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A series of calculations is reported of the superexchange electronic matrix element between donor and acceptor
states in photoinduced long-distance electron-transfer reactions in seven Ru-modified proteins: Ru(bpy).im-
(HisX)-cyt ¢, where X = 33, 39, 58, 62, 66, 72, 79. Calculated results are compared with experimental data.
The model used for the calculation includes a detailed description of the donor and acceptor wave functions
in terms of ligand field theory. The intervening protein medium is treated within the extended Hiickel theory.
It is found that the symmetry and spatial properties of the donor/acceptor wave functions impose certain
selection rules on the pathways used in electron transfer. Some paths through o bonds are not allowed due
to the symmetry requirement, for example. Also, the influence of the spatial mutual orientation of the donor
and acceptor orbitals in the protein on the rates of electron transfer is analyzed. It is found that there is a
strong stereochemical effect in this type of reaction. The mutual orientation of the orbitals is an important
factor which determines the reaction rate, in addition to such factors as distance between donor and acceptor
and concrete chemical structure of the protein matrix discussed before in the literature. In the calculations,
a new method of transition amplitudes is applied. The method can be used for proteins and other large
systems involving several thousand atoms. Numerically, the new method reduces the calculation of the
electronic coupling between donor and acceptor to the problem of finding iteratively the minimum of a
multidimensional parabola, and avoids the diagonalization of the Hamiltonian matrix.

1. Introduction

Long-distance electron transfer plays a central part in many
biological processes, such as photosynthesis and respiration.!
It is believed, also, that the long-distance charge separation will
be used in future artificial photosynthetic systems? and in
molecular electronic devices,® mimicking the natural processes.
Much effort has therefore been directed in the past toward
understanding this type of electron-transfer reaction. Recent
elucidation of the crystallographic structure of many natural
electron-transfer systems, in particular those of photosynthetic
reaction center* and several electron-transfer proteins, has
advanced research in this field on a molecular level so that a
detailed comparison between theoretical calculations and ex-
perimental data is now possible.

In this paper, we report on a series of calculations of the
superexchange matrix element between donor and acceptor
states in seven electron-transfer ferroproteins: Fe(heme)-cyt-
Ru(HisX)(bpy).im, where X = 79, 72, 66, 62, 58, 39, 33. The
results are compared with recent experimental data. Electron
transfer occurs in these systems between Fe?*3* and Ru®*/2+
ions. The Ru complex is coordinated to the surface HisX amino
acid, and the Fe ion is located in the heme porphyrin ring inside
the protein., The distance between donor (Fe?*) and acceptor
(Ru*t) varies in the range 13—20 A. The protein matrix
separating donor and acceptor provides a medium which
facilitates (in fact, makes possible) electron transfer over such
long distances.>® These electron-transfer systems were designed
and synthesized by Gray and co-workers,”~® and experimental
data on the electron-transfer rates were published recently.”®
The data files with crystallographic structures of these com-
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pounds for the present studies were kindly provided to us by
Jay Winkler.

In the experimental studies, a very fruitful idea has been used
to choose a Ru—acceptor complex so as to compensate the
reorganization energy of the reaction by the driving force. As
a result, electron transfer in these systems is almost activation-
less.1%1 Comparison between experimental rates and theoretical
calculations in such systems then involves the minimum
uncertainty in the effect of parameters such as AG° of the redox
pair. Several fundamental questions on the distance dependence
and on the role of the protein structure in electron-transfer
processes in natural biological systems can be addressed in these
studies. A detailed review of the experimental work and
discussion has been given in the literature.>6

Theoretical calculation of the reaction rates in systems
involving thousands of atoms at a detailed molecular level
presents an enormous challenge, even when the structure of these
systems is known. Recently, several such theoretical studies
have been reported in which dynamical!?~!4 and electronic
coupling aspects'>~2° of biological electron-transfer reactions
were addressed. In particular, the superexchange matrix element
was calculated by several groups!”~?° for systems similar to
those considered in the present study. The problem is usually
treated in a one-electron approximation (for an exception, see
ref 16), and due to recent advances in Green’s function
technique,?*~2° all atoms of the system can be included in the
calculation. In this paper, the theory is advanced in several
major aspects, compared with the previous work.

Most importantly, in the present paper the donor and acceptor
wave functions are given a detailed consideration. The wave
functions are constructed from the five d orbitals of the
transition-metal ions with the use of ligand field theory
concepts® and of spectroscopic experimental data on the metal
complexes involved in the reaction.*2 We find that the
symmetry of the donor and acceptor states, defined by the
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symmetry of the ligand fields in the heme and in the Ru
complex, is crucial in the relative importance of tunneling
paths!7 through a network of ¢ or & molecular orbitals
connecting donor and acceptor states. Thus, the symmetry of
the donor—acceptor states imposes selection rules on the
tunneling paths, and certain tunneling paths connecting donor
and acceptor are not allowed. It is shown that the correct
symmetry of the donor—acceptor wave functions provides a
strong coupling to a 77 orbital system of the intervening protein
matrix. Some preliminary comparison with the method of
extended amino acid pathways?'?? is also given. We find that
the concept of amino acid pathways provides a reasonable
reduction of the total protein. The conclusion is based on the
comparison of the all-atom calculations and the reduced model
of the protein.

Computationally, a new method of transition amplitudes
introduced in ref 29 by one of us, an alternative to evaluating
Green’s functions, is used for the nonperturbative calculation
of the matrix element. All atoms of the system (approximately
1800 atoms and 4500 orbitals) are included in the calculation
which takes less than 30 s of CPU time on a CRAY computer.
Numerically, the problem is reduced to finding a minimum of
multidimensional parabola. A conjugate gradient method is used
to solve this problem. The method takes full advantage of the
sparsity of the Hamiltonian matrix and can be applied in the
future to systems involving hundreds of thousands of orbitals.

The problem of overlapping orbitals (nonorthogonal basis set)
is addressed in our calculations. Also, we consider the problem
of electron transfer between several degenerate or near-
degenerate states of the donor and acceptor, which arises in the
case in the reaction involving two transition-metal complexes.

The paper is structured as follows. In section II, basis sets,
a model Hamiltonian, and the method of transition amplitudes
are reviewed. In the next section, III, the donor—acceptor wave
functions are analyzed and the implications of the symmetry
properties of these functions for the superexchange coupling
are discussed. In section IV, results of calculations and
comparison with experimental data are presented.

II. Superexchange Coupling and the Method of
Transition Amplitudes

The present theory is an effective one-electron picture, where
the antisymmetric properties of multielectronic wave functions
are included only via the Pauli principle. The matrix element
Hpa(E) between the donor state D and the acceptor state A is
given by the well-known expression?!~2

VAa. oD 1
Hpa(B) = Y ——— =3 (AlVio)——a|VID)
a(E—E,) «© (E—-E))

@D

where HP is the Hamiltonian of the bridge, V is the coupling
between bridge orbitals and donor and acceptor orbitals, and E
is the tunneling energy (energy of the donor and acceptor orbitals
at the transition state). The states |a) denote the eigenstates of
the bridge Hamiltonian H® and Eﬁ its eigenvalues. The direct
(nonbridge mediated) coupling (A|V|D) is omitted in eq 2.1.
It is usually assumed that there are no resonances between
states in the bridge and the donor—acceptor states and that all
the states [0) with energies below E in eq 2.1 are doubly
occupied and those above E are unoccupied. The contribution
of the occupied energy levels of the bridge can be associated
with the hole transfer and contribution of unoccupied levels with
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electron transfer. Both the hole-transfer and electron-transfer
contributions are present in the total matrix element (2.1).

The above equation is obtained from the more general
expression?*~2°

Hp\(E) = (AIV(E — H>)™'V|D) 2.2)

by inserting on both sides of the resolvent operator (E — HB)™!
the expansion of unity in terms of the orthogonal and complete
basis set of eigenstates |a) of the bridge Hamiltonian HE.
Equation 2.2 is the lowest order expression in the strength of
coupling to the bridge, V. As will be argued in the next section,
this approximation is sufficient for description of electron
transfer in the present case, namely, between low-spin transition-
metal complexes with less than six electrons in the d shell. In
a more general case of arbitrary coupling V, the qualitative
picture remains the same.

Thus, if one could diagonalize the bridge Hamiltonian HB,
then the above expression could be computed using eigenstates
and eigenvectors of H® and using eq 2.1. Such a procedure
has been used in refs 19—22 for a reduced model.of a protein,
namely, where only the physically most important chemical units
were considered, as determined by an artificial intelligence
search procedure using an evaluation function. In that case, a
direct diagonalization was readily performed.

Alternatively to eq 2.1, one can calculate expression 2.2 with
any other suitable basis set |/} for the bridge. In the present
paper, for example, the extended Hiickel basis set® is used.
Other basis sets are also possible.?® For a nonorthogonal basis
set (a basis with overlaps), as for the present case of the extended
Hiickel basis, the matrix element expression takes the form
(details are given in the Appendix)

Hpa(E) = Y (AIVIi) (ES — HP),”'GIVIDY  (2.3)
ij

where § is the overlap matrix, Sy = (i|j), and HP is the
Hamiltonian marix of the bridge in the basis |{). This expression
is different from the one recently published in refs 27 and 28.
To our knowledge, the nonorthogonality problem was not
addressed in other studies on this subject.

This second method of calculation given by eq 2.3 does not
require the diagonalization of the matrix HB, but it does require,
at first glance, the inversion of the matrix ES — HB. Since the
inverse of this matrix is Green’s function of the bridge, that
method is known as Green’s function method.?*=?* A number
of numerical procedures for direct inversion of the Hamiltonian
matrix have been discussed in the literature.?* The effectiveness
of this method for a large system involving of the order of
10 000 orbitals or larger depends upon the availability of the
efficient computer inversion routines for sparse systems.

In this paper, we use, instead, another method, which is
equivalent to Green’s function method in the sense that it gives
an exact nonperturbative solution to the problem of evaluating
(2.3). However, the calculation is performed in a different way,
which does not require the inversion procedure. Instead of the
inversion, the sparse system of linear equations is solved for
the transition amplitudes defined below. For sparse linear
systems, there are many iterative methods available. The use
of an appropriate iterative method can yield an approximate
solution significantly faster than the direct method. Also,
iterative methods require less memory than the direct methods,
making iterative methods the only feasible approach for very
large systems.3435
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In the transition amplitudes method,?® the matrix element is
written as

Hy\(E) = zA,.+T,. (2.4)

where the vector A;" = (A|V}i) and the T;’s are the transition
amplitudes. The 7;'s describe the amplitudes of superexchange
transitions between the donor orbital |D) and the orbitals |i) in
the bridge. For the transition amplitudes T;, one has a system
of linear equations

D= Y (ES - H’),T, 2.5)
J

where the vector D; = (i]V|D). Thus, instead of inverting the
matrix ES — HEB and calculating Green’s function of the bridge,
one can solve a system of linear equations (2.5) for the transition
amplitudes 7;. This last problem for sparse systems is reduced
to the equivalent numerical problem of finding a minimum of
a multidimensional parabola (the condition for minimum is given
by eq 2.5), and then the problem is solved by the conjugate
gradient method.?®37 This method allows one to treat extremely
large systems with hundreds of thousands of linear equations.®

Such a method has been implemented by us on a Cray
computer in conjunction with a graphics input interface program
BIOGRAF.3® The calculation by this method of the total matrix
element in Ru-modified cytochrome ¢ from experiments of Gray
and co-workers, involving an all-atom model of the protein
(about 1800 atoms and 4500 orbitals), takes less than 30 s of
one CRAY Y-MP CPU time.

The advantage provided by the method of transition ampli-
tudes, compared with the exact diagonalization procedure (2.2),
is balanced by the lack of detailed information about the
contributions of the individual energy levels in Hpa(E). - Also,
the contributions of the hole transfer and electron transfer are
given now only as a sum in the total matrix element Hpa(E). It
is sometimes useful to know these contributions separately. A
method which allows a separation of the contribution of the
hole transfer from that of the electron transfer without the
diagonalization procedure is described in ref 29.

III. Donor and Acceptor Wave Functions

Ligand field theory provides an appropriate description of
the one-electron wave functions for donor and acceptor states.
In much of our discussion, we follow a standard text on this
subject® and use experimental spectroscopic data from ref 31
and a recent paper of Gadsby and Thomson on the spectroscopy
of hemoproteins.>?

In the reaction of present interest, Fe?*3* (heme)-cyt-(HisX)-
Ru?*/2*, the transferring electron in the initial state and the final
state occupies the 3d shell of Fe ion and the 4d shell of Ru,
respectively. The 5-fold degenerate shells of the metallic ions
are split by the low symmetry field of the six ligands coordinated
to the ions in the compound. The Ru ion is coordinated by six
nitrogens, including one nitrogen of the HisX residue on the
surface of the protein, and the Fe ion is coordinated by the four
pyrrole nitrogens of the porphyrin ring, by a nitrogen of the
His18 residue at an axial position, and by the sulfur of the Met80
residue at the other axial position. In our discussion of the
orbitals of the metal ions, we introduce coordinate systems for
each of the metal complexes with the z coordinate directed
toward the Met80 residue for Fe and toward HisX for the Ru
complex.

We first consider the case when all six ligands are treated as
being equivalent. The five d orbitals of the ions are then split
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TABLE 1: Energies of t;, Orbitals”

HisX, X Fe: E., Exy, Eq RU: E, Eyy, Eyy
39 -1041-1046 —1052  —10.93 —11.12 —11.23
33 ~10.46 —10.62 —10.68  —10.90 —11.12 ~11.25
66 -10.46 —10.62 —10.68  —10.90 —11.12 —11.25
72 —10.46 —10.62 —10.68  —10.93 —11.10 =11.20
59 ~10.41 —10.46 —10.50  —11.20 —11.39 ~11.56
62 -10.41 —1046 —10.52  —11.20 —11.23 —11.36

4In eV. The notation for orbitals is the same as in ref 32.

into two subshells, the doubly degenerate e; set formed by d.2
and d,2-2 orbitals and a triply degenerate set tzg, consisting of
d,y, dx;, and d,.. The orbitals of the e, set are oriented toward
the ligands and participate in o bonding. Due to the interaction
with the bonding orbitals of the ligands, these orbitals are mixed
strongly with the ligand orbitals, and the appropriate bonding
and antibonding states are pushed several electronvolts below
and above the ty; subshell. In fact, most of the amplitude of
the d;z and d2—2 orbitals is concentrated in the antibonding state,
which then roughly speaking coincides with the e; doubly
degenerate state. The orbitals of the ty; subshell, on the other
hand, interact and mix very little with the ligand orbitals because
their electronic density is concentrated in between the ligands.
In the low-spin systems, as in the present case, all electrons of
the ions with six d electrons or less occupy the tp subshell. Six
electrons of d® (Fe?*, Ru?t) completely fill the ty; subshell,
whereas in a state with the configuration d® (Fe3*, Ru3*), there
is a hole in the ty; subshell, and the state is a Kramers doublet.

Thus, the tunneling electron in the initial and final states is
localized on the t;g subshells of the metal ions. The orbitals of
this subshell can be treated in the zeroth approximation as
decoupled from the rest of the system. The small interaction
which exists between the complexes and the bridge can then
be accurately described as a first-order approximation, as we
have done in the previous section.

Due to the near-octahedral symmetry of the complexes, the
orbitals dyy, dsz, dy; of the ty; subshell interact mainly with the
p orbitals of the ligands which are perpendicular to the ligand—
metal bonds or with the orbitals of similar symmetry (e.g., with
7 orbitals). Hence, the superexchange electron transfer from
these orbitals can be mainly mediated by the network of protein
orbitals in which 7 orbitals of the ligands participate strongly.
It is clear from this consideration that some pathways in the
complex network of overlapping orbitals will not participate
much in the electron transfer due to the symmetry of the donor—
acceptor states. For example, the networks which start as a ¢
path will not participate much in the superexchange coupling
under this consideration. Thus, the symmetry significantly
modifies the overall picture of pathways.

The distortion of the octahedral symmetry (nonequivalence
of the six ligands) will split the ty; orbitals, so that the
degeneracy will be completely removed. However, this ad-
ditional splitting is much smaller than the octahedral splitting
between t and e subshells. Experimental data’’*? and our
molecular orbital calculations indicate that the octahedral
distortion splitting is in the range of a tenth of an electronvolt
or less, as seen in Table 1. In the first approximation, dxy, dx;
and d,; orbitals of the t subshell are not mixed with each other
by this additional low symmetry field, and the energies of these
orbitals are only slightly different from each other.

An important point is that these orbitals are “frozen” in the
space with respect to the structure of the donor/acceptor
complex. The electron density is localized between ligands (so
that the overlap is not significant) and the symmetry of these
orbitals is such that only & systems of the ligands can be
effectively reached. It is between these orbitals of the donor
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and acceptor electron transfer occurs. Because of the small
splittings, any of these orbitals can participate in electron transfer
(i.e., any of the six electrons of Fe?* can be transferred to Ru**
or the hole in the Ru?* ion can be transferred to any of the
three doubly occupied orbitals of the t, shell of the Fe?* ion).
Due to differences of the orbital energy, the reaction rates
calculated for the individual levels will have slightly different
driving forces. On the other hand, due to a rigid spatial
orientation of individual orbitals of the triplet, the matrix
elements for these components can differ significantly, as seen
in the next section.

The theory taking into account the difference in driving force
for different components of the t shell will be discussed
elsewhere. In the present calculation, we note that when (as in
the experiments of Gray and co-workers) the rate is near the
maximum in the rate vs the driving force plot, the rate is
relatively insensitive to the possible corrections to the driving
force AGP in electron transfer into or from the different orbitals,
Hence, in the zeroth approximation, this difference in the driving
force for different components of the electron-transfer reaction
can be neglected. We note, though, that it is only a rough
approximation and the refinement of the theory will be made
in the future.

In a usual theory of nondegenerate donor and acceptor
states,'%!! the rate constant at the maximum in the plot rate vs
driving force is given by

kmax — _ZLT lI{DAIZ

R (4mikT)" G-D
where A is the reorganization energy. In the comparison of eq
3.1 for k™2 with experimental data, it is assumed that the rate-
determining step is the electron transfer, rather than some prior
protein conformational change from an inactive to an active
form. For a very fast electron transfer, it is possible that such
a step would become rate limiting. We neglect this possibility
here, in the absence of further information.

The above expression is classical but is close to the
corresponding quantum expression (e.g., ref 10). The modifica-
tions of that theory due to the presence of several donor—
acceptor states are as follows. In the initial state, the three
sublevels of the ty, shell of the Fe?* ion are completely filled
(configuration d%) and there is one hole in the Ru3* t5; shell
(configuration d5). In the final state, the hole occupies one of
the ty, levels of the Fe3* jon. It is convenient, then, to think
about the hole exchange between Fe and Ru ions. (This hole
exchange is introduced only for the sake of description and is
different from the usual hole transfer. The usual electron-
transfer and hole-transfer contributions are both given by the
total matrix element of our calculations.) From each of the three
possible states of Ru3*, the hole can be transferred to each of
the three sublevels of Fe?*, yielding three different Fe3* states.
For a given initial state of the hole in Ru*, each of the charnels
of the reaction (i.e., hole transfer into each of the three levels
of Fe?™) will have a different AGP. Since the energy difference
in the position of t3; levels of Fe is much smaller than the
average experimental value of AGP we can neglect the
difference in energies of the final states of Fe. In this case, the
total rate from each of the sublevels |j) of Ru will be given by
a sum of rates of hole transfer into all three sublevels of Fe?*,
The nonadiabatic rate is proportional to the square of the matrix
element, as in eq 3.1. Hence, neglecting the difference in
driving force, the total rate from the jth hole state of Ru®* is
proportional to the sum of squared matrix elements. The
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effective matrix element is then a square root of a sum:

kj o< leA|2 (3.2)
3

\Hal = O IHDAH" (3.3)
i=1

where the sum is over the three t; states of Fe.

If several Ru?" states can participate in the reaction, then
the contribution of each of the levels will be weighted with an
appropriate Boltzmann factor and the total rate will be given
by

k=Y kp, (3.4)

where the p;’s are the Boltzmann populations of the Ru ty; states.
The effective matrix element is then

3
Hpal = (Y 1HYp)" (3.5)

ij=1

In the case of almost degenerate states, the population of the
acceptor states will be the same, and the matrix element then
takes the form

3
Hpal = (Y IHEAI/3)"* (3.6)

ij=1

To use eq 3.5 instead of eq 3.6 one would need to know the
Boltzmann factors p;. At present, such experimental information
on the Ru?* tag states is not available. For this reason, we
collected the calculated data for several possibilities in order to
compare the various combinations with the experimental
numbers. Various calculated splittings of the t subshells are
given in Table 1. It would be useful to compare these data
with experimental data on metal-to-ligand charge-transfer spectra
in Fe?* and Ru?* complexes in the modified cytochrome ¢
system.

In the calculation, the appropriate linear combinations of five
d orbitals for Fe and Ru complexes were found by diagonalizing
the Hamiltonian matrix formed with the extended Hiickel basis
set for a central metal ion and six ligands positioned according
to the geometry of the complex in the protein. Although, in
general, the Hiickel method gives poor results for the transition-
metal complexes, we used the diagonalization only in order to
find an appropriate linear combination for orbitals of the t shell,
which is defined by the symmetry of the complex. Then, the
energy of the appropriate orbital in the heme was assigned a
value corresponding to the experimental data on charge-transfer
spectra in ferric hemoproteins. The observed charge-transfer
spectrum?? is due to the transition from the highest occupied 7
orbital of the porphyrin ring to the highest unoccupied orbital
of the ty; shell on the ferric ion. The procedure of adjustment
of the donor state relative the highest occupied orbital of the
heme according to experimental data was the same as in the
previously published papers of Siddarth and Marcus.2!?2 The
acceptor state was given the same energy since the transition
state occurs at the intersection of the zeroth-order potential
surfaces for the two electronic states D—B—A, D*—B—A~ of
the entire system. Again, since there is no absolute certainty
in the data for the energy of the tunneling electron, we have
performed calculations for different energies in the region
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TABLE 2: Contribution of Individual Components of the
t2; Subshell to the Total Matrix Element®

HisX, 3(tg)Ru’ 1(tg)Ru° expt! Ru-to-Fe
X Hp, Hp, Hp, Hpy Hpy Hpl  Hpa dlA
39 020 040 067 025 048 080 0.11 20.3

33 015 070 074 024 114 122 0.097 17.9
66 014 0.83 140 020 120 212 0.060 18.9
72 030 0.18 0.18 047 021 033 0.057 13.8
58 0.008 0.07 0.12 0.006 0.01 0.01 0014 20.2
62 0006 0.07 0.13 001 010 022 00059  20.2

¢In cm™!. Matrix elements were calculated for tunneling energy
Ewn = —10.75 eV. ¢ All three levels of the Ru tz; subshell are assumed
to contribute equally, as in eq 3.6. The xy, zx, and zy superscripts on
Hpa are for the different orbitals on Fe, xy being the lowest Fe. In a
calculation based on eq 3.5 instead of eq 3.6, the Boltzmann factors p;
would be introduced. ¢ Only the upper level of the Ru ta, subshell, dy,
is assumed to participate in the coupling. ¢ Reference 7. The distance
shown corresponds to the distance between the two metal atoms.

corresponding to the experimental data and analyzed the
sensitivity of the results to these variations.

IV. Results and Discussion

In this section, the results of our calculation, performed as
described in the previous sections, are presented for seven Ru-
modified cytochrome ¢ compounds Ru®*2*(bpy),im(HisX)-cyt-
(heme)Fe?*B+, where X = 79, 72, 66, 62, 58, 39, 33. A Ru
complex (the electron acceptor in the reaction) is coordinated
to the surface of the protein at various histidines incidated by
X, and the iron ion in the heme (the electron donor) is located
inside the protein molecule.

These compounds were synthesized and the reaction rates
were measured by Gray and co-workers.”? The measurements
were performed with a flash-quench technique,’ in which the
reduced ferrocytochromes were excited with a laser pulse in
the absorption band of the Ru?* complex; the excited electron
(4d) then was quickly removed from the complex by a strong
electron acceptor (Ru**(NH;)s) from the solution, leaving a hole
in the tpg shell of the Ru®* jon. The subsequent electron transfer
from Fe?" to Ru?'t was then measured with the transient
absorption technique. The structures of these compounds were
also modeled by the same group using the computer graphics
and modeling program BIOGRAF.3” The data files for the
structures were then used in our calculations.

The reorganization energy 4 has been estimated to be around
0.8 eV, and the free energy of the reaction has been measured
to be —0.74 eV. Thus, the reaction is almost activationless and
the reaction rate, as a function of the driving force, is in the
region of its maximum value.”® Using these data (and assuming
that A is the same for all compounds), together with the classical
Golden Rule expression for the nonadiabatic reaction rate and
the measured reaction rates, Gray and co-workers calculated
the electronic coupling matrix elements corresponding to their
measurements. The experimental values of these matrix ele-
ments are given in Table 2.

The distance between donor and acceptor metal ions in these
compounds depends on the position of the Ru complex on the
surface of the protein and varies in the range of 13.8 A for
His72 to 20.3 A in the His39 compound.” When both the
reorganization energy and the driving force are the same for
each compound, the variations in rate in different compounds
(by some 2 orders of magnitude) reflect the changes of the
square of the matrix element coupling donor and acceptor states.

In the simplest picture of the protein matrix separating donor
and acceptor as a uniform medium, the electronic coupling (and
the probability for electronic tunneling) should decrease ap-
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proximately exponentially with distance.® According to an
analysis of the group of Dutton and co-workers,® the data for a
variety of proteins involving rates k™% which vary by some 13
orders of magnitude confirm this simple picture, and a universal
constant, a decay per unit length characteristic for many proteins,
exists on this scale. The experimental data for the present Ru
compounds show that on a finer scale of variation of only 2
orders of magnitude of k™, there is only a very rough or
perhaps no, in some cases, simple relation between distance
and the coupling (or rate). For example, for His39 and His62
compounds, the distance between two metals is almost the same,
yet the experimental rate changes by more than 2 orders of
magnitude.

A qualitative explanation for this phenomenon was proposed
in terms of atom-by-atom tunneling paths.!” According to this
model, the effective electronic tunneling distance does not
coincide with the actual geometrical distance between donor
and acceptor. Although, in detail the picture of such atom-by-
atom tunneling paths along the network of chemical bonds and
jumps through space between bonds of the protein matrix are
an oversimplification, and for this reason may mainly be used
for qualitative discussion, it does capture qualitatively the
essential element that the concrete chemical structure of the
protein matrix is important. A more realistic model the
description using amino acid paths?2? involves chemically
distinct units of the protein. The electronic structure calculation
for such atom-by-atom or amino acid-by-amino acid paths has
confimed quantitatively that the protein matrix is a very
inhomogeneous medium. A relatively small number of amino
acids most important for electron transfer represent a reduced
and useful model of a protein.?l-2

The results of our calculations and a preliminary comparison
with amino acid pathways, presented below, confirm that the
reduced form of the protein provides a reasonable description
of the most important part of the protein matrix, given the
uncertainties and low quality of electronic structure calculations.
The results also show that a qualitatively accurate description
of the details of donor and acceptor wave functions in the
calculation reveals that in addition to inhomogeneous factors
governing the reaction rates, there is a stereochemical factor of
mutual orientation of donor—acceptor orbitals. The latter effect
adds more complexity to the general picture of variations of
electron-transfer rates in proteins.

The donor and acceptor wave functions of the metal ions were
constructed as described in the previous section, and the
Hamiltonian matrix of the rest of the system was calculated
with the extended Hiickel basis set. The overlap matrix S; was
calculated with a variational cutoff distance between pairs of
atoms, and nondiagonal elements of the Hamiltonian were
calculated with the standard use of the Wolfsberg—Helmholtz
formula2!22.23

V, = KS,E, + E)2 4.1)

where the E;’s are orbital energies and the empirical parameter
K equals 1.75.3% For the radial part of the s and p orbitals, a
single-exponential—and for the d orbitals of metal atoms a
double-exponential—representation was used with the same
atomic parameters as in the standard extended Hiickel calcula-
tions.*3 By using charge-transfer spectra to determine the
position of the metal orbitals relative to those of the ligands,
no adjustable parameters were used in the calculation.

There are three relevant d orbitals for the electron donor and
three for the acceptor. For each pair of donor—acceptor orbitals
and for their combinations, the effective superexchange coupling
element was calculated for several slightly different energies,
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Figure 1. Cutoff distance dependence of the matrix element.

but in the range that corresponds to the charge-transfer spectra
of ref 32, as discussed in the previous section. The typical
splittings of the tz; for Fe and Ru by the distorted octahedral
geometry of the donor and acceptor complexes are shown in
Table 1. The data are in general qualitative agreement with
the conclusions of ref 32. However, there is a certain degree
of uncertainty both in the Boltzmann factors for the Ru complex
(discussed after eq 3.6) and in the geometry of the calculated
structures. These uncertainties motivated us to calculate various
possibilities of how the effective coupling could be formed
between the three orbitals of the donor and three orbitals of the
acceptor ty, subshells.

In a first series of calculations, we explored how the direct
long-distance interactions (distances longer than the typical bond
lengths) between individual atomic orbitals of the protein matrix
affect the net calculated tunneling probability. Typical data of
this series are shown in Figure 1 where the cutoff distance for
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direct atom—atom interaction was varied. If the cutoff distance
is approximately the same as typical bond lengths, then only a
network of transitions over chemical bonds in the protein is
involved in the superexchange coupling. We find that the matrix
elements for such calculations are several orders of magnitude
smaller than the observed ones and that the coupling increases
dramatically if the interaction distance is increased beyond the
typical bond lengths. On the other hand, as is seen from Figure
1, the matrix element does not change substantially for cutoffs
beyond 5 A. The rather sharp transition to more or less saturated
values shows that interaction distances between 2.5 and 3.5 A
provide critical links. These calculations confirm the conclusion
that Beratan et al. reached earlier!” that “through space”
transitions are important for electronic tunneling through protein
media. These transitions serve as bottlenecks for the overall
tunneling.

Although we observe saturation of the calculated values of
the matrix element, there are, nevertheless, fluctuations of the
calculated coupling as the cutoff distance changes in the range
3.5—5.0 A. These fluctuations provide one source of estimate
of the quality of the theoretical numbers.

The principal calculations were performed for several energies
in the interval between —11.0 and —10.0 eV. This region
corresponds to the experimental data of ref 32 on the charge-
transfer spectra between porphyrin and Fe orbitals in the heme
in a number of ferric cytochromes. This energy interval falls
in the window in the spectral density of both the heme and the
Ru complex calculated separately and shown in Figures 2 and
3. The energy gap between HOMO and LUMO in the heme is
between —11.4 and —9.7 eV and for Ru complex between
—11.9 and —9.7 eV. Our Hiickel calculations performed on
the d shells of metal ions with only nearest atomic ligands
included in the calculations place the ty; subshell in ap-
proximately the same energy interval, Table 1.

The principal calculated results are shown in Figures 4—9
for two tunneling energies, —10.75 and —11.0 eV, which seem
to be in better agreement with the experimental data than for
other energies. The experimental and calculated values are

(heme~Fe)L L, (L,=NH5, L,=SH,)

T T R

Density of States p(E)(arb.u.)

1

|
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T T
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Figure 2. Energy spectrum of the electron donor complex.
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Figure 3. Energy spectrum of the electron acceptor complex.
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Figure 4. Comparison of experimental and theoretical results for
tunneling energy of —10.75 eV. One level of the electron donor (Fe)
and one level (upper) of the electron acceptor (Ru) are participating in
the coupling.

shown in the same figures for comparison. In an ideal
correlation between experimental and theoretical data, all points
of Figures 4—8 would be located on a straight line with a slope
of unity. Such an excellent agreement would probably be
fortuitous, given the degree of uncertainty in both theoretical
and experimental data. The general tendency, however, to have
coupling much stronger for His39 than for His62, although the
distance between donor and acceptor is approximately the same,
seems to be a rather stable theoretical result. Obtaining a
correlation with the small changes in matrix elements in His33
and -39 and in His66 and -72 is beyond the capabilities of the
current theoretical methods. Our current estimates of the
uncertainties involved, following from the scatter of theoretical

Etunn=-10.75eV
1t2g(Fe)/3t2g(Ru)

0.10

0.01

Theoretical M.E. (cm-1)

® His58

0001 l Lf L II|III| ¥ T llllll, 1 1 lllllll

0.00! 0.01 0.10 1.00
Experimental M.E. (cm-1)
Figure 5. Same as in Figure 4 but with all three levels of the acceptor
participating in the reaction.

data, show that even an accuracy within a factor of 2—3 is
probably too much to expect from the present level of calcula-
tions.

For the His79 compound, only a lower limit for the
experimental value of the rate constant (and matrix element) is
known,® Hpa > 0.6 cm™!. This reaction is by far the fastest in
the series. In our calculation, we observe the same qualitative
picture, with our electronic coupling being an order of magnitude
larger than the largest value for other compounds. Because the
experimental value is not known exactly, we do not discuss
further details of calculation for the His79 compound.

In Table 2, results are given for the coupling element between
individual components of the ty; shells of the metal ions. One
particularly remarkable feature of the results shown in Table 2
is that the coupling for different components can vary by an
order of magnitude for the same tunneling energy. The different
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Figure 6. Same as in Figure 4 but with three donor orbitals and three
acceptor orbitals participating in the reaction.
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Figure 7. Same as in Figure 5 but for tunneling energy of —11.0 eV.

components of the t subshells, dy, dx;, and dy,, have different
spatial orientation, and they are fixed in space with respect to
the structure of the whole complex. Thus, in this situation, the
electronic coupling depends strongly not only on the structure
of the intervening medium but also on the relative orientation
of the donor and acceptor complexes with respect to each other
and with respect to the bridge, even when the initial and final
electronic states are localized on the metal ions. This effect
occurs because the electronic density of the donor and acceptor
states is fixed by the position of the ligands coordinated to a
metal ion. Such a strong stereochemical effect would be
expected if the initial or the final state was delocalized orbitals
of the whole complex with a strong degree of asymmetry, as
for example in the heme, but it occurs also in the present case,
where the ligands affect the orientation of an individual metal’s
atomic orbitals. Similar stereochemical effects were discussed
recently in ref 40.

An important consequence of the specific nature of the donor
and acceptor states, and in particular of the symmetry of t;
orbitals, is that some paths connecting atoms of the donor and
acceptor complexes will not participate in the coupling between
donor and acceptor orbitals localized on the metal ions. All s
orbitals of the ligands, for example, will be strongly decoupled
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Figure 8. Same as in Figure 6 but for tunneling energy of —11.0 eV.
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Figure 9. Comparison of experimental and theoretical data for
electronic coupling of effective s orbital of donor and acceptor states.
Tunneling energy is —10.75 eV.

from the donor/acceptor states for the systems discussed here
and for systems with similar electronic structure. Thus, all ¢
paths which start on ligands and which involve as a first step a
o bond may not participate in a major way in the coupling.
This feature has to be taken into consideration when the pathway
model is applied.

The calculated results, including those shown in Figures 4—8,
for two tunneling energies, —10.75 and —11.0 eV, are quali-
tatively similar. The difference in calculated matrix elements
when only one (upper) level of the acceptor (Ru®*) is considered
and the case when all three levels are involved in the reaction
is not significant, as seen, for example, by comparing Figures
4 and 5. However, we find that there is a drastic difference in
the results when one or all three final states of Fe3* are involved
in the reaction. This difference can be seen by comparing
Figures 5 and 6 and comparing Figures 7 and 8. The difference
in the results for the Ru and Fe ions could be attributed to a
number of factors, one of which might be a larger distortion of
the octahedral symmetry of the donor state.

In Figures 4—8, we have presented contributions of various
levels of the donor and acceptor complexes to the total matrix
element. As discussed earlier, the appropriate procedure for
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TABLE 3: Comparison of All-Atom Model and a Reduced
Model of a Protein Consisting of Only Most Important
Amino Acids from refs 21 and 224

HisX, X Hpa, exact Hpa, AA paths
39 0.20 0.24
33 0.15 0.12
66 0.14 0.56
72 0.30 0.51

@ Matrix elements were calculated for tunneling energy Eqpm =
—10.75 eV.

comparison of our results with experiment is to use all three
levels of Fe (bacause of a small difference in their AG®) and to
weight the contribution of each of the Ru levels with the
appropriate Boltzmann factors, as in eq 3.5. The results in Table
2 comparing the sum of three Ru levels with the d,, Ru level
indicate that the latter is usually the dominant contributor. If
its Boltzmann factor is much less than the unity tacitly assumed
in Figure 4 and than the !/; assumed in Figures 5—8, then the
calculated matrix element is overestimated in these figures,
contributing thereby to the discrepancy between the absolute
values of the calculated and experimental values of Hp, in
Figures 6 and 8.

In Figure 9, the coupling calculated with effective s orbitals
localized on metal ions is shown. In this case, mostly o paths
contribute to the coupling. The drastic difference in correlation
with experimental data compared with the accurate treatment
of the donor and acceptor wave function is a remarkable
demonstration of the importance of symmetry and stereochem-
ical effects in long-distance superexchange electronic coupling.

The present calculation, which includes all atoms of the
system, allowed us to address the question of which part of the
protein is most important for electronic coupling. In Table 3,
the data for all-atom calculations and for the reduced model of
four proteins with values of Hpa clustered in the range 0.05—
0.1 cm™! are shown. There is an approximate agreement with
a factor of 2 or so. The reduced model is a small number of
amino acids identified in refs 21 and 22 for several proteins.
The amino acids so included correspond to “extended” amino
acid paths defined by Siddarth and Marcus. The resulits are
not strictly comparable since in the AI search used in refs 21
and 22, the axial ligands and resulting octahedral distortion were
omitted. Further investigation using the search procedure will
be done in our future work. The quality of the approximation
of the reduced model varies for different proteins, but in some
cases shown in Table 3, the agreement between exact calcula-
tions and the reduced form is quite reasonable, showing that is
indeed possible to identify the reduced part of the protein which
mainly provides the coupling between donor and acceptor in
biological systems.
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Appendix

In this Appendix, the matrix form for the superexchange
matrix element is derived for the case when the basis set used
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for matrix representation of the Hamiltonian operator is non-
orthogonal, i.e., when the overlap matrix is not diagonal. This
problem arises, for example, for the extended Hiickel basis set
considered in the present paper. We present a detailed deriva-
tion of the expression used in our calculations because a different
expression has been published earlier in the literature.?”28
Suppose we have a complete set of nonorthogonal basis
functions, |i) (the extended Hiickel basis in our case). The
expansion of unity in such a basis is written as follows:

1= IS, (A1)

5
This relation is easy to verify by taking a matrix element of
both sides of eq A.1 in the basis |i). Inserting this expansion
on both sides of the resolvent operator in eq 2.2, we obtain

Hpn =A'S,'GIE-HY 'S, 'D,  (A2)

where the column vector D and the row vector A* are given by
convention of omitting summation signs over repeated indices.

D, = (l|VID) (A3)
AT = (AIVIi) (A4)

The problem is now reduced to the calculation of the matrix
of the resolvent operator in the middle of eq A.2. For the
resolvent operator (Green’s function), we have

G=(E-HY" GE-H)=1 (A.5)
Taking a matrix element of both sides of the last expression in

the basis |{) and inserting the expansion of unity between G
and E — HB, eq A.1, we obtain the following relation:

G,S, ES,— HY) =S5, (A.6)

i~ Jk
i.e., in matrix notation
GSMES-H®=S§ (A7)

Multiplying the last equation by S~! on the left and by the
inverse of the matrix £S — HP® on the right, we obtain in the
matrix form

SIGS = (ES — HP)™! (A.8)

Hence, eq A.2 can be written in the form
Hp, = A/ (ES — H);”'D, (A.9)

The matrix in this equation is the inverse of ES;; — Hj;, calculated
in the nonorthogonal basis set, and vectors A and D are given
by (A.3) and (A.4).
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