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jectorles of vaporized segmentsof the wire ejected from the

FIG. 6(d). Explosion of gold wire, The spikes represcnttra-
reglon of the explosion.

’

FIG. 6(c). Explosionof a 5-mil gold wire image pro-

cess, by the sensitization method.
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APPLICATION OF TEE EXPLODING WIRE
TECHNIQUE IN PHOTOCHEMISTRY Y

R. A, Marcus
Polytechnic lustitute of Brocklyn, Brockiyn, New Yozk

The study of photochemical reactiouns throughiheuse
of an extremely intense light flashis coe of consicexable
Interest. In its most important type of spplication, spec-
troscopic observation of many short-lived species has
become possible. Flash lamps have heen =mploved for
this purpose. In a second type of application, for which
botir flash lamps and exploding wires have bkeecn used,
the stable chemicyl reaction products are measured.

Here, the free radicals are produced in such nigh con- -

centration that they terd to ccmbine with cacl other
rather than wndergo complicating secondary reactions,
This behavior should ultimately permit a mere direct
correlation between the reaction products and the initial
photochemical processes than is possible for low light
intensities.

The raproducibility of the light output, the character-
istics of the emitted spectrum, the duration cf the light
flash, its intensity and variation, and the gecmetrzical
arrangement are all factors impertant to the applications
of the exploding wire to photockemistry and to any com-
parison of the relative merits of flash lemps and wires.
These features are discussed in this paper andillvstra-
tions are given from studies performed in the author's
laboratory on the flash photolysis of acetone.

«
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®* This research was suppoxted in part (19564-1958) by th= U.S. Air
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INTRODUCTION

Photochemistry primarily involves shining light on molecules
which can absorb it and measuring the chemical reaction products
formed in the process. By making such measurements—while
varying the following conditions: light intensities, concentrations
of the absorbing gas or of substance in solution, amounts of added
compounds, and temperatures of the reaction system—it has bezen
possible to learn much about the nature and reactions of the
unstable species formed as intermediates in the process, partic-
ularly the free radicals [1]. Information has also bzen deduced
about the initial photochemical processes. The free radicals
themselves are of interest partly because they play a similarly
important role in many chemical reactions and industrial processes.

About ten years ago, photochemistry received a considerable
impetus through the introduction of flash lamps into this field [2].
Extremely high instantaneous free radical concentratices were
produced because of the high light intensities. It became possible
actually to observe these free radicals spectroscopically, most
of them for the first time. Their chemical behavior could be
studied also by spectroscopically measuring their rate of dis-
appearance under various conditions.

The flash technique “was used also simply as 2 means of
producing a photochemical reaction at extreme light intensities
and measuring the reaction products at various experimental
conditions. Because of their unusually high instantaneous con-
centration, these species tended to combine with each other to
form stable products, rather than to undergo the many other
competitive types of chemical reactions found in low light intensity
systems. It is anticipated, therefore, that a study of the reaction
products will reveal the free radicals (and electronically excited
molecules) formed in the initlal photochemical processes morxe
directly and unambiguously than is possible at low intensities.

In this chapter, desirable photochemical characteristics of
flash sources are described and illustrated with exploding wire
photochemical studies performed by Slagg [3] and by Oster [4, 5]
in the author's laboratory.
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DESIRED PHOTOCHEMICAL CHARACTERISTICS
IN A FLASH SOURCE

"~ Reproducibility

The reproducibility of the light output per flash is naturally
a necessity in photochemical work. In the exploding wire source
and geometry used by us and described later, this reproducibility
was excellent, being about several percent when averaged over a
few flashes (4].

Spectral Output

The chemical fate of a molecule which has absorbed light
depends on the wavelength of the light absorbed. In our work,
light filters were used to select various portions of the spectrum
emitted by the wire {3]. Data on' the spectral output of these
exploding wire sources, for various wires and conditions of flash,
would be of considerable help, however, in selecting the best wire
for the given wavelength region. Because of the small amount of
reaction products formed per flash and the desirability ol avoiding
many flashes, this information assumes a special importance.

One spectral region which has been of increasing interest to
photochemists is the fax ultraviolet region at wavelengths in the
range of 1000 to 2000 A [6]. Many chemical compounds ahsorb
light only in this region. Flash lamps constructed of sapphire,
which is transparent to this radiation, have been made {7]. They
have had only a limited success, however, because of their in-
stability. An exploding wire does not suffer from this defect
and may be a rather promising source for this far ultraviolet
spectral region.

Duration of Light Flash

For spectroscopically observing the more reactive free radicals,
an intense light flash of very short durationis naturally appropriate.
For example, an energy input of the order of 1000 joules and a
duration of light of perhaps 10 pusec is suitable.
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On the other hand, a long flash time is frequently desired
{say, 300 psec oOr more) when the reaction mechanism is to be
decduced instead from measurements of the stable reaction products.

v differential equations for the time dependence of the free

ne
radical concentrations become considerably simplified when the

duration of the light is much longer than the lifetimes of the

fres radicals present. A steady state for their concentrations

is then achieved and the quentitative interpretation of the data

becomes easier.. -

Light Intensity

The source used in the' present studies [3—5] had an input
of 1000 joules and was sufficiently intemse SO that only several
light flashes were needed to obtain measurable reaction pi.:oducts
when unfiltered light was employed. When light filters were used,

a source of perhaps ten- Or even twenty-five-fold intensity would

have been preferable. A chemical measurement [4] made of the

eificiency of production of
of the ultraviolet (2000 to 3300 A) in
of 10%.

the unfiltered light output in a portion
dicated it to be of the order

Geometrical Arrangement

The light intensity is an important photo
{it comtrols the free radical concentration), and
that the intensity be variable in a known manner.
methods, we found it to be prop
voltage [4]. However, to ensure a cons
the 'light intensity was varied (in our exp
by varying the distance between
vessel. A particularly convenient geo
one having cylindrical symmetry.
external but parallel to a cylindrica
intensity averaged over this vesse

distance between the axis

to be inversely proportional to the
the vessel and the wire except at small distances [3, 4. T

behaved, therefore, as a line source.
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In other types of experiments where it is desired to admit as
much light as possible into a small reaction vessel or into an
aperture and where a simple method of quantitatively varying
the intensity is not needed, a different geometrical arrangement
is preferable. A short wire can be placed at the focus of a suitable
lens system. An advantage of "concentrating" the light into a
smaller reaction vessel is that the percent conversion of the
flashed compound per flash is increased. When this compound
interferes with the physicochemical analysis for the reaction
products (asit cando in gas chromatography or mass spectrometyy),
an appreciable percent conversion is desired and is achieved
in this way with fewer flashes. ’

In future possible applications such as a possible detection of
the flashed species by electron spin resonance techniques, it would
be best to concenirate as much light as possible into a small
aperture in the microwave cavity, and this geometrical arxange-
ment would be appropriate.

Comparison with Flash Lamps

The exploding wire may have certain advantzges over flash
lamps in spectral output, particularly in the far ultraviolet, in
its adaptability to different geometrical arrangements, and in the
easy manner in which its intensity can be varied ina predictably
quantitative fashion. On the other hand, when numerous flashes
are needed to obtain measurable reaction products, the wire
source is not convenient. Again, the vaporized metal of the exploding

wire tends to deposit on the reaction vessel, which then must be-

cleaned with acid from time to time. This effect can be minimized,
however, through use of the self-generated magnetic field or, in
the case of short wires, an applied one.

EXAMPLE OF A PHOTOCHEMICAL APPLICATION

As an example of some of the considerations just discussed,
we shall examine a postulated mechanism of a photochemical
reaction and some of the evidence obtained for it by the use of
an exploding wire [3—-51. ’
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The source used in the present work cons.isted of a bank of
condensers, 30 uf capacity, charged to 8 kv and discharged through
a 12-in. length of Nichrome wire (BS 40). A slightly longer 1?u;irtz
cylindrical reaction vessel of 1 in. .diam was placed para ei t:é
and close to, the wire. The duration of the light flash was determin
with the aid of a phototube and scope to be about 300 1 sec.

Acefone was the gas selected for the study since i't had been
intensively investigated at low light intensities and its photo-
chemistry showed a number of interesting features [1].

Our experimental results suggest that an acetone molc.ecule,
- (CH,),CO, dscomposes in at least two ways upon absorption of
light. (A third possible way leading ultimately to a minor product,
.la .

methane, is omitted for simplicity.)

(CHy),CO + light - % CH + CO )
(CHg,CO + light - (CHy),CO* -~ CHyCO + CHy @)
- l—ﬁ-’ (CHpCO ©

The first path (1) involves the production of two methyl c;:adic;ﬁi:
(CH,) and a stable reaction product, carbon monoxide (CO), 1wau
the gecond involves the production of a high-energy (elect_x"?on c thz
«xcited) acetone molecule. This molecule, indicated in (‘) bgmﬂ
asterisk, could then either decompose into one acetyl ra ol
(CH3CO) and a methyl radical, or instead lose it: exces:;ze i};
‘ i le M, such as ac ,
vpon collision with any other molecu ) .
y:ii‘eld the ordinary acetone molecule. The free radicals t;:lorr;:i:?
. to yield stable products: ethane (C,Hg, r%sgl};mg firc;nmg frzm oo
i : i y CO COCH;, aris
bination of two CHj's), biacetyl (CHj O o,
CH;CO's), and acetone (arising from a CH;CO and CH3 combinat on)

the carbon monoxide formed shoul-d
absorbed light. This
cident light intensity
gsure. These

According to reaction (1),
be directly proportional to the amount of
quantity, in turn, is proportional to the in
and, at the acetone pressures used, to the acetone pre1
observations were tested and confirmed experimental y.
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Again, according to this sequence, the number of methyl radicals
(and therefore the ethane) should be proportional to the light
intensity but less than proportional to the concentration of acetone
molecules since the latter also deactivate the emnergetic acetone
molecules by process (3), thereby reducing their tendency to form
methyl radicals in reaction (2). This behavior was also confirmed
experimentally.

Measurements were also made of the slight effect of the initial
reaction temperature on the products as well as of mixtures of
acetone and deuterated acetone to obtain further mechanistic
information.

The effect of wavelength is of particular interest. The relztive
fates of an acetone molecule which has absorbed light, (1) and (2),
should depend on the energy of the quantum of light absorbed,
that is, upon the wavelength. Correspondingly, the ratio of CO to
C,H; should depend on wavelength. By using filters consisting of
various chemical solutions placed in a cylindrical vessel concentric
with the reaction vessel, this effect was studied experimentally
and was found to be considerable. However, the trend was in the
opposite sense of that observed in low light intensity experiments
and suggests that the mechanism may be more complicated than

is indicated by the simple sequence (1) to (3). Experiments bridging '

the gap between low and high light intensities are planned to
investigate this point.

Experiments were also performed to study the effect of added
oxygen. The reactions of free radicals with oxygen are a subject
of considerable current chemical interest, but in photochemical
work performed at low light intensities it has been difficult to
disentangle this reaction from that between oxygen and electron-
ically excited molecules. At the extremely high light intemsities
produced in flash systems, the radicals will tend to combine with
each other rather than react with oxygenunless the oxygen pressure
is fairly high. Thus, we felt that it might be possible to distinguish
between these two oxygen reactions, the one involving excited
acetone molecules occurring at both low and high oxygen pressuxes,
the other involving free radicals occurring only at high pressures.

313

S LR A Ty S ge s e

e



SO NOt TIPS AR A etk e o e et

Experimental ineasurements were made with an exploding wire
in the reaction vessel on

source of the effect of oXygen pressure
the amounts of ethane, carbon monoxide, and additional oxygenated
products formed. Our results do indeed indicate twodistinct oXygen

pressure regions of chemical behavior. Further experiments in

which the effect of light intensity is being studied are in progress
ese regions does indeed correspond

to determine whether one of th
to the reaction of an excited molecule with oxygen. The general

study cf such unusual types of reactions isat present in its infancy.
Further work is planned using molecules other than oxygen.
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