J. Am. Chem. Soc. 1995, 117, 4683—4690 4683

Global Potential Energy Contour Plots for Chemical Reactions.
Stepwise vs Concerted 2 + 2 Cycloaddition

R. A. Marcus

Contribution No. 9002 from Noyes Laboratory of Chemical Physics,
California Institute of Technology, Pasadena, California 91125

Received October 21, 1994%

Abstract: A global contour plot is described for reactions involving stepwise or concerted addition of two ethylenes
to form cyclobutane. The relevant isomers of the various species and of the reaction paths, with plains or valleys,
minima, saddle points, and domes or conical intersections, are described. Two collective asymmetric coordinates
are introduced as axes for the plot, which presents an overview of the system and which complements the usual
2-dimensional cuts of the many-dimensional potential energy surface. Other global coordinates are also introduced.
The plot involves a pointwise minimization of the potential energy with respect to the coordinates not used as axes.
A permutation symmetry can be used to derive the various coordinates. Free energy and entropy (or number of

states) curves versus a reaction coordinate are discussed.

Introduction

In a previous paper a global potential energy contour plot
was described, using several chemical reactions as examples.'
Systems with a number of isomers of the reactants, products,
intermediates, and transition states were depicted using such a
plot. It focuses on the overall topography of the potential energy
surface and provides a “bird’s eye view” of the various
alternative paths in the reacting system. It complements,
thereby, the typical 2-coordinate cuts of the potential energy
surfaces that are functions of the many internal coordinates, 3n
— 6 for an n atom nonlinear system.

In the present article these arguments are extended to the 2
=+ 2 cycloaddition, the combination of two ethylene-like
molecules to form a cyclobutane-like molecule, either in a
concerted or in a stepwise manner, the latter involving a diradical
intermediate. The reactions are represented schematically by
eqs 1 and 2:

=

B
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where the diradical in eq 2 may be gauche or trans and where
actual changes in bond lengths and angles are not indicated.

Aspects such as Woodward—Hoffmann orbital symmetry
considerations have been examined in the literature of potential
energy surfaces and play a role in such systems. Recently
Zewail and co-workers? observed and measured in real time
the conversion of the diradical, prepared in a different manner,
to two ethylenes or to cyclobutane. The present work was
prompted by such experiments and by electronic structure
calculations and detailed analyses of potential energy surfaces
by Bernardi, Robb, and co-workers for the 2 + 2 cycloaddition
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system.>* We also draw upon the detailed calculations of
Doubleday.’

Global Potential Energy Contours

Introduction. The system considered involves a pair of
ethylene-like molecules, four diradicals, and one cyclobutane-
like molecule (Figure 2, given later). Using a single “global”
potential energy contour diagram, we wish to depict all such
structures, their transformations into each other, the different
reaction paths involved, and the overall topography of the
surface. We also wish to consider reaction coordinate plots of
the free energy (canonical system) or entropy (microcanonical),
their construction, and their use in transition state theory for a
canonical system and in RRKM theory for a microcanonical
one.

In a global potential energy contour plot, topographical
features such as valleys or plains, minima, domes or cones
(conical intersections), and saddle points may be depicted for
the entire system, including those of the relevant isomers. When
the system is not exactly symmetric, similar considerations may
remain applicable: In principle at least, properties, such as
minima, saddle points, domes, and conical intersections of a
less symmetrical system can be mapped onto those of the
corresponding symmetric one and used as a guide for choosing
suitable coordinate axes for the plot for the less symmetrical
system,

In current quantum electronic structure studies, the potential
energy surface has been calculated for a possible concerted
reaction of two ethylenes, reaction 1, and for a stepwise
mechanism involving instead a diradical intermediate, reaction
2 (e.g., refs 3—5). For the four carbons there are 3n —~ 6, or
six, relevant internal coordinates, plus 24 additional internal
coordinates of the four methylenes. A first task in making the
global plot is to select from these thirty coordinates two that
are particularly suitable for its construction. Usually, they will
be collective asymmetric coordinates. The coordinates differ

(3) Bernardi, F.; De, S.; Olivucci, M.; Robb, M. A. J. Am. Chem. Soc.
1990, 172, 1737.

(4) Bernardi, F.; Bottoni, A.; Robb, M. A.; Schlegel, H. B.; Tonachini,
G. J. Am. Chem. Soc. 1988, 107, 2260.

(5) Doubleday, C. J. Am. Chem. Soc. 1993, 115, 11968.
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Figure 1. Typical coordinates for a pair of ethylenes.* The wedges
and the dashes denote CH bonds, and the angles and lengths are not
drawn to scale.
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Figure 2. Structure for a and b ethylene pairs (each line representing
a double bond, in this case only); c—f diradicals, and (g) cyclobutane.

from the internal coordinates typically used for the four carbons
in reactions 1 and 2: 7y, rz, a4, 0y, R, and ¢, given in Figure 1
and taken from ref 4 (Scheme III there). The geometries
considered in ref 4 mainly have r» = r; and a; = @, as in the
configurations in Figure 2. We first give the global coordinates
for a trans attachment of the ethylenes and in a later section
those for a gauche attachment.
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Coordinates and Regions in the Global Plot, A trans
attachment of the pair of ethylenes in Figure 2a yields the
diradicals in Figures 2b and 2c. A subsequent transition to the

. gauche form to permit a cyclization yields the cyclobutane in

Figure 2g. (In any structure in Figure 2 only the internuclear
distances are specified, the spatial orientation of the structure
as a whole being arbitrary.) From this cyclobutane the diradicals
in Figures 2d and 2f can be generated and from them the
ethylene pair in Figure 2b.

A global plot will include all the structures in Figure 2.
Coordinates can be selected so that the cyclobutane occupies
the center, the four diradicals each of the four quadrants, and
the two ethylene pairs the regions at either end of a coordinate
axis. Initially, I obtained the six coordinates given below
intuitively, but subsequently showed that they could be obtained,
instead, systematically, using a particular permutation symmetry.
The latter derivation is given later in this section.

The coordinates ¢, and g, chosen as axes for the plot are

g9, = l/2[(r14 T ryy) — (3 T 1)l 3
0= "Llrs T 1) = Oy + 1)1 @)

The normalization factors and those in g3 to gs given below
make the transformation, which is an orthogonal one, distance
conserving (cf. Appendix A).

One role of g; is to serve as a separation distance coordinate
for each pair of ethylenes in Figure 3. Another, it will be seen,
is to serve as a major component of the reaction coordinate in
the saddle-point region for the formation of the trans diradical.
Each r; denotes the distance between the atoms (7, j). In the
global plot the 4 remaining carbon coordinates and the 24
internal ones of the CHy’s are adjusted pointwise so as to
minimize the potential energy at each value of (g1, g2).
Functions of ry such as r;* could be used in eqs 3 and 4 instead
of r;. In the minimization, resulting in a projection of a 30-
dimensional plot onto 2, a nearby local minimum rather than
an absolute one is selected, such as to maintain a physical
continuity of each reaction path.

It is supposed in Figure 3 that to yield a better reaction path
there is no advantage in having a 90° rotation of one ethylene
relative to the other prior to the formation of a diradical. In
this way, from each configuration of the ethylenes in Figure 3
only two paths for diradical formation need be considered in
constructing the plot, instead of four. One problem which exists
when a many-dimensional plot is projected onto a two-
dimensional one is that various originally separate paths and
structures may now overlap on the projected space. This
problem is avoided by this condition in Figure 3.

Keating and Mead® noted that for n = 3 and 4, the number
of independent distances n(n — 1)/2 equals the number of
internal coordinates of a nonlinear system, 3n — 6, so these
distances or functions of them could be used for the coordinates
in these two cases. For their particular purpose they used r;%’s
instead of r;’s in their choice of six coordinates, which partly
differed from ours since they were interested in the properties
of the full S; permutation group.® Those coordinates do not
have the symmetry properties desirable for the present global
plot, which involves particular permutations and a different goal.

For the four remaining coordinates for the four carbons we
introduce g3 to ge:

93 = I/2[(r14 T ryy) = (r3 T )l (5)

(6) Keating, S. P.; Mead, G. A. J. Chem. Phys. 1987, 86, 2152.
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Figure 3. Global contour plot for reactions 1 and 2 when the attachment of the ethylene pairs is trans.

o= 'hlry + rgt (6
4s ==(ryo — 13) ™
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Ge=—=(ra + 13) ®)
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where g3 is another asymmetric coordinate, g4 is a symmetric
“breathing” coordinate, and gs is asymmetric and gs symmetric
in r12 and r34, the two coordinates not present in q) to ga. The
inverse of the transformation, namely from the ¢’s to the r’s, is
given in Appendix A.

Of these coordinates gs is zero for all of the structures
specifically depicted in Figures 2 and 3. The asymmetric
stretching coordinate g is seen from eq 5 and Figure 2 to vanish,
like g», for the face-to-face geometry of the two pairs of
ethylenes and for the cyclobutane (puckered or not). Had the
diradical structure in Figure 2f been placed in the upper right
instead of the lower right quadrant of Figure 3, g3 rather than
q> would have been the appropriate axis for that figure. The
coordinate gg has the same value for all four diradicals. Its
value for one ethylene pair is also the same as for the other. A
similar remark applies to gs. The puckering angle in C4Hig
can be expressed in terms of the ratio gs/ge: qﬁ = qg for a
planar C4H;o and qﬁ > qé for a puckered one.

In the two broad plains in Figure 3 the minimization of the
potential energy V at any given g; and g fixes the values of
only r14 and ry;. It thus leaves as arbitrary there the values of
two of six coordinates, for the given g; and g».

The coordinates ¢; and g» are antisymmetric and g3 to gg are
symmetric with respect to the interchange of atoms 1 and 2,
i.e., with respect to the permutation (12); g and g3 are
antisymmetric and the other ¢’s are symmetric with respect to
the permutation (34). These results can be used to generate
from any one structure in Figure 2 all equivalent structures there
and to generate from one quadrant in Figure 3 the remaining
three quadrants, remembering that only the internuclear distances
in the global plot are specified, the spatial orientation of any
structure being arbitrary. For any given numbering in a

cyclobutane there are two buckled isomers, mirror images of
each other and each thermally accessible from the other. (The
barrier is about 510 cm™1.)’

This permutation symmetry in Figure 2 can be used to define
g1 to g4 uniquely, apart from normalization: To generate g; to
g4 from the permutations (12) and (34) only the four r;;’s which
are altered by these permutations are considered, that is, r1; and
rys are excluded. There are only four combinations of r;’s which
show symmetry or antisymmetry with respect to these two
permutations. They are the g; to g4 defined in eqs 3—6. The
remaining two coordinates gs and ge provide the simplest
complement to g; to g4+ which preserves orthogonality.

For comparison with a simpler system Os (e.g., ref 1 and
references cited therein), where there are only three coordinates,
we note that the basic configuration there is an equilateral
triangle. (The coordinates g, to gs can be regarded as deforma-
tions of a square.) The two coordinates used to distort the
triangle in the global plot are two asymmetric stretches, while
the third coordinate, a symmetric stretch, can be adjusted
pointwise so as to minimize the potential energy or can be held
fixed. The global plot has three symmetrically related con-
figurations of ozone, each an isosceles triangle with three saddle
points separating them and one conical intersection at the center
of the triangle.

The plot in Figure 3 describes reactions 1 and 2, with reaction
2 considerably favored, and contains the isomeric structures
present in Figure 2, together with the reaction paths involving
them. In Figure 3 two broad plains are seen which correspond
to the two pairs of C;Hys’s. They have the face-to-face structure
depicted in Figures 2a and 2b, when g» = g3 = g5 = 0. There
are also four regions corresponding to the four diradicals, with
the structures indicated in Figures 2c—2f, and a central potential
energy minimum, corresponding to the C4Hjg in Figure 2g. The
assignment of these particular structures to the various regions
in Figure 3 can be made with the aid of egs 3 and 4 as follows,
letting g3—ge vary as needed:

When the systems is in the form of the (14, 23) pair of C;Hy’s,
drawn in Figures 2 and 3, r13 and r24 in Figure 2a are relatively
large compared with 714 and r»3, while 713 = ryq and 714 = rn3

(7) Egawa, T.; Fukuyama, T.; Yamamoto, S.; Takabayashi, F.; Kambara,
H.; Ueda, T.; Kuchitsu, K. J. Chem. Phys. 1987, 86, 6018.
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in a face-to-face geometry. It follows from egs 3 and 4 that ¢,
is fairly large and negative, and that g, = O for the face-to-face
geometry. (For nonequal values of ri3 and ry4 at large |qi],
however, g, is typically not zero, and so we have a broad plain.)
This pair of ethylenes occupies the left-hand plain in Figure 3.
The pair of ethylenes depicted in Figure 2b occupies the right-
hand plain, as can be seen by arguing directly as above or using
a permutation argument. (For example, a permutation (12) leads
to a change of sign of g, and leaves ¢, = O intact, with the
other ¢’s changing as needed. It leads to the given labels in
the ethylene pair in the right side of Figure 3, remembering
that one can rotate the pair as a whole.)

When the diradical intermediate has the structure given
schematically in the upper left quadrant of Figure 3 (cf. Figure
2c), r13 + ra4 exceeds ri4 + r23, and so ¢ is negative. Since
ri3 is also larger than ry4 in that Figure, while ri4 = r23, g2 is
moderately large and positive. The depicted diradical structure
therefore occupies the upper left region in Figure 3. The other
three diradicals in Figures 2d to 2f are assigned to the regions
indicated in Figure 3, again either arguing directly or using a
permutation argument.

Considering next the region in Figure 3 occupied by the
cyclobutane, the appropriate sequence of the numbers of the
atoms (apart from any overall rotation of the structure) is as
given in Figures 2g and 3: Only this structure has ri3 = rp3 =
r14 = ry4 and hence, according to eqs 3 and 4, only it can exist
at the origin, g1 = g, = 0. Any permutation of the numbering,
apart from that equivalent to an overall rotation, would
correspond to a different point in (g1, g2) space.

Reaction Paths, Saddle Points, Separatrices, and Domes.
In Figure 3, each broad plain occupied by a pair of ethylenes is
separated from a nearby diradical region by a saddle-point
region, and with it a separatrix. The reaction path for the first
step of reaction 2 proceeds from the left-hand plain to the upper
left or lower left diradical region, as indicated by the arrow
(really a phalanx of arrows) crossing the saddle-point region.
The second step in reaction 2 is the passage from that diradical
region to the central C4 minimum in the figure. In ref 3, there
is a small local maximum en route, resulting in a saddle-point
region and hence in a separatrix, as in Figure 3. It will be noted
that at each saddle point the contour lines cross (e.g., Appendix
B) and form, thereby, the arms of a separatrix. There are also
seen in Figure 3 three other symmetrically related saddle points
and reaction paths from a pair of ethylenes to a diradical.
However, whether a saddle point survives an energy minimiza-
tion is discussed in Appendix B and considered later in this
article.

We describe next the reaction paths in Figure 3, the first being
between the left-hand ethylene pair and the trans diradical in
the upper left region of the figure. In proceeding from that
ethylene pair to this diradical, r3 and ry4 decrease, ry4 more
than 73, and then r14 and 73 increase slightly. The system
reaches the saddle-point S, in the upper left region. These 7;
changes are seen from eqs 3 and 4 to lead mainly to the g
becoming less negative and g> becoming somewhat positive.
The reaction path in the vicinity of the saddle-point S, thus has
both a g1 and g component, as indicated schematically in Figure
3. Either arguing directly as above or using a permutation
argument, the reaction paths indicated in the vicinity of the three
corresponding saddle points in Figure 3 are obtained.

According to the calculations in refs 4 and 5, the trans form
of the diradicals depicted in Figures 2c—2f has a slightly lower
potential energy than the gauche form. Along the reaction path
leading to the cyclobutane from any of the diradicals the
diradical will, with the pointwise minimization of the potential
energy along the path, change from trans to gauche and so
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permit ring closure to occur. We consider later the saddle point
between the trans and gauche conformations of the diradical.

The saddle-point S, separates the gauche diradical from the
cyclobutane region in the upper left quadrant. The ry3 is the
coordinate principally changing there on passage across Sy and
is seen from eqs 3 and 4 to have both a ¢, and a ¢ component,
as indicated by the arrow at that S, saddle-point region. Related
remarks apply to the corresponding three gauche diradical-
cyclobutane saddle points in the other quadrants.

There are two “domes” D drawn in Figure 3, which block
the direct path from each ethylene-pair plain to the central
minimum. Each dome is an island created by being enclosed
by the contours joining the saddle points surrounding it (the
S’s in the case of the dome on the left side of Figure 3). It can
be seen from the numbering of the atoms in each ethylene pair
and in the cyclobutane that a very large internal rotation of the
ethylene pairs of about 180° (perhaps less by twice the dihedral
puckering angle’ of 28°) would have to occur in order to reach
the point g; = g2 = 0 from large g, along the g, axis.
However, the calculations in ref 4 indicate that the [2; + 2,]
formation of cyclobutane involves only a relatively small angle
of internal rotation (~40°) to reach the saddle point and so
corresponds, instead, to a saddle point given later in Figure 4.
Thus, in Figure 3 there is a very large barrier, indicated by a
high dome D, which may have a more complicated structure
and which is presumably higher than the barrier at the saddle
point on the x axis in Figure 4. As in Figure 4, the diagram is,
in the absence of calculations of the minimized surface, partly
a guess from the available calculations.

The trans-gauche diradical transition and its saddle point in
each of the four quadrants of Figure 3 (not shown) are explored
next: Certain of the ¢; coordinates can be shown to have a
“global ¢” component, i.e., to have a component from internal
rotation about the central CC bond in the diradical: The trans
diradical structures in Figures 2c—2f may be compared with
the corresponding gauche structures by rotating by 180° in
Figures 2c—2e the line joining atoms 2 and 3 about the 2—4
axis, and by rotating by 180° in Figures 2d—2f the line joining
atoms 2 and 4 about the 1—4 axis. The principal change in the
upper left diradical is in 3. We see from eqs 3—6 that g;—qa
all contain the reaction coordinate for the 180° rotation (r3 in
the upper left quadrant, 4 in the upper right, etc.). Therefore,
g1 to g4 all contain a “global ¢” component. The separatrix
will appear in each case in a minimized plot only if the local
reaction coordinate is not a major component of the minimized
variables, the amount permissible depending on ratios of the
various local force constants (Appendix B).

The two-dimensional global plot in Figure 3 can be extended
to a three-dimensional transparent model, using as coordinate
axes the three asymmetric coordinates g1—¢g3. It would have
contour surfaces (equipotential surfaces) instead of contour lines,
and the pointwise minimization would now be with respect to
qs—qs. The four radicals would occupy four of the octants of
the model, symmetrically placed in a tetrahedral-like fashion.
Equipotential surfaces using different coordinates are given by
Michl and co-workers for the Hy system.” In order to obtain
Figure 3 from a calculated potential energy surface we noted
earlier that only one quadrant need be computed, since the
remaining three are obtained by a permutation symmetry.
Similarly, in the three-dimensional global plot only two octants
need be computed, one containing a diradical and the other not.

Starting, instead, from any of the diradicals, there are seen
in Figure 3 two paths for reaction, one leading to fragmentation
to form two ethylenes and the other leading to cyclization to
form cyclobutane. Doubleday® recently considered the frag-
mentation and cyclization of the diradical, noting that the rates
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Figure 4. Global contour plot for reactions 1 and 2, when the attachment of the ethylene pairs is gauche.

were independent of the precursor. A second topic, the principal
focus of Doubleday’s work, is a discussion of the ratios of
stereoisomers formed. It involves an analysis of the internal
coordinates of the CH,’s (e.g., ref 5) and so would not be
explicitly exhibited in the present global plot. A different plot,
focusing on a particular region of Figure 3 and on the CH;
twisting coordinates, will be considered elsewhere.

Gauche Attachment of the Ethylene Pairs. We comment
briefly here on the gauche attachment of the ethylene pairs and
the relevant global plot, Figure 4. The concerted face-to-face
{2, + 2] addition is Woodward—Hoffmann forbidden,3® and
involves a conical intersection.> A more favorable approach is
[2s + 2.], which has a first-order saddie point* (with a high
barrier). In this transition state the angle of torsion of the two
ethylenes is calculated* to be about 40°. The saddle point is
depicted in Figure 4, perhaps with domes on each side.

Examination of the relevant structures reveals that new
coordinates are needed for the global plot: In the gauche
approach atoms 4 and 3 and/or 1 and 2 in Figure 2a become
attached. There is now no longer any large internal rotation
involved in forming the cyclobutane, and so the atom numbering
in the cyclobutane and in the second pair of ethylenes is that
given in Figure 4. Also given there are the various gauche
attachments to form the diradicals. The appropriate coordinates
Q; for the structures in Figure 4 are now symmetric or
antisymmetric with respect to the permutations (24) and (13),
instead of (12) and (34). The new coordinates Q; can therefore
be obtained by an argument identical to that given earlier for
g;’s. The result can be written for brevity in a matrix form

Q=AR ®

where Q and R are column vectors with components Qy, ...,
Qe, and ris, ri2, 3, s, ris, ra, respectively. A, given in

(8) Kash, R. W.; Waschensky, G. C. G.; Moras, R. E,; Butler, L. J.;
Franci, M. M. J. Chem. Phys. 1994, 100, 3463. Waschensky, G. C. G.;
Kash, R. W.; Myers, T. L.; Kitchen, D. C.; Butler, L. J. J. Chem. Soc.,
Faraday Trans. 1994, 90, 1581.

(9) Gerhartz, W.; Podhusta, R. D.; Michl, I. J. Am. Chem. Soc. 1976,
98, 6427. Cf.. Michl, J.; Bonacic-Koutecky, V. Electronic Aspects of
Organic Photochemistry, Wiley: New York, 1990; pp 244—245.

Appendix A, is an orthogonal matrix and consists of the two
block matrices A; and A; in eq A2.

When there is a face-to-face [2, + 2] approach of the pair
of ethylenes in the left side of Figure 4, we have 72 = ri4 and
O =01=0s=0. A[2 + 2,] approach also satisfies these
conditions. However, for any given value of Q; these two
structures occur at two different points in the (Q4, Qs) subspace.
They differ in their local topology,>* since the [2, + 2,] structure
occurs at a saddle point and the [2, + 2,] occurs at a conical
intersection.>* The condition for face-to-face [2; + 2] approach
is 02 = Q7 and, for the [2, + 2,] configuration, Q2 > Q2. The
conical intersection entails a 2-fold barrier to reaction: The cone
is high. Its existence also reflects the Woodward—Hoffmann
restrictions (nonadiabaticity)*? and leads to a diversion of the
path, so as to go around the cone. In the minimization, the [2;
+ 2,] saddle-point approach is the preferred one and is the one
depicted in Figure 4.

Exhibition of the Separatrices. We consider next when and
how the separatrices may appear or disappear in a global plot.
Only one quadrant of Figure 3 need be considered, e.g., the
upper left, as discussed earlier. Analogous remarks apply to
the other quadrants and to Figure 4.

We examine first the trans-gauche diradical saddle point, since
as discussed earlier only the coordinate ri3 appears to change
significantly in the upper left quadrant on crossing the saddle
point along the reaction path (the path for which the saddle
point has a negative curvature). All four variables g;—g4 contain
ri3, and whether or not a separatrix appears in the minimized
plot depends in the local force constants 8*V/dg;q; at the saddle
point and on the content there of the reaction coordinate (largely
ri3 in the upper left quadrant) in the (g1, g2) pair. This
appearance or nonappearance of a saddle point in a minimized
plot, the global plot, is discussed in Appendix B.

In the case of the cyclization of the gauche diradical, a passage
through a saddle point in the upper left quadrant of Figure 3
presumably involves mainly a decrease in the ri3 coordinate,
with a small increase in ry4 and r3; and a small decrease in rja.
In the case of the fragmentation of the trans diradical (saddle
point S, in Figure 3) the 724 in Figure 2¢ increases, with a smaller
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decrease in r14 and ry3 (r14 = ry3). Once again, the appearance
of a separatrix in each case depends on the properties mentioned
above.

G(Ty) or S(E,q) Curves

We consider next the plots of thermodynamic properties along
a reaction coordinate g, in particular the plot of a free energy
G(T,g) in a canonical system, i.e., a system at temperature T,
or the entropy S(E.q) in an isolated molecule, i.e., a microca-
nonical system of energy E and total angular momentum J. We
first note that each diradical has a significant entropy compared
with the cyclo C4 compound, since the former has a number of
internal rotations. The various coordinates not specified in
Figure 3, i.e., the 4 remaining coordinates of the four carbons
and the 24 other coordinates of the four methylenes, contribute
to the entropy. Thus, in addition to any potential energy well
of the diradical in Figure 3, there is an entropic contribution to
a “free energy” well. To calculate G(T,q) or S(E,q) appropriate
statistical ensembles are used, as noted later.

When the transition state is “tight”, i.e., has only small-
amplitude vibrations, and when there is a fairly peaked
maximum of the potential energy V along the reaction path,
the choice of the reaction coordinate ¢ and its value g* in the
transition state and the calculation of the properties of the
transition state, G(T,¢*) or S(E,g%); are standard. Only when
there is some flexibility in the motions transverse to the reaction
coordinate, e.g., when there are large-amplitude internal rotations
and when V is not strongly peaked at some ¢, does one need to
use a variational type of transition state theory, as well as to
choose with care the nature of g. Such flexible systems were
the subject of a series of recent papers on RRKM theory and
its variational form (cf. refs 10 and 11 and references cited
therein).

We consider this “nontight” or “flexible” transition state
theory'®!! next. In plots of G(T',q) or S(E,q) versus a reaction
coordinate ¢, one task is to define g. Its nature will differ for
the different paths in reactions 1 and 2. When a particular
reaction coordinate ¢ is introduced, e.g., from the left-hand
valley to the upper left diradical region, i.e., for the first step in
reaction 2, it defines a family of hypersurfaces, each differing
in its value of g. Various choices of ¢, and indeed optimum
choices of g among a class of reaction coordinates, for obtaining
a rate constant have been discussed by Klippenstein,'2 and we
refer the reader to his work.

Given some choice of the nature of g, not yet the best choice,
one can calculate by statistical mechanics in the canonical case
the free energy G(T,q) for each member of the family of
hypersurfaces, i.e., for each value of g. For the canonical case
we have

K(T) = min %Ze—[G(T.q)-G'(D]/kT 40
q

where G(T,g) is the free energy as a function of g at the given
temperature T and G*(7) is the free energy of the reactants. This
expression for variational transition state theory has a long
history (cited in ref 10), and its fullest exposition and application
is given in articles by Truhlar and co-workers (e.g., ref 13).
The best choice of the form g will make k(T) as small as
possible when the form'? of ¢ and the value!%~!2 of g itself are
both varied. In terms of Wigner’s concept!* of a transition state,
the optimum form and value of ¢ is the one for which the system

(10) Wardlaw, D. M.; Marcus, R. A. Adv. Chem. Phys. 1987, 70 (Part
2), 231.

(11) Klippenstein, S. J.; Marcus, R, A. J. Phys. Chem. 1990, 93, 2148.

(12) Klippenstein, S. J. Chem. Phyvs, Letr. 1994, 2714, 418.
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makes the fewest recrossings of the transition state. His ideas
represented a dynamical advance over the more user friendly
ones of Eyring'> and of Evans and Polanyi.'¢

In the microcanonical case one can calculate ME,J,q), the
number of quantum states, as a function of g. This ME J,q) is
related to the corresponding entropy S(E.J,q) by the Boltzmann
expression,

S(E,J,q) = kInN(E,J,q) (11)

The rate constant k(E,J) is given by the variational RRKM
value (cf. refs 10, 11, 17 and references cited therein).

k(E,J) = min N(E,J,q)/ho(E,J) (12)
q

where @ denotes the density of states of the parent molecule.
The actual k(E,J) is obtained, as indicated in eq 11, by choosing
g so as to minimize N(E,J,q). This choice for k(E,J) can be
termed variational RRKM theory, having been first introduced
in this context'? (cf. also footnote 10 of ref 10). It may be
recalled that RRKM theory is the microcanonical form of
transition state theory: The transition state theory of Eyring'
and of Evans and Polanyi'® was designed for a reaction at
constant temperature. In formulating RRKM theory,'® the idea
of a transition state was combined with the statistical RRK (Rice,
Ramsperger, Kassel) concepts of the 1920s and used to describe
the reactive behavior of molecules of energy E.

The G(T,q) or S(E,J,q) appearing in eqs 10—12 are defined
using a hypersurface, i.e., using an (n — 1)-dimensional subspace
in an n-dimensional space. Each hypersurface of a family is
characterized by a value of gq. One of these, at ¢ = ¢,
constitutes the transition state of the reaction and, in the case
of the tight transition state, passes through the saddle-point
region separating the reactants from the products. Thus, when
the transition state is “tight”, the choice of the nature of ¢ and
of its value of g% in the transition state is standard (the
minimization would yield a g* in which the saddle point is on
the hypersurface g = g¥). Equations 9 and 11 can be simplified,
thereby, by omitting the “min” and replacing g by this g*.

The method of choosing a suitable family of hypersurfaces
becomes challenging when there is no marked potential energy
maximum (and so no marked saddlepoint) along the reaction
path. A method of taking into account the role of many low-
frequency coordinates and choosing the transition state was the
focus of recent studies on the variational form of RRKM
theory.19~121719 Ag noted earlier, an insightful choice of the
optimum in a class of ¢’s is treated in the recent work of
Klippenstein.'?

There are seen in Figure 3 several reaction coordinates g,
one for each reaction. The g in reaction 2 leads from the upper
left diradical region through the neck to the central potential
energy minimum. The reaction coordinate for the concerted
reaction, reaction 1, leads instead directly from the left valley
to the central well, but in Figure 4 it is typically diverted to

~either side of the conical intersection D, to avoid the highest

energy regions and to enhance the “adiabaticity” (the act of
staying on a single potential energy surface, here the lowest).

(13) Truhlar, D. G.; Isacson, A. D; Garrett, B. C. In Theory of Chemical
Reaction Dynamics; Baer, M., Ed.; CRC Press: Boca Raton, FL, 1985;
Vol. IV, p 65.

(14) Wigner, E. Trans. Faraday Soc. 1938, 34, 29.

(15) Eyring, H. J. Chem. Phys. 1935, 3, 107.

(16) Evans, M. G.; Polanyi, M. Trans. Faraday Soc. 1938, 31, 875.

(17) Marcus, R. A. J. Chem. Phys. 1966, 45, 2630.

(18) Marcus, R. A.; Rice, O. K. J. Phys. Colloid Chem. 1951, 55, 894.
Marcus, R. A, J. Chem. Phys. 1952, 20, 359.

(19) Klippenstein, S. J.; Kress, J. D. J. Chem. Phys. 1992, 96, 8164.
Klippenstein, S. J. /bid. 1992, 96, 367. Wardlaw, D. M.; Marcus, R. A.
Chem. Phys. Lert. 1984, 110, 230.



Global PE Contour Plots for Chemical Reactions

It is evident from this description that there -are three distinctly
different reaction coordinates in reactions 1 and 2. Thus, one
should not draw, as one might be tempted to do, the entropy
S(E.J,q) or free energy G(T,q) versus reaction coordinate curve
for reaction 1 on the same plot as the corresponding curve for
either of the two steps in reaction 2. In any comparison of plots
of entropy or free energy curves versus a coordinate g for two
systems, as in the free energy curves for weak overlap electron
transfers, the ensemble of configurations selected should be
identical for the two curves, if the comparison is to be
meaningful. This latter consideration was especially important
in constructing free energy curves vs reaction coordinate for
electron transfer reactions.?0

On a somewhat different topic, we also note that any
isomerization of one diradical into another, e.g., from the upper
left region in Figure 3 to the upper right, is impeded in that
figure both by there being a barrier en route and by the trajectory
proceeding on the side of a hill. It would tend, in the process,
to become diverted into the C; minimum,

Second- and Higher-Order Saddle Points

Among the other topographical features of a surface are the
second- and higher-order saddle points, i.e., saddle points which
have two or more negative eigenvalues for the local force
constant matrix (the Hessian), whereas an ordinary saddle point
has only one. As noted in ref 4 a second-order saddle point
found there had no particular chemical significance, but we
comment briefly on it and on domes.

A second-order saddle point was found* for the rectangular
transition-like structure (0 = & = 71/2) and for the trapezoidal
structure () = a; #= 7/2) in a topographical map of Vin a
restricted subspace. The V was a maximum at ¢ = 0, i.e., 8V/
9 = 0 and a negative value for 32V/a¢@?. It yielded the second
negative eigenvalue. for the force constant matrix in this
subspace. Subsequent variation of ¢ yielded a ¢ for which
dV/3g = 0 and a positive value for 3V/dg2. The point so
reached was now a local minimum, as a function of ¢, and
was the (first-order) saddle point for the following reaction:
ethylene pair — diradical. In a topographical map in ref 4
(Figure 7 there), the second-order saddle point appears topo-
graphically as a first-order saddle point, but only because ¢
was held fixed in the map.

If a dome, rather than a conical intersection, appears after a
minimization then it is a second-order saddle point in the
minimized plot and serves to divert a reaction path, as in Figures
3 and 4.

Summary and Concluding Remarks

The global plot is intended to present an overall picture of
the various processes, their relationship with each other, and
the overall topography of the surfaces, such as the minima, the
saddle points, and conical intersections. As such it is comple-
mentary to usual contour or topographical plots, which are
2-dimensional cuts of the potential energy surface in the many-
dimensional coordinate space and which focus on local regions
of that coordinate space. A different type of plot is one in which
a profile of the potential energy surface for the cyclization of
the diradical and the profile for the fragmentation are plotted
versus the same reaction coordinate. The plots in Figures 3
and 4 make it very clear that the reaction coordinates for the
processes are very different, and hence that the above 1-D plot
is incorrect. A potential shortcoming of the global plot is a
possible distortion of a surface feature such as a saddle point

(20) Marcus, R. A. Discuss. Faraday Soc. 1960, 69, 21.
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as a result of the minimization process. It will be interesting
to see how the global plot appears in an actual calculation using
an ab initio surface.

In ref 1 a global plot was used to explore why one of the
transition states for an HiO system, not previously located in
an ab initio calculation of the potential energy surface, was not
found. It is perhaps too much to expect in a reaction so well
studied as the concerted vs stepwise cycloaddition of two
ethylenes that the new type of plot will provide new insights.
One feature which emerges from Figures 3 and 4 concerns the
comparison between a concerted and a stepwise process: The
comparison will differ, depending on whether a trans or a gauche
attachment of the ethylenes is considered in the stepwise
reaction: In the trans attachment, the appropriate concerted
reaction according to Figure 3 is a [2; + 2,] reaction which
occurs along the g; axis in Figure 3 and thereby involves an
unusually large internal rotation, the twisting of one ethylene
with respect to the other to reach the cyclobutane configuration.
The formation of the diradical via a gauche attachment, on the
other hand, should be compared with a [2, + 2,] cycloaddition
and with a different [2; + 2,] cycloaddition, one having a
relatively small twist of the two ethylenes (Figure 4). Figure 3
suggests that the dome diverts a concerted ethylene—ethylene
attachment into becoming an attachment which forms instead
a diradical, while in Figure 4 the same effect occurs unless the
alignment is close enough that the system proceeds so close to
the g axis that it passes through the saddle point indicated there
on that axis. (However, as a precautionary note, it should be
stressed that, at present, Figures 3 and 4 are drawn in the absence
of a detailed calculation of the minimized surface.)

From the usual contour plots for collinear A + BC — AB +
C reactions there have been new insights, as in the dynamical
basis of vibrational adiabaticity using reaction coordinates?!
based on the topography of the potential energy surface, and
dynamical concepts such as those used in early and late downhill
reactions.?? For other systems, too, it may be anticipated that
the detailed dynamics will again depend on details such as
curvatures,?! change of vibrational frequencies?' and torsions
along an actual reaction path in the original N-dimensional
space, and factors related to angular momentum restrictions;
but an initial overall picture may be provided by the global plot.

Acknowledgment. It is a pleasure to acknowledge the
support of this research by the National Science Foundation
and the very helpful comments of John Baldwin.

Appendix A. Transformation of Coordinates and Inverse
Transformation

The coordinate transformation given by eqs 3—8 can be
written in matrix form as

(‘]1' |I"23}
r
9> A, O 13
9| _ Faa | _
q= = , = Ar (AD)
44 0 A, 14
qs T
96, L7344

where A1 is a symmetric orthogonal matrix and A; is a rotation

(21) Marcus, R. A. J. Chem. Phys. 1966, 45, 4500. Marcus, R. A. Ibid.
1965, 43, 1598.

(22) E.g.: Anlauf, K. G.; Kuntz, P. J.; Maylotte, D. H.; Pacey, P. D.;
Polanyi, J. C. Discuss. Faraday Soc. 1967, 44, 183 and references cited
therein. Laidler, K. J. Theories of Chemical Reaction Rates, McGraw-
Hill: New York, NY, 1969; pp 178—182.
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matrix
1 -1 -11
_1-1 1-11 _ 11t -1
AZglar a1 11 A2“¢§[1 1](A2)
1 1 11
It is readily verified that
A=A, Ay =A) (A3)
where T denotes the transpose. Thereby, one finds that
rys="1q, — g~ g5 + qy) (A4)
rs = l/2(”‘11 t4, 493140 (A5)
Fy = 1/2(_‘11 ~ gt g3t 4y (A6)
ra="hlg, + 4+ 4+ 4) (A7)
o = =g + 4¢) (A8)
12 /2 5 T ds
P = (g5 — 4o) (A9
34 «/5 5 6

We note in passing that the transformation is “distance
conserving”:

q"q=r'ATAr =r"r (A10)

Appendix B. Saddle-Point Regions and Their Survival

We consider the behavior of a potential energy surface and
the minimized surface in the vicinity of a first-order saddle point
S of the original surface.

Regardless of the coordinates used, a diagonalization of the
force constant matrix (the Hessian) yields, in the vicinity of
the saddle point,

1 19
V=V, = ki + =D k1l :29)
2 24

Here, V; is the value of V at the saddle point x) = ... =x, = 0.
The coefficients —k;, k3, ..., k, are the curvatures of the surface
at S, the &;’s being all positive. In the case of n = 2, the contour
lines in (x;,x2) space, i.e., the lines of V = constant, are the
hyperbolae, '/ok,x3 ~ 'Lkx? =V — Vo The contour lines
passing through § have V = Vj, and hence consist of two such
lines, W + \/k,x, = 0, as in Figure 3 or 4, for example.
They form the two arms of the separatrix. When V is minimized
with respect to the coordinates x3, ..., x,, this n = 2 case results.

On the other hand, if neither of the coordinates (x;,x2) used
as axes in the 2-D global contour plot contains the reaction
coordinate, which will be denoted now by x3, we would have

V=V,+ lZk,x,? + V(xy) (B2)
2i=3

where V(x3) is a double well potential energy function with a
leading term — 1/2k3x§ at the saddle point. The V(x3) has
minima at x;' and x5, according to x3 > 0 or x3 < 0. One then
sees the minimizing V with respect to the x; for i > 2 leads to
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x; = 0 for i > 3 and the lower of the two minima:
V(minimized) = V, + '/,(ky3 + k,x3) + V(x¥) (B3)

where V(xsi) is the smaller of V(x;'), which is the minimum
when x3 > 0, and V(x7), which is the minimum when x3 < 0.
Thus, in this case, the separatrix has not survived the minimiza-
tion.

We consider next the more general case which is intermediate
between the above two extremes. We let the local reaction
coordinate (the coordinate associated with the negative curva-
ture) contribute both to the (g1,42) pair and to the variables
involved in the minimization. For notational brevity all
coordinates g; (and x;) are now defined relative to their values
at the saddle point. For simplicity of presentation we suppose
that both the reaction coordinate x; and another coordinate x3
contribute to ¢; and g3 and consider the more general case later:

2V =2V, — x + wig: + wix (B4)
plus a term which contains the other coordinates.

We relate x; and x3 to g; and g3 by an orthogonal transforma-
tion:

x = (g, + ag)/(1 + aH'"* (BS)

x; = (—aq, + g;)(1 + a»"? (B6)
Minimizing V with respect to g3 yields

X, = ax/w} (B7)

so that now the V for the minimized plot is
2V(minimized) = —(1 — d/wi)x} + wlg;  (BS)

where g; (and x;) can be expressed in terms of g; using eqs
B5—B7. Thus, the saddle point survives the minimization only
if the coefficient of x% in parentheses is positive, i.e., provided
a? < wg. That is, there is a survival only if the local reaction
coordinate x; does not contribute too greatly to the minimized
variable g3, the fraction allowed being weighted by l/wg, the
ratio of the negative force constant of the reaction coordinate
x; motion to the force constant for the x3; coordinate.
The result is immediately extended to many variables: The
potential energy V can be written as
— l T
V=V, + Eq Kq B9
in the vicinity of the saddle point. The vectors and matrices
can be written as

q, Kaa Kab ]
= K= B10
1 [‘Ib ] K., Ky (B10)

where ¢, is a vector with components ¢; and ¢», qp has
components g3, ..., gn, Kaa i a symmetric 2 X 2 matrix, and
Kb is a symmetric N — 2 x N — 2 matrix.

On mirimizing V and solving for q, in terms of q, one obtains
q = —Kup ™! Kiqa and from it

V=V, + I/ZqZ[Kaa - Kabeb_lea]qa (BI11)

The saddle point survives the minimization if the matrix in
brackets has a negative eigenvalue.
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