,n;) position of

o- Similarly, m; is the index for them;th molecular orbital,
ereforem and m; refer to a matrix element inside the
(ni,n;) block.

2. The Hamiltonian and the Green’s function 3. Graph representation

One way of calculatings in Eq. (A3) is to draw a graph
whose vertices represent zeroth-order states and where lines
now regard all the off-diagonal matrix elements as perturban'St between two states only if they interaig. 7). We

then make use of a theorem which states that there is a one-

tions (H') and soH, now contains only diagonal matrix
elements. For simplicity of presentation, the case of identical0-0Ne correspondence between each possible path on such a

bridge units will be considered. The new zeroth order Hamil-9raPh and each term in each of the matrix element products
tonian is, thereby, in the complete expansion of the Green’s functidrihe

connection is as follows: each path begins and ends with a

Using Eq.(8), instead of treating only the interaction
between the last two bridge units as a perturbatian ), we

e 0 0 O0--- O dot, between two dots the path is connected with a line. The
0 e O 0 ... corresponding quantity obtained from the path is a product of
the following factors:
He=| 0 0 e 0 - ], (A1) 9

. . . . 0 for every dot it visits:  1(E— smi); (AB)
0O -« -~ 0 0 e for every line: Vi m . (A7)

and the perturbatiofi’ is now For each overall matrix element there are an infinite number
0 v O 0 --- 0 of paths corresponding to it, but by classifying the paths in a

suitable way, it is often possible to obtain the exact expres-

vie 0 v o0 : . ) )
sion. One example is the RPfEenormalized perturbative

H=0 Vv 0 v .- ], (A2)  expansioh which selects the *“skeleton’(self-avoiding
: : R v paths and then adds “decoration” to make an arbitrary
o --- .- 0 VI o0 path.

We consider the part o& that is needed to obtain the
where the block matrices v andO are the same as defined effective coupling strength, and denote it now by
in Section Il. Thus, the Green’s function can be expressed as(ln)(ml, my). It consists of all possible paths from any
the following expansion: orbital m; in the first site to any orbitam, in the last
G=(E1—Ho—H")"! (nth) site. At the vertical column of points for the
(n—1) th site(Fig. 8 all such paths must cross this column
=Go+GoH' Gg+GoH'GgH' G+ - - -, (A3) at least once and all of them cross it an odd number of times.
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C.-P. Hsu and R. A. Marcus: Bridge-assisted electron transfer 595

1 2 3 4 n—1 n

FIG. 8. A possible path that crosses the dividing colustraded bar at site— 1) three times(“Visiting” but then returning does not count as “crossing.”

One can then cut the paths into pieces at the place where thay The first term in calculating ~ F{7),,
cross this dividing line. The paths are composed of segments
that are either within the first—1 units or wandering be-
tween the 6—1) th and then th units. The former type of
segments are related to the Green’s function for-()
bridge units,G("~ 1), while the latter type of segment is a
computable guantity. (A11)

We define the segments as the paths without their begingich is a sum over of all possible segments from site 1 to

hing dots so that there is no confusion upon connecting segse (1) multiplied by the sum over all possible segments
ments into a longer piece. The cor_respondlng terms with reg, o go from site i—1) to siten. Since a uniform bridge is
spect to such segments, i.e., matrix elements apart from the, 1o in the present argument, the transition from bridge

initial 1/(E—¢) factor (Eq. (A6)), is denoted as=, with  qjta (1) to siten is the same as that for any other two
proper superscript and notation defined lakewill represent neighboring sites. In EqAL1) such a transition is denoted

fhls r:jew se;of m_ztrlchs mod_glled frqm.Greer]: 3.;?”““ by FEﬁ), 1n)- This quantity can be obtained by classifying all
n order to describe all possible variations of different MO-4 o segments as follows:

lecular orbitals in the same unit, our notation is faixm
matrices, with specific indices for the starting and ending(1) The segments that go directly from site- 1 to siten, in

The first term representing segments crossing rsitel
once is given by:

>, (segments that cross oneeF (1 U F(2

sites only; the matrix elements of thesex m matrices cor- only 1 step: those segments contain only one line and
respond to orbital to orbital transition. So described, we de- one dot on siten, so the corresponding terms are the
fine F{7), by: appropriate elements eftimes the appropriate elements
' of A1 according to Eqs(A6) and (A7). Thereby, this
G =A"FD, (A8) contribution toF (2 , . is vA~*, which accounts for all
1-step segments from any orbital in site-1 to any
whereA has already been defined in Ed4). The inverse orbital in siten.

-1 i i .
A~"is the matrix corresponding to the dots that each pathip) The segments that bounce back and forth between site
starts with, and’jg?n) has the same definition as in Section n—1 and siten: An example of such a segment is shown

Il. We have, thereby, in Fig. 9. By an argument similar to the one above we
obtainvA ~v'A~1vA ~! for segments that return to site
F(1h=> (all possible segments from unit 1 9. n-—1 once and end up at siten, and

(A9) (vA~TA~12yA 1 for segments that return twice, etc.

. . In this WayFEﬁ),ln) is obtained by a summation over the
As discussed above, all of segments correspondlr@‘(m above two contributions:

cross the dividing line(the shaded bar in Fig.)8n odd
number of times. So the segments can be classified by the
number of crossings, i.e.,

[ ] [ ]
Fg?nf > (segments that cross the- 1 site oncg . .
L] [ ]
+ 2 (segments that cross three times . .
[ ] [ ]
+..-+ > (segments that cros§ 2 1 timeg+ - - - . . .
(A10)
i i . i n-2 n-1 n
In the following sections, expressions for terms in E&L0)
are derived. FIG. 9. A possible path for calculatirg(? ;.
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F(2 o )=VvA 1+vA VA lvA Y . .
+vA T WTATIVATIVTA T VA T * *
* [ ]
=(1-vA WA H " yA L (A12) .
This particular matrix also serves as the initial matrix for 4 o
Eg)n) for a uniform bridge. For noauniform bridges, the .
initial condition for {7}, needs to be calculated for the first
two units, using the same expression as in &fl2), but
with appropriate matriceg andA. o . N

FIG. 10. A possible path for calculatir@ﬁ)_lvn_l).
5. The second and other terms in calculating FEln

In Section C of the Appendix, it is seen that for segmentsyy using Eq.(A8) for both GE%) and Gggnl)

contributing F{})\ the number of times they cross the So nowF( | is wrltten in terms ofF(”) 1 g2
(1m i (ln) (1n- 1) (n 1)
(n—1) dividing line (Fig. 8 should be an odd numbéEq.  F(2) 1n_1) and F(n D 1y- The first one is the recursive

(A10)). All the possible segments that cross the dividing “”evanable and the second o”é,ﬁ) 1y has been obtained in

three times are next considered. These segments must Bgtion D of the AppendiXEq. (A12)). The next section is
composed of 4 segments: The first segment goes from site}.o, devoted to deriving expressions fﬁfn 1n_1) and
to siten—1, and its corresponding matrix has already beer]:(n 1)

defined asF('l‘nl)l) The second segment starts from the " 1"~ %
same final orbital at sita—1, and it goes to sitea and then
returns to siten— 1 including bouncing between the two sites
for any number of times. We denote this part of the contri- ~ We next evaIuat@%ﬁ,lvn,l) which is the matrix for the
bution by F%ﬁ),l’n,l). It differs from F%ﬁ’,lyn) in that it fi-  sum of the terms corresponding to all possible segments
nally returns to sitsmn— 1. The third segment starts from the bouncing back and forth between two rows of states that start
n—1 site, visits the space of the firat—1 sites, where it and end at then(—1)th row. In Fig. 10 is shown one of such
involves an arbitrary “loop” within the firsh—1 sites, and, paths. It differs from thngﬁ) 1) by having a return from

it then returns to then—1 site. We denote the matrix for siten to siten—1, contributing a matrix ™A 1. Thereby,

) (2) (2) TA-1
F(n in-1)" I:n 1,n)V A

6. The expressions for Az, ,_; and F{p~1 ;)

such segments bf,_1,,_;) The final segment goes from
any orbital in siten—1 to any orbital of siten arbitrarily, so
it corresponds to a matrix element Efn 1ny @s shown in =(1-vA WA H A" WTATL (A1Y)

Section D of the Appendix. Thereby, we have n-1)

From the above definition and discussidify 1), ;, is

2 (segments that cross the- 1 site 3 times related to theif—1,n—1) block of G matrix in the follow-

ing way:
-1 1
_F(?.nll)F(n) 1n— 1)':52 i)n 1) F(n 1) (A13) Gﬁﬂ-l)n n=A" 1(1+F(2 1)n ) (A18)
Generalizing the above expression to any odd number ofi which anmXm unit matrix 1 is needed because the diag-
crossings of then—1 sites gives onal matrix elements oGEE’n) include “null paths’(i.e.,
paths which do nothingarising from the first term @) in
E (segments that crosg 2 1 times the expansion of EqA3), and,A"1 represents the missing
beginning dots for segments in calculatif§’ (Eq. (AB)).
— 2 (n)
:Fgg,n})l)[FEn)fl,nfl)F(n The 1>] F(2 n 1n) - (A14) de”ssg/ a strategy similar to that which led ;,) one can
To evaluate Eq(A10), a summation of the terms in Eq. - — (1)
(A14) for j=0 to yields Fiam=V AT (1+Fn 1h-1)
2
Fggn Egnll)[l—'— I:(n in— 1)FE2 %n 1) ><[:I'_an)fl,nfl)F(n in— 1)] lF (n—=1n): (A19)
+(|:Eﬁ> 1n-1) 2 ?n 1))2 .]FE?_“ in which all the possible segments féfn’n) are divided into
5 . ) several parts depending on the number of times they cross
Egn 1)[1 F(n 1n-1 Fﬁﬂfl?nfl)] lFEn) 1n) the dividing siten— 1. Those segments are classified as fol-
forn=3.45, - .. (A15) lOWs:
: . (n) (1) The first segment is defined as a single step going from
Also, Eq.(A15) can be rewritten in terms db ;7 site n directly back to siten—1. This segment is intro-
G =C (1= F2 1y Fin D )] R 1 duced to forceFé'” to contain no null segment, and it
(A16) corresponds to' A
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(2) The second segment is either a null ¢rB or any loop

that begins and stops at { 1)th site Hﬂ:i‘)n,l)).

(3) On the other hand, the final segment is composed of any

number of steps that go from the dividing linsite
n—1) to a final stop on sitel This part exactly corre-
sponds to the definition aF (2

nln

either spaces for the last two srtelé(ﬁ 1n-1)), or the
first (n—1) sites E{n~7),_4)). This set of segments in-
cludes the null path so the first term should beTwo

597
L F{y =14V HLH R, va
X(1=VIATH1+FRT, VAT 7
=[1-VIAT L+ PRI vA ] (A23)

Together with Eq(A18), the above expression is equivalent

There can be any number of segments between the setws Eq. (20). Comparison of Eqsi21) and (A18) shows that
ond one and the final one. Those segments form loops in

N,=1+F{) . (A24)

With this identity (Eq. (A24)), Eq. (A23) is seen to be the
same as Eq22).

consecutive loops at the same side would contribute to

(= 1y orF | matrix because of its

If the final loop is in the last two sites

the singleF
definition.

(F(n 1n-1)), it can also be regarded as a part of the_.

segments corresponding R)E which is the final

n—1,n)

segment as describe above. To avord over-counting, it i

then required to have the last loop at the side of the fir
(n—1) site (Fgﬂ:i)n_l)). So the contribution of this part

of segment is:

2 n-1
1+ I:En)flnfl)lzﬁnfl)nfl)

1 1
+Fn 1n— l)FEE 1)n 1F(n 1n— 1)F2 1,)n—1)+"'
1
=[1- Fn 1n-1) (2 1)n nl~ L (A20)

By multiplying the above four factors together, £419) for
F{p,) was obtained.

7. The sequential formula

Eqg. (A16) is the sequential formula derived in this ap-
pendix. To show the equivalence between @§) in the text
and this Eq.(A16), the following identity can be derived:

[1_ Fgﬁ)—l,nfl)[:m:%,)n—l)] lFEﬁ) 1n)
=[1-VA Y 1+VTA VA1 + . VT
XA T I VAT R HvTA T A Y
+VIA WA TIVIATIVA T+
=vA U 1-(1-vTA " tvA )W
XA VAT T A-vTA T AT T
=VvA Y 1-vTA~ hoVATHTE

Ya+FpY (A21)

in which Egs.(A12) and (A17) were used. Therefore, with
Eq. (A18)

2) (n—1) -1(2)
[1_ I:En—l,n—l)':(n—l,n—l):l F(n—l,n)

=vA Y (1-VvIG(N"T) g vATH L (A22)
So Eq.(A16) becomes Eq(19) with the above identityEq.
(A22)) introduced.

Also, if the expression EqA21) is introduced into Eq.

(A19), the following identity is obtained:

8. Discussion

This approach, beginning with an infinite series expan-
sion (Eq. (A3)), gives the same recursion relation as derived
.in Section Il by a non-perturbative method. Mathematically,
P-re infinite series expansion in EG@3) converges inside its
adius of convergence, namely when the modulus of every
eigenvalue of the matriGyH' (or H' Gy) is less than unity.

A similar restriction appears in Eg8A15) and(A17), which
requires botrF(n 10— 1)F(n The 1) andvA VA~ to have

all of their eigenvalues within the unit circle in the complex
plane. However, the resulting expressions are not limited by
such conditions since they can also be derived from the non-
perturbative method. This aspect demonstrates a desired
property of the graph-based method, namely, that analytic
continuation can be applied, in the present case, so as to
obtain useful expressions in the range of energies where the
infinite series diverges.

This graph-based method can be further generalized for
a complex, nonlinear structure of bridge. First, we note that
each column of dots in Fig. 7 can be “condensed” into a
larger vertex, the graph can be simplified to a row of large
vertices with nearest neighbor vertices connected by a “mul-
tiple line.” In this way, any one path drawn on this new
graph represents all the possible paths on the old graph pass-
ing the same bridge sites in the same order with any choices
of molecular orbitals. It corresponds, thereby, to a matrix,
and each additional step on this new graph involves multi-
plication of matrices. Now a complicated bridge is repre-
sented by a simpler graph: a dot is used for each bridge site
(which has several molecular orbitglsand lines exist be-
tween sites that interact with each other. The way to obtain
the corresponding terms of Green’s function from paths is to
multiply all the matrices of lines and dots in the order given
by the paths, as was done for the scalar terms for paths on the
original graphs described in Section C of the Appendix. This
method should provide a different way of calculating an
electronic coupling between donor and acceptor in protein or
other complicated systems.

With both properties discussed above, this graphical
method is potentially useful for a variety of applications.

(@) For example, for ET in biological processes there is a review article by
B. E. Bowler, A. L. Raphael, and H. B. Gray, Prog. Inorg. Ch&8).259
(1990 and references cited therein; C. C. Moser, J. M. Keske, K.
Warncke, R. S. Farid, and P. L. Dutton, Nat@#&sh, 796(1992); I. Bertini,

H. B. Gray, S. J. Lippard, and J. Valentiri&pinorganic ChemistryUni-
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ample, G. L. Closs and J. R. Miller, Scien2d0, 440 (1988; (c) for

theoretical works on the electronic coupling of long range ET, see, for fist-order contribution toG

example, S. Larsson and M. Braga, Int. J. Quantum Biol. Sy®20. 65

(1993 and references cited therein; J. Logan and M. D. Newton, J. Phys.

Chem.92, 3049(1988; M. D. Newton, Chem. ReWW1, 767 (1991, and
references cited therein; J. R. Reimers and N. S. Hush, Chem. P4fys.

89 (1990; J. N. Onuchic, P. C. P. de Andrade, and D. N. Beratan, J.
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"The first non-zero contribution a8}, in the perturbative expansion of
Eq. (12) is the first-order tern{). 724V <V . With Egs.(13) and(18) the

(1) can be obtained a&{], ™ vA~1. So

Gy ~G{o(vA~ )2 This expression is similar to Eq3), which is

McConnell's estimation.

181f we denoteG{Y), = G{z,x, with x,=II{_ ;vA~*N; , thenx, has solution
Xo=[a)3m;—a)®m,]7%, for n=3 with a; = AV'Y2 + 6, a,
=AVY2-6, mi=a;8 ta 12— 6 avIATING 2, my=a,8 ta, /2
— 6 a,vTA IN,/2, and 6 is a matrix that satisfiess?=—v'v ™!
+(Av H?/4. It is seen that upon matrix inversion to obtain, the ei-
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