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Theoretical Study of Electron Transfer in Ferrocytochromes 
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A series of calculations is reported of the superexchange electronic matrix element between donor and acceptor 
states in photoinduced long-distance electron-transfer reactions in seven Ru-modified proteins: Ru(bpy)jm- 
(HisX)-cyt c, where X = 33, 39, 58, 62, 66,72, 79. Calculated results are compared with experimental data. 
The model used for the calculation includes a detailed description of the donor and acceptor wave functions 
in terms of ligand field theory. The intervening protein medium is treated within the extended Hiickel theory. 
It is found that the symmetry and spatial properties of the donor/acceptor wave functions impose certain 
selection rules on the pathways used in electron transfer. Some paths through B bonds are not allowed due 
to the symmetry requirement, for example. Also, the influence of the spatial mutual orientation of the donor 
and acceptor orbitals in the protein on the rates of electron transfer is analyzed. It is found that there is a 
strong stereochemical effect in this type of reaction. The mutual orientation of the orbitals is an important 
factor which determines the reaction rate, in addition to such factors as distance between donor and acceptor 
and concrete chemical structure of the protein matrix discussed before in the literature. In the calculations, 
a new method of transition amplitudes is applied. The method can be used for proteins and other large 
systems involving several thousand atoms. Numerically, the new method reduces the calculation of the 
electronic coupling between donor and acceptor to the problem of finding iteratively the minimum of a 
multidimensional parabola, and avoids the diagonalization of the Hamiltonian matrix. 

I. Introduction 

Long-distance electron transfer plays a central part in many 
biological processes, such as photosynthesis and respiration.' 
It is believed, also, that the long-distance charge separation will 
be used in future artificial photosynthetic systems2 and in 
molecular electronic  device^,^ mimicking the natural processes. 
Much effort has therefore been directed in the past toward 
understanding this type of electron-transfer reaction. Recent 
elucidation of the crystallographic structure of many natural 
electron-transfer systems, in particular those of photosynthetic 
reaction centefi and several electron-transfer proteins, has 
advanced research in this field on a molecular level so that a 
detailed comparison between theoretical calculations and ex- 
perimental data is now possible. 

In this paper, we report on a series of calculations of the 
superexchange matrix element between donor and acceptor 
states in seven electron-transfer ferroproteins: Fe(heme)-cyt- 
Ru(HisX)(bpy)zim, where X = 79, 72, 66, 62, 58, 39, 33. The 
results are compared with recent experimental data. Electron 
transfer occurs in these systems between Fez+t3+ and Ru3+I2+ 
ions. The Ru complex is coordinated to the surface HisX amino 
acid, and the Fe ion is located in the heme porphyrin ring inside 
the protein. The distance between donor (Fe2+) and acceptor 
(Ru3+) varies in the range 13-20 A. The protein matrix 
separating donor and acceptor provides a medium which 
facilitates (in fact, makes possible) electron transfer over such 
long  distance^.^,^ These electron-transfer systems were designed 
and synthesized by Gray and c o - ~ o r k e r s , ~ - ~  and experimental 
data on the electron-transfer rates were published r e ~ e n t l y . ~ . ~  
The data files with crystallographic structures of these com- 

pounds for the present studies were kindly provided to us by 
Jay W i d e r .  

In the experimental studies, a very fruitful idea has been used 
to choose a Ru-acceptor complex so as to compensate the 
reorganization energy of the reaction by the driving force. As 
a result, electron transfer in these systems is almost activation- 

Comparison between experimental rates and theoretical 
calculations in such systems then involves the minimum 
uncertainty in the effect of parameters such as AGO of the redox 
pair. Several fundamental questions on the distance dependence 
and on the role of the protein structure in electron-transfer 
processes in natural biological systems can be addressed in these 
studies. A detailed review of the experimental work and 
discussion has been given in the l i t e ra t~re .~ .~  

Theoretical calculation of the reaction rates in systems 
involving thousands of atoms at a detailed molecular level 
presents an enormous challenge, even when the structure of these 
systems is known. Recently, several such theoretical studies 
have been reported in which dynamica1l2-l4 and electronic 
coupling  aspect^'^-^^ of biological electron-transfer reactions 
were addressed. In particular, the superexchange matrix element 
was calculated by several for systems similar to 
those considered in the present study. The problem is usually 
treated in a one-electron approximation (for an exception, see 
ref 16), and due to recent advances in Green's function 
t e ~ h n i q u e , ~ ~ - ~ ~  all atoms of the system can be included in the 
calculation. In this paper, the theory is advanced in several 
major aspects, compared with the previous work. 

Most importantly, in the present paper the donor and acceptor 
wave functions are given a detailed consideration. The wave 
functions are constructed from the five d orbitals of the 
transition-metal ions with the use of ligand field theory 
concepts30 and of spectroscopic experimental data on the metal 
complexes involved in the r e a c t i ~ n . ~ ~ , ~ ~  We find that the 
symmetry of the donor and acceptor states, defined by the 
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symmetry of the ligand fields in the heme and in the Ru 
complex, is crucial in the relative importance of tunneling 
paths17 through a network of u or n molecular orbitals 
connecting donor and acceptor states. Thus, the symmetry of 
the donor-acceptor states imposes selection rules on the 
tunneling paths, and certain tunneling paths connecting donor 
and acceptor are not allowed. It is shown that the correct 
symmetry of the donor-acceptor wave functions provides a 
strong coupling to a n orbital system of the intervening protein 
matrix. Some preliminary comparison with the method of 
extended amino acid pathwaysz1Sz2 is also given. We find that 
the concept of amino acid pathways provides a reasonable 
reduction of the total protein. The conclusion is based on the 
comparison of the all-atom calculations and the reduced model 
of the protein. 

Computationally, a new method of transition amplitudes 
introduced in ref 29 by one of us, an alternative to evaluating 
Green's functions, is used for the nonperturbative calculation 
of the matrix element. All atoms of the system (approximately 
1800 atoms and 4500 orbitals) are included in the calculation 
which takes less than 30 s of CPU time on a CRAY computer. 
Numerically, the problem is reduced to finding a minimum of 
multidimensional parabola. A conjugate gradient method is used 
to solve this problem. The method takes full advantage of the 
sparsity of the Hamiltonian matrix and can be applied in the 
future to systems involving hundreds of thousands of orbitals. 

The problem of overlapping orbitals (nonorthogonal basis set) 
is addressed in our calculations. Also, we consider the problem 
of electron transfer between several degenerate or near- 
degenerate states of the donor and acceptor, which arises in the 
case in the reaction involving two transition-metal complexes. 

The paper is structured as follows. In section 11, basis sets, 
a model Hamiltonian, and the method of transition amplitudes 
are reviewed. In the next section, 111, the donor-acceptor wave 
functions are analyzed and the implications of the symmetry 
properties of these functions for the superexchange coupling 
are discussed. In section IV, results of calculations and 
comparison with experimental data are presented. 
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11. Superexchange Coupling and the Method of 
Transition Amplitudes 

The present theory is an effective one-electron picture, where 
the antisymmetric properties of multielectronic wave functions 
are included only via the Pauli principle. The matrix element 
HDA(E) between the donor state D and the acceptor state A is 
given by the well-known expre~sion*~-*~ 

where Z P  is the Hamiltonian of the bridge, V is the coupling 
between bridge orbitals and donor and acceptor orbitals, and E 
is the tunneling energy (energy of the donor and acceptor orbitals 
at the transition state). The states la) denote the eigenstates of 
the bridge Hamiltonian I?' and e its eigenvalues. The direct 
(nonbridge mediated) coupling (AlVID) is omitted in eq 2.1. 

It is usually assumed that there are no resonances between 
states in the bridge and the donor-acceptor states and that all 
the states la) with energies below E in eq 2.1 are doubly 
occupied and those above E are unoccupied. The contribution 
of the occupied energy levels of the bridge can be associated 
with the hole transfer and contribution of unoccupied levels with 

electron transfer. Both the hole-transfer and electron-transfer 
contributions are present in the total matrix element (2.1). 

The above equation is obtained from the more general 
expres~ion*~-*~ 

HDA(E) = (A(V(E - g) - 'V ID)  

by inserting on both sides of the resolvent operator ( E  - P)-' 
the expansion of unity in terms of the orthogonal and complete 
basis set of eigenstates (a) of the bridge Hamiltonian P. 
Equation 2.2 is the lowest order expression in the strength of 
coupling to the bridge, V. As will be argued in the next section, 
this approximation is sufficient for description of electron 
transfer in the present case, namely, between low-spin transition- 
metal complexes with less than six electrons in the d shell. In 
a more general case of arbitrary coupling V, the qualitative 
picture remains the same. 

Thus, if one could diagonalize the bridge Hamiltonian P, 
then the above expression could be computed using eigenstates 
and eigenvectors of P and using eq 2.1. Such a procedure 
has been used in refs 19-22 for a reduced model.of a protein, 
namely, where only the physically most important chemical units 
were considered, as determined by an artificial intelligence 
search procedure using an evaluation function. In that case, a 
direct diagonalization was readily performed. 

Alternatively to eq 2.1, one can calculate expression 2.2 with 
any other suitable basis set li) for the bridge. In the present 
paper, for example, the extended Huckel basis set33 is used. 
Other basis sets are also possible.26 For a nonorthogonal basis 
set (a basis with overlaps), as for the present case of the extended 
Huckel basis, the matrix element expression takes the form 
(details are given in the Appendix) 

where S is the overlap matrix, S, = (ib), and P is the 
Hamiltonian marix of the bridge in the basis li). This expression 
is different from the one recently published in refs 27 and 28. 
To our knowledge, the nonorthogonality problem was not 
addressed in other studies on this subject. 

This second method of calculation given by eq 2.3 does not 
require the diagonalization of the matrix p, but it does require, 
at first glance, the inversion of the matrix ES - P. Since the 
inverse of this matrix is Green's function of the bridge, that 
method is known as Green's function m e t h ~ d . ~ ~ - ~ ~  A number 
of numerical procedures for direct inversion of the Hamiltonian 
matrix have been discussed in the literature.24 The effectiveness 
of this method for a large system involving of the order of 
10 000 orbitals or larger depends upon the availability of the 
efficient computer inversion routines for sparse systems. 

In this paper, we use, instead, another method, which is 
equivalent to Green's function method in the sense that it gives 
an exact nonperturbative solution to the problem of evaluating 
(2.3). However, the calculation is performed in a different way, 
which does not require the inversion procedure. Instead of the 
inversion, the sparse system of linear equations is solved for 
the transition amplitudes defined below. For sparse linear 
systems, there are many iterative methods available. The use 
of an appropriate iterative method can yield an approximate 
solution significantly faster than the direct method. Also, 
iterative methods require less memory than the direct methods, 
making iterative methods the only feasible approach for very 
large  system^.^^.^^ 
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In the transition amplitudes method,29 the matrix element is 
written as 

J.  Phys. Chem., Vol. 99, No. 19, 1995 7583 

(2.4) 

where the vector Ai+ = ( A l v i )  and the Ti’s are the transition 
amplitudes. The Ti’s describe the amplitudes of superexchange 
transitions between the donor orbital ID) and the orbitals Ii) in 
the bridge. For the transition amplitudes Ti, one has a system 
of linear equations 

J 

where the vector D, = (ilVlD). Thus, instead of inverting the 
matrix ES - and calculating Green’s function of the bridge, 
one can solve a system of linear equations (2.5) for the transition 
amplitudes T,. This last problem for sparse systems is reduced 
to the equivalent numerical problem of finding a minimum of 
a multidimensional parabola (the condition for minimum is given 
by eq 2.5), and then the problem is solved by the conjugate 
gradient m e t h ~ d . ~ ~ , ~ ’  This method allows one to treat extremely 
large systems with hundreds of thousands of linear equations.35 

Such a method has been implemented by us on a Cray 
computer in conjunction with a graphics input interface program 
BIOGRAF.38 The calculation by this method of the total matrix 
element in Ru-modified cytochrome c from experiments of Gray 
and co-workers, involving an all-atom model of the protein 
(about 1800 atoms and 4500 orbitals), takes less than 30 s of 
one CRAY Y-MP CPU time. 

The advantage provided by the method of transition ampli- 
tudes, compared with the exact diagonalization procedure (2.2), 
is balanced by the lack of detailed information about the 
contributions of the individual energy levels in HDA(E). Also, 
the contributions of the hole transfer and electron transfer are 
given now only as a sum in the total matrix element HDA(E). It 
is sometimes useful to know these contributions separately. A 
method which allows a separation of the contribution of the 
hole transfer from that of the electron transfer without the 
diagonalization procedure is described in ref 29. 

111. Donor and Acceptor Wave Functions 

Ligand field theory provides an appropriate description of 
the one-electron wave functions for donor and acceptor states. 
In much of our discussion, we follow a standard text on this 
subject30 and use experimental spectroscopic data from ref 3 1 
and a recent paper of Gadsby and Thomson on the spectroscopy 
of  hemoprotein^.^^ 

(heme)-cyt-(Him- 
Ru3+”+, the transferring electron in the initial state and the final 
state occupies the 3d shell of Fe ion and the 4d shell of Ru, 
respectively. The 5-fold degenerate shells of the metallic ions 
are split by the low symmetry field of the six ligands coordinated 
to the ions in the compound. The Ru ion is coordinated by six 
nitrogens, including one nitrogen of the HisX residue on the 
surface of the protein, and the Fe ion is coordinated by the four 
pyrrole nitrogens of the porphyrin ring, by a nitrogen of the 
His18 residue at an axial position, and by the sulfur of the Met80 
residue at the other axial position. In our discussion of the 
orbitals of the metal ions, we introduce coordinate systems for 
each of the metal complexes with the z coordinate directed 
toward the Met80 residue for Fe and toward HisX for the Ru 
complex. 

We first consider the case when all six ligands are treated as 
being equivalent. The five d orbitals of the ions are then split 

In the reaction of present interest, 

TABLE 1: Energies of tzn Orbital@ 
HisX, X Fe: E,, E,, E, Ru: Em Em Em 

39 -10.41 -10.46 -10.52 -10.93 -11.12 -11.23 
33 -10.46 -10.62 -10.68 -10.90 -11.12 -11.25 
66 -10.46 -10.62 -10.68 -10.90 -11.12 -11.25 
72 -10.46 -10.62 -10.68 -10.93 -11.10 -11.20 
59 -10.41 -10.46 -10.50 -11.20 -11.39 -11.56 
62 -10.41 -10.46 -10.52 -11.20 -11.23 -11.36 

a In eV. The notation for orbitals is the same as in ref 32. 

into two subshells, the doubly degenerate eg set formed by d,2 
and dS-y’ orbitals and a triply degenerate set tzg, consisting of 
d,, d,,, and dy,. The orbitals of the eg set are oriented toward 
the ligands and participate in (5 bonding. Due to the interaction 
with the bonding orbitals of the ligands, these orbitals are mixed 
strongly with the ligand orbitals, and the appropriate bonding 
and antibonding states are pushed several electronvolts below 
and above the tz8 subshell. In fact, most of the amplitude of 
the d? and d2-g orbitals is concentrated in the antibonding state, 
which then roughly speaking coincides with the e8 doubly 
degenerate state. The orbitals of the, tZg subshell, on the other 
hand, interact and mix very little with the ligand orbitals because 
their electronic density is concentrated in between the ligands. 
In the low-spin systems, as in the present case, all electrons of 
the ions with six d electrons or less occupy the tZg subshell. Six 
electrons of d6 (Fez+, Ru2+) completely fill the tzg subshell, 
whereas in a state with the configuration d5 (Fe3+, Ru3+), there 
is a hole in the tzg subshell, and the state is a Kramers doublet. 

Thus, the tunneling electron in the initial and final states is 
localized on the tZg subshells of the metal ions. The orbitals of 
this subshell can be treated in the zeroth approximation as 
decoupled from the rest of the system. The small interaction 
which exists between the complexes and the bridge can then 
be accurately described as a first-order approximation, as we 
have done in the previous section. 

Due to the near-octahedral symmetry of the complexes, the 
orbitals d,, dxz, dyz of the t2g subshell interact mainly with the 
p orbitals of the ligands which are perpendicular to the ligand- 
metal bonds or with the orbitals of similar symmetry (e.g., with 
n orbitals). Hence, the superexchange electron transfer from 
these orbitals can be mainly mediated by the network of protein 
orbitals in which n orbitals of the ligands participate strongly. 
It is clear from this consideration that some pathways in the 
complex network of overlapping orbitals will not participate 
much in the electron transfer due to the symmetry of the donor- 
acceptor states. For example, the networks which start as a (5 

path will not participate much in the superexchange coupling 
under this consideration. Thus, the symmetry significantly 
modifies the overall picture of pathways. 

The distortion of the octahedral symmetry (nonequivalence 
of the six ligands) will split the tZg orbitals, so that the 
degeneracy will be completely removed. However, this ad- 
ditional splitting is much smaller than the octahedral splitting 
between t and e subshells. Experimental data31,32 and our 
molecular orbital calculations indicate that the octahedral 
distortion splitting is in the range of a tenth of an electronvolt 
or less, as seen in Table 1. In the first approximation, dq, d,, 
and dyz orbitals of the t subshell are not mixed with each other 
by this additional low symmetry field, and the energies of these 
orbitals are only slightly different from each other. 

An important point is that these orbitals are “frozen” in the 
space with respect to the structure of the donor/acceptor 
complex. The electron density is localized between ligands (so 
that the overlap is not significant) and the symmetry of these 
orbitals is such that only n systems of the ligands can be 
effectively reached. It is between these orbitals of the donor 
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and acceptor electron transfer occurs. Because of the small 
splittings, any of these orbitals can participate in electron transfer 
(i.e., any of the six electrons of Fe2+ can be transferred to Ru3+ 
or the hole in the Ru3+ ion can be transferred to any of the 
three doubly occupied orbitals of the tZg shell of the Fez+ ion). 
Due to differences of the orbital energy, the reaction rates 
calculated for the individual levels will have slightly different 
driving forces. On the other hand, due to a rigid spatial 
orientation of individual orbitals of the triplet, the matrix 
elements for these components can differ significantly, as seen 
in the next section. 

The theory taking into account the difference in driving force 
for different components of the t shell will be discussed 
elsewhere. In the present calculation, we note that when (as in 
the experiments of Gray and co-workers) the rate is near the 
maximum in the rate vs the driving force plot, the rate is 
relatively insensitive to the possible corrections to the driving 
force A@ in electron transfer into or from the different orbitals. 
Hence, in the zeroth approximation, this difference in the driving 
force for different components of the electron-transfer reaction 
can be neglected. We note, though, that it is only a rough 
approximation and the refinement of the theory will be made 
in the future. 

In a usual theory of nondegenerate donor and acceptor 
states,lOJ1 the rate constant at the maximum in the plot rate vs 
driving force is given by 
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(3.1) 

where A is the reorganization energy. In the comparison of eq 
3.1 for Pax with experimental data, it is assumed that the rate- 
determining step is the electron transfer, rather than some prior 
protein conformational change from an inactive to an active 
form. For a very fast electron transfer, it is possible that such 
a step would become rate limiting. We neglect this possibility 
here, in the absence of further information. 

The above expression is classical but is close to the 
corresponding quantum expression (e.g., ref 10). The modifica- 
tions of that theory due to the presence of several donor- 
acceptor states are as follows. In the initial state, the three 
sublevels of the t2g shell of the Fe2+ ion are completely filled 
(configuration d6) and there is one hole in the Ru3+ tzg shell 
(configuration d5). In the final state, the hole occupies one of 
the t2g levels of the Fe3+ ion. It is convenient, then, to think 
about the hole exchange between Fe and Ru ions. (This hole 
exchange is introduced only for the sake of description and is 
different from the usual hole transfer. The usual electron- 
transfer and hole-transfer contributions are both given by the 
total matrix element of our calculations.) From each of the three 
possible states of Ru3+, the hole can be transferred to each of 
the three sublevels of Fe2+, yielding three different Fe3+ states. 
For a given initial state of the hole in Ru3+, each of the charnels 
of the reaction (Le., hole transfer into each of the three levels 
of Fe2+) will have a different AGO. Since the energy difference 
in the position of tzg levels of Fe is much smaller than the 
average experimental value of AGO, we can neglect the 
difference in energies of the final states of Fe. In this case, the 
total rate from each of the sublevels b) of Ru will be given by 
a sum of rates of hole transfer into all three sublevels of Fez+. 
The nonadiabatic rate is proportional to the square of the matrix 
element, as in eq 3.1. Hence, neglecting the difference in 
driving force, the total rate from the jth hole state of Ru3+ is 
proportional to the sum of squared matrix elements. The 

effective matrix element is then a square root of a sum: 

3 

(3.2) 

(3.3) 

where the sum is over the three t2g states of Fe. 
If several Ru3+ states can participate in the reaction, then 

the contribution of each of the levels will be weighted with an 
appropriate Boltzmann factor and the total rate will be given 
by 

k = Xkpj (3.4) 

where the pj’s are the Boltzmann populations of the Ru tzg states. 
The effective matrix element is then 

3 

(3.5) 

In the case of almost degenerate states, the population of the 
acceptor states will be the same, and the matrix element then 
takes the form 

To use eq 3.5 instead of eq 3.6 one would need to know the 
Boltzmann factors pi. At present, such experimental information 
on the Ru3+ t2g states is not available. For this reason, we 
collected the calculated data for several possibilities in order to 
compare the various combinations with the experimental 
numbers. Various calculated splittings of the t subshells are 
given in Table 1. It would be useful to compare these data 
with experimental data on metal-to-ligand charge-transfer spectra 
in Fe2+ and Ru2+ complexes in the modified cytochrome c 
system. 

In the calculation, the appropriate linear combinations of five 
d orbitals for Fe and Ru complexes were found by diagonalizing 
the Hamiltonian matrix formed with the extended Huckel basis 
set for a central metal ion and six ligands positioned according 
to the geometry of the complex in the protein. Although, in 
general, the Huckel method gives poor results for the transition- 
metal complexes, we used the diagonalization only in order to 
find an appropriate linear combination for orbitals of the t shell, 
which is defined by the symmetry of the complex. Then, the 
energy of the appropriate orbital in the heme was assigned a 
value corresponding to the experimental data on charge-transfer 
spectra in femc hemoproteins. The observed charge-transfer 
spectrum32 is due to the transition from the highest occupied x 
orbital of the porphyrin ring to the highest unoccupied orbital 
of the tzg shell on the femc ion. The procedure of adjustment 
of the donor state relative the highest occupied orbital of the 
heme according to experimental data was the same as in the 
previously published papers of Siddarth and M a r c ~ s . * l - ~ ~  The 
acceptor state was given the same energy since the transition 
state occurs at the intersection of the zeroth-order potential 
surfaces for the two electronic states D-B-A, D+-B-A- of 
the entire system. Again, since there is no absolute certainty 
in the data for the energy of the tunneling electron, we have 
performed calculations for different energies in the region 
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TABLE 2: 
tz. Subshell to the Total Matrix Element' 

Contribution of Individual Components of the 
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proximately exponentially with distance.39 According to an 
analysis of the group of Dutton and co-workers,6 the data for a 
variety of proteins involving rates Pax which vary by some 13 
orders of magnitude confirm this simple picture, and a universal 
constant, a decay per unit length characteristic for many proteins, 
exists on this scale. The experimental data for the present Ru 
compounds show that on a finer scale of variation of only 2 
orders of magnitude of kmax, there is only a very rough or 
perhaps no, in some cases, simple relation between distance 
and the coupling (or rate). For example, for His39 and His62 
compounds, the distance between two metals is almost the same, 
yet the experimental rate changes by more than 2 orders of 
magnitude. 

A qualitative explanation for this phenomenon was proposed 
in terms of atom-by-atom tunneling paths." According to this 
model, the effective electronic tunneling distance does not 
coincide with the actual geometrical distance between donor 
and acceptor. Although, in detail the picture of such atom-by- 
atom tunneling paths along the network of chemical bonds and 
jumps through space between bonds of the protein matrix are 
an oversimplification, and for this reason may mainly be used 
for qualitative discussion, it does capture qualitatively the 
essential element that the concrete chemical structure of the 
protein matrix is important. A more realistic model the 
description using amino acid paths21,22 involves chemically 
distinct units of the protein. The electronic structure calculation 
for such atom-by-atom or amino acid-by-amino acid paths has 
confimed quantitatively that the protein matrix is a very 
inhomogeneous medium. A relatively small number of amino 
acids most important for electron transfer represent a reduced 
and useful model of a protein.21*22 

The results of our calculations and a preliminary comparison 
with amino acid pathways, presented below, confirm that the 
reduced form of the protein provides a reasonable description 
of the most important part of the protein matrix, given the 
uncertainties and low quality of electronic structure calculations. 
The results also show that a qualitatively accurate description 
of the details of donor and acceptor wave functions in the 
calculation reveals that in addition to inhomogeneous factors 
governing the reaction rates, there is a stereochemical factor of 
mutual orientation of donor-acceptor orbitals. The latter effect 
adds more complexity to the general picture of variations of 
electron-transfer rates in proteins. 

The donor and acceptor wave functions of the metal ions were 
constructed as described in the previous section, and the 
Hamiltonian matrix of the rest of the system was calculated 
with the extended Hiickel basis set. The overlap matrix Sij was 
calculated with a variational cutoff distance between pairs of 
atoms, and nondiagonal elements of the Hamiltonian were 
calculated with the standard use of the Wolfsberg-Helmholtz 
formUla21Z323 

39 0.20 0.40 0.67 0.25 0.48 0.80 0.11 20.3 
33 0.15 0.70 0.74 0.24 1.14 1.22 0.097 17.9 
66 0.14 0.83 1.40 0.20 1.20 2.12 0.060 18.9 
72 0.30 0.18 0.18 0.47 0.21 0.33 0.057 13.8 
58 0.008 0.07 0.12 0.006 0.01 0.01 0.014 20.2 
62 0.006 0.07 0.13 0.01 0.10 0.22 0.0059 20.2 

In cm-'. Matrix elements were calculated for tunneling energy 
Em = -10.75 eV. * All three levels of the Ru tZg subshell are assumed 
tg contribute equally, as in eq 3.6. The xy, a, and zy superscripts on 
HDA are for the different orbitals on Fe, xy being the lowest Fe. In a 
calculation based on eq 3.5 instead of eq 3.6, the Boltzmann factors pj 
would be introduced. Only the upper level of the Ru tzg subshell, du, 
is assumed to participate in the coupling. Reference 7. The distance 
shown corresponds to the distance between the two metal atoms. 

corresponding to the experimental data and analyzed the 
sensitivity of the results to these variations. 

IV. Results and Discussion 

In this section, the results of our calculation, performed as 
described in the previous sections, are presented for seven Ru- 
modified cytochrome c compounds R~~+'~+(bpy)2im(HisX)-cyt- 
(heme)Fe2+I3+, where X = 79, 72, 66, 62, 58, 39, 33. A Ru 
complex (the electron acceptor in the reaction) is coordinated 
to the surface of the protein at various histidines incidated by 
X ,  and the iron ion in the heme (the electron donor) is located 
inside the protein molecule. 

These compounds were synthesized and the reaction rates 
were measured by Gray and c o - w ~ r k e r s . ~ ~ ~  The measurements 
were performed with a flash-quench technique? in which the 
reduced ferrocytochromes were excited with a laser pulse in 
the absorption band of the Ru2+ complex; the excited electron 
(4d) then was quickly removed from the complex by a strong 
electron acceptor (Ru3+(NH3)6) from the solution, leaving a hole 
in the t~ shell of the Ru3+ ion. The subsequent electron transfer 
from Fez+ to Ru3+ was then measured with the transient 
absorption technique. The structures of these compounds were 
also modeled by the same group using the computer graphics 
and modeling program BIOGRAF.37 The data files for the 
structures were then used in our calculations. 

The reorganization energy A has been estimated to be around 
0.8 eV, and the free energy of the reaction has been measured 
to be -0.74 eV. Thus, the reaction is almost activationless and 
the reaction rate, as a function of the driving force, is in the 
region of its maximum Using these data (and assuming 
that A is the same for all compounds), together with the classical 
Golden Rule expression for the nonadiabatic reaction rate and 
the measured reaction rates, Gray and co-workers calculated 
the electronic coupling matrix elements corresponding to their 
measurements. The experimental values of these matrix ele- 
ments are given in Table 2.  

The distance between donor and acceptor metal ions in these 
compounds depends on the position of the Ru complex on the 
surface of the protein and varies in the range of 13.8 8, for 
His72 to 20.3 A in the His39 c~mpound .~  When both the 
reorganization energy and the driving force are the same for 
each compound, the variations in rate in different compounds 
(by some 2 orders of magnitude) reflect the changes of the 
square of the matrix element coupling donor and acceptor states. 

In the simplest picture of the protein matrix separating donor 
and acceptor as a uniform medium, the electronic coupling (and 
the probability for electronic tunneling) should decrease ap- 

Vq = KS&Ei + Ej)f2 (4.1) 

where the Ei's are orbital energies and the empirical parameter 
K equals 1.75.33 For the radial part of the s and p orbitals, a 
single-exponential-and for the d orbitals of metal atoms a 
double-exponential-representation was used with the same 
atomic parameters as in the standard extended Hiickel calcula- 
t i o n ~ . ~ ~  By using charge-transfer spectra to determine the 
position of the metal orbitals relative to those of the ligands, 
no adjustable parameters were used in the calculation. 

There are three relevant d orbitals for the electron donor and 
three for the acceptor. For each pair of donor-acceptor orbitals 
and for their combinations, the effective superexchange coupling 
element was calculated for several slightly different energies, 
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but in the range that corresponds to the charge-transfer spectra 
of ref 32, as discussed in the previous section. The typical 
splittings of the tZg for Fe and Ru by the distorted octahedral 
geometry of the donor and acceptor complexes are shown in 
Table 1. The data are in general qualitative agreement with 
the conclusions of ref 32. However, there is a certain degree 
of uncertainty both in the Boltzmann factors for the Ru complex 
(discussed after eq 3.6) and in the geometry of the calculated 
structures. These uncertainties motivated us to calculate various 
possibilities of how the effective coupling could be formed 
between the three orbitals of the donor and three orbitals of the 
acceptor tZg subshells. 

In a first series of calculations, we explored how the direct 
long-distance interactions (distances longer than the typical bond 
lengths) between individual atomic orbitals of the protein matrix 
affect the net calculated tunneling probability. Typical data of 
this series are shown in Figure 1 where the cutoff distance for 
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direct atom-atom interaction was varied. If the cutoff distance 
is approximately the same as typical bond lengths, then only a 
network of transitions over chemical bonds in the protein is 
involved in the superexchange coupling. We find that the matrix 
elements for such calculations are several orders of magnitude 
smaller than the observed ones and that the coupling increases 
dramatically if the interaction distance is increased beyond the 
typical bond lengths. On the other hand, as is seen from Figure 
1, the matrix element does not change substantially for cutoffs 
beyond 5 A. The rather sharp transition to more or less saturated 
values shows that interaction distances between 2.5 and 3.5 A 
provide critical links. These calculations c o n f i i  the conclusion 
that Beratan et al. reached earlier” that “through space” 
transitions are important for electronic tunneling through protein 
media. These transitions serve as bottlenecks for the overall 
tunneling. 

Although we observe saturation of the calculated values of 
the matrix element, there are, nevertheless, fluctuations of the 
calculated coupling as the cutoff distance changes in the range 
3.5-5.0 A. These fluctuations provide one source of estimate 
of the quality of the theoretical numbers. 

The principal calculations were performed for several energies 
in the interval between -11.0 and -10.0 eV. This region 
corresponds to the experimental data of ref 32 on the charge- 
transfer spectra between porphyrin and Fe orbitals in the heme 
in a number of ferric cytochromes. This energy interval falls 
in the window in the spectral density of both the heme and the 
Ru complex calculated separately and shown in Figures 2 and 
3. The energy gap between HOMO and LUMO in the heme is 
between -11.4 and -9.7 eV and for Ru complex between 
- 11.9 and -9.7 eV. Our Huckel calculations performed on 
the d shells of metal ions with only nearest atomic ligands 
included in the calculations place the tZg subshell in ap- 
proximately the same energy interval, Table 1. 

The principal calculated results are shown in Figures 4-9 
for two tunneling energies, - 10.75 and - 1 1 .O eV, which seem 
to be in better agreement with the experimental data than for 
other energies. The experimental and calculated values are 

(heme-Fe)L,L2 (L,=NH,, L,=SH,) 

I I I I I I 

-30 -25 -20 -15 -10 

Energy E (eV) 
Figure 2. Energy spectrum of the electron donor complex. 
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Figure 3. Energy spectrum of the electron acceptor complex. 
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Figure 4. Comparison of experimental and theoretical results for 
tunneling energy of - 10.75 eV. One level of the electron donor (Fe) 
and one level (upper) of the electron acceptor (Ru) are participating in 
the coupling. 

shown in the same figures for comparison. In an ideal 
correlation between experimental and theoretical data, all points 
of Figures 4-8 would be located on a straight line with a slope 
of unity. Such an excellent agreement would probably be 
fortuitous, given the degree of uncertainty in both theoretical 
and experimental data. The general tendency, however, to have 
coupling much stronger for His39 than for His62, although the 
distance between donor and acceptor is approximately the same, 
seems to be a rather stable theoretical result. Obtaining a 
correlation with the small changes in matrix elements in His33 
and -39 and in His66 and -72 is beyond the capabilities of the 
current theoretical methods. Our current estimates of the 
uncertainties involved, following from the scatter of theoretical 

His66 

0 001 0 01 0 10 1 00 
Experimental M.E. (cm-1) 

Figure 5. Same as in Figure 4 but with all three levels of the acceptor 
participating in the reaction. 

data, show that even an accuracy within a factor of 2-3 is 
probably too much to expect from the present level of calcula- 
tions. 

For the His79 compound, only a lower limit for the 
experimental value of the rate constant (and matrix element) is 
known,8 H D ~  > 0.6 cm-'. This reaction is by far the fastest in 
the series. In our calculation, we observe the same qualitative 
picture, with our electronic coupling being an order of magnitude 
larger than the largest value for other compounds. Because the 
experimental value is not known exactly, we do not discuss 
further details of calculation for the His79 compound. 

In Table 2, results are given for the coupling element between 
individual components of the tZg shells of the metal ions. One 
particularly remarkable feature of the results shown in Table 2 
is that the coupling for different components can vary by an 
order of magnitude for the same tunneling energy. The different 
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Figure 6. Same as in Figure 4 but with three donor orbitals and three 
acceptor orbitals participating in the reaction. 
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Figure 7. Same as in Figure 5 but for tunneling energy of -1  1.0 eV. 

components of the t subshells, dV, d,,, and dyl, have different 
spatial orientation, and they are fixed in space with respect to 
the structure of the whole complex. Thus, in this situation, the 
electronic coupling depends strongly not only on the structure 
of the intervening medium but also on the relative orientation 
of the donor and acceptor complexes with respect to each other 
and with respect to the bridge, even when the initial and final 
electronic states are localized on the metal ions. This effect 
occurs because the electronic density of the donor and acceptor 
states is fixed by the position of the ligands coordinated to a 
metal ion. Such a strong stereochemical effect would be 
expected if the initial or the final state was delocalized orbitals 
of the whole complex with a strong degree of asymmetry, as 
for example in the heme, but it occurs also in the present case, 
where the ligands affect the orientation of an individual metal's 
atomic orbitals. Similar stereochemical effects were discussed 
recently in ref 40. 

An important consequence of the specific nature of the donor 
and acceptor states, and in particular of the symmetry of tZg 
orbitals, is that some paths connecting atoms of the donor and 
acceptor complexes will not participate in the coupling between 
donor and acceptor orbitals localized on the metal ions. All s 
orbitals of the ligands, for example, will be strongly decoupled 
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Figure 8. Same as in Figure 6 but for tunneling energy of - 11 .O eV. 
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Figure 9. Comparison of experimental and theoretical data for 
electronic coupling of effective s orbital of donor and acceptor states. 
Tunneling energy is -10.75 eV. 

from the donor/acceptor states for the systems discussed here 
and for systems with similar electronic structure. Thus, all u 
paths which start on ligands and which involve as a first step a 
u bond may not participate in a major way in the coupling. 
This feature has to be taken into consideration when the pathway 
model is applied. 

The calculated results, including those shown in Figures 4-8, 
for two tunneling energies, -10.75 and -11.0 eV, are quali- 
tatively similar. The difference in calculated matrix elements 
when only one (upper) level of the acceptor (Ru3+) is considered 
and the case when all three levels are involved in the reaction 
is not significant, as seen, for example, by comparing Figures 
4 and 5 .  However, we find that there is a drastic difference in 
the results when one or all three final states of Fe3+ are involved 
in the reaction. This difference can be seen by comparing 
Figures 5 and 6 and comparing Figures 7 and 8. The difference 
in the results for the Ru and Fe ions could be attributed to a 
number of factors, one of which might be a larger distortion of 
the octahedral symmetry of the donor state. 

In Figures 4-8, we have presented contributions of various 
levels of the donor and acceptor complexes to the total matrix 
element. As discussed earlier, the appropriate procedure for 
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TABLE 3: Comparison of All-Atom Model and a Reduced 
Model of a Protein Consisting of Only Most Important 
Amino Acids from refs 21 and 22a 

Hisx, x HDA, exact HDA, AA paths 
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39 0.20 
33 0.15 
66 0.14 
72 0.30 

0.24 
0.12 
0.56 
0.51 

Matrix elements were calculated for tunneling energy E,, = 
-10.75 eV. 

comparison of our results with experiment is to use all three 
levels of Fe (bacause of a small difference in their A@) and to 
weight the contribution of each of the Ru levels with the 
appropriate Boltzmann factors, as in eq 3.5. The results in Table 
2 comparing the sum of three Ru levels with the d, Ru level 
indicate that the latter is usually the dominant contributor. If 
its Boltzmann factor is much less than the unity tacitly assumed 
in Figure 4 and than the '13 assumed in Figures 5-8, then the 
calculated matrix element is overestimated in these figures, 
contributing thereby to the discrepancy between the absolute 
values of the calculated and experimental values of HDA in 
Figures 6 and 8. 

In Figure 9, the coupling calculated with effective s orbitals 
localized on metal ions is shown. In this case, mostly u paths 
contribute to the coupling. The drastic difference in correlation 
with experimental data compared with the accurate treatment 
of the donor and acceptor wave function is a remarkable 
demonstration of the importance of symmetry and stereochem- 
ical effects in long-distance superexchange electronic coupling. 

The present calculation, which includes all atoms of the 
system, allowed us to address the question of which part of the 
protein is most important for electronic coupling. In Table 3, 
the data for all-atom calculations and for the reduced model of 
four proteins with values of HDA clustered in the range 0.05- 
0.1 cm-' are shown. There is an approximate agreement with 
a factor of 2 or so. The reduced model is a small number of 
amino acids identified in refs 21 and 22 for several proteins. 
The amino acids so included correspond to "extended" amino 
acid paths defined by Siddarth and Marcus. The results are 
not strictly comparable since in the AI search used in refs 21 
and 22, the axial ligands and resulting octahedral distortion were 
omitted. Further investigation using the search procedure will 
be done in our future work. The quality of the approximation 
of the reduced model varies for different proteins, but in some 
cases shown in Table 3, the agreement between exact calcula- 
tions and the reduced form is quite reasonable, showing that is 
indeed possible to identify the reduced part of the protein which 
mainly provides the coupling between donor and acceptor in 
biological systems. 
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Appendix 
In this Appendix, the matrix form for the superexchange 

matrix element is derived for the case when the basis set used 

for matrix representation of the Hamiltonian operator is non- 
orthogonal, Le., when the overlap matrix is not diagonal. This 
problem arises, for example, for the extended Huckel basis set 
considered in the present paper. We present a detailed deriva- 
tion of the expression used in our calculations because a different 
expression has been published earlier in the literat~re.*~.*~ 

Suppose we have a complete set of nonorthogonal basis 
functions, ti) (the extended Huckel basis in our case). The 
expansion of unity in such a basis is written as follows: 

This relation is easy to verify by taking a matrix element of 
both sides of eq A.1 in the basis li). Inserting this expansion 
on both sides of the resolvent operator in eq 2.2,  we obtain 

where the column vector D and the row vector A+ are given by 
convention of omitting summation signs over repeated indices. 

(-4.3) 

The problem is now reduced to the calculation of the matrix 
of the resolvent operator in the middle of eq A.2. For the 
resolvent operator (Green's function), we have 

G = (E  - I?)-' G(E - p) = 1 (A.5) 

Taking a matrix element of both sides of the last expression in 
the basis li) and inserting the expansion of unity between G 
and E - HB, eq A. 1, we obtain the following relation: 

Le., in matrix notation 

GS-'(ES - H B )  = S (-4.7) 

Multiplying the last equation by S-' on the left and by the 
inverse of the matrix ES - fl on the right, we obtain in the 
matrix form 

s-'cs-' = (ES - HB,-' (A.8) 

Hence, eq A.2 can be written in the form 

The matrix in this equation is the inverse of ES, - Hu, calculated 
in the nonorthogonal basis set, and vectors A and D are given 
by (A.3) and (A.4). 
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