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A recursion relation is formulated for the Green’s function for calculating the effective electron
coupling in bridge-assisted electronic transfer systems, within the framework of the tight-binding
Hamiltonian. The recursion expression relates the Green’s function of a chain bridge to that of the
bridge that is one unit less. It is applicable regardless of the number of orbitals per unit. This method
is applied to the system of a ferrocenylcarboxy-terminated alkanethiol on the Au~111! surface. At
larger numbers of bridge units, the effective coupling strength shows an exponential decay as the
number of methylene~–CH2–! units increases. This sequential formalism shows numerical stability
even for a very long chain bridge and, since it uses only small matrices, requires much less computer
time for the calculation. Identical bridge units are not a requirement, and so the method can be
applied to more complicated systems. ©1997 American Institute of Physics.
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I. INTRODUCTION

Electron transfer~ET! over long distances has been stu
ied extensively in recent experimental and theoretical wo
both in homogeneous systems1–5 and across monolayers o
electrodes.6–9 Some of the work addressed the importance
the role played by long range ET reactions in biological p
cesses while others demonstrated the underlying fundam
tal properties of such reactions. Many of these studies s
gest that typically the rate has exponential dependence on
distance between donorD and acceptorA. Theoretical
studies2,10 on molecular wires with one orbital representin
each site of the wires, show exponential dependence of
conductance with the length of wire when the electron is
an energy outside of the wire’s energy band, and large c
ductance is obtained with oscillatory dependence on w
length for the energy of an electron inside the wire’s band
sequential treatment is formulated here for electron tran
through a linear chain bridge that is allowed to have m
than one orbital in each site. When the energy ofD andA
states lies out of the ‘‘energy band’’ of a long chain bridg
the well known exponential dependence of the matrix e
ment on distance is expected.

For the coupling of the electronic and nuclear motion
Golden rule treatment has given a satisfactory descriptio
the non-adiabatic reaction rate for weak~i.e., long range!
coupling. In this case, the rate constantk for electron transfer
from an electronic state of the donor to a state of the acce
is given by:

k5
2p

\
uHDAu2~FC!, ~1!

where ~FC! is the Franck-Condon factor, andHDA is the
effective electronic coupling. Various approaches for treat
the electronic coupling matrix elementHDA have provided
584 J. Chem. Phys. 106 (2), 8 January 1997 0021-9606/9
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estimates of the decay coefficient.1–5,11,12Separability of the
electronic and nuclear factors is assumed in Eq.~1!.

The effective coupling element can be defined as
coupling between the eigenstateucD& and the zeroth-orde
state ufA&, namely, ^cDuHufA&. Using the partitioning
technique,13 it can be shown that this definition of effectiv
coupling is the off-diagonal element after mapping the ov
all Hamiltonian onto an effective 232 Hamiltonian matrix
of donor and acceptor states only. In an equivalent appro
a transfer operatorT can be defined from scattering theory14

T5V1VGV, ~2!

whereG is the Green’s function for the HamiltonianH. The
latter is composed of an unperturbedH0 and a perturbation
V, whereH0 is the Hamiltonian for non-interacting dono
bridge and acceptor states, andV is the interaction among
them. By making use of the Lippman-Schwinger equation
can be shown14 that the matrix element̂fDuTufA& is the
same as the effective coupling^cDuHufA&, and the latter is
denotedHDA throughout this article.

McConnell gave an early molecular derivation of th
exponential decay factor.12 He showed that for a single-ban
problem, where there is only one orbital per bridge site,
tight-binding Hamiltonian is tri-diagonal and the effectiv
coupling matrix elementHDA for a bridge withn repeating
units is

HDA}S b

E2a D n, ~3!

when uE2au@2ubu. Here, b is the interaction between
neighboring orbitals,a is the energy of an individual orbita
in the bridge, andE is the energy of the electron to be tran
ferred, namely, the energy of the donor orbital, which,
turn, equals the energy of the acceptor orbital when the s
tem is at the transition state of the reaction.
7/106(2)/584/15/$10.00 © 1997 American Institute of Physics
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585C.-P. Hsu and R. A. Marcus: Bridge-assisted electron transfer
Further studies on the single-band case have appe
recently.2,3 Their analytic expression forHDA can be written
as follows:

HDA5
bAbD~2b!n212n11z

~E2a1z!n112~E2a2z!n11 , ~4!

where

z5~~E2a!224b2!1/2, ~5!

wheren,E,a andb have the same definition as in Eq.~3!,
andbD(bA) is the interaction matrix element between do
or~acceptor! and the bridge unit it is attached to. In Eq.~4! it
has been assumed that the basis formed by orbitals of d
and acceptor and orbitals on every site of bridge is orthon
malized. Otherwise one can always find a new set of basi
the transformation similar to that described in Ref. 15.

There are two cases when the expression in Eq.~4! tends
to be exponential. One is for far off-resonance, namely,

uE2au@2ubu. ~6!

Then,z is very close touE2au and so one of the two term
in the denominator vanishes under this condition. In this c
McConnell’s expression~Eq. ~3!! is obtained. The other cas
is from the observation that the absolute values of the
terms in the denominator of Eq.~4! differ whenz is a non-
zero real number, which requires that

uE2au.2ubu. ~7!

This condition, together with the condition thatn be large, is
a weaker condition on the energy of the electron or on
coupling strength. The inequality~7! also serves, for large
n, as the off-resonance condition, since a tight-bind
Hamiltonian of an infinite chain with one orbital per site h
an energy band which lies betweena22b and a12b. If
Eq. ~7! holds andn is large, the denominator of Eq.~4! is
dominated by one of the two terms that has larger abso
value for the case thatn is large. Consequently, exponenti
behavior is obtained in the limit of long chain bridges, whe
the attenuation factor is close to, but not exactly the sam
theb/(E2a) in Eq. ~3!.

Beratan and Hopfield4 used another approach with whic
they were able to treat more realistic systems, i.e. seve
band systems. Their method is readily understood if we n
that surface states exist when the energy of the surface a
~donor/acceptor orbitals! lies outside the energy band of th
infinite chain~bridge!.15 The usual Bloch states have compl
eigenvalues with unit moduli for the translation operator t
commutes with the Hamiltonian of the infinite chain, whi
such surface states have real eigenvalues for the transl
operator. Since the wavefunctions must be square-integra
the wavefunction for a surface state must be decaying ra
than growing exponentially as it penetrates the infinitely lo
bridge. The energy and the corresponding decaying fa
were solved by fitting the boundary condition at each e
Thereby, the exponential behavior was built into their so
tion. As discussed above, for a single band bridge, the ex
J. Chem. Phys., Vol. 106,
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nential dependence is found either for off-resonant, su
ciently long uniform bridge chains or for energies far mov
from the bridge band.

In the present paper we consider a more general c
which is not limited to systems with a single orbital in ea
bridge site or to a large system. For convenience and s
plicity, the term ‘‘band’’ will be used in a loose sense an
refers to the region where energy levels are concentrate
where the actual band of an infinite chain would be, ev
though we will be discussing finite systems only. In Secti
II, a sequential expression for the Green’s function is o
tained. The Green’s function ofn bridge units is written in
terms of that forn21 units. The derivation does not requir
that the bridge units be identical, and they are also allowe
have different numbers of orbitals. In Section III, th
method is applied to calculating the electron transfer r
between an electro-active group on an adsorbed alkane
molecule and the electrode to which it is attached. The ef
of additional parallel chains of alkane thiol molecules w
also treated and, together with the comparison between
sequential method and the direct summation over the bri
eigenstates, the results are discussed in Section IV. Conc
ing remarks are given in Section V. The Appendix consi
of the graphical derivation of the sequential formula and
possible generalization.

II. THE SEQUENTIAL FORMULA FOR GREEN’S
FUNCTION

The tight-binding Hamiltonian is considered with on
the nearest-neighbor interaction, namely, between neigh
ing bridge units, between the first unit and the donor orbi
and between the last unit and the acceptor. An expression
the Green’s function for the whole space by the method p
vided below can always be developed, but the expression
the bridge Green’s function is much simpler to introduce a
for off-resonant systems it provides a satisfactory appro
mation. Thereby, it is assumed here that the matrix elem
of the Green’s function needed in Eq.~2! are approximately
those of the Green’s function for the bridge part only. T
error from such an approximation should usually be re
tively small when compared to other approximations made
the tight-binding calculation.

It is always possible to calculate the Green’s function
short bridge chains, given the explicit Hamiltonian matr
elements. Therefore, we have explored solving the prob
for general chain lengths, assuming that the Green’s func
is known for a chain with one less bridge unit and then,
longer bridge chains, obtaining the recursion equations
iterating them until the desired length. This iteration proce
involves mostly matrix multiplication and inversion. All th
matrices involved will be seen to have dimensions de
mined by the number of molecular orbitals on each rela
bridge unit. These numbers are finite and are independen
the number of units of the entire bridge, and so the iterat
process for longer bridge chains can be executed with
solving a large linear problem. For notational simplicity, t
derivation is given for systems with uniform bridge unit
No. 2, 8 January 1997
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586 C.-P. Hsu and R. A. Marcus: Bridge-assisted electron transfer
The generalization to arbitrary different bridge units can
made without difficulty and is discussed in Section IV. T
derivation given below for the bridge’s Green’s function
non-perturbative with respect to the magnitude of the in
bridge interactions.

It is supposed here that there aren bridge units in the
problem, and that each bridge unit hasm molecular orbitals.
Using the basis that diagonalizes the Hamiltonian wit
each bridge unit,16 the Hamiltonian for a chain bridge is

H ~n!5S e v 0 0 ••• 0

vT e v 0 ••• A

0 vT e v ••• A

A A A A � v

0 ••• ••• 0 vT e

D , ~8!

wheree is anm3m diagonal matrix

e5S «1 0 ••• 0

0 «2 ••• 0

A A � A

0 0 ••• «m

D , ~9!

and vT is the transpose of the interaction matrixv that
couples adjacent bridge units. The lines in Eq.~8! partition
the matrix into four blocks. The upper left one, a large squ
block, corresponds to the Hamiltonian forn21 bridge units.
The elements in the two off-diagonal blocks arise as a p
turbation designated below asH1

(n) . The elements in the two
diagonal blocks form the zeroth-order HamiltonianH0

(n) .
Thereby,H0

(n) andH1
(n) are defined as

H0
~n!5S e v 0 0 ••• 0

vT e v 0 ••• A

0 vT e v ••• A

A A A A � 0

0 ••• ••• 0 0 e

D
[SH ~n21! 0

0 eD , ~10!

and

H1
~n!5S 0 0 0 0 ••• 0

0 0 0 0 ••• 0

0 0 0 0 ••• 0

A A A A � v

0 ••• ••• 0 vT 0

D , ~11!

so thatH (n)5H0
(n)1H1

(n) . TheH0
(n) is seen in Eq.~10! to

refer to a fully coupled (n21)-unit bridge plus an uncouple
nth bridge unit attached.

The Green’s function corresponding to theH (n) in Eq.
~8! is then rewritten as
J. Chem. Phys., Vol. 106,
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G~n!5~E12H ~n!!215~E12H0
~n!2H1

~n!!21

5G 0
~n!~12H1

~n!
G 0

~n!!21, ~12!

where G(n) is the Green’s function for the tight-bindin
n-unit bridge system, andG 0

(n) is the Green’s function cor-
responding toH0

(n) :

G 0
~n!5~E12H0

~n!!215SG~n21! 0

0 D21D , ~13!

hereD denotes the diagonalm3m matrix

D5E12e. ~14!

The term (12H1
(n)
G 0

(n)) can be written as

12H1
~n!
G 0

~n!5S 1m~n21! 2M2

2M1 1m
D , ~15!

where1m(n21) and1m denote unit square matrices of dime
sions given by subscript. TheM1 andM2 are given by

M15~vTG~n21,1!
~n21! vTG~n21,2!

~n21!
••• vTG~n21,n21!

~n21!
!,
~16!

and

M25S 0

A

0

vD21

D , ~17!

in which v, vT, D21 andG( i , j )
(n21) all representm3m matri-

ces. Specifically,G(n21,1)
(n21) is the (n21,1) block in the

Green’s functionG(n21) for n21 bridge units. The inverse
of the matrix in Eq.~15! can be written as

~12H1
~n!
G 0

~n!!215S 1m~n21! M2

M1 1m
D

3S ~12M2M1!
21 0

0 ~12M1M2!
21D ,

~18!

as can be verified by multiplying both sides of Eq.~15! to the
left or to the right with the matrix in Eq.~18!. Since there is
negligible direct coupling between the donor and accep
states in the long-range electron transfer, the effective c
pling is calculated from the second term in Eq.~2!. Also
because the tight-binding model is used, only one block
the Green’s functionG(n) is needed in that expression
namely, the block relating transition from the first bridge u
to the nth one. It is denoted byG(1,n)

(n) and is a block of
dimensionsm3m. The Green’s functionG(n) is obtained by
introducing Eqs.~13! and ~18! into Eq. ~12! and performing
the matrix multiplication in terms of blocks. For the desire
(1,n) block, we obtain

G~1,n!
~n! 5G~1,n21!

~n21! vD21~12vTG~n21,n21!
~n21! vD21!21. ~19!
No. 2, 8 January 1997
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587C.-P. Hsu and R. A. Marcus: Bridge-assisted electron transfer
In order to iterate Eq.~19! further forG(1,n11)
(n11) , an expres-

sion for G(n,n)
(n) is needed. Thism3m block matrix can be

obtained similarly fromG(n) but selecting the (n,n) block,

G~n,n!
~n! 5D21~12vTG~n21,n21!

~n21! vD21!21. ~20!

Equation~20! is a recursion expression forG(n,n)
(n) , However,

it would be desirable to convert the expression to one
which a dimensionless quantity represents the deviation fr
the first-order term in the expansion of Eq.~12!.17 With this
goal in mind, we define anm3m block Nn ,

Nn5DG~n,n!
~n! . ~21!

A recursion expression forNn then follows from Eq.~20!:

Nn5~12vTD21Nn21vD21!21. ~22!

Equation~19! then becomes

G~1,n!
~n! 5G~1,n21!

~n21! vD21Nn . ~23!

The initial condition for the iteration of$Nn% is taken as
N2; N2 can be obtained by inverting the 2m32m tight-
binding Hamiltonian, together with Eq.~21!. Since the above
derivation does not introduce any explicit assumption th
vD21 is small, i.e. Eqs.~22! and ~23! were not derived per-
turbatively, Eqs.~22! and ~23! are mathematically exact for
finite n.

The factorvD21 in Eq. ~23! resembles McConnell’s es-
timate of the scalar decay factorb/(E2a) ~Eq. ~3!!. If the
matrixNn becomes essentially a constant matrix after a nu
ber of iterations, then the overall trend forG(1,n)

(n) is to be-
come an exponential asn increases. The sequential formul
of Nn ~Eq. ~22!! is a non-linear first order difference equatio
for matrices.

It is instructive, for understanding the general properti
of Eq. ~22!, to examine the solution of this difference equa
tion for m51, whereNn becomes a scalar. In this case,Nn

can now be solved by the transformation:

an5
122r 2Nn

Au124r 2u
,

so Eq.~22! yields

an2an21

anan2161
5Au124r 2u, ~24!

wherer is defined as the scalarvD21 ([b/(E2a)) and the
negative sign is taken ifur u,1/2 and the positive sign, oth-
erwise. Equation~24! can be solved by writingan as
tanhbn ~or tanbn) and making use of the addition formula o
the hyperbolic tangent~or tangent! function. The following
solution is then obtained:

Nn5
1

2r 2
2

A124r 2

2r 2
tanhS tanh21

~122r 2!N2

A124r 2

1~n22!A124r 2D , if ur u,
1

2
; ~25!
J. Chem. Phys., Vol. 106,
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Nn5
1

2r 2
2

A4r 221

2r 2
tanS tan21

~122r 2!N2

A4r 221

1~n22!A4r 221D , if ur u.
1

2
, ~26!

with

N25
1

12r 2
.

In the former case,Nn approaches a constant asn increases,
while in the latter case,Nn has an oscillating behavior arisin
from equally spaced poles on the realn-axis. Basically this
result is the solution of a single-band problem. When co
pared to Eq.~4!, Eqs.~23! and ~25! give the same exponen
tial factor for the off-resonance case. It should be noted t
the bridge Green’s function was used here, while in obta
ing Eq. ~4! the full tight-binding Hamiltonian, including do-
nor and acceptor states, is used instead. The general sol
of Eq. ~23! for multi-band Green’s function$G(1,n)

(n) %, was
also obtained without iteration, but the solution we obtain
involves the inverse of the sum of the (n23)th power of two
matrices forn>3, making it numerically unstable to calcu
late whenn is large in its present form. The result is given
Ref. 18. Practically, the sequential formula, Eq.~22!, is
straightforward and stable to use.

By observing the result of numerical iteration, the b
havior of Nn can be described for most cases. As in t
corresponding single-band case, the matrixNn tends to a
constant matrix if the energyE is outside all the bridge
‘‘bands.’’ In this case, all of the eigenvalues ofvD21Nn lie
inside the unit circle of the complex plane and one or two
them dominate the final decay factor asn becomes large,
namely the one with the largest modulus. If there is only o
dominating eigenvalue, an exponential decay in the coup
strength with respect ton would be obtained. If the eigen
values with the largest modulus are a pair of complex c
jugate numbers the decay is modified by a periodic osci
tion. For the cases whereE lies inside the bridge bands, Eq
~22! and~23! are still mathematically applicable with a com
plicated dependence ofNn andG(1,n)

(n) onn, but physically the
assumption of approximating the overall Green’s functi
with the Green’s function for the bridge part is not a go
one. Therefore, it is inappropriate to discuss the o
resonance condition using the sequential formula in
present form.

We have also obtained a graph-based method of deriv
Eqs. ~22! and ~23! which is potentially useful for compli-
cated bridge systems. It is outlined in the Appendix. In t
graph-based method, an infinite series is obtained, bu
summation yields the same equation as that obtained in
above derivation. Since the latter did not involve any infin
series, it is seen that analytical continuation of the series
be used to obtain valid results in a region where the origi
infinite series of the graph-based method diverges. T
property, if it still holds in more complicated problems, e
No. 2, 8 January 1997
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588 C.-P. Hsu and R. A. Marcus: Bridge-assisted electron transfer
larges the scope of the graph-based method beyond its
nite series approach, permitting its use in other applicatio

III. APPLICATION

The recent development of self-assembled monolay
of alkane thiol molecules on a gold surface has provide
convenient approach for studying electron transfer betw
an electroactive group and an electrode, where the electr
tive group is held at a fixed distance from electrode surfa
or, if in solution, is separated from the electrode by a fix
monolayer.6 Chidsey measured the voltage dependent
rate of the ferrocenylcarboxy-terminated alkane thiol/g
surface system including the rate under the exchange cu
condition ~corresponding to the case where theDG0 for the
electrode process is zero! and a reorganization energyl was
estimated by fitting the data to an equation whose functio
form is similar to Eq.~27! below.7

A study involving electrodes coated with self-assem
monolayers ofv-hydroxy thiols of various lengths~the n’s
of (2 CH22) are 6 to 11! was performed by Becka an
Miller.8 The electron transfer current of anions in soluti
was measured and after corrections for diffusion and o
effects were made, the authors reported the length de
dence factorb51.0860.20 per methylene unit.19 Carter
et al.9 studied, for different lengths of thiol molecule
(n58,12,16), the system investigated by Chidsey.7 The
length dependence over the above range was obtained
the decay factor was reported asb51.4460.12 per methyl-
ene unit.

A. The nonadiabatic reaction rate

A mathematical form for the nonadiabatic rate betwe
an electron donor group and an electrode, in the high t
perature limit, is given by20,21

krate5
2p

\
~4plkBT!21/2

3E d«uV~«!u2e2~l2eh1«!2/4lkBT
e«/kBT

11e«/kBT
, ~27!

whereuV(«)u2 is

uV~«!u25E d3kW uHDku2d~«~kW !2«!, ~28!

in which HDk is used to denote theeffectivecoupling ele-
ment between states^Du and ukW &, with the definition similar
to that ofHDA described in Sec. I, the wavefunctionsukW & are
normalized to a Dirac delta function,^kW ukW8&5d(kW2kW8), « is
the energy of an electron in metal with respect to the Fe
energy,«(kW ) is the energy of the electronic stateukW & of the
metal,l is the reorganization energy~including both inner
and outer contribution!, and h is the overpotential
(E2E0), namely the difference between the applied pot
tial and the standard potential of the electrode. The ab
Eq. ~27! is an integral of the non-adiabatic electron trans
rate expression22 over all the possible statesukW & and all pos-
sible energies« in a metal, using the Fermi-Dirac distribu
J. Chem. Phys., Vol. 106,
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tion as a weighting factor. In general, a summation over
ergy bands of the metal electrode is needed in Eq.~28!.
However, since in the present work we only consider
contribution from thes-band of the gold electrode, the sum
mation over energy bands is omitted for simplicity. ‘‘Wor
terms’’20 are also omitted in Eq.~27! for simplicity of nota-
tion. One sees that because of the delta function norma
tion and the above definition ofHDk , theuV(«)u2 in Eq. ~28!
has units of energy.

The electron transfer rate under electrochemical
change current conditions~i.e., forward rate equal to revers
rate! can be obtained by settingh50. By notingl@« we
can drop the quadratic term of« in the exponent of Eq.~27!.
The integration over« is performed by approximating20

E
2`

` 1

e«/2kBT1e2«/2kBT
f ~«!d«

[E
2`

`

g~«! f ~«!d«

5 f ~0!E
2`

`

g~«!d«1 f 8~0!E
2`

`

g~«!«d«1•••

'pkBT f~0!, ~29!

since g(«) here is a symmetric, positive definite functio
with its weight concentrated around the origin. From E
~27! and ~29!, the following expression is obtained:

krate
~ ex!5

2p

\
~4plkBT!21/2e2l/4kBTuV̄u2, ~30!

where

uV̄u25pkBTE d3kW uHDku2d~«~kW !!5pkBTuHDku2r f ,

~31!

with

uHDku2[
*d3kW uHDku2d~«~kW !!

*d3kWd~«~kW !!,

and

r f[E d3kWd~«~kW !!.

Namely, uHDku2 is the effective coupling strength average
over the kW ’s on the Fermi surface and has units
~energy!2 ~wave vector!23 or ~energy!2 ~volume!1 because
of the normalization ofukW & described earlier , whiler f is the
density of states at the Fermi surface, with units
~energy!21 ~wave vector!3. In the present work, the uni
length is chosen to be the nearest-neighbor distance of
fcc lattice of Au atoms, and so~wave vector!3 equals
~number of atoms!21.

To calculate theoretically the effective coupling matr
elementHDk between the ferrocenylcarboxyl group and t
No. 2, 8 January 1997

to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp



tw
.

ls

he

in
n’
n
n
ith

or
ni
e
ge

.

ve

em
cu
al
is

n
o

y

-

tro

Eq
x

ng

-

t be-

ome
in
ils
-
o
ic
n-

on
.

n at
elec-
p
e

589C.-P. Hsu and R. A. Marcus: Bridge-assisted electron transfer
gold electrode and compare with the experimental data,
of the schemes,~a! and ~b!, which are developed from Eq
~2!, assuming no direct coupling, are listed.

~a! A direct summation over all bridge molecular orbita
can be made by using the following expression:

TDk~[HDk!5(
B

VDBVBk
E2EB

, ~32!

where$B% denotes the set of molecular orbitals of t
bridge. It can be shown that the matrix elementTDk of
the transfer operator equals the effective coupl
HDk ,

14 as discussed in Section I. The bridge Gree
function is used to replace the overall Green’s functio
Also, the perturbationV is regarded as the interactio
of any state of the entire bridge with the donor and w
the acceptor. NamelyVDB is the interaction matrix el-
ement between the donor state and the orbitalB of the
entire bridge.

~b! The sequential formula derived in Section II~Eqs.~22!
and ~23!!, can be used:

HDk5VD,1G~1,n!
~n! Vn,k , ~33!

whereVD,1 andVn,k denote interaction between don
state and the molecular orbitals in the first bridge u
and between those in thenth bridge unit and the stat
ukW & of the metal electrode, respectively. For a brid
with more than one orbital on each site,VD,1 denotes a
row vector,G(1,n)

(n) a matrix, andVn,k a column vector.

In both cases, the wavefunctions used for the Au~111!
surface are linear combinations of atomics-orbitals obtained
with the tight-binding approximation,23 and to evaluate Eq
~31!, the coupling strength of 60 wave vectors (kW ) random
sampled over the Fermi surface were calculated and a
aged to obtainuHDku2. All of the interaction matrix elements
were obtained using an extended Hu¨ckel program.24 The co-
ordinates of atoms in the alkane thiol portion of the syst
are those of Klein and coworkers, who employed a mole
lar dynamics calculation in conjunction with structur
data.25,26 The geometry of the ferrocenylcarboxyl group
obtained from the crystal structure of similar molecules.27 In
the supplemental material28 we deposited the full Cartesia
coordinates for the molecules being used in the present w

B. The energy difference at transition state

To calculate the denominator of Eq.~32! or the Green’s
functionG(1,n)

(n) of Eq. ~33!, it is necessary to know the energ
of the various electronic states of the bridge(B) relative to
the Fermi level of the metal(M ). We consider the free en
ergy vs. the reaction coordinateq diagram in Fig. 1, which
describes the reaction which involves transfer of an elec
from D to a specific orbitalukW & at the Fermi energy in the
metal,21

D1B1M→D1 ~solvated!1B1M ~e!. ~34!

Curves I and II describe the left side and the right side of
~34! respectively. Curve III corresponds to the supere
change state denoted byD11B2 ~unsolvated!1M , if it is
J. Chem. Phys., Vol. 106,
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an electron transfer~For a hole transfer, a curve representi
D1B1 ~unsolvated!1M (e) should be used instead.! The
energetics for I and II for the free energyG(q) as a function
of q are described by:

GI~q!5GD~q!1ED , ~35!

GII~q!5GD1~q, solv!1m̄m1efs , ~36!

whereED is the energy of the electronic orbital of donorD
with respect to vacuum,GD(q) is the solvation free energy
of D, as a function ofq, andGD1(q, solv) is similarly the
solvation free energy ofD1; m̄m is the electrochemical po
tential ~Fermi level! of an electron inM , and is equal to
mm
0 2efm . The f ’s denote electrostatic potentials~the so-

called inner electric potentialor theGalvani potential29,30!
for the metal eletrode (fm) and in solution (fs).

The bridgeB can become aB1 ~or aB2) in the virtual
state which occurs in the superexchange mechanism, bu
cause of the off-resonance condition this supertransientB1

or B2 can be regarded as unsolvated. There may be s
interaction of this virtual electronic state with the electrons
the surrounding medium, but we will neglect such deta
here. If the potential changefm2fs occurs across the ad
sorbed monolayerB, then a first approximation would be t
treat the energy levels ofB as being at a mean electrostat
potential (fm1fs)/2. In that case we have, for the electro
transfer scheme,

GIII ~q,Bi !5GD1~q, solv!1EBi1efs2
e

2
~fm1fs!,

~37!

whereEBi is the energy of thei th orbital of the bridge in the
absence of an electrostatic potential.

The vertical difference between I and III at the transiti
state is denoted byDE(q†) in Fig. 1. It is seen from Eqs
~35! and ~37! to be

FIG. 1. Free energyvs. reaction coordinate for the reactant~curve I! and
product~curve II! states of the bridge-mediated electron transfer reactio
an electrode. Curve III is the superexchange off-resonant state for an
tron transfer scheme.D is the donor molecule, a ferrocenylcarboxyl grou
in the present case.DE(q†) is the energy difference of curves I and III at th
transition state.
No. 2, 8 January 1997
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590 C.-P. Hsu and R. A. Marcus: Bridge-assisted electron transfer
DE~q†!5GI~q
†!2GIII ~q

†!5GII~q
†!2GIII ~q

†! ~38!

5mm
0 2EBi2

e

2
~fm2fs! ~39!

5mm
0 2EBi2

e

2
~fm

0 2fs
01h!, ~40!

sinceGI5GII in the transition state,q5q†. In Eq. ~40! the
over-potentialh has been defined asfm2fs2fm

0 1fs
0

while (fm
0 2fs

0) is the standard metal-solution potential d
ference of the electrode. From Fig. 1 and Eq.~38!, DE(q†) is
seen to be independent of the reorganizational energyl since
the solvational free energies of the intermediate state~III !
and the final state~II ! are the same~for D1 ion! and so the
reorganizational energy cancels in theGI(q

†)2GIII (q
†) dif-

ference.h equals zero for the exchange current condition
In Eq. ~39! bothmm

0 andEBi are negative quantities tha
describe the energy required to move the electron from
neutral materials to vacuum at infinity, while2efm and
2e(fm1fs)/2 adjust that energy for the effect of the ele
tric potential. This process of moving an electron to vacu
at infinity can also be described as occurring in the follow
two steps: the electron is first moved to just outside the s
face of the material in vacuum, and then it is moved fro
that point to infinity. The energy needed in the first step
the definition of the work function of the material,31 and that
for the second step is the electronic charge times theouter
potentialc ~termed also theVolta potential!,29,32namely, the
electric potential of the material due to its total charge. T
inner potentialf ’s and outer potentialc ’s differ by a surface
term which is due to the dipolar distribution of charge at t
surface of the material. If the work function of the metal
denotedCm ~a positive quantity!, and the corresponding
quantity for the bridge molecule isCB , the ionization poten-
tial, we have the following relations for metal and bridg
respectively, equating the two ways of accounting for
energy of the electron in the material relative to its va
when at rest in vacuum at infinity:

mm
0 2efm52Cm2ecm , ~41!

EB ~HOMO!2
e

2
~fm1fs!52CB2

e

2
~cm1cs!, ~42!

and for other molecular states inB, the same energy differ
enceDe i(5EBi2EB ~HOMO!! can be added to both side
of Eq. ~42!.

With Eqs.~41! and ~42!, Eq. ~40! can be written as fol-
lows: ~for the exchange current condition, the over-poten
h has been set to zero!

DE~q†!52Cm2e~cm
0 2cs

0!1CB2De i1
e

2
~cm

0 2cs
0!

52eE~abs!
0 1

e

2
~cm

0 2cs
0!1CB2De i , ~43!

wherec0 denotes the corresponding outer potential when
potential of the electrode is at the standard potential of
redox species, andE(abs)5Cm /e1(cm2cs) is the absolute
J. Chem. Phys., Vol. 106,
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electrode potential with its reference state being an elec
at rest in vacuum close to the surface of the solution,
discussed by Trasatti in Refs. 30 and 32. The absolute
tential for some of the commonly used reference electro
are also listed in Ref. 32. With these data, the absolute
tential for the electrode described by Chidsey7 is estimated to
be 5.13 V, if the standard potentialE0 is taken as 0.08 V
above the Ag/~1 mM AgClO4, 1 M HClO4) reference elec-
trode. Together with the work function of the Au~111! sur-
face, 5.31 eV,33 we obtain20.18 V for the potential differ-
ence,cm

0 2cs
0 With these quantities, Eq.~40! becomes

DE~q†!525.22 eV1CB2De i ~44!

for the i th molecular orbital of the bridge.DE(q†) is the
quantity that is needed both in the denominator of Eq.~32!
and the Green’s function of Eq.~33!. The quantity
2CB1De i representing the energy of thei th bridge state, is
obtained in the following section.

C. Energy of bridge states

For use in both the summation and the sequential m
ods in the present calculation, the energy eigenvalues f
long alkane chain ((CH2)n , n540 or more! were obtained
from either the extended-Hu¨ckel or the tight-binding Hamil-
tonian, for comparison with the experimental data on
band structure of polyethylene. To obtain a better agreem
with those data, adjustments of the Hamiltonians are gi
below. Such adjustments are then applied to each alkane
bridge in the calculation.

In the direct summation calculation, a full extende
Hückel calculation was performed. As noted in Ref. 34,
describing the valence band structure of polyethylene,
extended-Hu¨ckel method itself does surprisingly well. B
comparing the distribution of calculated energy levels~Fig.
2, part I! with the experimental valence band structure,34 we
concluded that the following adjustments were needed
the position of each bridge level~denoted byEB in Eq. ~32!!:
first, a factor of 0.7 is used to multiply the energies of t
levels in thefilled extended-Hu¨ckel band formed from C
2p and H 1s orbitals~denoted by~a! in Fig. 2, part I! so that
the bandwidth is closer to that given by experiment, and th
the two valence bands~~a! and ~b! in Fig. 2, part I! are
shifted to fit the experimental band edges for each ban34

Prior to any adjustment, the position of the lower edge
band ~c! is calculated to be about20.6 eV relative to
vacuum, and the resulting band gap agrees very well with
experimentally measured band gap of polyethylene35 (829
eV!. No adjustment was made therefore for the energies
the states in the unfilled bands~band ~c! in Fig. 2 and the
higher energy band not shown there!. The interaction be-
tween donor~acceptor! and bridge orbitals and the compos
tion ~coefficients! of molecular orbitals are obtained direct
from the extended-Hu¨ckel calculation without any adjust
ment.

For the sequential method, the tight-binding Hamiltoni
is obtained from the same extended Hu¨ckel program, but all
the interactions beyond nearest neighbors are now igno
No. 2, 8 January 1997
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591C.-P. Hsu and R. A. Marcus: Bridge-assisted electron transfer
and the overlap integrals are considered within each bri
unit only. The molecular orbitals of individual bridge uni
are obtained by solving the secular equation of each u
Fig. 3, part I shows the distribution of energy levels fro
such a tight-binding Hamiltonian. It is necessary to ens
that both the upper edge of the valence band~the HOMO!
and the lower edge of the conduction band~the LUMO! of
the bridge agree with the experimental values. From the
served band gap~8–9 eV!35 and the ionization potential~8.8
eV!34 of the bridge, these values are28.8 eV and20.8 to
0.2 eV, respectively. The calculated band gap is only 6.2
in Fig. 3, part I, which is smaller than experimental valu
To obtain a better agreement with the band gap meas
ment, some of the six molecular orbital energies of a C2
unit was adjusted. The third and fourth states~the CH2
HOMO and LUMO, respectively! were found to have a larg
effect on the states close to the band edges, those two
gies were shifted by21 eV and11 eV, respectively, an
adjustment which served to give a larger band gap~7.4 eV!.
All of the six MO energies were then shifted upward by 2
eV so that the upper band edge of the highest filled b
agrees with the ionization potential of polyethylene.~This
shift has no effect on the band gap.! With these corrections
the HOMO of the bridge is28.8 eV and the LUMO is21.4

FIG. 2. The statistics of the energy levels of C40 H80 , from the extended
Hückel calculation. Part I shows the statistics of the energy levels before
adjustment. Part II shows these energy levels after the adjustment desc
in text. The thick bar indicates the position of the energy of the elect
being transferred at the transition state (25.22 eV!. Bands~a! and ~b! are
valence bands. There is a band located between 26 eV and 72 eV that
shown in this figure. It and band~c! are conduction bands. In the countin
the energy axis was divided into cells of 0.66 eV.
J. Chem. Phys., Vol. 106,
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eV, which are moderately close to the above experime
values. The MO energies after the above adjustments
now used as the diagonal matrix elements in Eq.~9!. The
interaction matrix elements between nearest neighbors,
noted byv in Section II, are obtained from the extende
Hückel calculation using the MO’s of each bridge unit as t
basis. The distribution of energy levels from the adjus
Hamiltonian is plotted in Fig. 3, part II.

The trend of coupling strength with length of chain ca
culated from the sequential method is shown in Fig. 4. T

ny
ed
n

not

FIG. 3. Similar to Fig. 2. Part I shows the statistics of the energy levels
C40H80 from the tight-binding Hamiltonian, while part II shows the stati
tics of the energy levels after the adjustment described in text. From 30
to 35 eV, there is another unfilled band which is not shown. The cell siz
now 0.45 eV.

FIG. 4. Semi-log plot foruHDku2 as a function of number of methylene unit
in the bridge. Results are obtained from the sequential formula.
No. 2, 8 January 1997
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592 C.-P. Hsu and R. A. Marcus: Bridge-assisted electron transfer
results of both the direct summation and sequential meth
are given in Fig. 5. Various aspects of there results are
cussed and compared next.

We have also calculated the effect of additional para
alkane thiol chains using the structure from Klein.25 For one
of the possible conformations of the ferrocenylcarbo
group,28 the effective coupling calculated from direct sum
mation method for different numbers of additional chains
listed in Table I.

IV. DISCUSSION

In the following discussion, we first consider and com
pare the results shown in Figs. 4 and 5 and in Table I.
then discuss the generalization to a more complicated br
system that has different bridge units or that has a comp
geometrical structure instead of being a linear chain. T
flexibility of the graph-based method described in the A
pendix will be discussed in the end of that section.

Using Eqs.~30!, ~31!, the sequential formula~Eqs.~22!
and ~23!!, Eq. ~33! and the experimental value ofl,7 0.85
eV, we obtained a coupling strength (uHDku2) of about
5.6310212 eV2 atom forn516, which yields a rate constan
of about 0.11 sec21. In obtaining the latter, the density o
states of gold electrode was estimated from the tight-bind
formalism by a Monte Carlo method. At the Fermi energy
gold, the value 0.0560.002/eV/atom was obtained. As
comparison, if the density of states of Au at the Fermi lev
obtained from low temperature specific heat, 0.3/eV/at

FIG. 5. A plot for logeuHDku2 vs.different bridge lengths. ‘‘s ’’ denotes that
for direct summation, ‘‘d ’’ from the sequential formula. The differenc
between the two sets of data is mainly due to their Hamiltonians. See
for the discussions.

TABLE I. The effective coupling strengths forn512, with additional thiol
molecules.

No. of additional effective coupling
thiol chains uHDku23109, eV2 atom

0 2.15
1 1.88
2 1.95
3 1.94
J. Chem. Phys., Vol. 106,
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~Ref. 37! is used instead, one would obtain a reaction r
that is a factor of 6 larger. The reaction rates calcula
above roughly agree, within one order of magnitude, with
1.25 sec21 measured from the electrochemical exchan
current voltage by Chidsey.7

The sequential method is numerically easy to calcul
with good precision. In Fig. 4 the coupling strength calc
lated by the sequential method is shown for up to 50 brid
units ~–CH2–!.36 It can be seen that for longer bridge chain
there is an excellent exponential decay, while for shor
chains, the decay is modulated with an initial oscillatio
Fitting the electronic coupling of the long chain
(n530250) with a term proportional to exp(2bn) yields
b51.05 per methylene unit. For even-numbered short cha
(n56220) the value calculated forb is 1.00 per methylene
unit.

The direct summation method gives an electronic c
pling strength for short chains similar to that for the sequ
tial method. The linear fit for the result of the direct summ
tion yieldsb51.27 per methylene unit forn56220. These
data decay withn slightly differently from that of sequentia
method because the Hamiltonian for both cases is not exa
the same. For the present form of the sequential method
need to use a tight-binding approximation which neglects
the interaction beyond nearest neighbor units. For the di
summation calculation, on the other hand, all Hamilton
matrix elements generated by the extended-Hu¨ckel program
were included. It should be stressed, however, that since
sequential formula for the bridge Green’s function~Eqs.~22!
and~23!! is mathematically exact and numerically stable, t
difference in the two sets of data points in Fig. 5 arises o
from the difference in the two model Hamiltonians. Th
Hamiltonians have been adjusted independently, as descr
in Section III C, to agree better with the experimental ba
structure measurements.

We also calculated the coupling strength through h
transfer mechanism by doing the direct summation only o
the filled states of bridge part. Our result shows that the h
transfer scheme provides the major pathways of the c
pling, and it yields more than 89% of the total couplin
strength.

For a long chain bridge, direct summation method p
forms summations~instead of merely multiplications! result-
ing in a large amount of cancellation to yield a small valu
So numerically it requires more care for the number of s
nificant figures of interaction matrix elements as well as
coefficients in describing MO’s with atomic orbitals, and th
method can be expected to fail when the effective coupl
strength is smaller than the significant digits of the numb
being summed. The direct summation calculation, even a
all the bridge states were pre-diagonalized, also still requ
at least ten times more computer time than that for the
quential method.

Our sequential calculation is based on a tight-bind
Hamiltonian. Matrix elements and overlap integrals from t
extended-Hu¨ckel program are not always the best choice
the tight-binding model. In our calculation we found that t
band gap obtained in this tight-binding model is too small~it

xt
No. 2, 8 January 1997
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593C.-P. Hsu and R. A. Marcus: Bridge-assisted electron transfer
is about 6.2 eV! compared with that from experiment~8–9
eV Ref. 35!. The band structure of the tight-binding mod
also does not resemble that from full extended-Hu¨ckel cal-
culation. Since the energy of the electron being transfer
lies between the conduction band and the valence ban
polyethylene, the position of the band edges are a most
cial factor in determining the effective coupling across t
hydrocarbon chain. In the sequential~nearest-neighbor tight
binding! calculation we adjusted the position of two of th
MO energies of CH2, as described in Section III, so that th
band gap is larger than the 6.2 eV, namely 7.4 eV, which
fairly close to that of experiments. In applying this method
other systems, the tight-binding Hamiltonian for the brid
part used should fit band structure measurements.

Turning now to the effect studied in Table I, there
seen to be little effect from additional chains. This res
indicates that in this system electron transfer occurs ma
through the chain covalently bonded to the redox act
group. The closest atom-to-atom distance from the fi
added alkane thiol molecule to the ferrocenylcarboxyl gro
is 1.6 Å.28 Even with such close contact between molecul
the additional thiol chains still do not effectively provide a
alternate route for the electron to be transferred to the e
trode, according to the results in Table I.

In Fig. 6 is a test of the condition discussed at the end
Section II, where the energy of electron is deliberat
shifted to a place where the matrices$vD21Nn% are almost
constant with respect to the iteration~Eq. ~22!!, but where
two of the important eigenvalues are a pair of conjug
complex numbers. For this alkane bridge chain the ene
needed for this effect to occur is not physically accessib
but it is still possible for other homogeneous chain bridges
have this kind of oscillatory length dependence. Moreov
there is no corresponding trend in a single-band model: in
off-resonance, single-band system,$vD21Nn% is a scalar se-
ries, and therefore the magnitude ofG(1,n)

(n) ~which is also a
scalar now! decays monotonically asvD21Nn goes to a
small constant real or complex number.

As mentioned earlier, in the derivation in Section II it
not required to have a bridge of identical subunits. For d

FIG. 6. Semi-log plot for the same calculation as in Fig. 4, except
energy of the electron is shifted to another region for the purpose of d
onstrating the effect of oscillation caused by the pair of conjugate com
eigenvalues of the matrixvD21Nn .
J. Chem. Phys., Vol. 106,
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ferent bridge units with either the same or a different num
of orbitals,v is now a square or rectangular matrix, respe
tively, describing the interaction between specific neighb
ing bridge sites,n and (n21) in Eqs.~22! and~23! , and the
diagonal matrixD must be then labeled with a subscriptn,
e.g.,Dn . Eqs.~22! and ~23! now become

Nn5~12v~n21,n!
T Dn21

1 Nn21v~n21,n!Dn
21!21, ~45!

G~1,n!
~n! 5G~1,n21!

~n21! v~n21,n!Dn
21Nn , ~46!

where v(n21,n) denotes the interaction matrix between t
(n21)th and thenth bridge units. The initial condition
G1,2
(2) is defined as the corresponding matrix between the

and the second bridge units. In this way, the Green’s fu
tion can be obtained for an arbitrary tight-binding line
chain bridge, without solving a large linear system. There
already strategies for solving such a large set of linear eq
tions, e.g., that of Stuchebrukhov,5 and others,11 and it will
be interesting to compare those methods with the pre
sequential method, both with respect to computation a
physical insight.

Formally in applying the sequential formula the on
limit on the range of energy of transferred electron is tha
should not be coincident with the poles ofD21 and of the
final Green’s functionG(n). However, the Green’s function
for the bridge is not a good approximation for the over
Green’s function when the energy is close to one of the
ergy levels of the bridge. Also, the physical situation of
on-resonant system is quite different. It may not even
volve an electron transfer from a state localized on the do
to one localized on the acceptor.

A further generalization can be made for more comp
cated structures of bridges using the graph-based method
scribed in the Appendix.

V. CONCLUSION

The sequential formula~Eqs.~22! and~23!! developed in
the present paper is numerically stable even for the case
large number of bridge orbitals. Since it involves only t
inversion and multiplication of small matrices whose siz
are independent of the chain length, it is also much l
computationally time-consuming than the direct summat
method.

This new method can be applied to various kinds
bridge molecules and, we believe, by extending the o
orbital per site case to many orbitals per site, as in
present paper, provides added physical insight into vari
effects. To the best of our knowledge, the present work
pears to be the first that rigorously treats a multiple ba
tight-binding Hamiltonian and, thereby, the origin of and t
condition for the exponential dependence for such cases
seen in the calculation, by investigating conditions for co
stancy ofNn in the case of a uniform bridge, it directl
reflects the origin of any exponential or other regular dep
dence~Fig. 6! for multiband systems. This exponential d
pendence for an off-resonant bridges was assumed, and
sonably so, in earlier work.4 For a linear bridge, no furthe

e
-
x

No. 2, 8 January 1997

to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp



lin
he
a
em
, i
on

a
an
t-

us
n
od
n
e
m
m

n

ba
x
ic
i

d
d

e

lines

one-
uch a
ucts

th a
he
t of

ber
n a
es-

ry

e
y
y

e
n
es.

il-
ach
ect-
d by
ns.
the

594 C.-P. Hsu and R. A. Marcus: Bridge-assisted electron transfer
assumption need be made for the calculation of the coup
strength, apart from the tight-binding Hamiltonian and, in t
present case, using the Green’s function for bridge subsp
instead of that of the whole donor-bridge-acceptor syst
The method can be applied to a wide class of systems
cluding non-uniform bridges and could be extended to n
linear bridge molecules, perturbatively if necessary.
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APPENDIX

1. A graph-based approach

Another approach of deriving the sequential formula,
ing a graph representation for the terms in the expansio
the Green’s function, is given in this Appendix. This meth
yields the same final answer as that derived in Sectio
~Eqs.~22! and~23!!, and it provides a physical picture of th
coupling scheme. Thereby, this graph-based method
prove useful in generalizing the calculation for more co
plex structures of the bridge.

2. The Hamiltonian and the Green’s function

Using Eq. ~8!, instead of treating only the interactio
between the last two bridge units as a perturbation (H1), we
now regard all the off-diagonal matrix elements as pertur
tions (H8) and soH0 now contains only diagonal matri
elements. For simplicity of presentation, the case of ident
bridge units will be considered. The new zeroth order Ham
tonian is, thereby,

H05S e 0 0 0 ••• 0

0 e 0 0 ••• A

0 0 e 0 ••• A

A A A A � 0

0 ••• ••• 0 0 e

D , ~A1!

and the perturbationH8 is now

H85S 0 v 0 0 ••• 0

vT 0 v 0 ••• A

0 vT 0 v ••• A

A A A A � v

0 ••• ••• 0 vT 0

D , ~A2!

where the block matricese, v and0 are the same as define
in Section II. Thus, the Green’s function can be expresse
the following expansion:

G5~E12H02H8!21

5G01G0H8G01G0H8G0H8G01•••, ~A3!
J. Chem. Phys., Vol. 106,
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whereG0, the Green’s function corresponding toH0, is now
the inverse of a diagonal matrix

G05~E12H0!
21, ~A4!

or,

~G0!ni ,mi ;nj ,mj
5dni ,njdmi ,mj

1

E2«mi

, ~A5!

whereni is the index for theni th bridge unit, so the indices
ni and nj refer to the block matrix at (ni ,nj ) position of
G0. Similarly,mi is the index for themi th molecular orbital,
thereforemi and mj refer to a matrix element inside th
(ni ,nj ) block.

3. Graph representation

One way of calculatingG in Eq. ~A3! is to draw a graph
whose vertices represent zeroth-order states and where
exist between two states only if they interact~Fig. 7!. We
then make use of a theorem which states that there is a
to-one correspondence between each possible path on s
graph and each term in each of the matrix element prod
in the complete expansion of the Green’s function.14 The
connection is as follows: each path begins and ends wi
dot, between two dots the path is connected with a line. T
corresponding quantity obtained from the path is a produc
the following factors:

for every dot it visits: 1/~E2«mi
!; ~A6!

for every line: vmi ,mj
. ~A7!

For each overall matrix element there are an infinite num
of paths corresponding to it, but by classifying the paths i
suitable way, it is often possible to obtain the exact expr
sion. One example is the RPE~renormalized perturbative
expansion! which selects the ‘‘skeleton’’~self-avoiding!
paths and then adds ‘‘decoration’’ to make an arbitra
path.14,38

We consider the part ofG that is needed to obtain th
effective coupling strength, and denote it now b
G(1,n)
(n) (m1 ,mn). It consists of all possible paths from an

orbital m1 in the first site to any orbitalmn in the last
(n th) site. At the vertical column of points for th
(n21) th site~Fig. 8! all such paths must cross this colum
at least once and all of them cross it an odd number of tim

FIG. 7. Graph representation for the multiple-band tight-binding Ham
tonian. Each vertical column represents a bridge unit. The dots in e
column correspond to molecular orbitals in each bridge unit. Lines conn
ing two dots represent the coupling between the two orbitals, represente
the pair of dots. The lines only connect dots in nearest-neighbor colum
To evaluate the Green’s function, all possible pathways from one dot to
other are included, as described in the text.
No. 2, 8 January 1997
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FIG. 8. A possible path that crosses the dividing column~shaded bar at siten21) three times.~‘‘Visiting’’ but then returning does not count as ‘‘crossing.’’!
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One can then cut the paths into pieces at the place where
cross this dividing line. The paths are composed of segm
that are either within the firstn21 units or wandering be
tween the (n21) th and then th units. The former type of
segments are related to the Green’s function for (n21)
bridge units,G(n21), while the latter type of segment is
computable quantity.

We define the segments as the paths without their be
ning dots so that there is no confusion upon connecting s
ments into a longer piece. The corresponding terms with
spect to such segments, i.e., matrix elements apart from
initial 1/(E2«) factor ~Eq. ~A6!!, is denoted asF, with
proper superscript and notation defined later.F will represent
this new set of matrices modified from Green’s functionG.
In order to describe all possible variations of different m
lecular orbitals in the same unit, our notation is form3m
matrices, with specific indices for the starting and end
sites only; the matrix elements of thesem3m matrices cor-
respond to orbital to orbital transition. So described, we
fine F (1,n)

(n) by:

G~1,n!
~n! 5D21F ~1,n!

~n! , ~A8!

whereD has already been defined in Eq.~14!. The inverse
D21 is the matrix corresponding to the dots that each p
starts with, andG(1,n)

(n) has the same definition as in Sectio
II. We have, thereby,

F ~1,n!
~n! 5( ~all possible segments from unit 1 ton!.

~A9!

As discussed above, all of segments corresponding toF (1,n)
(n)

cross the dividing line~the shaded bar in Fig. 8! an odd
number of times. So the segments can be classified by
number of crossings, i.e.,

F ~1,n!
~n! 5( ~segments that cross then21 site once!

1( ~segments that cross three times!

1•••1( ~segments that cross 2j11 times!1••• .

~A10!

In the following sections, expressions for terms in Eq.~A10!
are derived.
J. Chem. Phys., Vol. 106,
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4. The first term in calculating F(1,n )
(n )

The first term representing segments crossing siten21
once is given by:

( ~segments that cross once!5F ~1,n21!
~n21! F ~n21,n!

~2! ,

~A11!

which is a sum over of all possible segments from site 1
site (n21) multiplied by the sum over all possible segmen
that go from site (n21) to siten. Since a uniform bridge is
treated in the present argument, the transition from brid
site (n21) to siten is the same as that for any other tw
neighboring sites. In Eq.~A11! such a transition is denoted
by F (n21,n)

(2) . This quantity can be obtained by classifying a
the segments as follows:

~1! The segments that go directly from siten21 to siten, in
only 1 step: those segments contain only one line a
one dot on siten, so the corresponding terms are th
appropriate elements ofv times the appropriate element
of D21 according to Eqs.~A6! and ~A7!. Thereby, this
contribution toF (n21,n)

(2) is vD21, which accounts for all
1-step segments from any orbital in siten21 to any
orbital in siten.

~2! The segments that bounce back and forth between
n21 and siten: An example of such a segment is show
in Fig. 9. By an argument similar to the one above w
obtainvD21vTD21vD21 for segments that return to sit
n21 once and end up at siten, and
(vD21vTD21)2vD21 for segments that return twice, etc

In this wayF (n21,n)
(2) is obtained by a summation over th

above two contributions:

FIG. 9. A possible path for calculatingF (n21,n)
(2) .
No. 2, 8 January 1997
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596 C.-P. Hsu and R. A. Marcus: Bridge-assisted electron transfer
F ~n21,n!
~2! 5vD211vD21vTD21vD21

1vD21vTD21vD21vTD21vD211•••

5~12vD21vTD21!21vD21. ~A12!

This particular matrix also serves as the initial matrix f
F (1,n)
(n) for a uniform bridge. For non2uniform bridges, the

initial condition forF (1,n)
(n) needs to be calculated for the fir

two units, using the same expression as in Eq.~A12!, but
with appropriate matricesv andD.

5. The second and other terms in calculating F(1,n )
(n )

In Section C of the Appendix, it is seen that for segme
contributing F (1,n)

(n) the number of times they cross th
(n21) dividing line ~Fig. 8! should be an odd number~Eq.
~A10!!. All the possible segments that cross the dividing li
three times are next considered. These segments mu
composed of 4 segments: The first segment goes from s
to siten21, and its corresponding matrix has already be
defined asF (1,n21)

(n21) . The second segment starts from t
same final orbital at siten21, and it goes to siten and then
returns to siten21 including bouncing between the two site
for any number of times. We denote this part of the con
bution by F (n21,n21)

(2) . It differs from F (n21,n)
(2) in that it fi-

nally returns to siten21. The third segment starts from th
n21 site, visits the space of the firstn21 sites, where it
involves an arbitrary ‘‘loop’’ within the firstn21 sites, and,
it then returns to then21 site. We denote the matrix fo
such segments byF (n21,n21)

(n21) The final segment goes from
any orbital in siten21 to any orbital of siten arbitrarily, so
it corresponds to a matrix element ofF (n21,n)

(2) as shown in
Section D of the Appendix. Thereby, we have

( ~segments that cross then21 site 3 times!

5F ~1,n21!
~n21! F ~n21,n21!

~2! F ~n21,n21!
~n21! F ~n21,n!

~2! . ~A13!

Generalizing the above expression to any odd numbe
crossings of then21 sites gives

( ~segments that cross 2j11 times!

5F ~1,n21!
~n21! @F ~n21,n21!

~2! F ~n21,n21!
~n21! # jF ~n21,n!

~2! . ~A14!

To evaluate Eq.~A10!, a summation of the terms in Eq
~A14! for j50 to` yields

F ~1,n!
~n! 5F ~1,n21!

~n21! @11F ~n21,n21!
~2! F ~n21,n21!

~n21!

1~F ~n21,n21!
~2! F ~n21,n21!

~n21! !21•••#F ~n21,n!
~2!

5F ~1,n21!
~n21! @12F ~n21,n21!

~2! F ~n21,n21!
~n21! #21F ~n21,n!

~2! ,

for n53,4,5,•••. ~A15!

Also, Eq. ~A15! can be rewritten in terms ofG(1,n)
(n)

G~1,n!
~n! 5G~1,n21!

~n21! @12F ~n21,n21!
~2! F ~n21,n21!

~n21! #21F ~n21,n!
~2! ,

~A16!
J. Chem. Phys., Vol. 106,
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by using Eq.~A8! for bothG(1,n)
(n) andG(1,n21)

(n21)

So nowF (1,n)
(n) is written in terms ofF (1,n21)

(n21) F (n21,n)
(2)

F (n21,n21)
(2) and F (n21,n21)

(n21) . The first one is the recursive
variable, and the second one,F (n21,n)

(2) has been obtained in
Section D of the Appendix~Eq. ~A12!!. The next section is
then devoted to deriving expressions forF (n21,n21)

(2) and
F (n21,n21)
(n21)

6. The expressions for F(n21,n21)
(2) and F(n21,n21)

(n21)

We next evaluateF (n21,n21)
(2) which is the matrix for the

sum of the terms corresponding to all possible segme
bouncing back and forth between two rows of states that s
and end at the (n21)th row. In Fig. 10 is shown one of suc
paths. It differs from theF (n21,n)

(2) by having a return from
siten to siten21, contributing a matrixvTD21. Thereby,

F ~n21,n21!
~2! 5F ~n21,n!

~2! vTD21

5~12vD21vTD21!21vD21vTD21. ~A17!

From the above definition and discussion,F (n21,n21)
(n21) is

related to the (n21,n21) block ofG matrix in the follow-
ing way:

G~n21,n21!
~n21! 5D21~11F ~n21,n21!

~n21! !, ~A18!

in which anm3m unit matrix1 is needed because the dia
onal matrix elements ofG(n,n)

(n) include ‘‘null paths’’~i.e.,
paths which do nothing! arising from the first term (G0) in
the expansion of Eq.~A3!, and,D21 represents the missin
beginning dots for segments in calculatingF (n) ~Eq. ~A6!!.

By a strategy similar to that which led toF (1,n)
(n) one can

derive

F ~n,n!
~n! 5vTD21~11F ~n21,n21!

~n21! !

3@12F ~n21,n21!
~2! F ~n21,n21!

~n21! #21F ~n21,n!
~2! , ~A19!

in which all the possible segments forF (n,n)
(n) are divided into

several parts depending on the number of times they c
the dividing siten21. Those segments are classified as f
lows:

~1! The first segment is defined as a single step going fr
site n directly back to siten21. This segment is intro-
duced to forceF (n,n)

(n) to contain no null segment, and
corresponds tovTD21.

FIG. 10. A possible path for calculatingF (n21,n21)
(2) .
No. 2, 8 January 1997
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597C.-P. Hsu and R. A. Marcus: Bridge-assisted electron transfer
~2! The second segment is either a null one~ 1! or any loop
that begins and stops at (n21)th site (F (n21,n21)

(n21) ).
~3! On the other hand, the final segment is composed of

number of steps that go from the dividing line~site
n21) to a final stop on siten. This part exactly corre-
sponds to the definition ofF (n21,n)

(2) .
~4! There can be any number of segments between the

ond one and the final one. Those segments form loop
either spaces for the last two sites (F (n21,n21)

(2) ), or the
first (n21) sites (F (n21,n21)

(n21) ). This set of segments in
cludes the null path so the first term should be1. Two
consecutive loops at the same side would contribute
the singleF (n21,n21)

(n21) or F (n21,n21)
(2) matrix because of its

definition. If the final loop is in the last two site
(F (n21,n21)

(2) ), it can also be regarded as a part of t
segments corresponding toF (n21,n)

(2) which is the final
segment as describe above. To avoid over-counting,
then required to have the last loop at the side of the fi
(n21) site (F (n21,n21)

(n21) ). So the contribution of this par
of segment is:

11F ~n21,n21!
~2! F ~n21,n21!

~n21!

1F ~n21,n21!
~2! F ~n21,n21!

~n21! F ~n21,n21!
~2! F ~n21,n21!

~n21! 1•••

5@12F ~n21,n21!
~2! F ~n21,n21!

~n21! #21. ~A20!

By multiplying the above four factors together, Eq.~A19! for
F (n,n)
(n) was obtained.

7. The sequential formula

Eq. ~A16! is the sequential formula derived in this a
pendix. To show the equivalence between Eq.~19! in the text
and this Eq.~A16!, the following identity can be derived:

@12F ~n21,n21!
~2! F ~n21,n21!

~n21! #21F ~n21,n!
~2!

5@12vD21~11vTD21vD211••• !vT

3D21F ~n21,n21!
~n21! #213vD21~11vTD21vD21

1vTD21vD21vTD21vD211••• !

5vD21@12~12vTD21vD21!21vT

3D21F ~n21,n21!
~n21! vD21#21~12vTD21vD21!21

5vD21@12vTD21~11F ~n21,n21!
~n21! !vD21#21, ~A21!

in which Eqs.~A12! and ~A17! were used. Therefore, with
Eq. ~A18!

@12F ~n21,n21!
~2! F ~n21,n21!

~n21! #21F ~n21,n!
~2!

5vD21~12vTG~n21,n21!
~n21! vD21!21. ~A22!

So Eq.~A16! becomes Eq.~19! with the above identity~Eq.
~A22!! introduced.

Also, if the expression Eq.~A21! is introduced into Eq.
~A19!, the following identity is obtained:
J. Chem. Phys., Vol. 106,
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11F ~n,n!
~n! 511vTD21~11F ~n21,n21!

~n21! !vD21

3~12vTD21~11F ~n21,n21!
~n21! !vD21!21

5@12vTD21~11F ~n21,n21!
~n21! !vD21#21. ~A23!

Together with Eq.~A18!, the above expression is equivale
to Eq. ~20!. Comparison of Eqs.~21! and ~A18! shows that

Nn511F ~n,n!
~n! . ~A24!

With this identity ~Eq. ~A24!!, Eq. ~A23! is seen to be the
same as Eq.~22!.

8. Discussion

This approach, beginning with an infinite series expa
sion ~Eq. ~A3!!, gives the same recursion relation as deriv
in Section II by a non-perturbative method. Mathematica
the infinite series expansion in Eq.~A3! converges inside its
radius of convergence, namely when the modulus of ev
eigenvalue of the matrixG0H8 ~or H8G0) is less than unity.
A similar restriction appears in Eqs.~A15! and~A17!, which
requires bothF (n21,n21)

(2) F (n21,n21)
(n21) andvD21vTD21 to have

all of their eigenvalues within the unit circle in the comple
plane. However, the resulting expressions are not limited
such conditions since they can also be derived from the n
perturbative method. This aspect demonstrates a des
property of the graph-based method, namely, that anal
continuation can be applied, in the present case, so a
obtain useful expressions in the range of energies where
infinite series diverges.

This graph-based method can be further generalized
a complex, nonlinear structure of bridge. First, we note t
each column of dots in Fig. 7 can be ‘‘condensed’’ into
larger vertex, the graph can be simplified to a row of lar
vertices with nearest neighbor vertices connected by a ‘‘m
tiple line.’’ In this way, any one path drawn on this ne
graph represents all the possible paths on the old graph p
ing the same bridge sites in the same order with any cho
of molecular orbitals. It corresponds, thereby, to a mat
and each additional step on this new graph involves mu
plication of matrices. Now a complicated bridge is repr
sented by a simpler graph: a dot is used for each bridge
~which has several molecular orbitals!, and lines exist be-
tween sites that interact with each other. The way to obt
the corresponding terms of Green’s function from paths is
multiply all the matrices of lines and dots in the order giv
by the paths, as was done for the scalar terms for paths on
original graphs described in Section C of the Appendix. T
method should provide a different way of calculating
electronic coupling between donor and acceptor in protein
other complicated systems.

With both properties discussed above, this graphi
method is potentially useful for a variety of applications.
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