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An expression for the free energy of nonequilibrium polarization systems, valid in the presence or absence of
dielectric images, is derived using the nonequilibrium dielectric displacement and electric field vectors. The
results are compared with those based on the nonequilibrium polarization vector (Part I). For the case of
longitudinal polarization they are equivalent. However, the present expression is simpler and more compact.
The results are compared with others in the literature.

I. Introduction

In some systems, such as in electron-transfer reactions or for
apolaron, i.e.,a trapped electron in a polar medium, the dielectric
polarization P(r) of the solvent at each point r is not that which
is given by the usual equilibrium electrostatic field. In electron-
transfer reactions the reaction is typically preceded (and later
followed) by fluctuations in P(r) from the value dictated by the
ionic reactants’ charges. Again, inthe polaronsystemtheelectron
is distributed over the nearby solvent molecules and the slow part
of P(r) cannot be in equilibrium everywhere with the instantaneous
charge distribution of the electron.

In treatments of these systems a nonequilibrium dielectric
polarization P(r) is frequently introduced,!-? together with an
electric field Do(r) due to the bare charges and a field E(r) due
to the latter and to the polarized dielectric medium, treated
frequently as a dielectric continuum.!»?

When there are no cavities in the continuum, e.g., no
discontinuous changes of dielectric constant, the treatment is
relatively straightforward. Such a situation occurs in the case
of some polarons, but not when the system consists of an ion or
ions in solution. In the case of two ionic or molecular reactants
in solution dielectric image effects occur, so as to satisfy the
boundary conditions at the discontinuities (e.g., at the boundaries
ofthe cavities) in thesystem. Theeffect of thelatteristointroduce
relatively complicated expressions! for the electrostatic properties,
which contain the P(r), Do(r), and E(r) mentioned above.

Inthe present article we use instead a nonequilibrium dielectric
displacement D(r) and anelectric field E(r). Thistype of approach
is useful pedagogically, as we have found in teaching a course on
electron-transfer reactions during the past two years. The
derivation itself is much simpler than that in part I, and the
resulting equation, eq 2.17, is more compact, though equivalent
(for longitudinal D(r)) to the previous one. The results also have
a usefulness in research, as Liu and Newton, who arrived at it
independently,* have shown.

A method used in part II,? based on charges and potentials
instead of on their counterparts D and E, is even simpler than the
D and E approach and yields the same compact form for AG, the
free energy of formation of the nonequilibrium system. Indeed,
the present final equation, eq 2.17, can be immediately obtained
from equations in part I1, by relating the charges to D(r) and the
potentials to E(r) in the standard way. Moreover, the expression
based on charges and potentials is simpler to use in applications
(e.g., as in the cited articles in ref 3) than that based on vectors,
in part because of the availability of literature expressions for the
potentials of various systems. Indeed, even more generally, in
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problems in electrodynamics, potentials (now both scalar and
vector) are frequently introduced to replace the original vectors.
Although the D and E approach is not as simple as the charges—
potential one, the present article is written, in part, to relate this
(D, E) approach to those based on the widespread use of P, D,,
and E in the dielectric literature.

The expression for AG is obtained in section I1, its use in electron
transfers by minimizing AG subject to a constraint is given in
section 111, and a comparison with the results in parts II and III,
with an expression of Felderhof, and with an extension of the
latter is given in section IV.

II. Free Energy of Fluctuations

Asin part I, the free energy of a system composed of reactants
in a nonequilibrium-polarized dielectric medium is calculated by
finding a reversible path for forming that system. As before, the
path consists of two steps. The first step now is to change the
charges until the desired but unknown nonequilibrium dielectric
displacement function D(r), denoted by D*(r), is produced. The
next step is to change D*(r) to a value appropriate to the original
charges, but holding the orientational and vibrational dielectric
polarization fixed.

During each of the two steps of the charging process the
reversible work done, w, is given by

W= >\=o(f¢)‘ d+fS¢x dS)d)\ @.1)

where p*(r) is any bulk charge density, c*(r) any surface charge
density, and Y(r) the electrostatic potential at r, all at the stage
Ain this charging step. The charges in the system may be bulk,
surface, or both. Boundaries occur at each interface, e.g., at
each reactant’s interface with the surrounding medium. The
integral over dr denotes an integral over the volume V of the
entire large system, and the integral over dS denotes the integral
over all surfaces § (including interfaces).
The usual electrostatic relations obtain
-y =EN\ 4rp* = VD, 4nd* =DivD* (2.2)
during the charging step. E(r) denotes the electric field atr, and

Div is a standard symbol for the surface divergence. Equations
2.1 and 2.2 yield the standard result:

W= g S G ar)or @3)

We consider next the two charging steps. The symbols used are
summarized in Table 1.
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TABLE 1: Quantities at the Start and End of the Charging
Steps

start end
step I D, Er DY E*
step I1 D* E* D, E|
relations V.Dr - V.D}, = VD,
D* - D = (E* - Er), D* = ¢,E* (or nonlocal form)
D,-D*= eop(E; —E*) (or nonlocal form)

Step I. The initial value of D(r) and E(r), denoted by D*(r)
and E'(r), is the equilibrium value for the reactants. The value
of D and E at the end of this step is denoted by D* and E*. In
one application, for example, this D* will denote a hypothetical
D which would produce the orientational-vibrational dielectric
polarization occurring in the transition state of an electron-transfer
reaction.

We have

D' = D' + A(D* - D) (2.42)
E=E + \ME*-E") (2.4b)

The relation between D* and E* during this step is the usual
equilibrium one, which for a local response model is

DM\r) = ¢,(r) ENr) (2.5a)
or, for a nonlocal model,

D) = [ (r) ENr) dr (2.5b)
In eq 2.5a €,(r) is the static dielectric constant of the system at
the point r, regarded as piecewise continuous. In part I ¢ was
taken as piecewise constant. Actually, the results in part II (and
the present results) show that the final result also applies to
nonlocal dielectrics, the main assumption being one of linearity,
as in eq 2.5b, rather than in a specific functional form such as
eq 2.5a. For the local case, &(r,r') = &(r) é(r — ).
Equations 2.3 and 2.4 yield

w = o= f (E*D* - E"D)dr (2.6)

where the integral is over the volume V of the entire system,
cavities included. Equation 2.6 is valid regardless of whether or
not interfaces are present.

StepIL. In this step the orientational-vibrational polarization
is held fixed at the value it had at the end of step I, and the change
in E now responds to a change éD(r) in D only via the electronic
contribution to the dielectric polarization of the medium. The
dielectric constant at r describing that response is denoted, in the
local model, by eqp(r); that is, we have 5D(r) = ex,(r) E(r).
Accordingly, during the charging process in step II we have, in
the case of a local model,

D*-D* = ¢ (E*'-E%) .7)

For a nonlocal model an eq(r,1’) is introduced instead, and the
right-hand side then involves an integral over v/,

The final value of D* in step II, denoted by D}, is chosen to
be the D appropriate to the initial charges. It differs, however,
from Dr, since the polarization field at the beginning of step I
differs from that at the end of step II, even though the ionic
charges are the same. In a medium with interfaces there are
usually dielectric image effects, which cause Dj and D* to differ.
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On the other hand D] and D have the same divergence:
V:D; = V:D" = 4xp’ (2.8)

The value of E at the end of step II is denoted by E!.
During step II using the linear relation between 6D and JE,
and not necessarily a local one, we have

D*-D* = \(D} - D*) (2.92)
and

E}-E' = \(E -E%) (2.9b)

Introduction of these results into eq 2.3 yields the work done,
1 1
wp=o-f [E* +3@-EN]-0;- DY 210)

The sum of w; and wy gives the reversible work w needed to
form a system with the as yet unknown D* and so gives the free
energy AG* of formation of this fluctuation:

8G* =w=wy+ wy =3 [ [(E ~ EW(Df - DY) - (E* - EY).
(D* - DY]dr (2.11)

where a term that would have been present on the right-hand side
of eq 2.11 can be shown® to vanish:

f@:i-D)Erar=0 (2.12)

It was not assumed in the derivation of eq 2.11 that the (E, D)
relationship is a local one.

Equation 2.11, which is more symmetric than the result in part
I, can be written still more compactly by introducing the two
hypothetical systems introduced in part II. They each have a
charge density p* — p*, namely, the change in charge density in
step I. The linear relations

V(D* - D) = 4x(p* - p") (2.13)

and

D' -D' = ¢(E* -E") (local) (2.14a)

or

D'-D'= fes(r,r’ YE*(r') - E*(r))dr (nonlocal) (2.14b)

show that a hypothetical system with a charge density p* — o,
denoted by p*~, produces an equilibrium electric field E* - Er,
denoted below by E: ~, in a medium of a piecewise continuous
static electric constant ¢(r) (or having the nonlocal parameter
&(r,r') for the static system), and an equilibrium dielectric
displacement, D* — Dr, denoted below by D}~".

Similarly, from the relations

V«(D;, - D*) = 4n (o’ - p*) (2.15)

D} - D* = ¢, (E; - E*) (2.16)

(noting that p} is p7), it is seen that p* — p* produces an
equilibrium dielectric displacement D, — D* and electric field
E - E* in a medium of piecewise continuous dielectric constant
€xp(r) (or equivalent nonlocal parameter eq(r,r’) for the electroni-
cally responding system), and so the latter will be denoted by
D} and E[;’, respectively.
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Equation 2.11 may then be rewritten as

== f (E5-DL-ED{Mdr  (2.17)

Inasmuch as the first term is the equilibrium electrostatic free
energy of a system with charge density p* — p* and piecewise
continuous dielectric constant eq(r), or an ep(r.r’), while the
second term is the corresponding quantity for a system with
piecewise continuous dielectric constant &(r), or an &(r,r’), eq
2.17 represents a simple form for the free energy AG* of the
fluctuation. It is seen to be identical to the result obtained in eq
2.3 of part II when the py’s in eqs 17 and 18 there are converted
to the E-D’s here, using the standard relations (eq 2.2).

III. Minimization of AG*

Taking variations in eq 2.17, noting that each (E-D dr equals
JE-6D dr, since D is proportional to each E (with &(r,;r") = ¢-
(r',r)), we have

SAG* = L f (ESA8DST—E6D! e (3.1)

Inasmuch as the E;" and E; ™ are gradients of potentials in
the present (electrostatlc) case, it can readily be shownsS that the
3D;;" and 8D, in eq 3.1 can be replaced by 8D, ™", where the Dy
refers to the bare charges, i.e., charges in a vacuum. In turn,
since 3D; " equals dDg — 8D and since D} is not varied, we have

8AG* = o[ (L7~ E;7)4D} ar (3.2)

Since 5Do is arbitrary, E' - _ E: T vanishes, and since ¢ # €opy
E“r and E{™ must vamsh separately. Thereby, the nonequi-
hbr:um ﬁeld E* reduces to the equlhbrlum field Er, when the
variation of AG* to find a minimum is unconstrained.

Inthecase of an application to electron-transfer reactions there
is a constraint: If AG; denotes the standard free energy of
reaction at a typical separation distance R in the transition state,
we havel:3

AGg = AG" - AG, (3.3)

where AG; is the free energy of formation of the transition state
from the products at that R. Similarly to eq 3.2 one can write

BAG! == f (E&P - E{9)-0D] dr (3.4)

the # — p signifying a charge density p* — pP.

We note that in the transition state the free energy G* for the
reactants has been shown to equal G; for the products.! Thus,
eqs 3.2-3.4 yield

= [ 1By B - B -ED]4D) dr (3.5)
Multiplying eq 3.5 by a Lagrangian multiplier » and adding to
eq 3.2, we have
[(m+ DEST - mEGP] - [((m+ DE; " - mE;®] =0 (3.6)
since 6D; is arbitrary. Since ¢ = ¢qp, each of the terms in square
brackets must vanish, and it follows that (m + 1)(p* - p*) — m(p*
—p?) = 0. That is,
=(m+ 1)p" — mp® 3.7

This result for the “apparent charge density” p* in the transition
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state is the same as that obtained in the earlier papers of this
series. This p* is the hypothetical p which produces the
orientational-vibrational polarization of the transition state.
We note that in electron-transfer reactions the charge density
p*' giving rise to the E*— and D* s in eq 2.17 is obtained from

T=p'—p"=m(p" - pP) (3.8)

Thereby, AG* for forming the transition state becomes

G* = m’\ (3.9)

where
= 1 r-p yr—p -p \f-P
"0‘5.[ (Eqy Dy’ — E;™D;P)dr (3.10)

and the fact that each E-D varies as the square of the charge
density has been used. Since p* — p, = (m + 1)(p; — pp), it is also
seen from eq 3.8 that

AG) = (m+ 1)), (3.11)

and so eqs 3.3, 3.9, and 3.11 yield the value of the Lagrangian
multiplier m:

AGg =-(2m + 1)\, (3.12)
Asinearlier work,” itis straightforward toadd to the calculation

of AG* the classical contribution A; from the vibrations, eq 3.9
then becoming, instead,

=m}(A\+ \) (3.13)

where A, has its usual value. Similarly AG; and AG; are given
by eqs 3.11 and 3.12 but with Ag replaced by Ay + A,

If in eq 3.10 for A the reacting systems were treated as a pair
of spheres, with radius g, for reactant i (i = 1, 2), with a center-
to-center separation distance of R, and with Ae denoting the
magnitude of the change in charge of each reactant, eq 3.10

would yield the usual value,
Ao = (le )2( )( L ——) (3.14)
2a, €p &

when dielectric image effects are neglected.

IV. Comparison with Earlier Results

It is useful to compare eq 2.11 with some results given earlier
in the literature. In part I AG* is obtained from eq 25 there,
which, rewritten in the present notation, yields

$
_-f[(pr 1>')1)f+1>*(P E')]dr (4.1)

where Pr (r) is the equilibrium polarization in the initial reactants’
system and P: (r) is a function of the orientation-vibrational
polarization of the solvent in the nonequxhbrrum system. All of
the quantities in eq 4.1 are functions of r. P (r) is related in eq
4.2 below to the electric field E* at the end of step I. El(r) and
P} are the electric field and the polarization for the nonequi-
librium system, respectively, at the end of step II. We have,
thereby,

P, = o E*', P =P +oE] (4.2)

where

dmar, = (e~ 1) 4.3)
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47"0‘\.\ = (Es - eop) (4.4)
To relate eq 4.1 to 2.11 we first note from eqs 4.2-4.4 that
47 (P' - P}) = 4n(P" - P'+P'-P) =
(¢, — 1)(E —E*) + (¢,, - )(E* - E;) (4.5)

Equation 4.1 then becomes
s 1 NP RN
¢* =5 f[ @ -Dp-o D)+
(D" - D)-D} - [D*.(D* - D) + Dj(D" - D*)]el] dr (4.6)
8

Using the fact that D, D], and D have a common divergence,
4mp’, it can be shown that eq 4.6 reduces tof

G = % S 1D - D1/, - (D - DY?/eJdr (4.7)
which is the same as the local response case of eq 2.11. We note
that the ¢ and ¢ in eq 4.7 are piecewise continuous and are
typically specialized to be piecewise constant. Equation 4.7
corresponds to the result given by Liu and Newton.*

Another expression in the literature for the free energy G of
a system with an arbitrary polarization P(r) for the static case
has been given by Felderhof (among other properties given there
for the dynamic case).’ In the present notation, it can be written
as

G =1 o P()P(r) dr— [Y5v-P@) ar +
L JERONTRO 4 gy

when magnetic effects are omitted. Here, :P{, is the potential due
to the bare charges (D = -Vy§). The static susceptibility o is
(& — 1)/4r.

The first term on the right-hand side of eq 4.8 is the energy
stored up in the polarized volume elements,! the second is the
interaction of the polarized volume elements with the field due
tothebarecharges,! and the third is the interaction of the polarized
volume elements with each other (—V-P(r) is equivalent toa charge
density at r arising from the polarized volume element there). A
self-energy term for the charges, (1/2) Dy D} dr, is not included
in eq 4.8.

To compare with expressions in this paper, eq 4.8 can be
rewritten as follows: the second term on the right side of eq 4.8
can be rewritten!® as — [P-Dj dr. The last term in eq 4.8 is
similarly rewritten' as (1/2) {P+(Dj — E)dr, upon using eq 4.9
for E (e.g., Part T or ref 11).

E = D}~V [P(r)- V—-———ldr’ (4.9)

We then have

G-—f[-PD0+P(—- E)Jar @10

The corresponding electrostatic free energy of the equilibrium
system is — (1/2)fP"D; dr, and the AG associated with the
fluctuation P — Pr then becomes

a¢t =1 f[@-pD+PE-E)Jar @1

Ineq 4.8, and thereby in eq 4.11, P is arbitrary. If eq 4.11 were
valid for general P, it would apply to the P given by the P in
eq 4.1. If eqs 4.1 and 4.8 are equated, one finds that either «,
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= 0 or fay(E* — E!)’dr vanishes. But E* > E unless the
polarization P; is an equilibrium one. Thus for the class of P’s
in eq 4.2, eq 4.11, and thereby eq 4.8, is valid only when a, =
0. This result could probably have been anticipated from the
discussion givenin Appendix I'V of part I, since eq 4.8 here contains
only one explicit susceptibility «, while that appendix contains
two.

In some recent discussions of free energy functionals!2!3 the
one-susceptibility form of eq 4.1 has been used (i.e., a, = 0).
Indeed, a common model in computer simulations for the solvent
in the literature has been one which neglects the electronic
polarizability of the solvent, i.e., sets a, = 0. There is, of course,
a need for simulations which avoid that approximation. We next
compare eq 4.1 with eq 4.11 (and hence eq 4.8), for the special
case for which eq 4.8 is valid, namely, for o, = 0. In this particular
casethe P: ineq4.1isP, the EisE,and eq 4.11 is, at first glance,
now more general thaneq 4.1, in that the Pin eq 4.11 is arbitrary
but the one in the derivation of eq 4.1 in the body of the text of
part I is restricted to being longitudinal.!4 (P} is assumed to be
derivable from a potential in the electrostatic case (eq 4.2) and
hence to be longitudinal.)!4 Various authors!?!3,15 have noted
thisrelationship between eqs 4.1 and 4.8, although not necessarily
explicitly noting the restriction on eq 4.11 that «, = 0. Lee and
Hynes!S extended Felderhof’s equation, eq 4.8, by not requiring
that a, = 0. As they and others have noted, a case of particular
interest for electron transfers is that actually given in eq 4.2,
namely, where P! is longitudinal.!-!5 Chandra and Bagchi!?
have given, for a. = 0 and for general k, a more general expression
for the free energy functional.

While the derivation of eq 4.1 given in the body of the text of
part I does assume a longitudinal P}, it is interesting to note that
the one given in Appendix IV of part I does not. Thereby, eq 4.1
is actually more general than is implied by the derivation in the
body of the text of part I. It is actually equivalent to that in the
work of Lee and Hynes,!S which did not require P} to be
longitudinal. The equivalence of this result in ref 15 and that in
Appendix IV of part I, which led to eq 4.1, is seen by noting that
the {P-E dr term in eq 4.1 (P denotes P}) can be rewritten using
eq 4.9 as {P-Dodr - (P(r)-V{P(r')-V’(1/Jr - r'|) dr’. Employing
Gauss’s theorem twice converts the latter of these two integrals
to {([V-P(r)V-P(r)]dr dr’/|r — v/ The final result is then seen
to be equivalent to that in eq Al of ref 15, taking into account
the remark included with ref 15 regarding any surface terms.
The class of D*’s considered in deriving eq 2.11 is restricted, on
the other hand, to those given by eq 2.14. Equation 2.14a, for
example, assumes a longitudinal P} (r).
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