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Abstract 

Kramers and RRKM theories are used to formulate a solvent dynamics-modified treatment of unimolecular reaction rates 
in clusters. The canonical Kramers' description is modified so as to apply to microcanonical systems. An entropic gradient, 
arising from all coordinates but the reaction coordinate q, and a q-dependent microcanonical vibrational temperature are 
introduced. A simple expression is obtained relating the rate constant to its RRKM value and permitting comparison with 
recent experiments. An application is also made to the Kramers' turnover region. 

I.  Introduct ion  

In a recent and stimulating experiment Zewail and 
co-workers [1] have determined the dynamics of the 
photo induced  isomerizat ion of  trans-sti lbene 
molecules, both with and without a cluster of  n 
hexane molecules, with n varied from 1 to 5. The 
isomerization dynamics in each case showed a single 
exponential time decay, which was studied as a 
function of  the excess vibrational energy of  the 
photoexcited stilbene. Current discussions of  stilbene 
isomerization include those in Ref. [2] and in refer- 
ences therein. 

There are several possible effects of an adsorbed 
solvent molecule on the reaction rate of  a photoex- 
cited solute at a given initial energy of  excitation. 
They include (1) collisional deactivation/activation 
(energy sharing), (2) a possible modification of  the 
threshold energy for the reaction [3], and (3) a 
frictional effect associated with random forces. The 
first effect is well known in gas phase collisions. 

I Contribution No, 9113. 

In this Letter, an approximate theoretical expres- 
sion is derived for a generic system of this type, 
focusing on effect (3). The simplest model consistent 
with a single exponential behavior is also included 
for any contribution of effects (1) and (2). The 
following assumptions or conditions are made re- 
garding the photoexcited molecule, termed the so- 
lute: 

(i) The photoexcitation conditions yield a wave 
packet comprised of  many quantum states. (Other 
experimental conditions could yield, instead, a state- 
resolved preparation of a single quasi-eigenstate.) 

(ii) The behavior of the solute molecule is micro- 
canonical and is RRKM-Iike or, as defined later, 
diffusively-modified RRKM-like, with an energy de- 
termined by the initial excitation energy. For case (b) 
below it is the cluster which is microcanonical. 

(iii) The radial and various librational or floppy 
motions of each solvent molecule adsorbed on the 
solute can cause or enhance a frictional effect on the 
velocity along the reaction coordinate. (The in- 
tramolecular vibrations of  the solute might also con- 
tribute, though presumably to a lesser extent.) 

(iv) The probable range of values of the momen- 
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turn p along the reaction coordinate q is ' thermal' ,  
rather than very 'hot ' ,  so permitting a statistical-like 
adjustment among the remaining coordinates during 
the itinerant motion along q and a Fokker-Planck- 
like treatment for both q and p. 

There are several limiting cases regarding in- 
tramolecular vibrational relaxation within a cluster: 

(a) the excitation energy remains, in effect, con- 
fined to the solute, and 

(b) the excitation energy is immediately redis- 
tributed between the solute and, at least, the libra- 
tional and radial modes of the solvent molecules in 
the cluster. The treatment given in Section 2 would 
include either of these two limiting cases, but the 
numbers of degrees of freedom contributing to 
kRR~M(E) in Eq. (22) below would differ for the two 
cases. 

For trans-stilbene, case (b) is probably favored, 
judging from data in solution, which show a thermal- 
ization of the initially excited solute molecule prior 
to isomerization. For the results in Ref. [1] the 
enhanced rate observed with a solvent molecule in 
the cluster in the threshold region is presumably due 
to the effect of the latter on the energy barrier [1]. 
However, the increasing depression of the rate ob- 
served at higher excess energies with increasing 
number of solvent molecules in the coordination 
shell is presumably due, instead, to two factors: an 
enhanced friction and, for case (b), a redistribution 
of the initial excitation energy among more modes. 
Both effects undoubtedly occur, and distinguishing 
between them in a cluster represents an interesting 
task, accomplished perhaps with studies varying the 
nature of the adsorbed solvent molecules and their 
number outside the inner coordination shell. Presum- 
ably, in any cluster of a solute attached to n solvent 
molecules (n = 1, 2 . . . .  ) mainly the molecules in the 
first coordination shell contribute to the interrup- 
tions, i.e. to the 'frictional effect'. 

The present treatment blends the concepts of 
RRKM and Kramers' theories. Kramers' considered 
a one-dimensional system at a constant temperature 
[4]. An excellent extensive review of Kramers' the- 
ory and its extensions is given in Ref. [5]. A relation 
between Kramers' result, its Grote-Hynes memory 
modification [6], and a transition state/harmonic 
bath theory is described in Refs. [7-9]. 

The present treatment uses thermodynamic (statis- 

tical mechanical) microcanonical functions along the 
reaction coordinate, permitting the remaining coordi- 
nates to be involved, and in that particular sense is 
many-dimensional. There is some similarity in that 
respect to our earlier study of electron transfer reac- 
tions for canonical systems, which involved calcula- 
tions of the free energy along the reaction coordinate 
[10] and to the work of Chandler and others (e.g. use 
of a 'potential of mean force' or 'free energy sur- 
face') for condensed phase reactions [11]. 

In this Letter, predictions are made of the relation 
between the energy-dependent rate constants of the 
bare and solvent-adsorbed solute. In Section 2, perti- 
nent unimolecular considerations are given. The 
Kramers' type equation is adapted so as to obtain the 
microcanonical phase space distribution of the mi- 
crocanonical solute. The key final equations are Eq. 
(22) and its overdamped limit, Eq. (23). The evalua- 
tion of the 'frictional coefficient' is discussed in later 
sections, together with its experimental estimation 
and a rough molecular interpretation. An application 
of the present work to the Kramers' turnover prob- 
lem is given in Section 6. Concluding remarks are 
made in Section 7. The use of a microcanonical 
description for calculating spectra of hot molecules 
is related to the present analysis and is described in 
the Appendix. 

2. Unimolecular rate constant 

In a nonstationary state of an anharmonic system 
the vibrational energy of the solute interchanges 
intramolecularly among its vibrational modes, in- 
cluding the mode which is the reaction coordinate q. 
Repeated impacts between the solute and any solvent 
molecules in its coordination shell in the cluster also 
interrupt the q-motion and so can enhance any diffu- 
sive nature of the latter. We consider the reaction 
rate of the 'solute' molecule in a cluster of n = 0, 1, 
2 . . . .  solvent molecules. 

2.1. Quasi-equil ibrium (RRKM) case 

To use as a starting point for the subsequent 
frictional calculations, we first recall the derivation 
of the RRKM rate constant [12,13]. The momentum 
conjugate to q is denoted by p. The number of 
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quantum states accessible to a solute whose energy 
lies in (E, E + dE)  and whose q and p lie in (q, 
q + d q )  and (p,  p + d p )  is denoted by p~(Eo, 
q)dEdqdp/h,  where p~ is the density of vibra- 
tional states and is a function of E~, the energy in all 
coordinates other than q. It depends on E~ at the 
given q and, because the shape of the potential 
energy surface for the vibrations depends on q, on q 
itself. The semiclassical number of quantum states 
for the given infinitesimal q and p intervals is 
dqdp/h.  

The equilibrium probability of finding the system 
with the above specifications is p~dqdpdE/  
hp(E)dE, where p(E) is the density of quantum 
states arising from all coordinates in the parent 
molecule. Dividing by dq to find the probability per 
unit length along q, multiplying by the velocity q to 
calculate the contribution to the reaction probability 
flux, we note that q dp  equals dEq, where Eq is the 
q-kinetic energy at q. Upon integrating over all Eq 
and thereby over all accessible E o at the given E, 
the integrated reaction probability flux at the transi- 
tion state qt is the rate constant, 

fEom~X(q t) e l  r 
kRRKM ~--]0 po[~z~,qt)dEv/hp(E), ( 1 )  

since - d E  o equals d Eq at the given E when we 
write 

1 2 E = E v ( q )  + U(q) + ~p . (2) 

U(q) is the potential energy along q, and Emax(q t) 
= E - U(qt). We have used a mass-weighted q, for 

1 2 notational brevity, so that q = p, and Eq = -~p . 
Thereby, 

kRRKM (E) = N( E, qt) /hp(  E), (3) 

where N(E, qt) is the number of energetically ac- 
cessible vibrational quantum states at q = qt. The qt 
is obtained variationally by minimizing N(E, q) (cf. 
Ref. [13] and references cited therein). A recent 
review of unimolecular reaction theory is given in 
Ref. [14]. 

This derivation is readily modified to include all 
vibrational-rotational states of the molecule Consis- 
tent with the given total angular momentum J and 
with any constraints on those states, thereby yielding 
[10,11] 

kr(RKM(E,J ) =N(E,J ,  q t ) / hp (E ,J ) .  (4) 

However, for brevity of presentation the J symbol 
will be suppressed. 

We next consider a modification of Eq. (3) which 
allows for frictional effects of the solvent molecules 
attached to the solute in the cluster. The treatment 
has the practical goal of obtaining a simple expres- 
sion which can be easily related to experiments, and 
in the comparison serve to illustrate various issues. 
The single-exponential behavior observed in Ref. [1] 
was a factor in avoiding for the present the adapting 
to the microcanonical case more elaborate and more 
general treatments. In the literature a different ap- 
proach for a microcanonical system has been given 
by Tucker and Pollak [15]. 

2.2. Nonequilibrium systems 

We consider the frictional effect on the phase 
space distribution function, P(E, q, p, t) of the 
solute. This P is the probability density for finding 
the system in (q, q + dq), (p, p + dp)  and (E v, 
E o + dEo). For the quasi-equilibrium system P was 
p~(E o, q)/hp. We consider the steady-state case. 

Using the argument leading to Eq. (1) the rate 
constant in this case is 

krate= f P ( E ,  qt, p)pdp,  (5) 

where the integral is now over all p. We seek an 
expression for P. 

It will be convenient to define a Boltzmann-type 
vibrational entropy Sv(Ev, q) associated with the 
equilibrium distribution of the vibrational states of 
all coordinates but q, 

So(Eo, q) -- k B In pe(Eo, q) + const. (6) 

This constant does not enter into Eqs. (7)-(9) below, 
since only derivatives of S o appear there. The ex- 
plicit dependence of S o on q at a given E o is due to 
the dependence of the shape of the multidimensional 
potential energy surface for these vibrational coordi- 
nates on q. Bearing Eq. (2) in mind, we shall 
sometimes write So(E~, q) as So(E, q, p), and 
p~(Eo, q) as pe(E, q, p). 

We define a microcanonical vibrational tempera- 
ture T o for all coordinates contributing to E o, 

T~(E, q, p)  = 1/(aSo/aEo) q = 1/(aSo/OE)q.p , 
(7) 
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where the derivative is calculated at the particular E, 
q and p, of interest. Since p is assumed to be 
typically small in the present formulation, only the 
dependence of T~ on q will be stressed. At the given 
E and q it will be written as T~(q), for brevity. 

We introduce a Kramers-type equation, which we 
have modified so as to be appropriate for the present 
microcanonical system, i.e. at fixed E, 

-~t = - T,, -~q ] V - P~q 

pe+k.r ,V . ( 8 )  

Eq. (8) differs from the standard Kramers' phase- 
space differential equation [4] in two respects. The 
constant temperature T in the latter is replaced by a 
T~,(q) and the usual mechanical force -~U/Oq is 
replaced by T~(q)OSJOq. These changes are de- 
signed to permit the p~.(E, q, p ) /hp(E)  in Eq. (1) to 
be a solution of Eq. (8) for P. In fact, differentiation 
of p~ in Eq. (6), and making use of Eqs. (2) and (7), 
shows that 

P,. PoP P~ Pe 0S~ Op~ 
. . . . . .  O, (9) 

8p kBT,' 3q kB 8q '  3t 

which in turn shows that Eq. (8) for P is indeed 
identically satisfied by p~(E, q, p)/hp(E).  

The method of Kramers [4] is used to solve Eq. 
(8) in the steady-state case, a case which is consis- 
tent with a single-exponential decay. (A relaxation 
treatment, with a single exponential decay constant 
A, would yield in an alternative procedure an eigen- 
value problem to be solved for )t and P.) For the 
steady-state case we set 

P( E, q, p, t) = p~( E, q, p)W( E, q, p) / h p (  E) 
(10) 

and solve for the unknown function W(E, q, p). 
So defined, this W should approach unity when q 

approaches the reactant's region of q-space (q ~ 0), 
since the value of P there can be approximated by 
its equilibrium value p~/hp. The W in Eq. (10) can 
be expected to depart from this value of unity mainly 
when q is near or greater than q*. Therefore, the S,, 
is first expanded in the vicinity of q = q*: 

We note that in variational RRKM theory N(E, 
q) is a minimum at q = q*. For complex molecules 

the minimum in the density of states p,~, and hence 
in S~, occurs at a value of q very close to q* (as is 
also seen later from Eq. (20) since T~.(q) there varies 
little with q near q*). We have on that basis, ex- 
panding in powers of q -  q, and of p (and in this 
case the limits on p in Eq. (3) can be replaced by 
+~) 

S , ( E , q , p )  

=S~,(E,q*,O)+ 

( q  = q*, p small), 

to*2(q _ q,)2 p2 
- -  ~-  , . .  

2T,~ 2U, 

(11) 

where TL,* and to te denote Tv(q t) and T,, d2S,,/dq 2 
at q = q*, respectively. We have used (OSL. / 
O(p2))e = (SS~/OEv)q(OEv/O( p2))E q = 

- 1/216~ and neglected 8Sv/~ q at ~*. (If the latter 
were included in the expansion in Eq. (11), only a 
minor modification would be needed in Eq. (13) 
below, but this extra complexity seems unwarranted 
at this point.) 

From Eqs. (9)-(11) we then have in the steady- 
state case 

0W 8W 8W 8 2 W 
- * - - -  -Cp + tot2(q _ q  ) 8p P ~ q  , -  ~'kBT] 0p 2 

= 0  ( q ~ q * ) ,  (12) 

where, in the vicinity of q= q*, T,,(q) has been 
replaced by T,*, its typical value there. 

To introduce a similarity transformation, which 
reduces the partial differential equation in two vari- 
ables to an ordinary differential equation in one 
variable, we write [4] 

W= W(u),  u = p -  a ( q -  q*). (13) 

Eq. (13) is seen to be a solution to Eq. (12) only if a 
is chosen to satisfy 

Ot = l~q- I ( 1 ~  )2 -~- to i'2 . (14) 

After one integration of Eq. (12) W(u) satisfies the 
first-order ordinary differential equation 

dW(u) _ _ C e x p [ _ ( a _ ; ) u a / 2 ; k B T ]  ' (15) 
du 

where C is the integration constant. For W(u) to 
converge as u -* + ~ a - ~ must be positive, so the 
positive root in Eq. (14) is selected. The appropriate 
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solution of Eq. (15) is that which tends to zero as q 
becomes large and positive and hence as u becomes 
large and negative. Using this boundary condition 
the integration of Eq. (15) yields 

W(u) -- c f_" e x p [ - (  a - £ ) z2/2~ kBTJ] dz. 

(16) 

The remaining constant C is chosen so that W 
approaches unity when q is near zero. 

In the vicinity of q = 0, the upper limit in Eq. 
(16) is essentially + ~, since the q - qt in Eq. (13) 
becomes large and negative in the reactant's region. 
Since W is close to unity there, C can then be 
evaluated and W(u) becomes 

W( u) = [ ( a -  ~ ) /2 ~r~ kBTJ ] '/2 

x fu_ exp[-( a -  ~)z2/Z~ksT]] dz. 

(17) 

The Kramers'-type distribution function described by 
Eqs. (10) and (17) shows a smooth depletion of the 
population of negative p ' s  in the vicinity of q = qt 
and for q > qt. We also note from Eq. (17) that 
when ~ becomes very small, the integrand for W(u) 
at q = qt serves as a delta-like function at z = 0, 
making W(p) equal to zero if p < 0 and equal to 
unity if p > 0. In that case Eq. (5), with Eqs. (10) 
and (17), reduces to the quasi-equilibrium case, Eq. 
(1), as expected. 

The rate constant krate can be calculated using Eq. 
(5) for the reactive flux crossing q = qt, with P 
given by Eqs. (10) and (17). From Eqs. (6) and (11) 
we first have 

_p2 ) 
p:(E, qtlp)=pe(E, qt,O)exp( _--:----~ , (18) 

2knT~ 

whence Eqs. (5), (10) and (17) yield 

krate ----- De(E, q t ,0  (19) a hp 
However, using Eq. (18), N(E, q) is given by 

rPmax e 
N(E,q)=Jo Po(E,q,p) d(½p 2) 

= PC(E, q, O) kBTo(q), (20) 

which, with Eq. (19), yields 

c t - 'N(E 'q t )  ~-~a ( 
krate = =- kRRKM (21) hp 
and so, from Eq. (14), 

kra te~(1 / / to t ) [~( l~)2" l - to t2- - I~]kRRKM. (22) 

This equation reduces to Eq. (1) when ~'/2to t be- 
comes small. When ~/2  to t becomes large, it yields, 
instead, 

tot 
krate = ykRRKM ( ~ / 2 t o  t >> 1). (23) 

Eqs. (22) and its limiting case Eq. (23) are the 
desired equations. 

To compare with the Kramers' canonical expres- 
sion, we consider a cluster so large that tot and 
are independent of energy. Eq. (22) is then multi- 
plied by p(E)exp(-E/kBT)dE/Q, where Q is the 
partition function for the coordinates involved in p, 
integrated over E, and summed over J (when p(E) 
denotes p(E, J)) to then yield 

krate(T) "-----~[~(1')2"~- tot2 - I ' lkRRKM(T ). 

(24) 

Eq. (24) has the same form as Kramers' original 
canonical result [4]. However, the variational transi- 
tion-state rate constant on the right, denoted by 
kRRKM(T), is more general than the Kramers' 
(too/2~r)exp(-Ut/kaT), which is a special case 
of the former. 

3. Other aspects: collisional effects, reaction 
threshold energy 

A photoexcited molecule may, when it is in a 
cluster of n (n = 1, 2 . . . .  ) solvent molecules, lose 
some of its energy to a solvent molecule, particularly 
to the latter's librations and radial translation. When 
there is a complete redistribution to such modes we 
have case (b) referred to in Section 1. Then, the 
kr~KM(E) in Eq. (22) is calculated using these extra 
coordinates, and the energy E is the sum of the 
initial vibrational excitation energy of the solute and 
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the relevant initial energy of the modes of the sol- 
vent cluster. 

Another effect of a solvent molecule attached to 
the solute is its influence on the threshold energy e 0 
for reaction. For this reason it is useful in compar- 
isons with experiment to reexpress kaRxr ~ in terms 
of the energy e in excess of e 0, e 0 being the energy 
at the lowest quantum state of the transition state. 
With E = e  0 + e  we have 

N(e  0 + ~, qt)  
kRRKM ( e 0 + e) = (25) 

hp( eo + e) 

The N(e 0 + E, q*) is more sensitive to e than 
p(e  0 + e). Other quantities in Eq. (21) are relatively 
weakly dependent on e, and apart from ~" are inde- 
pendent of the solvent molecule(s) adsorbed on the 
solute. 

Regardless of whether or not ~0 varies with the 
nature and number n of the solvent molecules in the 
cluster, a comparison of krate(E)'s at the same ex- 
cess energy e is predicted from Eqs. (23) and (25) to 
yield ratios of those krate'S which are approximately 
E-independent in case (a) of Section 1 (no redistribu- 
tion to solvent modes). An experimental test of this 
result is being made by Zewail and co-workers [1]. 
For case (b) the parallelism is modified by the 
change in number of relevant coordinates with the 
number of solvent molecules and by the dependence 
of E on the initial energy in the modes of the solvent 
molecules. Evidence of the latter effect is found in 
Ref. [1]. 

If the motion of the bare molecule along q toward 
the transition state is diffusive, due to the random 
nature of the interaction of q with the other vibra- 
tional modes of the solute, and so if it itself obeyed 
Eq. (22), the same type of parallelism for the krate'S 
would again be predicted. 

4. Independent estimate of 

We consider next the photoexcitation at low ener- 
gies, e.g. at energies below the reaction threshold, of 
a solute that is bare or is attached to adsorbed 
solvent molecules. In the case of a suitable Franck- 
Condon factor a wave packet associated with the 
q-motion could be prepared experimentally and per- 

haps found to exhibit a damped oscillatory decay. A 
damped oscillatory decay has been observed for q in 
the bare cis-stilbene molecule, reflecting the interac- 
tion of q with some modes of the phenyl groups, all 
modes damped by other modes in stilbene [16]. 

We let the wave packet be initially concentrated 
at some time designated as t =  0. One can test 
experimentally whether the q-motion and its subse- 
quent damping interaction by 'intramolecular' colli- 
sions with a solvent molecule in the cluster can be 
modeled with the Langevin equation for the damped 
Brownian motion of a harmonic oscillator, e.g. Ref. 
[17]. The latter is the stochastic equation correspond- 
ing to the Kramers' equation when a harmonic oscil- 
lator form of the force term is used. 

+ ~i] + to2q = A ( / ) .  (26) 

A(t) is the random force and to the angular fre- 
quency of the harmonic q-motion. The correlation 
function for the random force depends on the tem- 
perature [15] and so will differ in the regions q ~ 0 
and q ~ qt. 

It follows from Eq. (26) that the correlation func- 
tion for the q-motion C(t)= (q(t)q(O)) obeys the 
standard equation, using the usual stipulation that 
q(0) and A(t) are uncorrelated, i.e. that (q(O)A(t)) 
= 0, 

(J(t)  + ~C( t )  + to2C(/) = 0. (27) 

The latter has the well known solution for the initial 
condition q = 0 

C( t )  = (q2 (0 ) )  exp( - ½(t)  

× cos{ [ to2 - (½st)2]'/2/}. (28) 

This C(t) reduces to the usual (q2(0))cos(tot)  for 
the underdamped oscillator (½~'<< to) and to 
(q2(0)) exp( -~ ' t )  for the overdamped one (½~'>> 
to). When this motion can be studied experimentally 
by direct observation of a wave packet, a value of ~" 
can be estimated by fitting the damped oscillatory 
behavior to Eq. (28). A molecular estimate of ~" 
could be obtained independently by fitting that equa- 
tion to a computer simulation of the q-motion. How- 
ever, estimates of ~" in the vicinity of q = 0 at low 
energies need not represent the ~" at higher energies, 
and so may or may not agree with the ~" estimated by 
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comparing Eq. (23) with the experimental data. Esti- 
mates of the value of ~ in solution have been also 
made using the translational or rotational diffusion 
constants of the solute in the solution [18,19]. 

Of particular interest is the behavior along q in 
the transition state region. The barrier is now in- 
verted and the solution for C(t) in the vicinity of 
q = qt can be obtained by replacing the to in Eq. 
(26) by ito t, where tot/2'rr would be the frequency 
associated with the inverted parabola at q = qt. When 
the initial conditions are q = 0, and q (0 )=  qt, the 
correlation function is then obtained from Eq. (28) 
by replacing to by i to and q(O) by q. (The ensem- 
ble still involves varying the initial conditions for all 
other coordinates and momenta.) We then have 

C ( t )  = ( q t q ( t ) )  

= qt2 e x p ( -  ½~'/) 

X cosh( [ tot2 + (½~)2] 1/2/).  (29) 

By fitting the results of simulations for C(t) to Eq. 
(29), values of ~ and to t could be estimated in the 
transition state region and the former compared with 
the estimate of ~" near q = 0 at low energies. 

Since at low energies the vibrational modes are 
separable (normal modes), the excitation of only a 
normal mode in that regime for the bare molecule 
would yield ff = 0. At higher energies the nonsepara- 
bility leads to a dissipation and so to a finite ~. 
When some superposition of normal modes is ex- 
cited at low energies, a quasi-decay (and hence an 
effective ~ ) could occur even in the harmonic regime, 
but with long time recurrences. Clearly, experiments 
with wave packet excitation at low and at high 
energies, and in the absence and presence of ad- 
sorbed solvent molecules, is of much interest. 

~(0), since each impact leads to a rebound, and will 
be roughly proportional to q(0). If At is chosen to 
be small enough that only one impact occurs be- 
tween solute and solvent during At, then AdtAt/{I(O) 
will depend on the frequency v c of the impacts 
between a single adsorbed solvent molecule in the 
coordination shell, the number n c of solvent 
molecules in that shell, and the detailed geometry 
and masses (appropriate masses for the coordinates). 
By choosing A t =  1~yen c only a single solute- 
solvent collision in the cluster occurs in At. If as a 
rough estimate one sets Aq ~ - 3"q(0), where 0 < 3' 
~< 1, it then follows that 

; ~ 3",,¢no. (30) 

Eq. (30) neglects the difference in effectiveness of 
different positions of the molecules in the inner 
coordination shell. In the case of a bare solute in a 
fluid, treated as collection of hard spheres, Eq. (30) 
would be replaced by 

¢ ~  3"v~g( d) ,  (31) 

where g(d)  is the radial pair distribution function at 
contact. 

For comparison with Eq. (30), we note that in the 
case of hard sphere translational collisions between 
two similar molecules, each of mass m (Enskog 
theory), in a dilute gas ~ equals 8p~r 2(2"lrk~T/m) 1/2 
(e.g. Ref. [20] using ~=  kaT /mD)  , while the gas 
phase collision frequency v equals 4p t rZ(~kaT/  
/7"/) 1/2, SO leading to ~" = 2 5 v for this simple molecu- 
lar collision. This result can be compared with the 

= yv~ for the corresponding case (n~ = 1) in Eq. 
(30). 

6. Application to the Kramers' turnover observa- 
tion 

5. Molecular interpretation of 

In the case of a free Brownian motion the velocity 
autocorrelation function [15] is of the form 
(~(0)q( t ) )  = (q(0) 2 > e x p ( -  ~'t), which can be used 
to obtain a very crude molecular model for ~: In a 
short time t = At, t~(t) equals q(0) + Aq. Expand- 
ing the exponent yields < q(0)A t~ > = - ~A t ( q(0)2 ). 
But A q will typically be in the opposite sense from 

Kramers noted that in a unimolecular reaction 
there should be a turnover in the reaction rate as a 
function of the pressure [4]. Experimental evidence 
for this effect now exists [21,22] and there have been 
many treatments or extensions of Kramers' original 
arguments, e.g. reviewed in Ref. [5]. At low pres- 
sures the reaction rate is proportional to the number 
of activating collisions, and hence to the pressure of 
the ambient gas. Kramers described this feature in 
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terms of an 'energy diffusion' mechanism [4], using 
a frictional force coefficient ff to treat the exchange 
of energy with the surrounding medium. The expres- 
sion for the rate constant in that 'energy diffusion' 
regime was proportional to if, which increased with 
increasing concentration of the ambient gas. At higher 
pressures, in a different regime, an enhanced ff re- 
duces the reaction rate, and so the rate passes through 
a maximum as a function of ~'. A formulation which 
treats the regime bridging these two limits has been 
given, for example, by Biittiker et al. [23] and by 
others cited in Ref. [5]. 

For this Kramers' turnover problem we consider 
first the 'strong' collision formulation for the uni- 
molecular reaction rate. The canonical unimolecular 
rate constant is given by [12,14] 

kuni(T) = [~krate(_E)[_ p ( E ) / Q ( T ) ]  
"Io 1 "4- krate( E) / l c  

× exp( - E / k B T  ) dE,  (32) 

where p(E) appeared in Eq. (3), Q(T) is the parti- 
tion function of the reactant (apart from its three 
translations), Z is the deactivating collision fre- 
quency, per unit c, and c is the concentration of 
molecules in the surrounding medium (i.e., Zc is the 
frequency of deactivating collisions). The krate(E) is 
given by Eq. (22). We have suppressed the angular 
momentum symbol J for notational brevity in the 
(E), which would read (E, J )  and then there would 
be a sum over all J. Instead of Eq. (32), treatments 
for the 'weak collision' case, e.g. Ref. [14] and 
references therein, can be used. 

There are seen to be two effects of collisions: one 
is their activating-deactivating role, represented in 
the denominator in Eq. (32). The other is the fric- 
tional effect represented in Eq. (22). Both effects 
appear in Eq. (32) and in its 'weak collision' coun- 
terpart. In those equations the chemists' conventional 
view of the activating and deactivating effects of 
collisions is used in preference to Kramers' phe- 
nomenological 'energy diffusion' description. 

Eq. (32), with Eq. (22), displays a Kramers' 
turnover behavior. If there were a solute-solvent 
clustering at high densities at the prevailing tempera- 
ture T, Eq. (32) could be modified to allow for these 
physical clusters. 

7. Concluding remarks 

The present problem of the unimolecular reaction 
rate of a bare molecule or of one attached to any 
specific number of solvent molecules in a cluster 
raises a variety of interesting features: to what ex- 
tent, during the lifetime of the system, can (as as- 
sumed in this Letter) for practical purposes a simple, 
diffusive-like model be used for motion along the 
reaction coordinate in the interaction between the 
solute and the solvent? Does a diffusive model, 
reflecting interactions between q and the other 
modes, apply even to a bare solute (with a smaller 
than in the solvent case)? Can one observe experi- 
mentally the diffusive motion at a subthreshold en- 
ergy by direct experimental observation of a damped 
oscillatory wave packet, for the bare and for the 
clustered solute? What is the value for T in Eq. (30), 
estimated from a comparison of Eqs. (22), (23) and 
(30) with the data? Can an effect of the 'tempera- 
ture' of the radial and librational motions and other 
bulk motions of the solvent molecules on the damped 
oscillatory decay be observed? 

There are fundamental questions on the detailed 
dynamics for which suitable experiments may pro- 
vide some answers and stimulate further studies. 

Acknowledgements 

It is a pleasure to acknowledge stimulating discus- 
sions with my colleague, Ahmed Zewail, which 
prompted this work. It is also a pleasure to acknowl- 
edge the helpful comments of my student, Xueyu 
Song, and the support of this research by the Na- 
tional Science Foundation and the Office of Naval 
Research. 

Appendix A 

Relation to the calculation of absorption or fluo- 
rescence spectra of hot species 

In the literature the absorption spectrum of a hot 
molecule of energy E is sometimes calculated using 
the canonical Boltzmann distribution for the popula- 
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tion of the various vibrational states: A vibrational 
temperature T has been defined, for example, for hot 
product molecules in a stilbene isomerization [2], by 
equating the energy to the population-weighted 
canonical average energy, yielding 

E = ~_,hvi[exp(hvi/kaT ) - 1]-1,  (A.1) 
i 

where E is the energy in excess of the zero-point 
energy. Eq. (A.1) has then been used as a definition 
of a vibrational temperature, and the probability of 
excitation of various optically active states is then 
calculated from the usual Boltzmann equation at this 
temperature T. Using Franck-Condon factors, the 
absorption spectrum is then calculated. Inasmuch as 
the hot spectrum is of interest in connection with the 
present analysis, we consider this topic in this re- 
search by the National Science Foundation and the 
Office of Naval Research. 

For a microcanonical system, Eq. (A.1) is useful 
when the energy ~in ihv i  of each important opti- 
cally active state is much less than E. Otherwise, a 
microcanonical distribution should be used instead, 
and we consider this distribution next. 

We note that all coordinates, including the reac- 
tion coordinate q, are involved in calculating the 
density of states p(E). If an energy ~{n} = ~,i nihvi 
is used to populate an optically active state of the hot 
molecule, the remaining energy is E -  E{n}. The 
number of states associated with this distribution in 
an energy range E -  ¢{n}, E - E { n }  + dE, is de- 
fined as p~n)(E-E{n})dE. Like p(E) it can be 
calculated by standard methods. The probability of 
having this optically active state is 

pn = p{,)(E - , { n } ) / p ( E ) .  (A.2) 

This microcanonical expression would replace a 
canonical one, for example for the probability of 
finding n i quanta in an optically active mode vi. 
One can expect that the use of the microcanonical 

distribution (A.2) would reduce the probability of 
large internal excitations of each mode, since it 
would reduce the number of states available for 
sharing the remaining energy among the other modes. 
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