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Expressions are given for a solvent dynamics-modified Rice–Ramsperger–Kassel–Marcus
~RRKM! theory for clusters. The role of vibrational assistance across the transition state region is
included. The usual differential equation for motion along the slow coordinateX in constant
temperature systems is modified so as to apply to microcanonical systems. A negative entropy term,
2Sv(X), replaces the (1/T)]U/]X or (1/T)]G/]X which appears in canonical systems.
Expressions are obtained for the RRKM-type rate constantk(X) and for theSv(X) which appear in
the differential equation. An approximate solution for steady-state conditions is given for the case
that the ‘‘reaction window’’ is narrow. The solution then takes on a simple functional form. The
validity of the assumption can be checkeda posteriori. Recrossings of the transition state are
included and the condition under which the treatment approaches that in Part I is described.
© 1996 American Institute of Physics.@S0021-9606~96!51137-2#

I. INTRODUCTION

The field of unimolecular reactions in clusters poses new
and interesting challenges. When the number of solvent mol-
ecules in a cluster is increased one expects that at a given
total energy the unimolecular reaction rate will decrease, be-
cause of the increased number of degrees of freedom sharing
the excess energy. Recently, some experimental results on
the isomerization oftrans-stilbene in hexane clusters as a
function of cluster size have been obtained by Zewail and
co-workers,1 who observed this decrease in rate outside the
reaction threshold region. A second contributing effect to
this decreased rate could be an enhanced frictional effect due
to the extra number of solvent molecules in the cluster. At
present, the question remains open as to which effect pre-
dominates. Both effects were included in the solvent
dynamics-modified RRKM theory in Ref. 2, designated be-
low as Part I. In the present paper, the theory is broadened to
consider the case where fast~vibrational! coordinates can
assist the system in crossing the transition state region. Such
effects occur in some other systems, as noted below. We
have discussed connections between experiment and theory
in the solvent dynamics field elsewhere.3 The relation be-
tween the present formalism and that in Part I is described in
a later section.

In the theory in Part I, RRKM microcanonical concepts
were employed4 and Kramers’5 ideas for solvent friction ef-
fects in constant temperature systems were adapted to the
microcanonical case. In such a treatment the focus is on a
single coordinate, a ‘‘reaction coordinate,’’ its friction coef-
ficient and a possible inertial effect. For some physical situ-
ations a new feature occurs: in some chemical reactions one
coordinate is ‘‘slow,’’ i.e., only it experiences a large ‘‘fric-
tion,’’ while the remaining coordinates are ‘‘fast.’’ Both
types of coordinates can contribute to the reaction coordinate
by assisting the system in its crossing of the transition state
for the reaction, and this role for the fast coordinates has

been termed vibrational assistance. For constant temperature
systems it has been treated for heme-ligand binding kinetics,6

electron transfer reactions,7–10 isomerization reactions,11,12

and for model and other systems.13–16 A brief review of
some of this history has been given elsewhere.3 Under cer-
tain conditions~Sec. III and Ref. 13! the vibrational assis-
tance picture reduces to a conventional overdamped case of
the Kramers’ type.

Vibrational assistance effects can be substantial. In elec-
tron transfer reactions they occur when there are appreciable
changes in the equilibrium bond lengths or angles as a result
of the reaction. In some cases the effects even cause the
reaction to proceed in a time much shorter than the relax-
ation time of the ‘‘slow’’ solvent coordinate.7 Correspond-
ingly, they cause a reaction rate to deviate from the usual
Kramers’ formula for the reaction rate constant. This behav-
ior has been observed experimentally for some electron
transfer reactions,8,9 and apparently for some
isomerizations.11 A third observed feature in some instances
has been a decay more complicated than single exponential.
For electron transfers there have been various extensions of
the original treatment7 and many applications to experimen-
tal data, e.g., Refs. 8–10. They are summarized in Ref. 3.

In ‘‘vibrationally assisted reactions’’ the reaction can
avoid the stablest region of the conventional transition state,
and the literature contains many references to avoidance of
that region, a phenomenon now sometimes referred to as
‘‘saddle-point avoidance,’’ e.g., Refs. 7 and 12–14. In the
present paper, we treat the problem for microcanonical sys-
tems, for use with clusters. An aim of the present paper is to
provide a microcanonical reaction-diffusion differential
equation for these clusters and to derive unimolecular
RRKM-type expressions for the quantities appearing in
them. The differential equation itself can be solved by vari-
ous methods, numerical methods, for example. An analytical
decoupling approximation for the solution was given for the
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corresponding constant temperature equation, valid when
there is a sufficient separation of the reaction and solvent
relaxation times scales.7,10 A different analytical solution,
valid for a steady-state ‘‘narrow reaction window’’ condi-
tion, is obtained in the present paper. It is shown how the
theory reduces to conventional RRKM theory when the dif-
fusion along the slow coordinate becomes sufficiently fast,
and how it and the theory in Part I are related. A separate
question commented on later and particularly in Ref. 3 is that
of energy redistribution to the solvent cluster.

The organization of the paper is as follows:
In Sec. II the differential equation for the microcanonical

system is formulated and expressions are derived for the lo-
cal unimolecular rate constant and the local entropy~density
of states! appearing in the equation. The principal results are
Eq. ~2.1! and expressions for quantities appearing in it, such
as Eqs.~2.4! and ~2.7! for a local vibrational entropySv(X)
and density of statesr(X) and Eqs.~2.12! and~2.13! for the
local rate constantk(X). The relation of the overall rate con-
stant to the usual RRKM rate constant is also described
there. One approximate solution of the differential equation
for steady-state conditions is given in Sec. III for reactions
that occur in a narrow reaction windowD. An expression is
given forD, anda posterioricalculation can then determine
whether or not the condition for this form of solution is
fulfilled. The results are extended in Sec. IV to include pos-
sible recrossings of the transition state, and Eqs.~4.1! and
~4.2! for the differential equation and Eq.~4.13! for the rate
constant are now obtained. Several types of entropic surfaces
are described in Sec. V and a concluding discussion given in
Sec. VI.

II. THEORY

A. Differential equation

We consider a slow overdamped coordinateX and treat
the remaining coordinates as fast. The microcanonical prob-
ability distribution functionP(X,t) is assumed to satisfy the
following Smoluchowski-type equation, which at the mo-
ment we may regard as plausible but heuristic:

]P

]t
5D

]

]X S ]P

]X
2

P

kB

]Sv~X!

]X D2k~X!P~X!. ~2.1!

A derivation of the corresponding canonical~constant
temperature! equation from the Fokker–Planck equation has
been given for systems where all coordinates are treated
classically:13~b! An integration is performed over the fast co-
ordinates but introducing a Kramers–Langer reaction sink
term arising from a bistable potential in some domain of the
slow coordinateX. In our case, aside from being microca-
nonical rather than canonical, all coordinates are treated as
quantum degrees of freedom rather than classical, except for
X and, in the vicinity of the transition state region, a reaction
coordinateQ. Because of the many high frequencies in-
volved intramolecular motion in typical unimolecular reac-
tions, a quantum description of the energy states associated
with those modes is essential, and is a feature of RRKM
theory. In Sec. VI we sketch briefly in physical terms how a

derivation of Eq.~2.1! from a more microscopic prescription
having fast quantum modes and a classicalX-mode might
proceed.

As in a corresponding microcanonical equation in Part I,
the above adaptation of the canonical equation permits the
equilibrium microcanonical distribution function, which in
the present instance is a distribution function forX in the
absence of reaction,Peq(X), to satisfy the equation identi-
cally. In Eq.~2.1! k(X) is the reaction rate constant atX. We
have replaced the usual potential gradient term (21/T)]U/
]X, or the sometimes used free energy gradient term (21/
T)]G/]X, for constant temperature systems, by a vibrational
entropic gradient]Sv(X)/]X at the given total energyE in
the present microcanonical system. Throughout most of this
paper the symbol for the energyE is suppressed for nota-
tional brevity. We obtain below expressions for thek(X) and
Sv(X). In Eq. ~2.1! D is a diffusion constant inX space, and
can, by analogy with the constant temperature literature cited
in Ref. 3, be replaced by aD(t) when necessary. We return
to D later.

Equation~2.1! assumes that at the given total energyE
all coordinates butX are fast, so that a statistical approxima-
tion for their distribution at the givenE can be made at each
X. For comparison, we note that in RRKM theory the statis-
tical approximation is made in relating the distribution in the
transition state to that of the most probable states of the
reacting molecule at the givenE. It should be stressed that
the other coordinates are notthermalizedat eachX, since the
system is isolated~collision-free!. Instead, a statistical inter-
nal equilibration~fast coordinates! is assumed at eachX.

We note in passing that the corresponding
Smoluchowski-type equation~with a sink term! for constant
temperature conditions cannot be deduced from Eq.~2.1!:
the experimental conditions are very different. In the con-
stant temperature system the reactant may diffuse a short
distance along the~internal! X coordinate at some total en-
ergyE, then undergo a collision with the other molecules, so
changing its energy toE8, and so on. The time history is very
different from that of an isolated~constant energy! reactant
which diffuses along the internalX coordinate, interacting
statistically with the other internal coordinates but in a col-
lisionless manner and at a fixed total energyE.

B. An expression for Sv(X)

TheSv(X) in Eq. ~2.1! is related to the equilibrium mi-
crocanonical distribution functionPeq(X):

Sv~X!5kB ln Peq~X!1const. ~2.2!

The constant does not affect, of course, the]Sv/]X in Eq.
~2.1!. We can choose the constant asSv(0)2kB ln Peq~0!,
whereX50 denotes the equilibrium value ofX for the reac-
tant. ThePeq(X) in Eq. ~2.2! is the equilibrium probability
density~per unitX! for the system to be atX in the absence
of reaction, regardless of the value of the momentumPX

conjugate toX. It equalsr(X)dE, the number of quantum
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states in (E,E1dE) atX, per unitX, divided by the number
of quantum states of the reactant,rdE, in (E,E1dE): That
is,

Peq~X!5r~X!/r. ~2.3!

When integrated overX thisPeq(X) is seen to be normalized
to unity, since*r(X)dX5r, the integral being over the re-
gion occupied by the reactant. From Eqs.~2.2! and~2.3! and
this normalization we have

r~X!/r5eSv~X!/kBY E eSv~X!/kBdX, ~2.4!

where the integral is over the region occupied by the reac-
tant.

We obtain next an expression forr(X). If m denotes the
mth quantum state for the reactant, with energyEm , for all
coordinates butX, then the number of quantum states of the
reactant in (X,X1dX) and in the range (E,E1dE) is

r~X!dXdE5(
m

dX dPX~E!/h ~2.5!

using the semiclassical expression for the number of quan-
tum states corresponding to the phase space volume element
dX dPX . The momentum conjugate toX, PX , is related toE
by

E5 1
2PX

21U~X!1Em . ~2.6!

Here,U(X) is the potential energy atX at the local equilib-
rium value of all remaining coordinates. For notational brev-
ity we use mass-weighted units. In as much asdPX/dE
equals 1/PX , and inasmuch asPX for anydE can be positive
or negative, giving a factor of 2 in the following, Eq.~2.5!
yields

r~X!5(
m

2/huPXu, ~2.7!

wherePX is obtained from Eq.~2.6!.
It is readily verified that ther(X) in Eq. ~2.7! satisfies

the condition*r(X)dX5r: Upon introducing Eq.~2.7! into
this integral, we note that*(2/uPXu)dX equals the period of
the X vibration atX50, and so equals 1/n, n being the vi-
brational frequency of theX motion. If there is any anhar-
monicity in the motion alongX this n will be a function of
the energy of theX oscillatorE2Em , and is denoted bynm .
The energyEm resides in the other degrees of freedom. We
thus have

E r~X!dX5(
m

~1/hnm!5r, ~2.8!

since 1/hnm is the ~semiclassical! number of quantum states
of theX oscillator per unit energy when its energy isE2Em .
Thereby, the sum overm yields r, the density of quantum
states of the reactant for all coordinates, as in Eq.~2.8!.
When theEm in Eq. ~2.6! varies withX for fixedm, theEm’s
used in ther(X) in Eq. ~2.8! are for theX region which
dominates in the integral there, namelyX>0.

C. An RRKM-type expression for k (X)

We obtain next an RRKM-type expression fork(X). The
various coordinates may assist the system in its crossing of
the transition state region. To provide a purely illustrative
contour plot for a system in (X,q) space at the given total
energy, whereq is some fast coordinate involved in the vi-
brational assistance, we introduce a vibrational entropy
Sv(X,q) in this space, related to the equilibrium microca-
nonical population densityPeq(X,q):

Sv~X,q!5kB ln Peq~X,q!1const. ~2.9!

If one integrates overq in the reactant part of space, i.e.,
* Peq(X,q)dq, one obtains thePeq(X) in Eq. ~2.3!. Thereby,
Sv(X,q) is related toSv(X) by

E exp@Sv~X,q!/kB#dq5exp@Sv~X!/kB#.

The entropic contour plot, Fig. 1, replaces the free energy
contour plot employed for constant temperature systems,
e.g., in Ref. 7. While Fig. 1 is not actually used in the fol-
lowing treatment, it serves as a convenient visual aid. The
different forms of that Figure depict graphically the various
topographies discussed in Sec. V.

We first note that the reaction coordinate, denoted byQ,
is a constant in the transition state~e.g., on the curve C in
Figs. 1–3 below!. As usual we leave open the specific defi-
nition of the reaction coordinate, but comment on it for ca-
nonical or microcanonical systems in a footnote.17 Following
the well-known procedure of defining a coordinate via a fam-
ily of coordinate hypersurfaces, one such member of the
family corresponding to the reaction coordinateQ is the tran-
sition state. On that particular hypersurface we introduce a
coordinatex, the projection ofX on the transition state hy-
persurface, and denote the momenta conjugate tox andQ by

FIG. 1. Contour plots of constant~negative! vibrational entropy,2Sv(X,q).
The reaction begins atO and is complete atO8. TheX1 will reduce toXS ,
i.e.,B1 to the saddle-pointS, when there is no product well at anX1,XS .
The wells for the negative entropy are centered atO andO8.
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px andPQ . The projection is defined at the end of this sec-
tion. The remaining coordinates of the transition state are
treated quantum mechanically.

The semiclassical number of quantum states in the phase
space volume element dx dpx dQ dPQ is
dx dpx dQ dPQ/h

2. To obtain the rate constant we first di-
vide this quantity bydQ to obtain the number per unitQ,
multiply by the reaction coordinate velocityQ̇, integrate over
PQ and px , subject to the constraints given in Eq.~2.11!
below, and sum over the quantum statesn of the transition
state for all coordinates other thanx andQ. ~Q is evaluated
at the transition state.! We next divide by the number of
quantum states,r(X)dX dE, of the reactant in thatdE and
dX, and so obtain the rate constantk(X) for systems cross-
ing the transition state:

k~X!5S (
n
E E Q̇ dPQ dpxD udx/dXu/h2r~X!dE.

~2.10!

In Eq. ~2.10!, Q̇5PQ , using mass-weighted coordinates, and
the double integral is over an area in the (px ,PQ) space
lying betweenE andE1dE and given by

E<En1Uc~x!1 1
2px

21 1
2PQ

2<E1dE, PQ>0, ~2.11!

whereUc(x) is the potential energy for the transition state
~i.e., on curve C in Figs. 1–3! at its lowest point with respect
to all coordinates butx; andEn is the energy for all coordi-
nates butx andQ, when the system is in thenth quantum
state for the remaining coordinates. With the condition
PQ>0 the integral in Eq.~2.10! is over the systems moving
from the reactant’s to the product’s region. One finds upon
integration

k~X!5N~X!/hr~X!, ~2.12!

where

N~X!5(
n

2pxudx/dXu/h,

px5$2@E2En2Uc~x!#%1/2, ~2.13!

and nowpx denotes the value ofpx at PQ50. N(X) can be
regarded as a local number~atX! of quantum states per unit
X for the transition state with energy equal to or less thanE.
The factor of 2 in Eq.~2.13! reflects the fact that both posi-
tive and negativepx contribute toN(X). Equations~2.12!
and ~2.13! are the desired result fork(X).

We conclude this section with a description of the pro-
jectionx of X onto the transition state space and the value of
dx/dX in Eq. ~2.13!. As already noted, any coordinate~now
X! in a coordinate space ofN dimensions can be described
by a family of hypersurfaces, each of dimensionN21. Each
member of the family is associated with a different but con-
stant value ofX. The transition state of a reaction is a mem-
ber, as previously noted, of some other family of hypersur-
faces. The intersection of each member of the family ofX
hypersurfaces with the transition state hypersurface defines a
family of N22 dimensional surfaces, each lying wholly
within the transition state hypersurface and each having a
different value ofx. In this way, the coordinatex in the
transition state has been defined, apart from a scaling factor
which can be chosen arbitrarily, and so thedx/dX in Eq.
~2.13! can be obtained.

D. Relation of Eqs. (2.12) and (2.13) to kRRKM

As a check on Eqs.~2.12! and ~2.13! and also for later
use in Sec. III, it is useful to consider how the usual RRKM
expression for the rate constantkRRKM(E), namelyN(E)/hr,
follows from those equations. WhenP(X) has its equilib-
rium value,Peq(X), as it does in RRKM theory, we have for
the equilibrium ~i.e., largeD! result for the observed rate
constant

FIG. 2. Plot similar to Fig. 1, but where there is now a double well in
2Sv(X,q) at some interval ofX’s. For a symmetrical system there are two
paths,OA1B1O8 andOA18B18O8, each contributing an equal amount tokobs,
and the relative importance of each path depends upon the asymmetry of the
reaction.

FIG. 3. Plot similar to Figs. 1 and 2. Now, however,XS is no longer
between theX for O and theX for O8.

5449R. A. Marcus: Solvent dynamics: Modified RRKM theory. II

J. Chem. Phys., Vol. 105, No. 13, 1 October 1996

Downloaded¬03¬Apr¬2007¬to¬131.215.21.81.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp



kobs
eq 5E k~X!Peq~X!dX

5E @N~X!/hr#dX5(
n

2E px dx/h
2r, ~2.14!

using Eq.~2.3! for Peq(X) and Eqs.~2.12! and ~2.13! for
k(X). The limits on this integral are now at the endpoints
px50, since the system is now centered near the local mini-
mum, x5xs , of Uc(x). The x motion has become a simple
vibration. Thus, the integral in Eq.~2.14! becomes
(nr px dx/h

2r, where the integral is over one cycle of the
x-vibrational motion, and it corresponds to anx-vibrational
energy equal toE2En2Uc(xs).

The cyclic integralr px dx/h is the classical action in
units of h and can be written as (l1 1

2). Semiclassically,l
would be an integer, the largest integer consistent with thex
energy being equal to or less thanE2En2Uc(xs). ~The bal-
ance of the energy is in the kinetic energy of the reaction
coordinatePQ

2 /2.! However, because of the classical deriva-
tion, this l is merely a real number. Its value will be denoted
by lmax(n), since it is a function ofn. The sum overn now
becomes(n[ lmax(n)1

1
2]. If lmax were an integer, this sum

would be a step function ofE, increasing by unity when each
newx-quantum state becomes energetically accessible. Inter-
estingly enough, with the presence of the 1/2, one obtains
instead a function ofE which, while continuous at each in-
tegral increment ofl instead of being stepped, passes through
the midpoint of each vertical step in the above step function.
The sum is equal toN(E), the number of quantum states of
the transition state, for all coordinates but the reaction coor-
dinate, with energy equal to or less thanE.

We thereby have

kobs
eq 5(

n
@ lmax~n!1 1

2#/hr5N~E!/hr5kRRKM~E!.

~2.15!

E. Expression for D

In Eq. ~2.1! the D has been inferred from various
sources in the case of reactions in solution. It has been esti-
mated, for example, from the Stokes–Einstein relation, either
using the bulk viscosity or using a microviscosity, inferred
from a rotational or translational diffusion constant~e.g., ex-
amples in Ref. 18!. Or it has been obtained from the time-
dependent fluorescence dynamics Stokes shift, in the case of
electron transfer systems.19 In this caseD may be aD(t),
when the relaxation is more complicated than a single expo-
nential. The latter is sometimes replaced, instead, by a con-
stant which is related to a relaxation timetS for the slow
coordinate, or related approximately to an autocorrelation
function*0

`^X(0)X(t)&dt/^X2(0)& ~e.g., Refs. 10 and 20!. In
other papers the differential equation containing aD(t) is
integrated numerically.8,9 In the case of clusters, the mea-
surement of some relaxation property in the cluster, such as a
time-dependent fluorescence dynamics Stokes shift or using
other ultrafast laser spectroscopy, might be used to obtainD
or D(t). Approximate~ballpark! molecular expressions for a
solute in a cluster were given in Part I for the friction coef-

ficient z and so forD5kBT/z in mass-weighted units. Or,
molecular dynamics for the cluster could be used to estimate
the autocorrelation function under microcanonical condi-
tions.

III. SOLUTIONS OF THE DIFFERENTIAL EQUATION

In the case of reactions in solution, various methods
have been used to solve the constant temperature analog of
Eq. ~2.1!. For example, Agmon and Hopfield6 gave a numeri-
cal solution for a heme-ligand dissociation. Another method
of numerical solution, one for electron transfers was given
by Nadler and Marcus7 and one for isomerization was given
by Rabinovitch and Agmon.12 For intramolecular charge
transfer, Barbara8 and Yoshihara9 have integrated the differ-
ential equation numerically, sometimes with aD(t) as al-
ready noted. Sumi and Marcus,7 in an analytical treatment,
introduced a decoupling approximation for electron transfers,
when there was an appreciable difference in time scales of
the reaction and solvent relaxation. Berezhkovskii and
co-workers13 have used for the steady-state case a different
approximation mentioned later in Sec. IV.

Any of these methods can be used to solve the differen-
tial Eq. ~2.1! for the present~microcanonical! unimolecular
reaction, in conjunction with equations such as Eq.~2.4! for
Sv(X), Eq. ~2.7! for r(X), Eq. ~2.12! for k(X), and Eq.
~2.13! for N(X). In the present paper we introduce below an
approximation which converts the problem to a form com-
mon in the reaction-diffusion literature: diffusion under a
force to a reaction sink followed by reaction at that sink.
Usually, however, the sink is at a fixed boundary in the dif-
fusion space. In the present case, the position of the sink is
determined by a maximization.

We consider the steady-state case, with a source term at
X50. We first note thatk(X) increases asX increases from
0 to Xc in Fig. 1, whileP(X) decreases. In this casek(X)
P(X) has a maximum as a function ofX, and we consider
the case where this term is large near someX, X1 , but only
within a narrow window,X16

1
2D. The value ofX1 will be

determined by a maximization of the rate constant and the
widthD will be determined from the width of the distribution
of k(X)P(X) in an iterative manner described later.

Thus, we write

k~X!P~X!>k~X1!P~X1!Dd~X2X1!, ~3.1!

which containsD and a Dirac delta function. For the approxi-
mation to be applicable, it is necessary that the reaction win-
dow D be much smaller than theX interval occupied by the
reactant. A definition forD and a starting value in an itera-
tive calculation forD is given later.

We next solve Eq.~2.1!, using Eq.~3.1! and assuming a
steady-state description, described above, forP(X). The flux
is 2D(]P/]X2P/kB ]Sv/]X) and it now vanishes for
X.X1 . ~There is no sink forX.X1 if the reaction is along
the cited path.! Integrating Eq.~2.1! from anX,X1 , after
setting]P/dt50, to anX.X1 we have
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2DS ]P

]X
2

P

kB

]Sv
]X D52D exp~Sv /kB!

3
]

]X
@P exp~2Sv /kB!#

5k~X1!P~X1!D ~X,X1!. ~3.2!

On integrating Eq.~3.2! from X50 to anX,X1 , we have

P~0!

P~X!
5Fk~X1!D

D E
0

X

e2Sv~X!/kBdX1e2Sv~X!/kBGeSv~0!/kB.

~3.3!

P(0) can be determined straightforwardly from this equation
by using the normalization* P(X)dX51. However, as an
approximation, the neglect nearX50 of the first of the two
terms in brackets in Eq.~3.3! yields P(0)>Peq(0)
5eSv(0)/kB/* eSv(X)/kBdX, where the integration is over the
region ofX occupied by the reactant.

The rate constantkobs(X1) is the probability flux~3.2!
divided by * P(X)dX, which is unity. Thus one sees from
Eq. ~3.2! thatkobs(X1) equalsk(X1)P(X1)D and so Eq.~3.3!
yields, upon using equations such as Eqs.~2.3!, ~2.4!, and
~2.12!,

1

kobs~X1!
5

1

kact~X1!
1

1

kdiff~X1!
, ~3.4!

where

kact~X1!5kobs
eq ~X1!5k~X1!Dr~X1!/r5N~X1!D/hr

~3.5!

and

kdiff~X1!5DY E
0

X1
r/r~X!dX. ~3.6!

The observed rate constantkobs for the reaction at the
givenE is obtained from the value ofX1 , Xmax, which maxi-
mizes thekobs(X1) in Eq. ~3.4!, i.e.,

kobs5kobs~Xmax!. ~3.7!

TheD in Eq. ~3.5! is a reaction ‘‘window’’ inX space.
Most of the flow from reactant to product region passes
through it. Sincekobs(X1)/kobs~Xmax! is proportional to the
reactive flow via theX1 region, a reasonable value forD,
which has units ofX, is

D5E kobs~X1!dX1 /kobs~Xmax!, ~3.8!

where the integral is over the region occupied by the reac-
tant. TheD is determined by an iterative process, where the
first step in the iteration forD is described near the end of
this section.

Equations~3.4!–~3.8! and the initial iterative equation
for D, Eq. ~3.10! below, constitute the principal, results for
kobs in this section. We note thatkobs reduces to thekdiff term
in Eqs. ~3.4! and ~3.6! whenD becomes sufficiently small.
Indeed, one could obtain that term alone by using the so-
called Smoluchowski boundary condition atX1 , namely by

settingP(X1)50 as the boundary condition atX5X1 and
then integrating Eq.~2.1! in the steady-state approximation.
On the other hand, thekact(X1) in Eq. ~3.4! is the rate when
D is so large thatP(X) achieves its equilibrium value every-
where in the reactant’s region. In fact, the rate under those
conditions should be* k(X)Peq(X)dX, i.e.,

kobs
eq ~X1!5E k~X!r~X!dX/r5k~X1!r~X1!D/r

5N~X1!D/hr, ~3.9!

upon introducing Eq.~3.1! for k(X). The right-hand side of
Eq. ~3.9! is indeed seen to be thekact(X1) appearing in Eq.
~3.5!.

To see how the expression~3.9! reduces to the RRKM
value whenD is sufficiently large, we note thatXmax now
occurs atXs , i.e., at theX corresponding toxs , which is at
the lowest value ofUc(x) in the transition state. Thereby, the
coordinatex now executes a vibrational cycle. Equation~3.8!
is now used forD, and Eq.~3.9! for krate(X1) is introduced
into it. The right-hand side of Eq.~3.8! then becomes
* N(X1)dX1/N(Xmax!. Using Eq.~2.13! for N(X) and using
the argument which led to Eq.~2.4!, namely that
* N(X1)dX15N(E) whenX1 is centered atXs , we obtain

D5N~E!/N~Xmax!. ~3.10!

Since nowXmax is Xs , Eqs.~3.7!, ~3.9!, and~3.10!, with X1
written asXmax, yield

kobs
eq ~Xmax!5N~E!/hr, ~3.11!

which is the RRKM value.
We comment, finally, on the general evaluation ofD,

which is determined self-consistently from Eqs.~3.4!, ~3.5!,
and~3.8!, noting thatD appears explicitly in thekact(X1). A
first estimate ofD can be made using the value in one lim-
iting regime, namely, when 1/kdiff(X1) can be neglected in
Eq. ~3.4!. In that caseD is given by Eq.~3.10!. This D can
then be used in Eq.~3.5! as a first step in an iterative scheme
involving Eqs.~3.4!–~3.6!.

We remark in passing, that the properties ofkact(X1) in
Eq. ~3.5! are determined by properties of the transition state,
such asN(X1), while the properties ofkdiff(X1) in Eq. ~3.6!
are determined only by the properties of the reactant, such as
D andr(X).

IV. INCLUSION OF RECROSSINGS

We consider now the case where recrossings of the tran-
sition state occur. Instead of Eq.~2.1! we now have two
equations, one for the probability density of the reactantA
and one for that of the productB. The ‘‘back reaction’’ term,
kb(X)Pb(X), provides the recrossings:

]Pa

]t
5Da

]

]X S ]Pa

]X
2
Pa

kB

]Sv
a

]X D 2ka~X!Pa~X!

1kb~X!Pb~X!, ~4.1!
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]Pb

]t
5Db

]

]X S ]Pb

]X
2
Pb

kB

]Sv
b

]X D 2kb~X!Pb~X!

1ka~X!Pa~X!. ~4.2!

The values ofka(X) andkb(X) are given by Eq.~2.12!, with
appropriate subscripts:

ka~X!5N~X!/hra~X!, kb~X!5N~X!/hrb~X!, ~4.3!

andN(X) is given by Eq.~2.13!, as before. Equations~2.12!
and~4.3! presume a local entropic [2Sv

b(X,q)] well for the
product upon crossing the transition state hypersurface at the
givenX. TheSv

a(X)/kB andSv
b(X)/kB can, using Eqs.~2.2!

and ~2.3!, be written as

Sv
a~X!/kB5 ln ra~X!1C, ~4.4!

Sv
b~X!/kB5 ln rb~X!1C, ~4.5!

where the constantC is chosen to be the same, so that the
two Sv’s are calculated relative to the same zero. We take
C5Sv

a(0)2kB ln ra(0), but theconstant does not enter into
Eqs.~4.1! and ~4.2!. As before, the value of*ra(X)dX, in-
tegrated over the reactant’s region, equalsra , the density of
states of the reactant. We have, thereby,

eSv
a
~X!/kBY E eSv

a
~X!/kBdX5ra~X!/ra . ~4.6a!

From Eqs.~4.4!–~4.6a!, we have

eSv
b
~X!/kBY E eSv

a
~X!/kBdX5rb~X!/ra . ~4.6b!

Equations~4.1! and~4.2! can again be solved by a vari-
ety of methods, and we explore next the narrow reaction
window method introduced in Sec. III. We again consider
the steady-state case,]Pa/]t5]Pb/]t50, and use Eq.~3.1!
for eachk(X). The fluxesJ(X) are given by

Ja~X!52DaS ]Pa

]X
2
Pa

kB

]Sv
a

]X D ~4.7!

and

Jb~X!52DbS ]Pb

]X
2
Pb

kB

]Sv
b

]X D . ~4.8!

The steady-state condition for the net forward reaction
can again be imagined as arising from a continuous source of
A atX50 and a sink of equal strength forB atX508 ~Figs.
1 or 2!. The steady-state rate constant is then the probability
flux of A, divided by* Pa(X)d(X), which is unity. The rate
constant is given later in Eq.~4.12!.

With a delta function form of rate constants in Eq.~3.1!,
integration of Eqs.~4.1! and ~4.2! over the appropriateX
intervals shows thatJa(X) andJb(X) are piecewise constant:
Ja(X)5Ja(0) for 0<X,X1 , Jb(X)5Jb(08) for
08>X.X1 , and since there is no sink or source forA for
X.X1 and none forB for X,X1 ~cf. Figs. 1 or 2!, Ja(X)50
for X.X1 andJ

b(X)50 for X,X1 .

Integrating Eqs.~4.1! and~4.2! over a region containing
X5X1 , using Eq. ~3.1!, steady-state conditions,
]Pa/]t5]Pb/]t50, and the above results for theJ’s, we
have

Ja~0!5@ka~X1!Pa~X1!2kb~X1!Pb~X1!#D5Jb~08!,
~4.9a!

whereka(X1) or kb(X1) is thek(X1) in Eq. ~3.1! with ana
or b subscript.

We introduce the symbolJ to denote this common
value:

J5Ja~0!5Jb~08!. ~4.9b!

Integrating of Eq.~4.7! from X50 to anX,X1 , noting that
Ja(X)5J in that region, yields

Pa~0!e@Sv
a
~X!2Sv

a
~0!#/kB2Pa~X!

5
J

Da
eSv

a
~X!E

0

X

e2Sv
a
~X!/kBdX. ~4.10!

The Pa(0) can be determined from this equation, using a
normalization * Pa(X)dX51, by integrating Eqs.~4.10!
over the region occupied byA. However, using the equilib-
rium approximation in the vicinity ofX50, i.e., neglecting
the right hand side in Eq.~4.10! whenX>0, Pa(0) equals
exp(Sv

a(0)/kB)/* exp[Sv
a(X)/kB]dX.

Integrating Eqs.~4.8! from X5X1 to X508, noting that
Jb(X)5J in this interval, and settingPb(08)50, e.g., by
using a sufficiently strong sink to avoid the back-reaction
B→A in this calculation of a forward rate constant, yields

Pb~X1!5
J

Db
E
X1

08
e@Sv

b
~X1!2Sv

b
~X!#/kBdX. ~4.11!

The rate constant for a givenX1 , kobs(X1), is defined by

kobs~X1!5J, ~4.12!

divided by* Pa(X)dX, which is unity.
Equation~4.10!, valid for X,X1 is, by continuity, valid

atX5X1 . Equations~4.9!–~4.12! then yield, upon using Eq.
~4.10! at X5X1 ,

1

kobs~X1!
5

1

kact~X1!
1

1

kdiff
a ~X1!

1
1

k2diff
b ~X1!K~X1!

,

~4.13!

wherekact(X1) is defined by Eq.~3.5!, kdiff
a (X1) by Eq.~3.6!,

with D, r and r(X) written asDa , ra , and ra(X), and
k2diff
b (X1)K(X1) is defined by

k2diff
b ~X1!5DbY E

X1

08
@rb~X1!/rb~X!#dX, ~4.14!

K~X1!5@ka~X1!/kb~X1!#ra~X1!/ra . ~4.15!

The rate constantkobs is again given in terms ofkobs(X1) by
Eq. ~3.7!, but using Eq.~4.13! instead of Eq.~3.4!.

One can see that Eqs.~4.14! and~4.15! contain an equi-
librium constantK(X1) for formation ofB(X1) from A, mul-
tiplied by a diffusion ratek2diff

b (X1) for forming B from
B(X1). When kb(X1)/ka(X1) is sufficiently large, the last
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term in Eq.~4.13! becomes very large, and so it dominates
the other two terms in Eq.~4.13!, and thenkobs(X1) becomes
very small. One can see the physical origin of this smallness:
When the equilibrium constant betweenA andB(X1) favors
very much the side ofA, the recrossings are especially ex-
tensive and thekobs(X1) is small.

The origin of the structure of Eq.~4.13! is seen clearly
from the schemeA�A(X1)�B(X1)→B, upon using a
steady-state approximation forA(X1) andB(X1), the con-
centrations ofA andB, per unitX, atX1 . If the forward and
reverse rate constants of the first step are denoted byk1 and
k21, of the second step byk2 and k22, and if the forward
rate constant of the final step isk3 one obtains

1

kobs
5

1

k2K1
1

1

k1
1

1

k3K1K2
, ~4.16!

whereKi (5ki /k2 i) is the equilibrium constant fori51, 2.
The structure of Eq.~4.16! is identical to that of Eq.~4.13!.
We note that in this model leading to Eq.~4.16! there are net
flows in theA region and in theB region, and that both flows
are equal. The same behavior occurs in Eq.~4.9b!, which
leads to Eq.~4.13!.

V. ENTROPIC SURFACES

There are several different types of arrangement of the
entropic wells. We have plotted2Sv(X,q)/kB instead of
Sv(X,q)/kB , so that the wells in the surface are regions of
stability, and vice versa. One type of surface is depicted in
Fig. 1. Here, there is no double well at anyX1 , apart from
theX at the saddle-point,XS . If one introduced the idea of an
intermediateB1 for this case, it would now be so short-lived,
because of recrossings, thatX1 , the X which maximizes
kobs(X), is then expected to becomeXS . One then would use
a one-coordinate treatment, such as that in Part I.

A second type of2Sv(X,q) surface has two wells at a
suitable range ofX1’s, as in Fig. 2. We consider this system
next. When the reaction is symmetric, the rate constant for
the path 0→A1→B1→08 equals that for the path
08→B1→A1→0. By symmetry, there must be a second for-
ward path 0→A18→B18→08, whose properties and rate con-
stant are identical to those of the path 08→B1→A1→0. In
comparing these two paths from 0 to 08, we note that though
equal in rate constant, the first path might, at first glance
seem to be the more probable one, since the first step, 0 to
A1 , compared with 0 toA18 , involves less uphill diffusion
alongX. On the other hand, the next step is more uphill from
A1 to B1 than fromA18 to B18 . For that reason, the recrossing
from B1 to A1 is greater than that forB18 to A18 . A net result,
one can see by microscopic reversibility, is that the two paths
contribute equally to the rate constant, and the total forward
rate constant is the sum of the two. The rate constant for the
second path is given by an expression similar to Eq.~4.13!,
but now theX1 occurs atA18 instead of atA1 , and we denote
this second value ofX1 by X18 . When the reaction is made
asymmetric, by making it increasingly downhill, theX1 path
becomes increasingly dominant over theX18 path and vice
versa if the reaction is made increasingly uphill.

We now have akobs at the givenE that is given by

kobs5 max
X1 ,X18

@kobs~X1!1kobs~X18!# ~5.1!

for both the symmetric and the asymmetric case.
A third type of surface topography is depicted in Fig. 3.

Here, the system diffuses along theX coordinate towards the
origin and then, after the reaction occurs, diffuses in the re-
verse direction along the product’s well. In the case of an
intramolecular transfer of a light atom between two parts of a
molecule,a andb, for example, one expects that ifX were
theab separation distance, the contours in a mass-weighted
coordinate system would resemble those in Fig. 3 in the two-
dimensional subspace being considered, where the angle be-
tween theX axis and lineC would be quite small.

VI. DISCUSSION

The main results of the present paper, given in Sec. II,
are the microcanonical reaction-diffusion equations, Eqs.
~2.1!, ~4.1!, and ~4.2!, and the expressions fork(X), r(X),
andSv(X) which appear in Secs. II and IV. With these ex-
pressions, the differential equations can be integrated nu-
merically, with a replacement of theD by a D(t) when
needed, as in the canonical case, or alternatively, using some
analytic approximation. One example of such an approxima-
tion is described in Sec. IV, for the case that the reaction
occurs only in a small interval (X16

1
2D). As discussed there,

recrossings of the transition state can play a major role in
determining the value ofX1 , and also there can be two such
paths. Further, the surface topography is important in deter-
mining whether or not there is a saddle-point avoidance, i.e.,
whether or notX15XS , and thereby in determining whether
the simple treatment in Part I can be used for microcanonical
systems instead of the present one.

A detailed and insightful discussion of surface topogra-
phy and localized reaction paths has been given by Berezh-
kovskii and Zitserman13 for reactions at a given temperature.
They consider at eachX an escape time to the product well
and a solvent relaxation time. TheX where the two are equal
is where the reaction is presumed to occur. They note that if
there is no bistable potential before reachingXS , the value of
X at the saddle-point, the treatment reduces to a multidimen-
sional Kramers–Langer type result. The physical effects pre-
sented in Ref. 13 regarding escape time and solvent relax-
ation time are closely related to the ratio ofkdiff
(X1)/kact(X1) in the present Eq.~3.4!. Recrossings were also
extensively discussed in Ref. 13.

We have noted elsewhere3 that the current experimental
data are insufficient to distinguish between the Kramers-
modified form of RRKM theory for unimolecular reactions
presented in Part I and the one slow coordinate—many fast
coordinate treatment in the present paper. The acquisition
and the use of auxiliary information on solvent dynamics,
which has been helpful in solution~e.g., for electron trans-
fers and discussed in Ref. 3!, would be helpful for clusters
also. As discussed there the choice of suitable solutes could
minimize the effects of solvent friction and so emphasize,
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and be instructive of, the energy-sharing role of the solvent
molecules in the cluster. For the present, as noted in Part I,
the energyE, largely arising in Ref. 1 from photoexcitation,
can be regarded as distributed in one of two limiting ways—
solely in the solute or throughout the cluster. Further experi-
ments can be expected to distinguish between these possibili-
ties and determine the time scale for proceeding from one to
the other.

In concluding this section, we sketch briefly in physical
terms how Eq.~2.1! could be obtained from a more molecu-
lar description, beginning with a mixed quantum-classical
description of the modes. For all modes butX a quantum
basis set of zeroth-order states would be introduced, whose
nature could vary with the value ofX. @In that case theEm in
Eq. ~2.6! becomesEm(X).# For example, some bending vi-
brations for the stable configurations of the reactant become,
in the case of a nearly loose transition state, almost free
rotations. The zeroth-order states are coupled to each other
and to the classically treated coordinateX. The equations of
motion would describe the dynamics of this zeroth-order ba-
sis set and ofX. At each value ofX one would average over
the fast coordinates, e.g., by assuming a statistical equilib-
rium for those coordinates and, in the present~overdamped!
case, forPX . In that case, the change in the gradient of the
density of the zeroth-order states,r(X), provides a ‘‘thermo-
dynamic’’ force for the motion alongX. In this way, more or
else by analogy with Ref. 3~a! but for a constant energy
system and in quantum terms, one could obtain Eq.~2.1!
without the reaction term. In addition to this local statistical
equilibrium at eachX, one then makes a statistical assump-
tion for systems crossing the transition state regionC at that
X, and assumes, but only in the vicinity ofC, a classical
description for the motion along the reaction coordinateQ.
This reaction sink at eachX provides thek(X) term in Eq.
~2.1!.
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