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Expressions are given for a solvent dynamics-modified Rice—Ramsperger—Kassel-Marcus
(RRKM) theory for clusters. The role of vibrational assistance across the transition state region is
included. The usual differential equation for motion along the slow coordiXaia constant
temperature systems is modified so as to apply to microcanonical systems. A negative entropy term,
—S,(X), replaces the (T)oU/oX or (1/T)dG/dX which appears in canonical systems.
Expressions are obtained for the RRKM-type rate condtéx} and for theS,(X) which appear in

the differential equation. An approximate solution for steady-state conditions is given for the case
that the “reaction window” is narrow. The solution then takes on a simple functional form. The
validity of the assumption can be checkadposteriori Recrossings of the transition state are
included and the condition under which the treatment approaches that in Part | is described.
© 1996 American Institute of Physids$S0021-96066)51137-2

I. INTRODUCTION been termed vibrational assistance. For constant temperature
systems it has been treated for heme-ligand binding kin&tics,

The field of unimolecular reactions in clusters poses nevelectron transfer reactiorisi® isomerization reactions;*?

and interesting challenges. When the number of solvent moland for model and other systertis® A brief review of

ecules in a cluster is increased one expects that at a givejyme of this history has been given elsewhietnder cer-

total energy the unimolecular reaction rate will decrease, begjn conditions(Sec. 11l and Ref. 18the vibrational assis-

cause of the increased number of degrees of freedom sharignce picture reduces to a conventional overdamped case of

the excess energy. Recen_tly, some experimental results QRe kramers’ type.

the isomerization ofransstilbene in hexane clusters as a  yjjprational assistance effects can be substantial. In elec-

function of cluster size have been obtained by Zewail and,,, yansfer reactions they occur when there are appreciable

co-workers, who observed this decrease in rate outside th&hanges in the equilibrium bond lengths or angles as a resuit

reaction threshold region. A second contributing effect 00t the reaction. In some cases the effects even cause the

this decreased rate could be an enhanced frictional effect dyg_ .0 1o proceed in a time much shorter than the relax-
to the extra number of solvent molecules in the cluster. At

ation time of the “slow” solvent coordinaté.Correspond-

present, the question remains open as to which effect pre- . )
. . . ingly, they cause a reaction rate to deviate from the usual
dominates. Both effects were included in the solven

dynamics-modified RRKM theory in Ref. 2, designated be_t_Kramers formula for the reacthn rate constant. This behav-
. or has been observed experimentally for some electron
low as Part I. In the present paper, the theory is broadened {0

H 9
consider the case where fa@tibrationa) coordinates can ransfer  reactionS? ~ and apparently for ~some

. . . 1 . . .
assist the system in crossing the transition state region. Su ﬁomerlzanoné. A third observe_d feature in some mstance;
effects occur in some other systems, as noted below. W/ as been a decay more complicated than single exponential.

have discussed connections between experiment and thedr®" electron transfers there have been various extensions of
in the solvent dynamics field elsewhér@he relation be- the original treatmefitand many applications to experimen-

tween the present formalism and that in Part | is described ifg! data, €.9., Refs. 8-10. They are summarized in Ref. 3.
a later section. In “vibrationally assisted reactions” the reaction can

In the theory in Part I, RRKM microcanonical concepts avoid the stablest region of the conventional transition state,
were employetiand Kramers ideas for solvent friction ef- and the literature contains many references to avoidance of
fects in constant temperature systems were adapted to tf@at region, a phenomenon now sometimes referred to as
microcanonical case. In such a treatment the focus is on zsaddle-point avoidance,” e.g., Refs. 7 and 12-14. In the
single coordinate, a “reaction coordinate,” its friction coef- Present paper, we treat the problem for microcanonical sys-
ficient and a possible inertial effect. For some physical situtems, for use with clusters. An aim of the present paper is to
ations a new feature occurs: in some chemical reactions orgfovide a microcanonical reaction-diffusion differential
coordinate is “slow,” i.e., only it experiences a large “fric- equation for these clusters and to derive unimolecular
tion,” while the remaining coordinates are ‘“fast.” Both RRKM-type expressions for the quantities appearing in
types of coordinates can contribute to the reaction coordinatthem. The differential equation itself can be solved by vari-
by assisting the system in its crossing of the transition stateus methods, numerical methods, for example. An analytical
for the reaction, and this role for the fast coordinates haslecoupling approximation for the solution was given for the
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corresponding constant temperature equation, valid whederivation of Eq.(2.1) from a more microscopic prescription
there is a sufficient separation of the reaction and solverihaving fast quantum modes and a classkahode might
relaxation times scal€st’ A different analytical solution, proceed.
valid for a steady-state “narrow reaction window” condi- As in a corresponding microcanonical equation in Part |,
tion, is obtained in the present paper. It is shown how thehe above adaptation of the canonical equation permits the
theory reduces to conventional RRKM theory when the dif-equilibrium microcanonical distribution function, which in
fusion along the slow coordinate becomes sufficiently fastthe present instance is a distribution function ¥rin the
and how it and the theory in Part | are related. A separat@absence of reactiorR.(X), to satisfy the equation identi-
guestion commented on later and particularly in Ref. 3 is thatally. In Eq.(2.1) k(X) is the reaction rate constantXt We
of energy redistribution to the solvent cluster. have replaced the usual potential gradient terailT) U/

The organization of the paper is as follows: X, or the sometimes used free energy gradient term/(

In Sec. Il the differential equation for the microcanonical T) dG/dX, for constant temperature systems, by a vibrational
system is formulated and expressions are derived for the Ieentropic gradien®S,(X)/dX at the given total energf in
cal unimolecular rate constant and the local entr@msnsity  the present microcanonical system. Throughout most of this
of stateg appearing in the equation. The principal results arepaper the symbol for the enerdy is suppressed for nota-
Eqg. (2.1) and expressions for quantities appearing in it, suchional brevity. We obtain below expressions for #{&) and
as Eqgs(2.4) and(2.7) for a local vibrational entropys,(X) S,(X). In Eq.(2.2) D is a diffusion constant iX space, and
and density of states(X) and Egs(2.12 and(2.13 for the  can, by analogy with the constant temperature literature cited
local rate constark(X). The relation of the overall rate con- in Ref. 3, be replaced by B(t) when necessary. We return
stant to the usual RRKM rate constant is also describedo D later.
there. One approximate solution of the differential equation  Equation(2.1) assumes that at the given total eneky
for steady-state conditions is given in Sec. Ill for reactionsall coordinates buk are fast, so that a statistical approxima-
that occur in a narrow reaction windoi: An expression is tion for their distribution at the give& can be made at each
given for A, anda posterioricalculation can then determine X. For comparison, we note that in RRKM theory the statis-
whether or not the condition for this form of solution is tical approximation is made in relating the distribution in the
fulfilled. The results are extended in Sec. IV to include pos-ransition state to that of the most probable states of the
sible recrossings of the transition state, and Egsl) and  reacting molecule at the giveB. It should be stressed that
(4.2 for the differential equation and E¢4.13 for the rate  the other coordinates are ribermalizedat eachX, since the
constant are now obtained. Several types of entropic surfaceystem is isolatedcollision-freg. Instead, a statistical inter-
are described in Sec. V and a concluding discussion given inal equilibration(fast coordinatesis assumed at eack.

Sec. VI We note in passing that the corresponding
Smoluchowski-type equatiofwith a sink term for constant
II. THEORY temperature conditions cannot be deduced from BdD):

the experimental conditions are very different. In the con-
stant temperature system the reactant may diffuse a short
We consider a slow overdamped coordinXtand treat  distance along théinterna) X coordinate at some total en-
the remaining coordinates as fast. The microcanonical prokergy E, then undergo a collision with the other molecules, so
ability distribution functionP(X,t) is assumed to satisfy the changing its energy t&’, and so on. The time history is very
following Smoluchowski-type equation, which at the mo- different from that of an isolate(constant energyreactant
ment we may regard as plausible but heuristic: which diffuses along the interna{ coordinate, interacting
JP 0 (9P P aS,(X) s_,tgtistically with the other in_ternal coordinates but in a col-
=D — (__ —_ ) —k(X)P(X). (2.2 lisionless manner and at a fixed total eneEy
ot X\ oX kg X
A derivation of the corresponding canonic@onstant
temperatureequation from the Fokker—Planck equation has ~ The S,(X) in Eq. (2.1) is related to the equilibrium mi-
been given for systems where all coordinates are treategfocanonical distribution functioR e X):
classically**® An integration is performed over the fast co-
ordinates but introducing a Kramers—Langer reaction sink
term arising from a bistable potential in some domain of the ~ S,(X)=Kg In P¢((X)+ const. 2.2
slow coordinateX. In our case, aside from being microca-
nonical rather than canonical, all coordinates are treated as
qguantum degrees of freedom rather than classical, except fahe constant does not affect, of course, #8/dX in Eq.
X and, in the vicinity of the transition state region, a reaction(2.1). We can choose the constant &0)—kg In P.{0),
coordinate Q. Because of the many high frequencies in-whereX=0 denotes the equilibrium value ¥ffor the reac-
volved intramolecular motion in typical unimolecular reac- tant. TheP.(X) in Eg. (2.2) is the equilibrium probability
tions, a quantum description of the energy states associatetnsity(per unitX) for the system to be & in the absence
with those modes is essential, and is a feature of RRKMbf reaction, regardless of the value of the momentam
theory. In Sec. VI we sketch briefly in physical terms how aconjugate toX. It equalsp(X)dE, the number of quantum

A. Differential equation

B. An expression for S, (X)
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states in E,E+dE) at X, per unitX, divided by the number
of quantum states of the reactaptlE, in (E,E+dE): That
is,

Ped X)=p(X)/p. 2.3

When integrated oveX this P¢(X) is seen to be normalized
to unity, sincef p(X)dX=p, the integral being over the re-
gion occupied by the reactant. From E¢a2) and(2.3) and
this normalization we have

p(X)/p=e>X'ke / f eS(Xkeg X, (2.4

where the integral is over the region occupied by the reac-

tant.
We obtain next an expression fp¢X). If m denotes the
mth quantum state for the reactant, with enekjyy, for all

coordinates buk, then the number of quantum states of the

reactant in K,X+dX) and in the rangeE,E+dE) is

p(X)dXdE= D, dX dP(E)/h (2.5

R. A. Marcus: Solvent dynamics: Modified RRKM theory. Il
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FIG. 1. Contour plots of constafiiegative vibrational entropy,—S,(X,q).
The reaction begins & and is complete a’. The X; will reduce toXg,
i.e., B, to the saddle-poin§, when there is no product well at af <Xs.
The wells for the negative entropy are centere@andO’.

using the semiclassical expression for the number of quan-

tum states corresponding to the phase space volume eleme@t

dX dPy. The momentum conjugate ¥ Py, is related tcE

by
E=21P2+U(X)+Ep. (2.6)

Here,U(X) is the potential energy & at the local equilib-

An RRKM-type expression for  k(X)

We obtain next an RRKM-type expression fqiX). The
various coordinates may assist the system in its crossing of
the transition state region. To provide a purely illustrative
contour plot for a system inX,q) space at the given total

rium value of all remaining coordinates. For notational brev-€N€rgy, wherey is some fast coordinate involved in the vi-

ity we use mass-weighted units. In as much d®,/dE
equals 1Py, and inasmuch aBy for anydE can be positive
or negative, giving a factor of 2 in the following, ER.5
yields

p(X)=2 2Mh|Py], 2.7
wherePy is obtained from Eq(2.6).

It is readily verified that thep(X) in Eq. (2.7) satisfies
the conditionf p(X)dX=p: Upon introducing Eq(2.7) into
this integral, we note thaf(2/|Py|)dX equals the period of
the X vibration atX=0, and so equals &/ v being the vi-
brational frequency of th& motion. If there is any anhar-
monicity in the motion along this » will be a function of
the energy of th& oscillatorE—E,,, and is denoted by,,.
The energyE,, resides in the other degrees of freedom. W
thus have

f p(X)dX=§ (1hv,)=p, (2.9
since lhv,, is the (semiclassicalnumber of quantum states
of the X oscillator per unit energy when its energygs-E, .
Thereby, the sum ovem yields p, the density of quantum
states of the reactant for all coordinates, as in Eg8).
When thek,, in Eq. (2.6) varies withX for fixed m, theE’s
used in thep(X) in Eq. (2.8) are for theX region which
dominates in the integral there, name{y=0.

(S

brational assistance, we introduce a vibrational entropy
S,(X,q) in this space, related to the equilibrium microca-
nonical population densitP.(X,q):

Sy(X,q)=Kkg In P¢{X,q) +const. (2.9

If one integrates oveq in the reactant part of space, i.e.,
I Ped(X,q)dq, one obtains th&.(X) in Eq.(2.3). Thereby,
S,(X,q) is related toS,(X) by

f exf S,(X,q)/kg]dg=exqd S,(X)/kg].

The entropic contour plot, Fig. 1, replaces the free energy
contour plot employed for constant temperature systems,
e.g., in Ref. 7. While Fig. 1 is not actually used in the fol-
lowing treatment, it serves as a convenient visual aid. The
different forms of that Figure depict graphically the various
topographies discussed in Sec. V.

We first note that the reaction coordinate, denote®@by
is a constant in the transition state.g., on the curve C in
Figs. 1-3 below As usual we leave open the specific defi-
nition of the reaction coordinate, but comment on it for ca-
nonical or microcanonical systems in a footnbt€&ollowing
the well-known procedure of defining a coordinate via a fam-
ily of coordinate hypersurfaces, one such member of the
family corresponding to the reaction coordingtés the tran-
sition state. On that particular hypersurface we introduce a
coordinatex, the projection ofX on the transition state hy-
persurface, and denote the momenta conjugateatodQ by
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A k(X):<§n‘, ffQdPdeX)|dx/dx|/h2p(X)dE.
(2.10

In Eq.(2.10, Q= P4, using mass-weighted coordinates, and
EL‘;?L’? the double integral is over an area in the, (Py) space
lying betweenE andE+dE and given by

S

Q

8 B’

1
X whereU.(x) is the potential energy for the transition state

N (i.e., on curve C in Figs. 19t its lowest point with respect
FTANE to all coordinates buk; andE, is the energy for all coordi-
) ’ Slow Coordinate X nates butx and Q, when the system is in theth quantum
state for the remaining coordinates. With the condition
Po=0 the integral in Eq(2.10 is over the systems moving
from the reactant’s to the product’s region. One finds upon

integration

Fast
Coordinate

¢ E<E,+Uc(x)+3p;+3P5<E+dE, Po=0, (2.1))

Il

Reactant
Region

1)

]
]
-y

\

FIG. 2. Plot similar to Fig. 1, but where there is now a double well in k(X)=N(X)/hp(X) (2.12
—S,(X,q) at some interval oK’s. For a symmetrical system there are two !

paths,0A,B,0’ andOA;B;O’, each contributing an equal amountdg,, where

and the relative importance of each path depends upon the asymmetry of the

reaction.

N(X)=>, 2p,|/dx/dX|/h,
n

p, andPq. The projection is defined at the end of this sec- ~ Px=12[E~ En— U012 (213

tion. The remaining coordinates of the transition state arg,q nowp, denotes the value gf, at Po=0. N(X) can be
- X X .
treated quantum mechanically. _ regarded as a local numbgt X) of quantum states per unit
The semiclassical number of quantum states in the phasg tq the transition state with energy equal to or less tBan
space  volume  element dx dp dQ dPy IS The factor of 2 in Eq(2.13 reflects the fact that both posi-

2 : . .
d.x dp;(_dQ dPQ_/h . To obtain the rate constant we first di- iye and negativep, contribute toN(X). Equations(2.12
vide this quantity bydQ to obtain the number per unf, and(2.13 are the desired result féi(X).

multiply by the reaction coordinate veloci, integrate over We conclude this section with a description of the pro-
Pq and p,, subject to the constraints given in EQ.11  jectionx of X onto the transition state space and the value of
below, and sum over the quantum statesf the transition  §y/dX in Eq. (2.13. As already noted, any coordinatteow
state for all coordinates other tharand Q. (Q is evaluated ) iy 3 coordinate space o dimensions can be described
at the transition stateWe next divide by t_he number of by a family of hypersurfaces, each of dimensir 1. Each
quantum state(X)dX dE of the reactant in thalE and  memper of the family is associated with a different but con-
dX, and so obtain the rate constd({) for systems Cross-  giant value ofX. The transition state of a reaction is a mem-

ing the transition state: ber, as previously noted, of some other family of hypersur-
faces. The intersection of each member of the familyXof
hypersurfaces with the transition state hypersurface defines a
family of N—2 dimensional surfaces, each lying wholly
within the transition state hypersurface and each having a
Rooant different value ofx. In this way, the coordinate in the
transition state has been defined, apart from a scaling factor
which can be chosen arbitrarily, and so ttie/'dX in Eq.
(2.13 can be obtained.
Eii‘rdinate
4 D. Relation of Egs. (2.12) and (2.13) to0  kgrkm
;g’;ggt As a check on Egsi2.12 and (2.13 and also for later
use in Sec. lll, it is useful to consider how the usual RRKM
expression for the rate constagiz«u(E), namelyN(E)/hp,
Slow Coordinate X follows from those equations. When(X) has its equilib-
rium value,P(X), as it does in RRKM theory, we have for

FIG. 3. Plot similar to Figs. 1 and 2. Now, howevets is no longer ~ the equilibrium(i.e., largeD) result for the observed rate
between theX for O and theX for O'. constant

(o]

\j
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oq ficient { and so forD=kgT/{ in mass-weighted units. Or,
Kobs= j K(X)Ped X)dX molecular dynamics for the cluster could be used to estimate
the autocorrelation function under microcanonical condi-

:f [N(X)/hpldX= >, 2j p, dx/h2p, (2.14 tions.

using Eq.(2.3) for P¢{(X) and Egs.(2.12 and (2.13 for
k(X). The limits on this integral are now at the endpoints!ll. SOLUTIONS OF THE DIFFERENTIAL EQUATION
px=0, since the system is now centered near the local mini-
mum, X=X, of U,(x). Thex motion has become a simple
vibration. Thus, the integral in EQq.(2.149 becomes
>.$ p, dx/h?p, where the integral is over one cycle of the
x-vibrational motion, and it corresponds to &svibrational
energy equal t&E—E,—U.(Xy).

The cyclic integralp p, dx/h is the classical action in
units of h and can be written ad ¢ 3). Semiclassically)
would be an integer, the largest integer consistent withxthe
energy being equal to or less ther-E,,— U(x,). (The bal-

In the case of reactions in solution, various methods
have been used to solve the constant temperature analog of
Eq.(2.1). For example, Agmon and Hopfi€ldave a numeri-

cal solution for a heme-ligand dissociation. Another method
of numerical solution, one for electron transfers was given
by Nadler and Marcusand one for isomerization was given

by Rabinovitch and Agmol? For intramolecular charge
transfer, Barbafaand Yoshiharahave integrated the differ-
ential equation numerically, sometimes withDgt) as al-

ance of the energy is in the kinetic energy of the reactiof€ady noted. Sumi and Marctisn an analytical treatment,
coordinatePé/Z.) However, because of the classical deriva-'mmduced a decoupling approximation for electron transfers,

tion, thisl is merely a real number. Its value will be denoted when ther.e was an appreciable dlfference in time sq_ales of
by I,..(n), since it is a function oh. The sum oven now the reaction and solvent relaxation. Berezhkovskii and
m ’ .

becomesS [l .(n)+ 4. If | were an integer, this sum co-workers® have used for the steady-state case a different
nL*ma 21" max ’

would be a step function d, increasing by unity when each 2PProximation mentioned later in Sec. IV. _
newx-quantum state becomes energetically accessible. Inter- Any of these methods can be used _to solv_e the differen-
estingly enough, with the presence of the 1/2, one obtaind@ Ed- (2.1) for the presen{microcanonical unimolecular
instead a function oE which, while continuous at each in- '€action, in conjunction with equations such as &) for
tegral increment off instead of being stepped, passes throughsv(x)' Eg. (2.7) for p(X), Eq. (2.12 for. k(X), and Eq.
the midpoint of each vertical step in the above step function2-13 for N(X). In the present paper we introduce below an

The sum is equal tdl(E), the number of quantum states of appro.ximation Wh,iCh c_onvgrts t.he problem to a form com-
the transition state, for all coordinates but the reaction coor™©°" N the reac_:tlon-Q|ffu3|on literature: d|ffu3|on under a
dinate, with energy equal to or less thn force to a reaction smk fo!lowed py reaction at j[hat smk.
We thereby have USl_JaIIy, however, the sink is at a fixed bou_r?dary in the_d|f-_
fusion space. In the present case, the position of the sink is
eq 1 _ _ determined by a maximization.
obs™ ; [Imadm)+21/hp=N(E)/hp=Krrim(E). We consi?j/er the steady-state case, with a source term at
(2.15  X=0. We first note thak(X) increases aX increases from
0 to X, in Fig. 1, while P(X) decreases. In this ca&éX)
P(X) has a maximum as a function &f and we consider
In Eqg. (2.2) the D has been inferred from various the case where this term is large near sofeX,, but only
sources in the case of reactions in solution. It has been estivithin a narrow window,X; = 3A. The value ofX; will be
mated, for example, from the Stokes—Einstein relation, eithedetermined by a maximization of the rate constant and the
using the bulk viscosity or using a microviscosity, inferred width A will be determined from the width of the distribution
from a rotational or translational diffusion constdetg., ex-  of k(X)P(X) in an iterative manner described later.

E. Expression for D

amples in Ref. 1B Or it has been obtained from the time- Thus, we write
dependent fluorescence dynamics Stokes shift, in the case of
electron transfer system.n this caseD may be aD(t), kK(X)P(X)=k(X)P(X1)AS(X—X4), 3.1

when the relaxation is more complicated than a single expo-

nential. The latter is sometimes replaced, instead, by a corwhich contains\ and a Dirac delta function. For the approxi-
stant which is related to a relaxation time for the slow mation to be applicable, it is necessary that the reaction win-
coordinate, or related approximately to an autocorrelatiordow A be much smaller than thé interval occupied by the
function [ 5(X(0)X(t))dt/(X?(0)) (e.g., Refs. 10 and 20in  reactant. A definition forA and a starting value in an itera-
other papers the differential equation containindp@) is  tive calculation forA is given later.

integrated numericall§® In the case of clusters, the mea- We next solve Eq(2.1), using Eq.(3.1) and assuming a
surement of some relaxation property in the cluster, such assteady-state description, described abovePfof). The flux
time-dependent fluorescence dynamics Stokes shift or using —D(dP/dX—Pl/kg dS,/dX) and it now vanishes for
other ultrafast laser spectroscopy, might be used to oltain X>X;. (There is no sink foX>X; if the reaction is along
or D(t). Approximate(ballpark molecular expressions for a the cited path. Integrating Eq.(2.1) from an X<X;, after
solute in a cluster were given in Part | for the friction coef- settingdP/dt=0, to anX> X, we have

J. Chem. Phys., Vol. 105, No. 13, 1 October 1996
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D W_k_BW):_D exp(Sv/kB)

J
XW [P exp(—S,/Kg)]

=k(X)P(Xp)A  (X<Xy). (3.2
On integrating Eq(3.2) from X=0 to anX<X;, we have
P(0) [k(Xp)A [x
7 —S,(X)/k -S,(X)/kg | aS,(0)/k
P(X) { D fo e BdX+e Ble B,

(3.3

5451

setting P(X;) =0 as the boundary condition at=X; and
then integrating Eq(2.2) in the steady-state approximation.
On the other hand, thie,.(X;) in Eqg. (3.4) is the rate when

D is so large thaP(X) achieves its equilibrium value every-
where in the reactant’s region. In fact, the rate under those
conditions should bg k(X)P(X)dX, i.e.,

G = [ KX0pO0dXIp=k(X0)p(X0) Al
= N(X,)A/hp, 3.9

upon introducing Eq(3.1) for k(X). The right-hand side of
Eqg. (3.9 is indeed seen to be tHe(X;) appearing in Eq.

P(0) can be determined straightforwardly from this equation(3 5

by using the normalizatioff P(X)dX=1. However, as an
approximation, the neglect neX=0 of the first of the two
terms in brackets in Eq.(3.3) yields P(0)=P¢{(0)
=e% (ke [ 5%(X)ked X where the integration is over the
region of X occupied by the reactant.

The rate constank,,{X;) is the probability flux(3.2)
divided by [ P(X)dX, which is unity. Thus one sees from
Eq. (3.2 thatk,,d X;) equalsk(X;)P(X;)A and so Eq(3.3)
yields, upon using equations such as E@s3), (2.4), and
(212,

1 = ! + ! 3.4
kood XD KanlXD)  Ka(Xp)” (39
where
Kacf X1) =kgad X1) =k(X1)Ap(X1)/p=N(X;)Alhp
(3.5
and
X1
kdiﬁ(xl):D/ fo plp(X)dX. (3.6

The observed rate constaky,, for the reaction at the
givenE is obtained from the value of; , X,ax, Which maxi-
mizes thek,,{ X;) in Eq. (3.4), i.e.,

Kobs= Kobd Xmax) - (3.7

The A in Eqg. (3.5 is a reaction “window” in X space.
Most of the flow from reactant to product region passe
through it. Sincekqpd X1)/Kopd Xmax iS proportional to the
reactive flow via theX; region, a reasonable value fa,
which has units o, is

A= [ Kk X0 X4 o X, 38

where the integral is over the region occupied by the reac-
tant. TheA is determined by an iterative process, where the

first step in the iteration foA is described near the end of
this section.

Equations(3.4—(3.8) and the initial iterative equation
for A, Eqg. (3.10 below, constitute the principal, results for
Kops N this section. We note thad,,reduces to thé; term
in Egs. (3.4 and(3.6) whenD becomes sufficiently small.

Indeed, one could obtain that term alone by using the so-

called Smoluchowski boundary condition 3f, namely by

S

To see how the expressidB.9) reduces to the RRKM
value whenD is sufficiently large, we note thaX,,,, now
occurs atXy, i.e., at theX corresponding tog, which is at
the lowest value ob).(x) in the transition state. Thereby, the
coordinatex now executes a vibrational cycle. Equati@®g)
is now used forA, and Eq.(3.9 for k., X;) is introduced
into it. The right-hand side of Eq(3.8) then becomes
J N(X)dX/N(Xma- Using Eq.(2.13 for N(X) and using
the argument which led to Eq{2.4), namely that
J N(X;)dX;=N(E) whenX; is centered aK, we obtain

A=N(E)/N(Xpz)- (3.10

Since nowX 4 is Xg, EQs.(3.7), (3.9, and(3.10), with X;
written asX,ax, Yield

Kobd Xma) = N(E)/hp,

which is the RRKM value.

We comment, finally, on the general evaluation Af
which is determined self-consistently from E¢3.4), (3.5,
and(3.8), noting thatA appears explicitly in thé,(X,). A
first estimate ofA can be made using the value in one lim-
iting regime, namely, when R&4(X;) can be neglected in
Eq. (3.4). In that case\ is given by Eq.(3.10. This A can
then be used in Ed3.5) as a first step in an iterative scheme
involving Egs.(3.4—(3.6).

We remark in passing, that the propertieskgf(X,) in
Eq. (3.5 are determined by properties of the transition state,

(3.11)

such asdN(X;), while the properties okg«(X1) in EqQ. (3.6)
are determined only by the properties of the reactant, such as
D andp(X).

IV. INCLUSION OF RECROSSINGS

We consider now the case where recrossings of the tran-
sition state occur. Instead of E¢R.1) we now have two
equations, one for the probability density of the reactant
and one for that of the produBt The “back reaction” term,
kp(X)Pp(X), provides the recrossings:

Py 0 (&Pa P. as;’;‘)
W_Da& X kg 9X —Ka(X)P4(X)
+Kp(X)Pp(X), 4.1
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Py 9 [dP, Py dS) P
—t ~Pbx W_k_BaX_b()b()
+ K (X)Pa(X). (4.2

The values ok,(X) andk,(X) are given by Eq(2.12), with
appropriate subscripts:

ka(X)=N(X)/hpa(X),  kp(X)=N(X)/hpy(X), (4.3

andN(X) is given by Eq.2.13, as before. Equation®.12
and(4.3) presume a local entropic{SP(X,q)] well for the

product upon crossing the transition state hypersurface at the J=J3(0)=J0").

given X. The S3(X)/kg and SS(X)/kB can, using Eqgs(2.2)
and(2.3), be written as

SA(X)/kg=In pa(X)+C, (4.4)

S (X)/kg=In py(X)+C, (4.5

where the constart is chosen to be the same, so that the

R. A. Marcus: Solvent dynamics: Modified RRKM theory. Il

Integrating Eqs(4.1) and(4.2) over a region containing
X=X;, using Eg. (3.1, steady-state conditions,
dP,/dt=9P,/dt=0, and the above results for tlis, we
have

J3(0) =[ka(X1) Pa(X1) = kp(X1) Pp(X1)JA=J°(0"),
(4.93
wherek,(X;) or k,(X;) is thek(X,) in Eq. (3.1) with ana
or b subscript.
We introduce the symbol to denote this common
value:

(4.9b
Integrating of Eq(4.7) from X=0 to anX<X;, noting that
J3(X)=1J in that region, yields
P(0)elSiX)~S}OVks_p_(x)

J

S(x X—SaX/k
=— eS| e SWikegx,
0

D. (4.10

two S,’s are calculated relative to the same zero. We take ] ) ] )
C=S%(0)—kg In p,(0), but theconstant does not enter into The P,(0) can be determined from this equation, using a

Egs.(4.1) and(4.2). As before, the value of p,(X)dX, in-
tegrated over the reactant’s region, equgls the density of
states of the reactant. We have, thereby,

S (X)/ks / f eSiVked X=p.(X)/ps. (4.69
From Egs.(4.4—(4.63, we have
&S00k / f eSS0 ked X= py( X) /g (4.6b)

Equations(4.1) and(4.2) can again be solved by a vari-
ety of methods, and we explore next the narrow reaction

normalization [ P,(X)dX=1, by integrating Eqs.(4.10
over the region occupied b%. However, using the equilib-
rium approximation in the vicinity oX=0, i.e., neglecting
the right hand side in Eq4.10 whenX=0, P,(0) equals
exp(S;(0)/kg)/J exp[S;(X)/kg]dX.

Integrating Eqs(4.8) from X=X, to X=0", noting that
J®(X)=J in this interval, and settind®,(0')=0, e.g., by
using a sufficiently strong sink to avoid the back-reaction
B— A in this calculation of a forward rate constant, yields

J (o o b
pb(xl):D_b J’x el S,(X1)=S,(X) kg g X
1

(4.11)

The rate constant for a giveXy , kyp,d X4), is defined by

window method introduced in Sec. lll. We again consider

the steady-state caseR,/dt=dP,/dt=0, and use Eq(3.1)
for eachk(X). The fluxesJ(X) are given by

. IP, P, oS

FO0="Dal 5 kg X @0
and

1= .| P Py 0S) n

(0==Dol 5% kg ax |- 48

Kopd X1)=1J, (4.12
divided by [ P,(X)dX, which is unity.

Equation(4.10, valid for X<X; is, by continuity, valid
at X=X, . Equationg4.9—(4.12 then yield, upon using Eq.
(4.10 at X=X4,

1 1 1 1
= + 3 + 5 )

Kopd X1)  KaclX1) * Kgir(X1) K2 gir(X1)K(Xy)

(4.13
wherek,(X;) is defined by Eq(3.5), k§«(X1) by Eq.(3.6),

The steady-state condition for the net forward reactionwith D, p and p(X) written asD,, p,, and p,(X), and
can again be imagined as arising from a continuous source & ,..(X;)K(X,) is defined by

A atX=0 and a sink of equal strength fBrat X=0" (Figs.

1 or 2. The steady-state rate constant is then the probability > _(x,)= Db/ Jf,[pb(xl)/pb(X)]dX,
1

flux of A, divided by P,(X)d(X), which is unity. The rate
constant is given later in E@4.12).

With a delta function form of rate constants in E§.1),
integration of Eqs.(4.1) and (4.2) over the appropriatX
intervals shows that?(X) andJ®(X) are piecewise constant:
J3(X)=J30) for O=X<X,, J°(X)=3°0") for
0'=X>X,, and since there is no sink or source fiorfor
X>X; and none foB for X< X, (cf. Figs. 1 or 2, J3(X)=0
for X>X; andJ®(X)=0 for X<X;.

(4.19

K(X1) =[Ka(X1)/kp(X1)1pa(X1)/p4. (4.15

The rate constark,,sis again given in terms df,,{ X,) by
Eq. (3.7), but using Eq(4.13 instead of Eq(3.4).

One can see that Eq&l.14) and(4.15 contain an equi-
librium constanK (X;) for formation ofB(X;) from A, mul-
tiplied by a diffusion ratek® j4(X,;) for forming B from
B(X;). When k,(X;)/k,(X;) is sufficiently large, the last
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term in Eq.(4.13 becomes very large, and so it dominates =~ We now have &, at the givenE that is given by

the other two terms in Eq4.13, and therk,,{X;) becomes _ ,

very small. One can see the physical origoikFIS(oflthis smaliness:  Kobs™ ma>,([ Kobd X1) FKopd X1)] G-

When the equilibrium constant betwedrandB(X;) favors XXy

very much the side oA, the recrossings are especially ex- for both the symmetric and the asymmetric case.

tensive and thé,{X;) is small. A third type of surface topography is depicted in Fig. 3.
The origin of the structure of Ed4.13 is seen clearly Here, the system diffuses along tecoordinate towards the

from the schemeA=A(X;)=B(X;)—B, upon using a origin and then, after the reaction occurs, diffuses in the re-

steady-state approximation féx(X;) and B(X;), the con- verse direction along the product's well. In the case of an

centrations oA andB, per unitX, atX;. If the forward and intramolecular transfer of a light atom between two parts of a

reverse rate constants of the first step are denotdd land  molecule,a and 8, for example, one expects thatXf were

k_,, of the second step by, andk_,, and if the forward the o8 separation distance, the contours in a mass-weighted

rate constant of the final step ks one obtains coordinate system would resemble those in Fig. 3 in the two-
dimensional subspace being considered, where the angle be-
1 1 1 1 . . -
=y 4 (4.1 tween theX axis and lineC would be quite small.
kobs kZKl kl k3K1K2

whereK; (=k;/k_;) is the equilibrium constant far=1, 2.
The structure of Eq(4.16 is identical to that of Eq(4.13.
We note that in this model leading to E¢..16) there are net The main results of the present paper, given in Sec. I,
flows in theA region and in thé region, and that both flows are the microcanonical reaction-diffusion equations, Egs.
are equal. The same behavior occurs in EQ9b, which  (2.1), (4.1), and(4.2), and the expressions fd&(X), p(X),

VI. DISCUSSION

leads to Eq(4.13. andS,(X) which appear in Secs. Il and IV. With these ex-
pressions, the differential equations can be integrated nu-
V. ENTROPIC SURFACES merically, with a replacement of thB by a D(t) when

needed, as in the canonical case, or alternatively, using some

There are several different types of arrangement of thanalytic approximation. One example of such an approxima-
entropic wells. We have plotted-S,(X,q)/kg instead of tion is described in Sec. IV, for the case that the reaction
S,(X,q)/kg, so that the wells in the surface are regions ofoccurs only in a small intervalq; + 3A). As discussed there,
stability, and vice versa. One type of surface is depicted irecrossings of the transition state can play a major role in
Fig. 1. Here, there is no double well at aNy, apart from  determining the value oX,, and also there can be two such
the X at the saddle-poin¥s. If one introduced the idea of an paths. Further, the surface topography is important in deter-
intermediateB, for this case, it would now be so short-lived, mining whether or not there is a saddle-point avoidance, i.e.,
because of recrossings, th¥t, the X which maximizes whether or noiX;=Xg, and thereby in determining whether
Kond X), is then expected to beconXg. One then would use the simple treatment in Part | can be used for microcanonical
a one-coordinate treatment, such as that in Part I. systems instead of the present one.

A second type of-S,(X,q) surface has two wells at a A detailed and insightful discussion of surface topogra-
suitable range 0K;'s, as in Fig. 2. We consider this system phy and localized reaction paths has been given by Berezh-
next. When the reaction is symmetric, the rate constant fokovskii and Zitsermal? for reactions at a given temperature.
the path 6-A;—B;—0’ equals that for the path They consider at eack an escape time to the product well
0'—B;—A;—0. By symmetry, there must be a second for-and a solvent relaxation time. Tlewhere the two are equal
ward path 6-A;—B;—0’, whose properties and rate con- is where the reaction is presumed to occur. They note that if
stant are identical to those of the path-0B;—A;—0. In  there is no bistable potential before reachig the value of
comparing these two paths from 0 tg Ove note that though X at the saddle-point, the treatment reduces to a multidimen-
equal in rate constant, the first path might, at first glancesional Kramers—Langer type result. The physical effects pre-
seem to be the more probable one, since the first step, O &ented in Ref. 13 regarding escape time and solvent relax-
A;, compared with 0 tdA;, involves less uphill diffusion ation time are closely related to the ratio dfy
alongX. On the other hand, the next step is more uphill from(X;)/k,.(X;) in the present Eq.3.4). Recrossings were also
A; to B, than fromA] to B; . For that reason, the recrossing extensively discussed in Ref. 13.
from B, to A, is greater than that fdB; to A; . A net result, We have noted elsewhérthat the current experimental
one can see by microscopic reversibility, is that the two pathslata are insufficient to distinguish between the Kramers-
contribute equally to the rate constant, and the total forwardnodified form of RRKM theory for unimolecular reactions
rate constant is the sum of the two. The rate constant for thpresented in Part | and the one slow coordinate—many fast
second path is given by an expression similar to @dl3), coordinate treatment in the present paper. The acquisition
but now theX; occurs afA; instead of afA;, and we denote and the use of auxiliary information on solvent dynamics,
this second value oX; by X;. When the reaction is made which has been helpful in solutiof@.g., for electron trans-
asymmetric, by making it increasingly downhill, txg path  fers and discussed in Ref),3vould be helpful for clusters
becomes increasingly dominant over tk¢ path and vice also. As discussed there the choice of suitable solutes could
versa if the reaction is made increasingly uphill. minimize the effects of solvent friction and so emphasize,
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