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Gaussian Field Model of Dielectric Solvation Dynamics
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Extending the Gaussian model of solvation (ChandlerPBys. Re. E 1993 48, 2898) to dynamics, we
focus specifically on the problem of dielectric relaxation. In the Gaussian model, the solvent is described in
terms of a linear responding field that is expelled from the volume occupied by the solute. The excluded
volume affects the normal modes of the system, thereby playing a significant role in solvation dynamics.
Even in the context of dielectric continuum theory, the excluded volume affects the polarization response
outside that volume. We show that this effect can be analyzed generally and analytically.

I. Introduction from the region occupied by the solute influences the normal
modes of the system, generally causing a spectrum of relaxation
imes. This effect arises when the size of the solute introduces

ne or more length scales that differ from the correlation length
of the solvent. The effect can be illustrated with the simplest
of dielectric models-a uniform cubic lattice of polarizable cefls.

Many chemical reactions in solution involve a rearrangement
of the charge in the reactants. The time-dependent response o
the solvent molecules to this change influences reaction dynam-
ics. When that solute charge distribution is suddenly changed

?g I'lg:'tt fr;\?sorp:orn |}O r?nt ?;(C'te?“ﬁlr?c:;ovc:fhsttﬁte Olfvthﬁt sc_)II_lrJ]te, Where standard approximations to dielectric continuum theory
€ latter IS generally hotin equ u € solvent. € would predict a single longitudinal relaxation time, the exact

ts(;J (rjg :rrr]a%h?ent%eaosftztoell:;eedlﬁirgreiu?rlls\t/\rlli?hu:lr?en;g\r/\(/:izlglg Sﬁ;egtanalysis of the model generally gives a range of times between
distributiog The uestior? that arises is how this relaxatiogn betweenz, and Debye’s relaxation timerp. This fact is
: q demonstrated in section V.

process can be describgd micr.oscopically in terms of the Before reaching that point, we begin in section Il where we
solvgnt—solute molecular interactions. . - . identify the correlation function that must be computed to treat

With the advent of ultrafast laser techniques, itis now possible oy ation dynamics. The analysis of this correlation function
to probe this detailed solvent relaxation dynamics. The (o yhe case of a Gaussian field model is carried out in section

experimental results, combined with the developments of |\ 5 main result, eq 3.11, is a time-dependent generalization
theoretical models and computer simulations, have led 10 an ¢ changier's treatment of equilibrium solvatirThe result

appreciation of the.impor.tance of miqroscopic features on theseexpresses the spactme response function of the solution in
processes. Of particular importance is the effect of molecular terms of that of the pure solvent and the volume occupied by

size~the spatial correlatiqns of the solvent_ in the V‘C"T“V (_)f the solute. The general result of section Il has applications
tr':/(laSAsczlute. T?eddg/nz\;ll\r/nllcal mea(rj\ Sﬁgerlcal hapgroxmztlon that extend beyond the phenomenon of dielectric relaxdtion.
( )” as applied by Wolynes and othérsas the first an In the context of this paper, however, eq 3.11 represents a

(TOSt ".‘f'“e'g'?]' of theorlesh to ﬁddrezs th'z |s'suedl|nfﬁietzlvat|on compact solution to the time-dependent dielectric boundary
ynamics. Other approaches have been devised, se value problem of arbitrary geometry.

treatments involve ingen_iou; though approximate ’T‘e'dings of n section IV, we describe a coarse-grained Gaussian model
liquid structure theory with linear models of relaxation, often ¢ . qielectric material. With this model and eq 3.11, well-
incorporating empirical information such as the frequency- ynown dielectric continuum results are derived in section V.
dependent dielectric constant of the bulk solvel). These results are extended and the effects of solute size and

We adopt a different approach, employing the perspective ghape are demonstrated. The paper is concluded in section VI
of a simple model of the solvent and the meaning of solvation. \yith a brief discussion.

In particular, the solvent is described in terms of a linear
respon(_jing field, i.e., a G_aussian field, that is expelleq from_ II. Dielectric Solvation Dynamics
the region of space occupied by the solute. Standard dielectric
theory is an example of this class of models. The mean :
spherical approximation is another example as it correspondsthe solute has two electronic states, the ground state (g) and
to approximating a nonlinear system by a Gaussian modss. the gxutgd state (e). Ignoring |nterst§te coupling, the nuclear
show how the statistical mechanical analysis of solvation Hamiltonian of the system can be written as
dynamics of this class of models can be carried out analytically, .
without approximation. The results derived from the analysis H = H;lglig| + H,lele| (2.1)
differ significantly from predictions often found in the literature.

.Our most |mport§1nt fmdmgs concern the effec.ts of solute where Hy = HO 4 Hs + Hgs and He = HEEO) 4 He + Hes
size and shape on dielectric relaxation. The exclusion of solvent g

Consider a solute molecule embedded in the solvent where

Hgo) and Hgo) are the gas phase Hamiltonians of the solute

P I molecule at the ground state and the excited states the
University of California. . . . .

t California Institute of Technology. Hamiltonian of the solvent, andygs andHesare the interactions

® Abstract published ilAdvance ACS Abstractguly 1, 1996. between the solute and the solvent in the two electronic states.
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Imagine that the solvent was initially in equilibrium with the  to the excluded volume can be computed exactly as we now
solute in its ground electronic state. After instantaneous demonstrate.
excitation from the ground state to the excited state, the
surrounding solvent molecules will relax to a new equilibrium 1ll. Gaussian Field Model of the Solution
consistent with the excited state. This relaxation is probed by

X Consider a time-dependent Gaussian model with action
ultrafast spectroscopy experimehtsat measure

— oo gm(r.7)] =
S0 =202 @) Lt pndY iy g mie G e )
where the time-dependent fluorescence frequency is given by (CHY)
Ao (t) = fiw, + AE(t) (2.3) ;’Sgé%r;rs;;;r(]r%L';]rcggr)]’denotes the functional inverse of the
Here, hwo = HY — H is the gas phase frequency shift, and C(rr'r—7) = En(r.om(r )0 (3.2)

AE(t) is the solvation energy change due to the charge
distribution change between the two electronic states. As such.yherem(r,7) is the dipole density at positionand Euclidean
the solvation correlation function can be rewritten in terms of {ime 7. The pointed brackets denote the equilibrium thermal

the time variation of the solvation energy, ensemble average, arfid! stands for temperature in units of
AE(t) — AE(c0) Boltzmann’s constant. Thg action (3.1) involving only a dipqle
qt)y="—"t——— = (2.4) field is a reduced description of a solvent. One must imagine
AE(0) — AE(e) that other fields, such as density, have been integrated out. It is

. he time-d d vai h for this reason that the action must be nonlocal in time. A
_To estimate the time-dependent solvation energy change, Weq adratic action is the simplest possibility. Nonlinear effects
will assume that the solvensolute interactionsHgs and Hes

. . o such as saturation are beyond the scope of the model. On a
differ only insofar as the charge distributions of the ground and sufficiently coarse-grained level, resolving only those length
excited states differ. In that case,

scales larger than the correlation length of the fluid, the quadratic
action can be viewed as exact. In the next section, the concept
AE(t) = fdr P(r,t)-AE(r,Y) (2.5) of a resolution length is made explicit, and is denoted there as

) ) the lengtha.
where AE(r.t) = 6()AE(r), with AE(r) denoting the change A solute excludes dipole density from the region occupied

in electric field due to the instantaneous change in charge by the solute. The partition function for the solvent in the

distribution of the solute at time zero, ar@r,t) is the presence of the solute is
subsequent induced polarization of the solvent. According to
linear response thedty Z[E(r,7)] =
Pry = [ldt far £ rt—t)-AEGY)  (2.6) S Dm(r,r){”I;Le(S[m(r,r)]} exp{ m(r 7). E(r, )]} (3.3)

wherey™M(r r';t) is the susceptibility tensor of the solution. Thus,
to the extent that the linear response description is valid, the
solvation energy change can be expressed as

where the symbdD indicates that the integration is a functional
integration, and the action is given by

d
AE(®) = [dt [dr [dr' AE(r )™ F'it—t)-AE(r' ) m(r.2).E(r0] = Im(r.7)] + oﬂhﬁ_;l JSdrm(r2)-E(r)

(2.7a) (34)

where E(r,7) is the auxiliary field from which correlation
functions can be generated by differentiation. It includes the
= o1 ) o , electric field due to the solute on the solvent. Th&unctions
AE(s) = gfdrfdr AE(r)-z(r,r';9)-AE(r')  (2.7b) in eq 3.3 account for the excluded volume effect due to the
solute, where the terminology nside” indicates the space from
The dielectric susceptibility 7™(r,r";s), is the response  which the solute excludes the solvent.
function asmodifiedby the presence of the solute (hence the ~ With the Fourier representation of théfunctions, the
superscript m). The modified response function generally differs partition function of the system can be rewritten as
from that of the pure solvenj(r—r';s). A conventional way
to estimatez™(r,r';s) in terms of(r—r';s) is to assume that ~ ZIE(r,7)] =
the solvent outside the volume occupied by the solute remains
the same as the bulk solvent, namely behaves like an unper- fDm(r,r)wa(r,r) expSm(r,0) B2y (ol (3.5)
turbed pure isotropic solvent. The only effect of the solute is \yith the action
on the volume of the integration in eq 2.7. This assumption is
Fhe “uniform” or “hom(_)geneous” _dielectriq approximation used  gm(r 7),E(r,7),»(r,7)] = Im(r,7),E(r 7)] +
in many of the solvation dynamics theories; see, for example,

Its Laplace transform is

discussions of this and alternative approximations in refs 1 and i [ drm(r,0)y(r.7) (3.6)
4. We will see that this approximation is generally not accurate
because the excluded volume significantly affects dipdigole where “in” indicates the the integration is over theifiside”

correlations outside the excluded volume. For the case of adomain. Since the action is still of Gaussian form, the
linear responding dipole field, the change in correlations due integrations can be performed in the standard Wayiving
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Z[E(r 7)] Dex;{zfﬁ"dffﬂhd’fd [dr x
E(r,0)-C™(r 1 ;t—r)-E(r',r')} 3.7)

where

c™r rr—7) =

c(rrit—7) — fﬁhdr fﬂhdr [ [ drdr x
C(r r!l T T”) Cln (rH III _L,IH) C(rl” I l _‘L,) (3.8)
The functionC;, Yrr';t—7') denotes the inverse of

r andr'’ inside
otherwise

C(rr';z—1),

o (3.9)

Cin(rvr’;f_fl) ={

Using the partition function as a generating functional, we see
that C™(r,r';z—7') given by eq 3.8 is the Euclidean time
dipole—dipole correlation function.

The convolutions in time can be diagonalized by Fourier
transform,

CM(rrmy) = C(rrm,) —

ff dr' dr' C(r s wn) Cm (ru P n) C(rlll r )
(3.10)

wherewn, = 27n/ph is the usual Matsubara frequency. This
function of discrete frequencies can be analytically continued

to the entire complex plane of the frequency to give the Laplace

transform of the real time susceptibility tens@™(r,r';s)
BCM(r r';—is).1t That is,

;?(m)(r,r';s) =x(rrs) —
f'findrn dr"'f((l‘,r”;s)

Here zin(r,r') is the matrix with elementg(r,r') for bothr and
r' confined to the volume excluded by the solute. Its inverse
has elementsml(r,r'). Equation 3.11 is a time-dependent
generalization of Chandler's eq 4.1 in ref 5. It is our
fundamental result relating the susceptibility tensor of the
solution to that of the pure solvent.

Equation 3.11 should be contrasted with the “uniform”
dielectric approximation,

il\svl(rn’rur;s).Z(rnl’rr;s) (311)

X9 A Zoulr1'39) (3.12)
where
= v ) x(rr"s),  randr’ outside
Zoulrr'ss) = {0, otherwise (3.13)

This approximation should not be confused with dielectric
continuum theory. Equation 3.12 neglects the influence of
excluded volume on the polarization field outside that volume.
The accuracy of this approximation to dielectric continuum
theory can be judged from the results shown in section V.

If the dielectric response function is known for the pure
solvent, the dielectric response function for the solution, which
in general will not be uniform and isotropic, can be calculated
from eq 3.11. This equation is the formal solution to the general
time-dependent dielectric boundary value problem.
the solutions to all such problems to the calculation of a matrix
inverse,;?;l(r,r';s). An equivalent matrix formulation can be
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derived with projection operators that focus on the “outside”
region as opposed to the complement, “inside”. The “outside”
formulation can be most convenient for bounded systems. For
the case of microscopic solutes in a macroscopic volume,
“inside” is by far the smaller of the two volumes. For the
solvation case, therefore, the “inside” formulation is the most
convenient.

In either of its formulations, eq 3.11 is independent of the
electric field E(r,7). This feature is a consequence of the
Gaussian assumption. It means that the response function is
independent of the charge distribution of the solute. The solvent
response is, however, affected by the excluded volume of the
solute as eq 3.11 demonstrates explicitly.

IV. Coarse-Grained Gaussian Model

To illustrate the use of these formulas, a theoryxrr';s)
is required. For this purpose, we use the simplest textbook
model of a dielectric materidl, suitably generalized. In
particular, we imagine that the space is divided into a cubic
grid of N polarizable cells. Each cell has volume= a3, where
a is the resolution length or correlation length of the material.
The instantaneous dipole of the cell at discrete positioa
m(z) = m(r,7)v. The polarizability of each cell is nonlocal in
time in this reduced description, and different cells interact via
dipole—dipole interactions. Thus the action of the system can
be written as

_ Bt et e () —
qmr(‘[)] - 2 0 ﬂh 0 ﬁh Za (T T)mr('[) mr(T)
@ pnd vt
> ; m,(7) vvlr e m,.(r) (4.1)

With the Fourier series representations of

m,(z) = Z My ()€ (4.2)
and
L1 ¥ e
Ir—r'l Nv Z kZe (4.3)

the action of the system can be written as

L Tk
szkn _+_mkn (4.4)

n

Here My, is the Fourier component afy(r) at Matsubara
frequencyw, = 2nn/fh, anda, is the Fourier component of
o(z). Further,

(4.5)

wherel is the rank-2 unit tensor. Due to the grid resolution,
there is a finite range of wavevectors. From the completeness,

1 )
ke(r—r"
(3”,—N g e =

(4.6)

It reduces the largest wavevector is estimatedkas= (672)YY/a.

With the action (4.4), the correlation function tensor can be
evaluated,
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Ck,n = |]{hk,nr,h—k,—nlj

o1 T
S NBle, @
1 &y K 1-vy, K
“NB= yn)[J( )+ 1Tyn3+( )] (4.7)
where
o="Toa, o= (4.8)
and
J (k)=1-— ka J (k)= % (4.9)

The third equality in eq 4.7 follows from the algebraJofand
J+_12

By performing the inverse Fourier transform to real space,
eq 4.7 gives

Cr—rm,) =
an |I 1 + yn 3yn v
S, .+ —T(r—r")| (4.10
BA—yI|1+2y, " 1+2y,4 (r=r)| (4.10)
where
T(r) =3E—'—3 (4.11)
r r

is the inverse Fourier transform af(k). The connections
betweerC(r —r';wn) and the dielectric constdftprovide a link
between the cell polarizability and the dielectric constant.
Specifically, at each Matsubara frequency, eq 4.7 impkgs (
— Dllen + 2) = 4mpa/3. Analytical continuation of this
equation gives the Clausitd/lossotti equation

€)—1 4an
=— 412
otz 3m0 (#412)
Combining eqgs 4.7 and 4.10 therefore gives
. e(s) — 1 (2¢(s) + 1) e —1
! — , T !
A= "2 | 3 0 mpey )
(4.13)
The Debye model,
e+ 0 e 4.14
e(S) - Eoc 1 + S.L_D ( : )

expressesg(s) in terms of the static dielectric constart, a
high-frequency dielectric constart,, and Debye's relaxation
time, 7p. In the next section, we use the Debye model for
illustrations because of its simplicity.

V. Solvation in the Coarse-Grained Model
In this section, the results of section IV are combined with
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& t
Case A Case B
D ® 83] S]
Case C Case D

Figure 1. Geometries of four different solutes for which dielectric
solvation dynamics is analyzed in the text.

A. Point Charge in a Single Cell. The simplest case is to
evacuate the cell at the origin to introduce a unit point charge
(Figure 1, Case A); the modified susceptibility will be

7709 =7 —r'i9) = Hr 0197 (0-0:9)7(0-r"19)
= y(r—r";9) — {12npe(s)/[e(s) — 1][2¢(s) +
1 (r;9)z(rs) (5.1)

For a sudden change of unit charge at the origin, the electric
field change at position is

AE = — % (5.2)
Thus, combining eqs 5.1 and 5.2 with eq 2.7 gives
AE(S = Z v}-;”((m)(r |r'-s)-vE
-4 o
1(48\1/31 1
=== =1-—= 5.3
{7 o) 53

The second equality is most conveniently obtained from the
first by introducing the Fourier representation of the summation
and noting

1 1 v (5.4)
N Z K2 2n2k°
Equation 5.3 is the standard dielectric continuum result for
charge solvation. It is the Born solvation formula. Combining
eq 5.3 with the Debye model, eq 4.14, predicts single expo-
nential relaxation with the relaxation time = (e«/€g)tp. This
prediction is a well-known dielectric continuum theory result
(see, for example, ref 1b).

B. Point Dipole in a Single Cell. If the cell at the origin
of the grid is evacuated and a point dipole of gize introduced
(Figure 1, Case B), the electric field change away from the origin
is

AE=T(r)p (5.5)

The solvation energy change is then

- 1
A9 =_3 3 PTOZr9TE)P  (56)

r r

eqg 3.11. The spatial integration in eq 3.11 becomes summation
over grid sites. According to the definition of solvation, the Wherez(™(r,r";s) is given by eq 5.1. Again, Fourier analysis
strategy of our calculation is to evacuate one or more cells to allows one to evaluate the summations. The result is
accommodate the solute. With the susceptibility given by eq
3.11, the solvation energy is evaluated from eq 2.7. We
illustrate the approach with four examples.

187 €(s) — 1

AES =33, 2¢(s) + 1

(5.7)
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Once again, this is a dielectric continuum result, this time for 1 gka, Sika)

the solvation of a point dipolé. This result is different from - —=— (5.13)
that of the “uniform” dielectric approximation, eq 3.12, but the N KK 272 a

difference is usually small. Combining eq 5.7 with the Debye )

model, eq 4.14, predicts single exponential relaxation with a 1 k ika_ 1@ f 514

relaxation timer, = (26 + 1)/(20 + 1). Again, this No k2e _2n2a3 2 (5.14)
prediction is a well-known result of dielectric continuum

theory??® It can be contrasted with the incorrect prediction of |, hare

eq 3.12. Namely, eq 3.12 combined with eq 5.6 yields single

exponential relaxation with the relaxation tirg f, = Si(k.a) — sink.a) (5.15)

C. Two Identical Point Charges in Two Cells. Unlike

the previous examples, when the solute cavity introduces aand Si) is the standard sine integrah is taken to be (0,8).
second length scale, results obtained involve more than one The evaluation gives
relaxation time. For example, suppose the solute occupies two

cells, one at the origin and anotheraat Then, from eq 3.11 AE(s) = AEO(s) — AEC)(s) (5.16)
the modified susceptibility can be evaluated with r'"" = 0,
or a. Namely, where

~ ! ~ I ~ . = s SI a

F™rrne) =zr—ri9 - 7% s (5.8) AEO(g = Y48) 72y RN 1) oy

s\m| a ka ()
where
and
A, A

7t 139 = —_(5(r—0:9) 7(r —as ( ! 2)- - 1 1
2709 =2 g U099 (A, A, AEO() = (12t gnza)g(l—@)/{h[ze(S) +1] -

((r' =09 x(r'—as) (5.9)

x(r—r";s) is given by eq 4.13, which gives the uniform
contribution to the solvation energy (this part gives the
“uniform” dielectric approximation).¥©)Xr,r’,s) describes the
nonuniform contribution to the solvation energy due to the cell
evacuation. The matrices; and A, are given by

A=

2@+ 5. ()
(@ a
c—c A —acd "
C 2c,
2‘]—(a) - 2 2‘]+(a)
N 1~ 4c

A, (5.10)

with

_2e(9t1
1T 3e(s)

and

_ €9 -1
2 Ame(s)

3[e(s) — 1]} (5.18)

If eq 3.12 was used, the solvation energy predicted would
e

o

AE(s) ~ AE(s) (5.19)
Employing the Debye model, eq 4.14, one finds that eq 5.19
gives a single exponential relaxation with relaxation time
However, the fullAE(t) from eq 3.11 and therefore eq 5.16
gives two relaxation timest. and [(4r — 3)ew + (27 + 3)]tp/

[(4mr — 3)eo + (27 + 3)]. See Figure 2. Single exponential
relaxation with timer, is often cited as the general prediction
of dielectric continuum theory (see, for example, ref 1). We
see, however, that it is the result of the “uniform” dielectric
approximation, eq 3.12.

D. Two Opposite Sign Charges in Two Cells.For this
case, with two evacuated cells filled with charges of opposite
sign (Figure 1, Case D), the electric field change away from
the cavity is

+v—t
Ir| —a

AE = —v-+
Ir

(5.20)

The calculation of the solvation energy proceeds as above. The

If a unit charge is introduced in each of the evacuated sites result is

at0 anda (Figure 1c), the electric field change outside the cavity
is

_ 1

Ir|

1

AE

; (5.11)

Therefore, the solvation energy is

N
Ir'-al

(5.12)

1 1
Z v(— + )-;?(m)(r,r';s)-v(— +
Ir| Ir'l

Ir —al

with Z™M(r,r';s) given in eq 5.8. Evaluation of the summations
are facilitated with the following relations,

1- i) (5.21)

AEO(9) = ©

1/
1(4_8) 2(1
S\t al

AEO(S) = (12f glnza)%(l - Ils))/{ 27[2¢(s) + 1] +
3[e(e) — 1]} (5.22)

Sitk.a)
&)

and

Again, with the Debye model, eq 4.14, the fAlE(t) from eqs
5.22 and 5.23 gives two relaxation times. In this case, the two
times arer. and [(4r + 3)c.. + (27 — 3)]to/[(47 + 3)eo +

(27 — 3)]. For typical values oé. andeg, these two times are
close in value. See Figure 2.
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! T T T T T T T} eguation rests on the assumption of a Gaussian polarization field
and the neglect of density fluctuations. Extensions to describe
01 F 3 nonlinear polarization response and also density fluctuations
could use the exact treatment of the Gaussian model as the
= onf . reference system in a perturbation theory. An issue that is often

i ] ignored in discussions of solvation dynantitsthe possibility

0001 | RN that changes in state of the solute may also involve changes in
the size and shape of the solute. Equation 3.11 does not address
P T T S T S T this issue. To extend the theory in this direction, one must

‘ Y imagine that the “in” and “out” manifolds can be time

Figure 2. Solvation correlation function as a function tf_ with e.. dependent.
= 2.0 andeo = 40.0. The solid line is for the solute considered in Acknowledgment. We thank Zhen-Gang Wang for helpful
dCaseaC.thhe dashed Iinéa i%f)or the ?01/““3 cohnsidereld in Case D'I Thegiscussions. Financial support at Caltech has been provided
ot—dash line corresponds &ft) = exp(—t/z.). This single exponentia . : : .
decay is the corre(t) for Case A and is the prediction of “uniform” gy the National Science Foundation, the Off'ce Of. Naval_
dielectric approximation for Cases B, C, and D. esearch, and the JPL/Caltech Supercomputing Project. Fi-
nancial support at Berkeley has been provided by the U.S.

The predicted relaxation time longer thanis in agreement ~ Department of Energy’s Office of Basic Energy Sciences.
with the experimental resultd.
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