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Abstract

Kramers and RRKM theories are used to formulate a solvent dynamics-modified treatment of unimolecular reaction rates
in clusters. The canonical Kramers’ description is modified so as to apply to microcanonical systems. An entropic gradient,
arising from all coordinates but the reaction coordinate g, and a g-dependent microcanonical vibrational temperature are
introduced. A simple expression is obtained relating the rate constant to its RRKM value and permitting comparison with
recent experiments. An application is also made to the Kramers’ turnover region.

1. Introduction

In a recent and stimulating experiment Zewail and
co-workers [1] have determined the dynamics of the
photoinduced isomerization of trans-stilbene
molecules, both with and without a cluster of n
hexane molecules, with n varied from 1 to 5. The
isomerization dynamics in each case showed a single
exponential time decay, which was studied as a
function of the excess vibrational energy of the
photoexcited stilbene. Current discussions of stilbene
isomerization include those in Ref. [2] and in refer-
ences therein.

There are several possible effects of an adsorbed
solvent molecule on the reaction rate of a photoex-
cited solute at a given initial energy of excitation.
They include (1) collisional deactivation /activation
(energy sharing), (2) a possible modification of the
threshold energy for the reaction [3], and (3) a
frictional effect associated with random forces. The
first effect is well known in gas phase collisions.
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In this Letter, an approximate theoretical expres-
sion is derived for a generic system of this type,
focusing on effect (3). The simplest model consistent
with a single exponential behavior is also included
for any contribution of effects (1) and (2). The
following assumptions or conditions are made re-
garding the photoexcited molecule, termed the so-
lute:

(i) The photoexcitation conditions yield a wave
packet comprised of many quantum states. (Other
experimental conditions could yield, instead, a state-
resolved preparation of a single quasi-eigenstate.)

(ii) The behavior of the solute molecule is micro-
canonical and is RRKM-like or, as defined later,
diffusively-modified RRKM-like, with an energy de-
termined by the initial excitation energy. For case (b)
below it is the cluster which is microcanonical.

(iii) The radial and various librational or floppy
motions of each solvent molecule adsorbed on the
solute can cause or enhance a frictional effect on the
velocity along the reaction coordinate. (The in-
tramolecular vibrations of the solute might also con-
tribute, though presumably to a lesser extent.)

(iv) The probable range of values of the momen-
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tum p along the reaction coordinate g is ‘thermal’,
rather than very ‘hot’, so permitting a statistical-like
adjustment among the remaining coordinates during
the itinerant motion along g and a Fokker-Planck-
like treatment for both g and p.

There are several limiting cases regarding in-
tramolecular vibrational relaxation within a cluster:

(a) the excitation energy remains, in effect, con-
fined to the solute, and

(b) the excitation energy is immediately redis-
tributed between the solute and, at least, the libra-
tional and radial modes of the solvent molecules in
the cluster. The treatment given in Section 2 would
include either of these two limiting cases, but the
numbers of degrees of freedom contributing to
krrxm(E) in Eq. (22) below would differ for the two
cases.

For trans-stilbene, case (b) is probably favored,
judging from data in solution, which show a thermal-
ization of the initially excited solute molecule prior
to isomerization. For the results in Ref. [1] the
enhanced rate observed with a solvent molecule in
the cluster in the threshold region is presumably due
to the effect of the latter on the energy barrier [1].
However, the increasing depression of the rate ob-
served at higher excess energies with increasing
number of solvent molecules in the coordination
shell is presumably due, instead, to two factors: an
enhanced friction and, for case (b), a redistribution
of the initial excitation energy among more modes.
Both effects undoubtedly occur, and distinguishing
between them in a cluster represents an interesting
task, accomplished perhaps with studies varying the
nature of the adsorbed solvent molecules and their
number outside the inner coordination shell. Presum-
ably, in any cluster of a solute attached to » solvent
molecules (n =1, 2, ...) mainly the molecules in the
first coordination shell contribute to the interrup-
tions, i.e. to the ‘frictional effect’.

The present treatment blends the concepts of
RRKM and Kramers’ theories. Kramers’ considered
a one-dimensional system at a constant temperature
[4]. An excellent extensive review of Kramers’ the-
ory and its extensions is given in Ref. [5]. A relation
between Kramers’ result, its Grote—Hynes memory
modification [6], and a transition state /harmonic
bath theory is described in Refs. [7-9].

The present treatment uses thermodynamic (statis-

tical mechanical) microcanonical functions along the
reaction coordinate, permitting the remaining coordi-
nates to be involved, and in that particular sense is
many-dimensional. There is some similarity in that
respect to our earlier study of electron transfer reac-
tions for canonical systems, which involved calcula-
tions of the free energy along the reaction coordinate
[10] and to the work of Chandler and others (e.g. use
of a ‘potential of mean force’ or ‘free energy sur-
face’) for condensed phase reactions [11].

In this Letter, predictions are made of the relation
between the energy-dependent rate constants of the
bare and solvent-adsorbed solute. In Section 2, perti-
nent unimolecular considerations are given. The
Kramers’ type equation is adapted so as to obtain the
microcanonical phase space distribution of the mi-
crocanonical solute. The key final equations are Eq.
(22) and its overdamped limit, Eq. (23). The evalua-
tion of the “frictional coefficient’ is discussed in later
sections, together with its experimental estimation
and a rough molecular interpretation. An application
of the present work to the Kramers’ turnover prob-
lem is given in Section 6. Concluding remarks are
made in Section 7. The use of a microcanonical
description for calculating spectra of hot molecules
is related to the present analysis and is described in
the Appendix.

2. Unimolecular rate constant

In a nonstationary state of an anharmonic system
the vibrational energy of the solute interchanges
intramolecularly among its vibrational modes, in-
cluding the mode which is the reaction coordinate gq.
Repeated impacts between the solute and any solvent
molecules in its coordination shell in the cluster also
interrupt the g-motion and so can enhance any diffu-
sive nature of the latter. We consider the reaction
rate of the ‘solute’ molecule in a cluster of n =0, 1,
2, ... solvent molecules.

2.1. Quasi-equilibrium (RRKM) case

To use as a starting point for the subsequent
frictional calculations, we first recall the derivation
of the RRKM rate constant [12,13]. The momentum
conjugate to g is denoted by p. The number of
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quantum states accessible to a solute whose energy
lies in (E, E + dE) and whose g and p lie in (g,
q+dq) and (p, p+dp) is denoted by pf(E,,
q)dEdqdp/h, where p° is the density of vibra-
tional states and is a function of E , the energy in all
coordinates other than q. It depends on E, at the
given g and, because the shape of the potential
energy surface for the vibrations depends on g, on ¢
itself. The semiclassical number of quantum states
for the given infinitesimal ¢ and p intervals is
dgdp/h.

The equilibrium probability of finding the system
with the above specifications is pSdgqdpdE/
hp(E)dE, where p(E) is the density of quantum
states arising from all coordinates in the parent
molecule. Dividing by dg to find the probability per
unit length along g, multiplying by the velocity g to
calculate the contribution to the reaction probability
flux, we note that gd p equals dE,, where E_ is the
g-kinetic energy at g. Upon integrating over all E,
and thereby over all accessible E, at the given E,
the integrated reaction probability flux at the transi-
tion state g' is the rate constant,

maxy T
kRRKM=f0E" @ )ps(Eu’qT)dEv/hp(E)’ (1)

since —dE, equals dE, at the given E when we
write

E=E,(q) +U(q)+3p°. (2)
U(q) is the potential energy along g, and E™*(q")
=FE — U(q"). We have used a mass-weighted ¢, for

notational brevity, so that ¢ = p, and E, = 3p°.
Thereby,

krrxm(E) = N(E, qT)/hp(E), (3)
where N(E, q') is the number of energetically ac-
cessible vibrational quantum states at ¢ = g'. The g'
is obtained variationally by minimizing N(E, ¢) (cf.
Ref. [13] and references cited therein). A recent
review of unimolecular reaction theory is given in
Ref. [14].

This derivation is readily modified to include all
vibrational-rotational states of the molecule c¢onsis-
tent with the given total angular momentum J and

with any constraints on those states, thereby yielding
[10,11]

kRRKM(E’J)=N(E’J’qt)/hp(E’J)' (4)

However, for brevity of presentation the J symbol
will be suppressed.

We next consider a modification of Eq. (3) which
allows for frictional effects of the solvent molecules
attached to the solute in the cluster. The treatment
has the practical goal of obtaining a simple expres-
sion which can be easily related to experiments, and
in the comparison serve to illustrate various issues.
The single-exponential behavior observed in Ref. [1]
was a factor in avoiding for the present the adapting
to the microcanonical case more elaborate and more
general treatments. In the literature a different ap-
proach for a microcanonical system has been given
by Tucker and Pollak [15].

2.2. Nonequilibrium systems

We consider the frictional effect on the phase
space distribution function, P(E, g, p, t) of the
solute. This P is the probability density for finding
the system in (g, ¢ +dq), (p, p+dp) and (E,,
E, +dE,). For the quasi-equilibrium system P was
ps(E,, q9)/hp. We consider the steady-state case.

Using the argument leading to Eq. (1) the rate
constant in this case is

ke = [P(E.q', p)pdp, (5)

where the integral is now over all p. We seek an
expression for P.

It will be convenient to define a Boltzmann-type
vibrational entropy S, (E,, g) associated with the
equilibrium distribution of the vibrational states of
all coordinates but g,

S,(E,,q) =kglnp;(E,, q) + const. (6)

This constant does not enter into Egs. (7)—(9) below,
since only derivatives of S, appear there. The ex-
plicit dependence of S, on g at a given E, is due to
the dependence of the shape of the multidimensional
potential energy surface for these vibrational coordi-
nates on g. Bearing Eq. (2) in mind, we shall
sometimes write S (E,, q) as S(F, ¢ p), and
pi(E,, q) as p;(E, g, p).

We define a microcanonical vibrational tempera-
ture T, for all coordinates contributing to E ,

T(E,q,p) =1/(3S,/9E,),=1/(3S,/3E),,,,
(7



RA. Marcus / Chemical Physics Letters 244 (1995) 10-18 13

where the derivative is calculated at the particular E,
g and p, of interest. Since p is assumed to be
typically small in the present formulation, only the
dependence of T, on g will be stressed. At the given
E and q it will be written as T,(q), for brevity.

We introduce a Kramers-type equation, which we
have modified so as to be appropriate for the present
microcanonical system, i.e. at fixed E,

P as,\aP  oP
R b e
3 apP

+§E7- pP+kBTL,5;). (8)

Eq. (8) differs from the standard Kramers’ phase-
space differential equation [4] in two respects. The
constant temperature T in the latter is replaced by a
T,(g) and the usual mechanical force —U/dq is
replaced by 7,(g)dS,/dq. These changes are de-
signed to permit the pS(E, g, p)/hp(E) in Eq. (1) to
be a solution of Eq. (8) for P. In fact, differentiation
of p? in Eq. (6), and making use of Egs. (2) and (7),
shows that

9p; P;P
op kT’
which in turn shows that Eq. (8) for P is indeed
identically satisfied by p(E, q, p)/hp(E).

The method of Kramers [4] is used to solve Eq.
(8) in the steady-state case, a case which is consis-
tent with a single-exponential decay. (A relaxation
treatment, with a single exponential decay constant
A, would yield in an alternative procedure an eigen-
value problem to be solved for A and P.) For the
steady-state case we set

P(E,q,p,t)=p.(E,q,p)W(E,q, p)/hp(E)
(10)

and solve for the unknown function W(E, g, p).

So defined, this W should approach unity when g
approaches the reactant’s region of g-space (g ~ 0),
since the value of P there can be approximated by
its equilibrium value p¢/hp. The W in Eq. (10) can
be expected to depart from this value of unity mainly
when g is near or greater than g'. Therefore, the S,
is first expanded in the vicinity of g =g

We note that in variational RRKM theory N(E,
g) is a minimum at g = g'. For complex molecules

3

%p; p, 85,  3p;
dq kg 9q

the minimum in the density of states p{, and hence
in 8¢, occurs at a value of g very close to g (as is
also seen later from Eq. (20) since 7,(q) there varies
little with g near g'). We have on that basis, ex-
panding in powers of ¢ —g' and of p (and in this
case the limits on p in Eq. (3) can be replaced by
+ o)

S.(E,q,p)

w?(q-q') p?

21} 21t

o

=S,(E,q",0) +

(g =4, psmall), (11)
where T,' and o'? denote T,(¢") and T, d*S,/dq*
at q=q', respectively. We have used (35, /
A p2));., = 3S,/9E,),QE, /& p*));., =
~1/2T" and neglected 3S, /3q at q'. (If the latter
were included in the expansion in Eq. (11), only a
minor modification would be needed in Eq. (13)
below, but this extra complexity seems unwarranted
at this point.)

From Egs. (9)—(11) we then have in the steady-
state case

» N W ) Tta2
- —q")—-p——-i(p—+ —
'(q q)ap P {pap {kgT, o

where, in the vicinity of ¢=gq', 7.(q) has been
replaced by T, its typical value there.

To introduce a similarity transformation, which
reduces the partial differential equation in two vari-
ables to an ordinary differential equation in one
variable, we write [4]

W=W(u), u=p—-a(q-q'). (13)
Eq. (13) is seen to be a solution to Eq. (12) only if «
is chosen to satisfy

a=3¢+|(3) +o'. (14)

After one integration of Eq. (12) W(u) satisfies the
first-order ordinary differential equation

P =Cexp[—(a—g)u2/2g’kBT], (15)

where C is the integration constant. For W(u) to
converge as u — t+% o — { must be positive, so the
positive root in Eq. (14) is selected. The appropriate
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solution of Eq. (15) is that which tends to zero as g
becomes large and positive and hence as u becomes
large and negative. Using this boundary condition
the integration of Eq. (15) yields

W(u) = Cf_uwexp[ —(a—¢)22/20kgT]] dz2.
(16)

The remaining constant C is chosen so that W
approaches unity when q is near zero.

In the vicinity of g =0, the upper limit in Eq.
(16) is essentially +, since the g — ¢' in Eq. (13)
becomes large and negative in the reactant’s region.
Since W is close to unity there, C can then be
evaluated and W(u) becomes

W(u) =[(a—¢) /27l kgT}]"?

x [ exp[—(a—¢)22/2¢k,T}] dz.
(17)

The Kramers’-type distribution function described by
Egs. (10) and (17) shows a smooth depletion of the
population of negative p’s in the vicinity of g = q'
and for g> q'. We also note from Eq. (17) that
when { becomes very small, the integrand for W(u)
at g=q' serves as a delta-like function at z =0,
making W(p) equal to zero if p <0 and equal to
unity if p > 0. In that case Eq. (5), with Egs. (10)
and (17), reduces to the quasi-equilibrium case, Eq.
(1), as expected.

The rate constant k., can be calculated using Eq.
(5) for the reactive flux crossing g =gq', with P
given by Egs. (10) and (17). From Egs. (6) and (11)
we first have

2
e ) € _P
pu(E,q*,p)=pu(E,q*,0)eXP(szTur)’ (18)

whence Egs. (5), (10) and (17) yield

a—{ kgT!
ke =pS(E,q",0 ~. 1
we = P;(E, q',0)y — hp (19)
However, using Eq. (18), N(E, q) is given by
pmlx
N(E, q) =f0 p:(E,q, p)d(3p?)
=p,(E, q,0)ksT,(q), (20)

which, with Eq. (19), yields

[a— ¢ N(E,q' fa—{¢
krate= ( )= kRRKM (21)
a hp a

and so, from Eq. (14),

Kiate = (1/“’T)[V(%§)2 + o™ - %{]kRRKM' (22)

This equation reduces to Eq. (1) when (/20" be-
comes small. When {/2 ' becomes large, it yields,
instead,

o'
Keare = ?kRRKM (5/2""T > 1)' (23)

Egs. (22) and its limiting case Eq. (23) are the
desired equations.

To compare with the Kramers’ canonical expres-
sion, we consider a cluster so large that o' and e
are independent of energy. Eq. (22) is then multi-
plied by p(E)exp(—E /kgzT)dE/Q, where Q is the
partition function for the coordinates involved in p,
integrated over E, and summed over J (when p(E)
denotes p(E, J)) to then yield

kue(T) = —5;[\/(%5)2 Tl - %{]kRRKM(T)-
(24)

Eq. (24) has the same form as Kramers’ original
canonical result [4]. However, the variational transi-
tion-state rate constant on the right, denoted by
krrxm(T), is more general than the Kramers’
(wo/2w)exp(—U" /kgT), which is a special case
of the former.

3. Other aspects: collisional effects, reaction
threshold energy

A photoexcited molecule may, when it is in a
cluster of n (n=1, 2, ...) solvent molecules, lose
some of its energy to a solvent molecule, particularly
to the latter’s librations and radial translation. When
there is a complete redistribution to such modes we
have case (b) referred to in Section 1. Then, the
krrim(E) in Eq. (22) is calculated using these extra
coordinates, and the energy E is the sum of the
initial vibrational excitation energy of the solute and
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the relevant initial energy of the modes of the sol-
vent cluster.

Another effect of a solvent molecule attached to
the solute is its influence on the threshold energy ¢,
for reaction. For this reason it is useful in compar-
isons with experiment to reexpress Kppyy il terms
of the energy e in excess of €,, €, being the energy
at the lowest quantum state of the transition state.
With F = ¢, + € we have

N(ey+€,q")
hp(ey+e)

The N(e,+ €, ¢q') is more sensitive to € than
p(€, + €). Other quantities in Eq. (21) are relatively
weakly dependent on €, and apart from { are inde-
pendent of the solvent molecule(s) adsorbed on the
solute.

Regardless of whether or not €, varies with the
nature and number n of the solvent molecules in the
cluster, a comparison of k. (E)’s at the same ex-
cess energy € is predicted from Egs. (23) and (25) to
yield ratios of those k,,,.’s which are approximately
e-independent in case (a) of Section 1 (no redistribu-
tion to solvent modes). An experimental test of this
result is being made by Zewail and co-workers [1].
For case (b) the parallelism is modified by the
change in number of relevant coordinates with the
number of solvent molecules and by the dependence
of E on the initial energy in the modes of the solvent
molecules. Evidence of the latter effect is found in
Ref. [1].

If the motion of the bare molecule along g toward
the transition state is diffusive, due to the random
nature of the interaction of g with the other vibra-
tional modes of the solute, and so if it itself obeyed
Eq. (22), the same type of parallelism for the k,,.’s
would again be predicted.

kgrim( € +€) = (25)

4. Independent estimate of {

We consider next the photoexcitation at low ener-
gies, e.g. at energies below the reaction threshold, of
a solute that is bare or is attached to adsorbed
solvent molecules. In the case of a suitable Franck—
Condon factor a wave packet associated with the
g-motion could be prepared experimentally and per-

—

haps found to exhibit a damped oscillatory decay. A
damped oscillatory decay has been observed for ¢ in
the bare cis-stilbene molecule, reflecting the interac-
tion of g with some modes of the phenyl groups, all
modes damped by other modes in stilbene [16].

We let the wave packet be initially concentrated
at some time designated as t=0. One can test
experimentally whether the g-motion and its subse-
quent damping interaction by ‘intramolecular’ colli-
sions with a solvent molecule in the cluster can be
modeled with the Langevin equation for the damped
Brownian motion of a harmonic oscillator, e.g. Ref.
[17]. The latter is the stochastic equation correspond-
ing to the Kramers’ equation when a harmonic oscil-
lator form of the force term is used.

G+ {4+ w’q=A(1). (26)

A(t) is the random force and « the angular fre-
quency of the harmonic g-motion. The correlation
function for the random force depends on the tem-
perature [15] and so will differ in the regions g ~ 0
and g ~ g'.

It follows from Eq. (26) that the correlation func-
tion for the g-motion C(¢) = {q(£)q(0)) obeys the
standard equation, using the usual stipulation that
q(0) and A(7) are uncorrelated, i.e. that {q(0)A(¢))
=0,

C(1) + {C(1) + w?C(t) =0. (27)

The latter has the well known solution for the initial
condition ¢ =0

C(1) =<q*(0)) exp( - 3{1)
XCOS{[&)Z— (3¢ )2]l/zt}. (28)

This C(t) reduces to the usual {g*(0)) cos(w?) for
the underdamped oscillator (3¢ < @) and to
{q*(0)) exp(—¢t) for the overdamped one (3¢ >
). When this motion can be studied experimentally
by direct observation of a wave packet, a value of {
can be estimated by fitting the damped oscillatory
behavior to Eq. (28). A molecular estimate of {
could be obtained independently by fitting that equa-
tion to a computer simulation of the g-motion. How-
ever, estimates of { in the vicinity of g =0 at low
energies need not represent the { at higher energies,
and so may or may not agree with the { estimated by
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comparing Eq. (23) with the experimental data. Esti-
mates of the value of { in solution have been also
made using the translational or rotational diffusion
constants of the solute in the solution [18,19].

Of particular interest is the behavior along g in
the transition state region. The barrier is now in-
verted and the solution for C(¢) in the vicinity of
g=gq' can be obtained by replacing the » in Eq.
(26) by iw', where @' /27 would be the frequency
associated with the inverted parabola at g = g'. When
the initial conditions are ¢=0, and gq(0) =q', the
correlation function is then obtained from Egq. (28)
by replacing @ by iw and g(O) by q. (The ensem-
ble still involves varying the initial conditions for all
other coordinates and momenta.) We then have

C(1) =<{q'q(t))
=q'? exp(—3{t)

Xcosh{[ o'+ (%{)2]1/2t}. (29)

By fitting the results of simulations for C(#) to Eq.
(29), values of { and @' could be estimated in the
transition state region and the former compared with
the estimate of { near g = 0 at low energies.

Since at low energies the vibrational modes are
separable (normal modes), the excitation of only a
normal mode in that regime for the bare molecule
would yield = 0. At higher energies the nonsepara-
bility leads to a dissipation and so to a finite {.
When some superposition of normal modes is ex-
cited at low energies, a quasi-decay (and hence an
effective ¢ ) could occur even in the harmonic regime,
but with long time recurrences. Clearly, experiments
with wave packet excitation at low and at high
energies, and in the absence and presence of ad-
sorbed solvent molecules, is of much interest.

5. Molecular interpretation of {

In the case of a free Brownian motion the velocity
autocorrelation function [15] is of the form
(g(0)g(2)) = (4(0)*) exp(— £t), which can be used
to obtain a very crude molecular model for {: In a
short time = At, ¢(¢) equals §(0) + A4. Expand-
ing the exponent yields {(G(0)AG) = — {At{4(0)?).
But Ag will typically be in the opposite sense from

4(0), since each impact leads to a rebound, and will
be roughly proportional to §(0). If At is chosen to
be small enough that only one impact occurs be-
tween solute and solvent during At, then AgAt/4(0)
will depend on the frequency v, of the impacts
between a single adsorbed solvent molecule in the
coordination shell, the number n, of solvent
molecules in that shell, and the detailed geometry
and masses (appropriate masses for the coordinates).
By choosing At=1/v.n. only a single solute—
solvent collision in the cluster occurs in Az If as a
rough estimate one sets Ag ~ — yg(0), where 0 < vy
< 1, it then follows that

£~ yven,. (30)

Eq. (30) neglects the difference in effectiveness of
different positions of the molecules in the inner
coordination shell. In the case of a bare solute in a
fluid, treated as collection of hard spheres, Eq. (30)
would be replaced by

{~vr.g(d), (31)

where g(d) is the radial pair distribution function at
contact.

For comparison with Eq. (30), we note that in the
case of hard sphere translational collisions between
two similar molecules, each of mass m (Enskog
theory), in a dilute gas { equals £pa 2QwkyT/m)'/?
(e.g. Ref. [20] using ¢ =kgT/mD), while the gas
phase collision frequency v equals 4po(wkgT/
m)'/?, so leading to { = 2v for this simple molecu-
lar collision. This result can be compared with the
¢ = vyv, for the corresponding case (n, = 1) in Eq.
(30).

6. Application to the Kramers’ turnover observa-
tion

Kramers noted that in a unimolecular reaction
there should be a turnover in the reaction rate as a
function of the pressure [4]. Experimental evidence
for this effect now exists [21,22] and there have been
many treatments or extensions of Kramers’ original
arguments, e.g. reviewed in Ref. [S]. At low pres-
sures the reaction rate is proportional to the number
of activating collisions, and hence to the pressure of
the ambient gas. Kramers described this feature in
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terms of an ‘energy diffusion’ mechanism [4], using
a frictional force coefficient { to treat the exchange
of energy with the surrounding medium. The expres-
sion for the rate constant in that ‘energy diffusion’
regime was proportional to ¢, which increased with
increasing concentration of the ambient gas. At higher
pressures, in a different regime, an enhanced { re-
duces the reaction rate, and so the rate passes through
a maximum as a function of {. A formulation which
treats the regime bridging these two limits has been
given, for example, by Biittiker et al. [23] and by
others cited in Ref. [5].

For this Kramers’ turnover problem we consider
first the ‘strong’ collision formulation for the uni-
molecular reaction rate. The canonical unimolecular
rate constant is given by [12,14]

@k (E) p(E)/Q(T)]
kuni(T) = /0 1+k(E)/Zc

Xexp( —E/kgT)dE, (32)

where p(E) appeared in Eq. (3), Q(T) is the parti-
tion function of the reactant (apart from its three
translations), Z is the deactivating collision fre-
quency, per unit ¢, and c is the concentration of
molecules in the surrounding medium (i.e., Zc is the
frequency of deactivating collisions). The k,,.(E) is
given by Eq. (22). We have suppressed the angular
momentum symbol J for notational brevity in the
(E), which would read (E, J) and then there would
be a sum over all J. Instead of Eq. (32), treatments
for the ‘weak collision’ case, e.g. Ref. [14] and
references therein, can be used.

There are seen to be two effects of collisions: one
is their activating—deactivating role, represented in
the denominator in Eq. (32). The other is the fric-
tional effect represented in Eq. (22). Both effects
appear in Eq. (32) and in its ‘weak collision’ coun-
terpart. In those equations the chemists’ conventional
view of the activating and deactivating effects of
collisions is used in preference to Kramers’ phe-
nomenological ‘energy diffusion’ description.

Eq. (32), with Eq. (22), displays a Kramers’
turnover behavior. If there were a solute—solvent
clustering at high densities at the prevailing tempera-
ture T, Eq. (32) could be modified to allow for these
physical clusters.

7. Concluding remarks

The present problem of the unimolecular reaction
rate of a bare molecule or of one attached to any
specific number of solvent molecules in a cluster
raises a variety of interesting features: to what ex-
tent, during the lifetime of the system, can (as as-
sumed in this Letter) for practical purposes a simple,
diffusive-like model be used for motion along the
reaction coordinate in the interaction between the
solute and the solvent? Does a diffusive model,
reflecting interactions between g and the other
modes, apply even to a bare solute (with a smaller ¢
than in the solvent case)? Can one observe experi-
mentally the diffusive motion at a subthreshold en-
ergy by direct experimental observation of a damped
oscillatory wave packet, for the bare and for the
clustered solute? What is the value for v in Eq. (30),
estimated from a comparison of Egs. (22), (23) and
(30) with the data? Can an effect of the ‘tempera-
ture’ of the radial and librational motions and other
bulk motions of the solvent molecules on the damped
oscillatory decay be observed?

There are fundamental questions on the detailed
dynamics for which suitable experiments may pro-
vide some answers and stimulate further studies.
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Appendix A
Relation to the calculation of absorption or fluo-
rescence spectra of hot species

In the literature the absorption spectrum of a hot

molecule of energy E is sometimes calculated using
the canonical Boltzmann distribution for the popula-
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tion of the various vibrational states: A vibrational
temperature T has been defined, for example, for hot
product molecules in a stilbene isomerization [2], by
equating the energy to the population-weighted
canonical average energy, yielding

E= Y hv[exp(hv,/kgT) —1] ", (A.1)
1

where E is the energy in excess of the zero-point
energy. Eq. (A.1) has then been used as a definition
of a vibrational temperature, and the probability of
excitation of various optically active states is then
calculated from the usual Boltzmann equation at this
temperature 7. Using Franck—Condon factors, the
absorption spectrum is then calculated. Inasmuch as
the hot spectrum is of interest in connection with the
present analysis, we consider this topic in this re-
search by the National Science Foundation and the
Office of Naval Research.

For a microcanonical system, Eq. (A.1) is useful
when the energy X, n;hv; of each important opti-
cally active state is much less than E. Otherwise, a
microcanonical distribution should be used instead,
and we consider this distribution next.

We note that all coordinates, including the reac-
tion coordinate ¢, are involved in calculating the
density of states p(E). If an energy e{n} = L, n;hv,
is used to populate an optically active state of the hot
molecule, the remaining energy is F — e{n}. The
number of states associated with this distribution in
an energy range E — eln}, E — E{n} + dE, is de-
fined as p,(E — E{n)dE. Like p(E) it can be
calculated by standard methods. The probability of
having this optically active state is

pn=p.(E— €{n})/p(E).

This microcanonical expression would replace a
canonical one, for example for the probability of
finding n; quanta in an optically active mode w,.
One can expect that the use of the microcanonical

(A2)

distribution (A.2) would reduce the probability of
large internal excitations of each mode, since it
would reduce the number of states available for
sharing the remaining energy among the other modes.
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