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The mechanism for electron transfer is discussed in terms of an atomic motion on a
potential-energy surface in many-dimensional atomic configuration space. In the absence
of electronic coupling between the reactants, a surface for the reactants intersects one for
the products. Electronic coupling causes the usual removal of this degeneracy and permits
the products to be formed adiabatically or nonadiabatically by an atomic motion across
the * intersection ** surface.

The properties of a system on this latter surface are formulated in terms of statistical
mechanics, in order to treat in a consistent manner the ligands microscopically and the
exterior solvent macroscopically. A concept of * equivalent equilibrium distribution *’ is
introduced to evaluate the surface integral. A macroscopic quantity is invoked only in
the last step of the derivation, replacing its statistical-mechanical equivalent.

A relatively simple expression is obtained thereby for the reaction rate, which reduces
to that obtained in part 1 when ligand and salt contributions are omitted. Applications
can be made to a number of problems, such as prediction of non-isotopic electron-transfer
rates from isotopic ones, relation between chemical and electrochemical electron transfers
inert salt effects and possibility of an inverted chemical effect.

1. INTRODUCTION

In a recent series of papers, the writer has formulated and applied a quanti-
tative theory of the rates of electron transfers in solution.l-3 In that work the need
for reorganization of configuration of the solvent molecules before and after
electron transfer was discussed. The free energy of solvent reorganization was
then computed using a macroscopic treatment 4 for such a system having * non-
equilibrium dielectric polarization ».

In some electron transfers there are also changes in distances in the co-
ordination shell as well (cf. ref. (5)-(7)). Clearly, this contribution needs to be
estimated in microscopic terms. In order to include both contributions in a
consistent manner, we first formulate the entire discussion of the reaction rate
in terms of statistical mechanics and only in the last step we replace, for ease of
calculation, one of the quantities by its macroscopic equivalent.

2. MANY-DIMENSIONAL POTENTIAL ENERGY SURFACES

(i) NO ELECTRONIC INTERACTION

In discussions of electron transfer, problems which have frequently arisen and
have occasioned some uncertainty and confusion concern the charge distribution
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22 ELECTRON TRANSFER THEORY

in the transition state, the mode of calculating its interaction with surrounding
molecules, and the mechanism of the electron transfer itself. To treat these prob-
lems, we first consider a hypothetical case where no electronic coupling between
the redox orbitals of the reactants occurs, so that no electron transfer is possible.
To anticipate, conclusions reached in §2 include those reached somewhat more
intuitively in part 1 (cf. ref. (8). _

In this case, we have two distinctly different electronic states—one having the
electronic structure of the reactants, the other having that of the products. The
lowest electronic state of each chemical pair has its own potential-energy surface
in a many-dimensional atomic configuration space, whose co-ordinates are those
of all the atoms of the two reactants, of the solvent, and of any electrolyte.

The two surfaces each have their own valleys but the two sets of valleys occur
in quite different regions of the space, reflecting differences in stable bond lengths,
solvent orientations, etc. The surfaces intersect, usually along some upper reaches
of each, and form thereby a surface of one less degree of freedom. A cross-
section of the surfaces and of their intersection is indicated in fig. 1.
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Fig. 1.—Profile of N-dimensional potential energy surfaces plotted against an atomic
configurational co-ordinate of the entire system. Curve R denotes reactants (ox;+redz) ;
curve P, products (red;+0xz). Dotted lines show intersection of surfaces (zero electronic
interaction case) and solid lines indicate the splitting for the case of weak interaction.

The intersection surface can be reached by any suitable fluctuation of atomic
co-ordinates to produce some atomic configuration which is usually a compromise
between the stabler ones of the two electronic states. Because of the absence of
electronic interaction of the redox orbitals, such a fluctuation does not cause any
electron transfer. The system merely stays on the surface corresponding to the
original electronic configuration on passing through the intersection. Fluctuations
of this nature involve simultaneous changes in orientation, position and atomic
polarization of the solvent molecules, in internuclear distances in the co-
ordination shell, in relative motion of the reactants and in configuration of the
ionic atmosphere.

(ii) ADIABATIC AND NON-ADIABATIC MECHANISMS FOR ELECTRON TRANSFER

Consider next the weak electronic interaction between the redox orbitals which
occurs, for example, when the reactants are not too far apart. Their interaction
leads to the usual splitting of the surfaces, as indicated in fig. 1.
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R. A. MARCUS 23

For sufficient electronic interaction, a system passing across the intersection
during a fluctuation will always stay on the lowest surface. We see from fig. 1,
therefore, that the products have been formed from the reactants adiabatically (in
the quantum-mechanical sense) as a result of this atomic motion. This motion,
then, is one which produces an atomic configuration of the system more favourable
to the electronic charge distribution of the products.

When the electronic interaction is extremely weak, on the other hand, for
example when the reactants are far apart, the system tends to retain its original
electronic configuration on passing across the intersection, i.e., the system * jumps
to the upper surface at such times and jumps back on its return. Each time no
electron transfer tends to occur. There is, nevertheless, in such cases a small proba-
bility of * transition ”. For this system, we have thereby a * non-adiabatic
mechanism for electron transfer.

As long as the interaction is not too strong, the splitting is relatively small, and
little error is made in regarding the correct potential energy at the * intersection
surface as being essentially equal to that for the zero-interaction system. Thus,
both the potential energy and the probability distribution on the intersection surface
can be computed for the weak interaction system by the simple expedient of regarding
the system as being the conceptually simpler zero-interaction one. Moreover, it may
be emphasized here that in the computation, the charge distribution for the zero-
interaction case should be used. It is the one for the reactants (or products) and
not some compromise.

In both cases, adiabatic and non-adiabatic, it is necessary for the system to
pass through the intersection surface. In the first approximation the theoretical
rate expression deduced below for the adiabatic mechanism will apply to a non-
adiabatic one if, in the latter case, it is multiplied by some factor denoting an average
transition probability per passage through the intersection region. (Nuclear
tunnelling through the barrier in fig. 1 is neglected here in both cases.)

3. QUANTITATIVE FORMULATION OF THE THEORY

() EQUATIONS FOR RATE AND FOR INTERSECTION SURFACE

We shall use an equation for rate of passage through a surface in many-
dimensional space, in our case the intersection surface. It is similar to the usual
transition state theory equation (e.g. ref. (9) and unpublished results). If AF?
denotes the difference in free energy of the reactants when they are constrained
to exist on this (N—1) dimensional surface as compared with their existing in all
atomic configurations, the rate constant, k,, is '

k, = (kT/h) exp (—AF*/kT). (3.1.1)

For defining the intersection surface in terms of mclecular properties, we
introduce the following notation :

k = any atomic configuration of the entire system in N-dimensional space,

p'= superscript to designate throughout a property of the products (a change
of notation from part 1),

& = potential energy of reactants in configuration k,
A& = difference between electronic energy of the lowest electronic state of the

products and that of the reactants when each is at its own zero of potential
energy.

Since the electronic energies of the reactants and products are equal along the
intersection surface, the latter obeys the relation,

&, =80+ A8 3.1.2)
at the intersection.
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24 ELECTRON TRANSFER THEORY

The potential energy of the reactants on the intersection surface, & ,{, say, equals
&, and because of (3.1.2) could also be written as

8} = &+ m(8,— 8L —mAS8, (3.1.3)

where m is any constant. The usefulness of (3.1.3) will be shown in § 3.4.

(ii) POTENTIAL-ENERGY EXPRESSION

We assume that the potential energy of the reactants is essentially the sum of
two contributions :

&= Eut&s (3.2.1)

where &i depends on the internal co-ordinates, &, of the co-ordination shells alone
(&i being defined as zero at the equilibrium values of these co-ordinates), and
&> depends on all other co-ordinates, k°, of the entire system. Thus, k, the
totality of all co-ordinates,* is an abbreviation for k! plus £° (*inner ” and
“ outer ).

We treat the jth particle as possessing a permanent dipole moment y;, an iso-
tropic polarizability &, and a charge ¢;, some of which may be zero. We introduce

" the following additional notation :

E = electric field strength at any point, arising from all the ionic charges
and from the permanent and induced dipoles.
¢ = potential arising directly from all ionic charges = X;e;/r;.
D = contribution to E arising solely from the charges. D = —V¢.
D, = contribution to E arising solely from the permanent dipoles.

Qu° = van der Waals’ potential energy of interaction of all the particles
(repulsive, dispersive, permanent dipole-dipole). €° is taken to
depend only on k°, i.e. Qx° = Qfo. ,

j = subscript to also denote fields at particle j, minus the latter’s contribu-
tion.

It can then readily be shown that &° is given by
(gko = Qko+Zj(eJ¢j/2—ﬂj . Dj—ochj . (DJ+ D"j)/Z).= (3.2.2)

To establish (3.2.2), arguments related to those in appendix IV of ref. (4) may be
used (cf. ref. (10)). The second term is the interaction between the charges. The
third is that between the charges and the permanent dipoles. The remainder is a
composite one. It includes ion-induced dipole interactions, —ZX;oyE;.D;; an
induced-permanent dipole term, —X;E;.D,; induced-induced, —3Z;o4E;.
(E;—D;—D,;); and the energy stored up in the induced dipoles Y,04E% /2. The
Qo term includes the permanent dipole-dipole term, — XZ;u; . D;f2.
E; obeys the relation : .

1
Ej = Dj+D”j—Vj Z amEm.Vm;_ . (3.2.3)
m#j

Jm

(Cf. ref. (11) for non-polar and ref. (10) for polar molecules between parallel elec-
trodes in a non-electrolyte system.) Unlike the D in ref. (11), say, ours is.not
the dielectric displacement, a quantity with little molecular significance here, but
is the microscapic equivalent of 4 E¥).

* There would be no real loss of generality if one now omitted from %°, k and further
consideration those co-ordinates whose behaviour is entirely the same in each of the two
electronic states (e.g. some solvent vibrations).
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(iii) POTENTIAL ENERGY FOR TRANSITION STATE

Introducing the above quantities into (3.1.3), an expression is obtained for & ,*c
which simplifies considerably when the linearity property of (3.2.3) is applied.*
We obtain |

8t =86h+85+C, (3.3.1)
where
Ep = Qko+2j[ef¢f/2—p_,- . D;’ —ochf . (Df +D,))/2]. (3.3.2)
¢}, Df, Ef and & z, are abbreviations for functions of the type
Xt =X4+mX—-XP); (3.3.3)

C =m(m+1)Z,[0}(E;—E?).(D;— D%+ (e;—eb)(p;— d%)/2] —mA8. - (3.3.4)

C depends essentially only on the positions of the two reacting species: for
D;—D? and related factors depend only on these co-ordinates, while E;—E? is

independent of molecular orientations and of positions of atmospheric ions.
Because a liquid is closely packed, the energy term involving E]-Ef can be taken

as effectively independent of the much less important variables, the positions of
the solvent molecules.

(iv) EQUIVALENT EQUILIBRIUM DISTRIBUTION (e.e.d.):

It is instructive, for evaluating AF?, to first compare the transition state, in
which exp (— & ,{/kT) is integrated over the intersection surface, with a state in which

this factor is integrated over all of space. We shall term the configurational dis-
tribution of the latter state the ‘ equivalent equilibrium distribution ” (e.e.d.).
Comparison of (3.3.1) with (3.2.1.) and of (3.3.2) with (3.2.2) reveals that the
e.e.d. is one which would be obtained in a corresponding equilibrium system in
which the charges on the two central ions were e}, i.e. e,+m(e,—eb), (n = 1, 2),

and which had & ;:, as a potential function for the co-ordination shell.

The transition state of the zero-interaction system differs from this system in
only two respects : the charges of the two central ions are those of the reactants,
and it has one less dimension of freedom than an N-dimensional system.

4. EVALUATION OF THE REACTION RATE CONSTANT
(i) GENERAL

For exact evaluation of the surface integral, we should examine in detail the
motion along the surface, for example, by examining the atomic motion normal
to it, i.e., the reaction co-ordinate. We hope to analyze this dynamical problem
at a later date. For the present, we use instead the following procedure.

By a suitable choice of m (see § 4.4. and appendix 1), the e.e.d. is made to centre
on the intersection surface, and thereby to die away fairly rapidly along the normal.
Since (3.3.1) applies both to e.e.d. and to the transition state, we may then set the
surface integral over exp (— &}/kT) equal to the volume integral for the e.e.d.,
divided by a partition function along the normal, as found in appendix 1. (If some
of the motions along the surface are quantized, this statement could be expressed °

* For any given j and k°, E; is the same function of the Dm~+Dum as E}’ is of the

D? +Dyum and as E;,n—EP, is of the Dn,—D”.  This relationship becomes evident when the

n simultaneous vector eqn. (3.2.3) are written in matrix form and inverted to obtain a
formal explicit expression for the matrix of Ejs. (The procedure is analogous to that
employed in eqn. (4) of ref. (10) for a simpler system.) A similar procedure is then used

to obtain E fand, by subtraction, Ej—E.
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26 ELECTRON TRANSFER THEORY

in terms of equating corresponding free energies of the two systems.) Most of
the likely motions along the normal to the transition state surface, such as some
of those mentioned in § 2.1 have a * frequency ” of motion of about 1013 sec1,
We anticipate, therefore, that the partition function just noted, which .may be
written as kT/hv, will be of the order of unity, and that the procedure just
outlined makes the rate constant uncertain only by a small numerical factor.

(i) APPLICATION OF e.c.d.

The e.e.d. was seen to have * inner » co-ordinates which behave as though the
potential function were 3,:} (or as we shall now denote it, 8’;,). Let the latter’s
minimum relative to the zero of & be called A&’ f and the corresponding vibrational
energy levels be 8’}, (totality of quantum numbers, v). Let F denote the free energy

of the reactants.
Using (3.3.1.) we then deduce for AF#:

exp (—AFkT) = tg(p_gl{k_ﬂ . JZ exp [— (&} + A}
v=0

+ &L+ C+K)ETdr,,  (42.1)

where K is the kinetic energy of the Ny outer co-ordinates and drtp is their volume
element in phase space. Summation over all v immediately yields the vibrational

partition function, Q‘fib, for the inner co-ordinates, and integration over the N -

momenta cancels a corresponding momentum integral in an expression for F (as
does the #No factor). The residual integrand depends only on the relative * outer ”
co-ordinates (position and orientational) of all the particles. We next hold all
of these relative co-ordinates fixed within two fairly large spheres, one about each
central ion (large enough so that the long range ion-ion-solvent interactions are
negligible on their surfaces). We then integrate over the co-ordinates of the centre
of gravity of these two ions and over the orientations of their line of centres,
translating and rotating, respectively, the entire system within the large spheres to
ensure constancy of the important relative co-ordinates during integration.
Holding the distance r between the ions fixed, we next integrate over all other
outer co-ordinates, the integral being denoted later by exp (—F}(r)/kT). In
integrating finally over r, we first note two factors which favour small rs in spite
of any coulombic repulsion: the solvent reorganization barrier is smaller there
(cf. below) and, at the larger rs, the electronic interaction becomes so weak that
out there the integral should be multiplied by some small non-adiabatic transition
probability. We presumably err relatively little if we simply take r as the distance
of closest approach and set the corresponding r-partition function equal to unity,
i.e. kT/hv,~1 (cf. also §4.1). We obtain after some cancellation :

k, = Z exp [ - (AF} +AF})/kT], (4.2.2)
where
AF}

A8t —kT In Q}i/Qyivs ' (4.2.3)
AF{+Fy = F}(r)= —kT In j j exp (—&L/kT)dk). 4.2.4)

In these equations, Qib, the vibrational partition function of the inner co-
ordinates of the reactants, was extracted from F: F}(r) is the configurational
free energy of the reactants due to all ion-solvent-ion interactions in (3.2.4),
at fixed positions of the central ions; dkj is the configuration volume element of
the remaining (N—6) outer co-ordinates. Z is the same as the usual collision
frequency of two non-polar molecules in solution (probably about 1011 1./mole sec
rather than the value suggested in ref. (2) and (12)).




R. A, MARCUS 27
(iii) EVALUATION OF AFg AND AF}

It follows from § 3.4 that (4.2.4) for F}(r) is simply the free energy of a system
having the charges of the reactants a distance r apart but a distribution of orienta-
tions of solvent molecules and of positions of ions in the ionic atmosphere which
would be in equilibrium with the hypothetical charges, e,+m(e,—eZ), (n = 1, 2),
on the two central jons. It is at this point that we introduce the macroscopic
expression 4 for the free emergy of this type of non-equilibrium system. We
obtain *

AF} = w+4+m?2), - (43.3)

1 1 1\y/1 1
= 2 _— 4 - = 34
A=(4e) (2a1+2a2 r)(n2 Ds)’ (43.4)

where w is the coulombic work required to bring the reactants together at the
prevailing salt concentrations and equals ejep/Dyr at infinite dilution; Ae is the
charge transferred; a; and a; are the ionic radii of the ions (including their co-
ordination shells); we take r = a;+a,; n and D, are the refractive index and
static dielectric constant, respectively.

We evaluate the contributions to AF} when the vibrations are harmonic, the
anharmonic values being somewhat more complex. If g, denotes a bond co-
ordinate of the reactants, having equilibrium value ¢ and force constant K, we

have
E = ZK(q,—a3)°/2. (4.3.5)

Upon finding the minimum of &}, and evaluating 087},/0q; there (at gs*), we deduce
for the transition state:

g5t = [(m+1)K,g; —~mK2qJ]KE, (4.3.6)

K} = (m+1)K,—mK?, 4.3.7)
A8} = (m*[2)Z,K (Aq)*(KEKH?, (4.3.8)

where
Ags = g5 —q;.

In appendix 2, these equations are obtained approximately for a normal co-
ordinate treatment, the g;—g3 then becoming normal co-ordinates and the v/ K,/2n
becoming vibration frequencies of the normal modes.

(iv) EQUATION FOR m

The equation for m is obtained by equating the difference between free energies
of activation for the forward and reverse reactions to the standard free energy of
reaction at the prevailing electrolyte concentration, AF*. In the process, we

tacitly set the free energy of the reactants on the intersection surface equal to that .

of the products there (by making both equal F}) and so satisfy the energy condition
(AD) in appendix 1, since the entropies of two systems similarly distributed on the

* Eqn. (25) and (25a) of ref. (4) were used in conjunction with certain macroscopic
properties (P, and ¢;) of the e.e.d. system. Two minor approximations were made:
* image effects ™ were neglected. We estimate 13 that their inclusion would raise AF{ by
less than 10 9 (see also ref. (14)). - In calculating the salt effect, an additional approximation
was made but leads to no error in the Debye-Hiickel region and is probably unimportant
otherwise. Incidentally, the ions are not treated as conducting spheres, as suggested on

p- 986 of ref. (4). The mathematical details of these calculations will be described else-
where,
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28 , ELECTRON TRANSFER THEORY

same surface are also equal. Thereby the e.e.d. is made to centre on the inter-
section surface. '

The term (Fi—FP) can either be calculated directly or simply by using the
following transformation property to obtain it from Fi—F; any property of the
transition state is invariant with respect to a simultaneous replacing of —m by
m+1 and interchange of “p” and “no p* superscripts (the property can be
established from (3.1.3)—valid now for all k£ of the e.e.d.—with some caution,
remembering that &} is relative). We obtain for m:

—(2m+1D)A+A8— A8 = AF® — AFS, +wP—w, (4.4.0)

where A& is A% t with m+1 and K, replaced by —m and K7, and where — AFjp
is defined as kT ln Q%g/Qvib. When K, = K2, A&— A&?‘,’t becomes simply
—(2m+ 1)ZK(Ags)?/2.

5. CONCLUDING REMARKS

Eqn. (4.2.2) and (4.4.1) reduce to those of part 1 when any effects from co-
ordination shell distances and from electrolyte are omitted. Eqn. (4.2.3) for the
contribution of the * inner ” co-ordinates reduces to that obtained by George and
Griffith 15 if AF® is set equal to zero, the partition function omitted and the normal
co-ordinates replaced by bond co-ordinates.

Among the topics to which the results of the present analysis could be applied
are the following :

(i) Relation between chemical and electrochemical electron transfer rates: .

cf. ref, (3) for solvent reorganization only. This discussion could now-be
generalized.
(ii) Prediction of electron transfer rates of non-isotopic exchanges from iso-

topic ones: e.g., taking K;=K?, one finds from (4.2.2) that when correc-

tions are made for any differences of coulombic repulsion, the mixed rate
constant is related to the isotopic ones (k; and k7) and to the equilibrium
constant K in the given electrolyte medium by kj222(k1k2K) if AF° is
not too large. -
(iii) Numerical estimate of contribution to activation free energy from the
co-ordination shells when the necessary force constants and internuclear
~ distances are available * (cf. ref. (7). '

(iv) Inert salt effects (subject to an assumed treatment of the jonic atmosphere
as a continuous distribution, however). .

(v) Possibility of “inverted” chemical behaviour. If AF° becomes too
negative, intersection of the two surfaces becomes possible only at high
potential energies, unless in such cases a more favourable reaction mech-
anism is found. In (4.3.3) and (4.3.8) m2 eventually increases with in-
creasing — AF°, and the rate constant decreases.

(vi) Analysis of assumptions made when electron transfers are interpreted in
the terms of the Franck-Condon principle (cf. analysis in ref. (8)).

APPENDIX 1
PROPERTY OF THE e.e.d.

If the e.e.d. is indeed * centred ”* on the intersection surface, a system having
the e.e.d. and the electronic configuration of the reactants would have the same

* A similarly made estimate for D,O-+H;0 effects using (4.2.3) would be valid only
if the contribution of the OH frequencies to the reaction co-ordinate were negligible (cf.
discussion of uncertainty in & in § 4.1) and only if one added to AF? any additional con-
tribution from changes in hydrogen bonding as the charged reactants approach each
. other, if any.
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average energy as a system having the same e.e.d. and the electronic conﬁguratlon
of the products.. That is, it would satisfy

<£k>av - (g +A‘g>av * (AI)

each averaged over the e.e.d. (They would also have the same free energy too.)

It is easy to show that such an ee.d. exists. Consider the expression
—~kTIn | .. fexp (—&}/kT)dts, as a function of m and minimize it with
respect to m. One obtains immediately, using (3.1.3): :

[..Jexp (—&}kT)& d7, _ J..fexp (—&YET)EL+AS)dx,
T-.] exp (—8l/kT)dz, T..J exp (—LkT)dr,

This is the desired property. Thus,-there is an e.e.d. centred on the intersection
surface. It has the property that the In term, i.e. the free energy, is a minimum
with respect to m. (4.4.1), the equation in the text for m, satisfies the above
equation.

We now examine in more detail the approximation of replacing the (N—1)-
dimensional surface integral by an N-dimensional volume integral over the e.e.d.,
N being large. A co-ordinate system is introduced as follows.

We note first that the intersection of the two potential surfaces in fig. 1 defines
a surface of (N—1) degrees of freedom and that shifting the potential-energy
surface of the products vertically by an amount I' without change of shape, pro-
duces a different intersection which defines a new (N—1)-dimensional surface
parallel to the first one. In this way a family of parallel surfaces can be generated,
each member associated with a particular value of I" and obeying (A2) (cf. § 3.1).

&= 8F+A8+T. (A2)

‘Let o denote the tdtahty of (N—1) orthogonal curvilinear co-ordinates defining

position on any given surface and let y be the co-ordinate normal to the family

of surfaces, so that k in & consists of ¢ and y. Let the origin of y be at the actual

intersection surface for which I' = 0. I'(p) is a strictly monotonic function of y
and I'(0) =

Consxder now the volume mtegral over the e.e.d.,,

j . j exp(— aS"f,,/kT)dad'y,

where & §y satisfies (A3) (cf. 3.1.3)) and m was selected so that (A4) is satisfied
(cf. (A1), using A2)).

(A1)

é”f, = &4y+ml, (A3)
a .

J jl" exp(—&} +,/kT)dody =0, (A4)

In the vicinity of y = 0, I' equals p(dI'/dy)y, the derivative being non-zero.
(A4) thus becomes

|7 vexe(-riaiiir =0, (a5)

where Fg, the free energy of a system constrained to exist on the surface 9y, is

given by (A6):
exp (—F},/kT = j . jexp( — &% [kT)do. (A6)

Since (A5) is applicable to all 7, we infer that Fg is an even function of y and

write therefore the Taylor’s series (A7), retaining only terms up to y2 for physical
reasons based on fig. 1:

)—F%m+(v2/2'>F£6§+ (A7)
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30 ELECTRON TRANSFER THEORY

Using (A7) the N-dimensional volume integral becomes

[+ ¢ —_—
|7 exe(-ripmty = exp (oW amiTTFgy, (4B
But exp (—F},/kT) equals §. . .§exp (- &x0/kT)do, using (A6) and (A3) at
y =0, and so equals the desired (N— 1)-dimensional surface integral. Thus, if the
“ yibrational-like partition function” V| anT/F")‘ is of the order of unity, the

basic approximation enunciated in § 4.1 is seen from (A8) to be justified.
We next estimate F(’(’» and incidentally investigate the significance of m.

Differentiating (A6) with the aid of (A3), we find
F{oy = m(dL'/dy)y=o+<(d&€,,/d7)0)0s (A9)
Fioy = {(d*&%,/dy*)odo +[Kd&},/dy)o > — {(d&E,/d)5do J/KT,  (A10)

where {f)o denotes any function f averaged over the intersection surface,

I. . .Ifexp(—#,O/kT)da/j. . .j‘exp(-—é”,o/dea.

Since F.. = 0, we find

©
—m = {(d&,,/dT)o)o.

It can thereby be seen that for any fixed shape of the two potential energy sur-
faces (i.e. for fixed AS®), m is the increase in activation energy per unit increase
in standard energy of reaction. Accordingly, if m were 0, the activated complex
would resemble the reactants. It would resemble the products if m were —1
and would be as much like one as the other if m were —4. These remarks can
also be inferred from (3.3.3). .

F('(; contains first an average force constant term-((d2$§r/dy2)o)o. The sum

of the second and third terms is found from approximate calculations based on
(4.3.5) to be of a magnitude comparable with the first. Accordingly, it seems
reasonable to expect that the results of more detailed calculations will show that
the value of F 1s of the order of that of a typical force constant, and that there-

fore the partmon function is of the order of unity. The results for the calculated
free energy of activation are, it follows from (A8), relatively insensitive to the
exact value of F«’)')

APPENDIX 2

NORMAL CO-ORDINATES AND AFf

As before, &} is minimized and A&} and the vibration frequencies v} are then

computed.

A reactant whose structure has a similar symmetry in the two redox states will
also have similar types of normal co-ordinates, Q;. The dependence of certain of
these co-ordinates (particularly stretching co-ordinates) on the internal co-ordinates
of displacement, Sy = x,— x}, will also be essentially the same in spite of any changes
in equilibrium bond lengths. Moreover, comparing molecules of similar geometry,
it may be deduced from the pertinent transformation equations 16 that each Q; is
unaffected by changes in corresponding force constants when only one type of
force constant contributes appreciably to that Q; or when all contributing ones
change by the same factor. The former appears to be true for many vibrations,

as inferred from the valency force field approximation 17 and perhaps from the.
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relative constancy of vibration frequencies associated with the relative motion of
two atoms or of two groups. We shall, for simplicity, make this approximation
here.

Thus, writing

Q= Ztlst(xt —x;) and @ =Zrl§x(xt —X;F),
we shall let /7, = I;. Denoting 4n2v2 by A,, we also have

Gl = 1) A05(m+1)—$) AUQE’m.

We next define a new set of coordinates g, (equilibrium values g3):

: qs = Zrlstx? y 45 = Z!lstx? .
Therefore,

Qs = qs_q: and Qg = qs—q:p'

Regarding &}; as a function of the ds now, we may expand it about its minimum
at ¢, = q:t say) by the usual process of computing derivatives with respect to

the g;. Eqn. (4.3.6) to (4.3.8) are then obtained, with the Ks replaced by As and
the ¢°s having the above meaning. The A% are related to the frequencies v by

the equation,
. A =dn?vi2,
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