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An expression for the free energy of nonequilibrium polarization systems, valid in the presence or absence of 
dielectric images, is derived using the nonequilibrium dielectric displacement and electric field vectors. The 
results are compared with those based on the nonequilibrium polarization vector (Part I). For the case of 
longitudinal polarization they are equivalent. However, the present expression is simpler and more compact. 
The results are compared with others in the literature. 

I. Introduction 

In some systems, such as in electron-transfer reactions or for 
a polaron, Le., a trapped electron in a polar medium, thedielectric 
polarization P(r) of the solvent at  each point r is not that which 
is given by the usual equilibrium electrostatic field. In electron- 
transfer reactions the reaction is typically preceded (and later 
followed) by fluctuations in P(r) from the value dictated by the 
ionic reactants'charges. Again, in the polaron system the electron 
is distributed over the nearby solvent molecules and the slow part 
of P(r) cannot be in equilibrium everywhere with the instantaneous 
charge distribution of the electron. 

In treatments of these systems a nonequilibrium dielectric 
polarization P(r) is frequently introduced,lV2 together with an 
electric field Do(r) due to the bare charges and a field E(r) due 
to the latter and to the polarized dielectric medium, treated 
frequently as a dielectric continuum.lJ 

When there are no cavities in the continuum, e.g., no 
discontinuous changes of dielectric constant, the treatment is 
relatively straightforward. Such a situation occurs in the case 
of some polarons, but not when the system consists of an ion or 
ions in solution. In the case of two ionic or molecular reactants 
in solution dielectric image effects occur, so as to satisfy the 
boundary conditions at  the discontinuities (e.g., at  the boundaries 
of thecavities) in the system. The effect of the latter is to introduce 
relatively complicated expressions1 for the electrostatic properties, 
which contain the P(r), Do(r), and E(r) mentioned above. 

In the present article we use instead a nonequilibrium dielectric 
displacement D(r) and an electric fieldE(r). This type of approach 
is useful pedagogically, as we have found in teaching a course on 
electron-transfer reactions during the past two years. The 
derivation itself is much simpler than that in part I, and the 
resulting equation, eq 2.1 7, is more compact, though equivalent 
(for longitudinal D(r)) to the previous one. The results also have 
a usefulness in research, as Liu and Newton, who arrived at  it 
independently? have shown. 

A method used in part 112 based on charges and potentials 
instead of on their counterparts D and E, is even simpler than the 
D and E approach and yields the same compact form for AG, the 
free energy of formation of the nonequilibrium system. Indeed, 
the present final equation, eq 2.17, can be immediately obtained 
from equations in part 11, by relating the charges to D(r) and the 
potentials to E(r) in the standard way. Moreover, the expression 
based on charges and potentials is simpler to use in applications 
(e.g., as in the cited articles in ref 3) than that based on vectors, 
in part because of the availability of literature expressions for the 
potentials of various systems. Indeed, even more generally, in 

problems in electrodynamics, potentials (now both scalar and 
vector) are frequently introduced to replace the original vectors. 
Although the D and E approach is not as simple as the charges- 
potential one, the present article is written, in part, to relate this 
(D, E)  approach to those based on the widespread use of P, Do, 
and E in the dielectric literature. 

The expression for AG is obtained in section 11, its use in electron 
transfers by minimizing AG subject to a constraint is given in 
section 111, and a comparison with the results in parts I1 and 111, 
with an expression of Felderhof, and with an extension of the 
latter is given in section IV. 

11. Free Energy of Fluctuations 
As in part I, the free energy of a system composed of reactants 

in a nonequilibrium-polarized dielectric medium is calculated by 
finding a reversible path for forming that system. As before, the 
path consists of two steps. The first step now is to change the 
charges until the desired but unknown nonequilibrium dielectric 
displacement function D(r), denoted by D*(r), is produced. The 
next step is to change D*(r) to a value appropriate to the original 
charges, but holding the orientational and vibrational dielectric 
polarization fixed. 

During each of the two steps of the charging process the 
reversible work done, w, is given by 

where pX(r) is any bulk charge density, &(I) any surface charge 
density, and @?(r) the electrostatic potential a t  r, all at  the stage 
X in this charging step. The charges in the system may be bulk, 
surface, or both. Boundaries occur at each interface, e.g., at  
each reactant's interface with the surrounding medium. The 
integral over dr denotes an integral over the volume V of the 
entire large system, and the integral over dS  denotes the integral 
over all surfaces S (including interfaces). 

The usual electrostatic relations obtain 

-V#' = EX, 4 r p X  = V.DX, 4 r u x  = Div DX (2.2) 

during the charging step. E(r) denotes the electric field at  r, and 
Div is a standard symbol for the surface divergence. Equations 
2.1 and 2.2 yield the standard result: 

f Contribution No. 8934. 
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We consider next the two charging steps. The symbols used are 
summarized in Table 1. 
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TABLE 1: Quantities at the Start and End of the Charging 
Stem 

start end 
step I Iy, Er D*, E* 
step I1 D*, E* IX,, E; 
relations v.~y - V.D; = V.D; 

D* - Iy = c,(E* - Er), D* = esE* (or nonlocal form) 
D: - D* = eop(Ei -E*) (or nonlocal form) 

Step I. The initial value of D(r) and E(r), denoted by Dr(r) 
and Er(r), is the equilibrium value for the reactants. The value 
of D and E at the end of this step is denoted by D* and E*. In 
one application, for example, this D* will denote a hypothetical 
D which would produce the orientational-vibrational dielectric 
polarization occurring in the transition state of an electron-transfer 
reaction. 

We have 

DX = D' + h(D* - D') 

EX = E' + h(E* -E') 

(2.4a) 

(2.4b) 

The relation between DX and EX during this step is the usual 
equilibrium one, which for a local response model is 

DX(r) = es(r) EX(r) (2.5a) 

or, for a nonlocal model, 

DA(r) = Je,(r,r') EX(r') dr' (2.5b) 

In eq 2.5a e,@) is the static dielectric constant of the system at 
the point r, regarded as piecewise continuous. In part I t, was 
taken as piecewise constant. Actually, the results in part I1 (and 
the present results) show that the final result also applies to 
nonlocal dielectrics, the main assumption being one of linearity, 
as in eq 2Sb, rather than in a specific functional form such as 
eq 2.5a. For the local case, es(r,r') = t,(r) 6(r - r'), 

Equations 2.3 and 2.4 yield 

wI = -J(E**D* 1 - E'.D')dr 87r 

where the integral is over the volume V of the entire system, 
cavities included. Equation 2.6 is valid regardless of whether or 
not interfaces are present. 

Step 11. In this step the orientational-vibrational polarization 
is held fixed at  the value it had a t  the end of step I, and the change 
in E now responds to a change 6D(r) in D only via the electronic 
contribution to the dielectric polarization of the medium. The 
dielectric constant at  r describing that response is denoted, in the 
local model, by eop(r); that is, we have 6D(r) = eo&) 6E(r). 
Accordingly, during the charging process in step I1 we have, in 
the case of a local model, 

DX - D* = eop(EX - E*) (2.7) 

For a nonlocal model an eop(r,r') is introduced instead, and the 
right-hand side then involves an integral over r'. 

On the other hand D: and Iy have the same divergence: 

V*D: = V-D' = 4np' (2.8) 

The value of E a t  the end of step I1 is denoted by E:. 

and not necessarily a local one, we have 
During step I1 using the linear relation between 6D and 6E, 

DX - D' = X(DL - D*) (2.9a) 

and 

EX - E' = X(Ei - E*) (2.9b) 

Introduction of these results into eq 2.3 yields the work done, 

w11 =GJ[E* 1 +$Ei-E*)].(D:-D*)dr 1 (2.10) 

The sum of wI and WII gives the reversible work w needed to 
form a system with the as yet unknown D* and so gives the free 
energy AG* of formation of this fluctuation: 

1 
2 AG* = W = w, + wII = -J [(E:, - E*).(D:, - D*) - (E* - E'). 

(D* - D')]dr (2.1 1) 

where a term that would have been present on the right-hand side 
of eq 2.1 1 can be shown5 to vanish: 

J(Iu, - D').E* dr = 0 (2.12) 

It was not assumed in the derivation of eq 2.1 1 that the (E, D) 
relationship is a local one. 

Equation 2.11, which is more symmetric than the result in part 
I, can be written still more compactly by introducing the two 
hypothetical systems introduced in part 11. They each have a 
charge density p*  - p', namely, the change in charge density in 
step I. The linear relations 

V-(D* - D') = 47r(p* - p') (2.13) 

and 

D' - D' = '&E' -E') (local) (2.14a) 

or 

D* - D' = Jes(r,r')(E*(f) - Er(r'))dr' (nonlocal) (2.14b) 

show that a hypothetical system with a charge density p* - pr, 
denoted by p*-r, produces an equilibrium electric field E* - E', 
denoted below by E:-', in a medium of a piecewise continuous 
static electric constant t,(r) (or having the nonlocal parameter 
es(r,r') for the static system), and an equilibrium dielectric 
displacement, D* - Iy, denoted below by D:-'. 

Similarly, from the relations 

V*(D: - D*) = 47r(p' - p * )  

Di - D* = eop(E: - E') 

(2.15) 

(2.16) 
The final value of DA in step 11, denoted by D:, is chosen to 

be the D appropriate to the initial charges. It differs, however, 
from Dr, since the polarization field at the beginning of step I 
differs from that at the end of step 11, even though the ionic 
charges are the same. In a medium with interfaces there are 
usually dielectric image effects, which cause D: and Iy to differ, 

(noting that is p')* it is Seen that p' - p *  produces an 
equilibrium dielectric displacement D: - D* and electric field 
E: - E* in a medium Of piecewise continuous dielectric constant 

(Or equivalent nonlocal parameter top(r,r') for the electroni- 
cally responding System), and SO the latter will be denoted by 
D&* and E;;*, respectively. 
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Equation 2.11 may then be rewritten as 

Inasmuch as the first term is the equilibrium electrostatic free 
energy of a system with charge density p* - p' and piecewise 
continuous dielectric constant eop(r), or an eop(r,r'), while the 
second term is the corresponding quantity for a system with 
piecewise continuous dielectric constant es(r), or an es(r,r'), eq 
2.17 represents a simple form for the free energy AG* of the 
fluctuation. It is seen to be identical to the result obtained in eq 
2.3 of part I1 when the p+'s in eqs 17 and 18 there are converted 
to the E.Ds here, using the standard relations (eq 2.2). 

111. Minimization of A@ 
Taking variations in eq 2.17, noting that each J6E.D dr equals 

JEdD dr, since D is proportional to each E (with es(r,r') = e,- 
(r',r)), we have 

6AG' = GJ(E:;~~~D:;~ 1 - E:-'.GD:")dr (3.1) 

Inasmuch as the E&r and E:- are gradients of potentials in 
the present (electrostatic) case, it can readily be shown6 that the 
6DZ and SD;-' in eq 3.1 can be replaced by SDl-', where the DO 
refers to the bare charges, Le., charges in a vacuum. In turn, 
since 6Di-l equals SD; - SD; and since Di is not varied, we have 

(3.2) 6AG' = -J(E;;' 1 - E:-')dDi dr  
41r 

Since SD: is arbitrary, E:;' - E:-' vanishes, and since eI # top, 

E:;' and E;' must vanish separately. Thereby, the nonequi- 
librium field E* reduces to the equilibrium field E', when the 
variation of AG* to find a minimum is unconstrained. 

In the case of an application to electron-transfer reactions there 
is a constraint: If AG; denotes the standard free energy of 
reaction at a typical separation distance R in the transition state, 
we have193 

AG; = AG* - AG; (3.3) 

where AG,' is the free energy of formation of the transition state 
from the products at that R. Similarly to eq 3.2 one can write 

(3.4) GAG; = -J(Ei;P 1 - E:-P)dDi dr 
41r 

the * - p signifying a charge density p* - pp. 
We note that in the transition state the free energy GS for the 

reactants has been shown to equal Gi for the products.' Thus, 
eqs 3.2-3.4 yield 

0 = -J[(Eiir 1 - E:-') - (E:;p - E:-p)]*SD,' dr  (3.5) 
4* 

Multiplying eq 3.5 by a Lagrangian multiplier m and adding to 
eq 3.2, we have 

[(m + 1)E:ir - mE:,-P] - [(m + l)E:-r - mE:-P] = 0 (3.6) 

since SD,* is arbitrary. Since ts # top, each of the terms in square 
brackets must vanish, and it follows that (m + l)(p* -pr) - m(p* 
- pp) = 0. That is, 

p* = (m + 1)p'- mpP (3.7) 

This result for the "apparent charge density" p* in the transition 

state is the same as that obtained in the earlier papers of this 
series. This p* is the hypothetical p which produces the 
orientational-vibrational polarization of the transition state. 

We note that in electron-transfer reactions the charge density 
p*-r giving rise to the E*-' and D*-+ in eq 2.17 is obtained from 

(3.8) p*-r = * p - pT = m(p' - pp) 

Thereby, AG* for forming the transition state becomes 

AG* = m2& (3.9) 

where 

and the fact that each E.D varies as the square of the charge 
density has been used. Since p* - pp = ( m  + l)(p, - pp), it is also 
seen from eq 3.8 that 

AG; = (m + i ) 2 h  (3.11) 

and so eqs 3.3, 3.9, and 3.1 1 yield the value of the Lagrangian 
multiplier m: 

AG; = -(2m + l ) ~ ,  (3.12) 

As in earlier work,' it is straightforward to add to the calculation 
of AG* the classical contribution Xi from the vibrations, eq 3.9 
then becoming, instead, 

AG* = m2(& + xi) (3.13) 

where Xi has its usual value. Similarly AG,' and AG; are given 
by eqs 3.11 and 3.12 but with X, replaced by X, + Xi. 

If in eq 3.10 for X, the reacting systems were treated as a pair 
of spheres, with radius ai for reactant i (i = 1,2), with a center- 
to-center separation distance of R, and with Ae denoting the 
magnitude of the change in charge of each reactant, eq 3.10 
would yield the usual value, 

1 1  1 
X, = (Ae)2( 1 2a, + - 2a2 - ')( R - top - --) (3.14) 

when dielectric image effects are neglected. 

IV. Comparison with Earlier Results 
It is useful to compare eq 2.1 1 with some results given earlier 

in the literature. In part I AG* is obtained from eq 25 there, 
which, rewritten in the present notation, yields 

AG* = iJ[ (P'-P:)-Dk+ P:(g-E:)]dr (4.1) 
all 

where P' (r) is the equilibrium polarization in the initial reactants' 
system and P:(r) is a function of the orientation-vibrational 
polarization of the solvent in the nonequilibrium system. All of 
the quantities in eq 4.1 are functions of r. P,*(r) is related in eq 
4.2 below to the electric field E* at the end of step I. Ei(r) and 
Pi are the electric field and the polarization for the nonequi- 
librium system, respectively, at the end of step 11. We have, 
thereby, 

where 

4 l r q  = (eop - 1) (4.3) 
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47ra, = (Es - g) 

47r(PT - P i )  = 44P‘ - P’ + P* - P i )  = 

(4.4) 

To relate eq 4.1 to 2.11 we first note from eqs 4.24.4 that 

(e, - 1)(E‘ - E*) + (top - l ) (E*  - E:) (4.5) 

Equation 4.1 then becomes 

1 
€9 

(D‘ - D:)-Di - [D*-(D* - 4 )  + D>(D‘ - D*)]-]dr (4.6) 

Using the fact that Iy, D:, and D; have a common divergence, 
47~~1 ,  it can be shown that eq 4.6 reduces to8 

1 AG* = GJ[(D* - Di)’/tOp - (D* - D;)’/t,]dr (4.7) 

which is the same as the local response case of eq 2.1 1. We note 
that the t, and top in eq 4.7 are piecewise continuous and are 
typically specialized to be piecewise constant. Equation 4.7 
corresponds to the result given by Liu and N e ~ t o n . ~  

Another expression in the literature for the free energy G of 
a system with an arbitrary polarization P(r) for the static case 
has been given by Felderhof (among other properties given there 
for the dynamic case).9 In the present notation, it can be written 
as 

G = ;Ja-lP(r).P(r) d r  - Jt&V.P(r) d r  + 

when magnetic effects are omitted. Here, +;is the potential due 
to the bare charges (DL = -V+;). The static susceptibility a is 

The first term on the right-hand side of eq 4.8 is the energy 
stored up in the polarized volume elements,’ the second is the 
interaction of the polarized volume elements with the field due 
to the barecharges,’ and the third is the interaction of the polarized 
volume elements with each other (-V.P(r) is equivalent toa charge 
density at  r arising from the polarized volume element there). A 
self-energy term for the charges, (1/2)JD;D; dr, is not included 
in eq 4.8. 

To compare with expressions in this paper, eq 4.8 can be 
rewritten as follows: the second term on the right side of eq 4.8 
can be rewrittenlo as - JP.D; dr. The last term in eq 4.8 is 
similarly rewrittenlo as (1/2)JP.(D; - E)dr, upon using eq 4.9 
for E (e.g., Part I or ref 11). 

(t, - 1 ) / 4 ~ .  

E = D; - V J P ( r ’ ) . V m  1 dr‘ 
(4.9) 

We then have 

G = [-POD; + P.(-’- a E)] d r  (4.10) 

The corresponding electrostatic free energy of the equilibrium 
system is - (1/2)JP‘.Di dr, and the AG associated with the 
fluctuation P - Pr then becomes 

AG* = -s 1 [(PI - P)*D; + P.(- P - E)] d r  (4.1 1) 2 a 
In eq 4.8, and thereby in eq 4.1 1, P is arbitrary. If eq 4.1 1 were 
valid for general P,  it would apply to the P given by the Pi in 
eq 4.1. If eqs 4.1 and 4.8 are equated, one finds that either a, 
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= 0 or Jau(E* - E:)’dr vanishes. But E* # E: unless the 
polarization Pi is an equilibrium one. Thus for the class of P’s 
in eq 4.2, eq 4.1 1, and thereby eq 4.8, is valid only when aC = 
0. This result could probably have been anticipated from the 
discussion given in Appendix IV of part I, since eq 4.8 here contains 
only one explicit susceptibility a, while that appendix contains 
two. 

In some recent discussions of free energy functionals12J3 the 
one-susceptibility form of eq 4.1 has been used (Le., a, = 0). 
Indeed, a common model in computer simulations for the solvent 
in the literature has been one which neglects the electronic 
polarizability of the solvent, Le., sets a, = 0. There is, of course, 
a need for simulations which avoid that approximation. We next 
compare eq 4.1 with eq 4.1 1 (and hence eq 4.8), for the special 
case for which eq 4.8 is valid, namely, for a, = 0. In this particular 
case the P: in eq 4.1 is P,  the E: is E, and eq 4.1 1 is, a t  first glance, 
now more general than eq 4.1, in that the P in eq 4.1 1 is arbitrary 
but the one in the derivation of eq 4.1 in the body of the text of 
part I is restricted to being 10ngitudinal.l~ (P: is assumed to be 
derivable from a potential in the electrostatic case (eq 4.2) and 
hence to be l~ngitudinal.)’~ Various authorsI2J3J5 have noted 
this relationship betweeneqs 4.1 and 4.8, although not necessarily 
explicitly noting the restriction on eq 4.1 1 that a, = 0. Lee and 
Hynesls extended Felderhofs equation, eq 4.8, by not requiring 
that a, = 0. As they and others have noted, a case of particular 
interest for electron transfers is that actually given in eq 4.2, 
namely, where P: is longitudinal.12-15 Chandra and Bagchilz 
have given, for a. = 0 and for general k, a more general expression 
for the free energy functional. 

While the derivation of eq 4.1 given in the body of the text of 
part I does assume a longitudinal P:, it is interesting to note that 
the one given in Appendix IV of part I does not. Thereby, eq 4.1 
is actually more general than is implied by the derivation in the 
body of the text of part I. It is actually equivalent to that in the 
work of Lee and Hynes,” which did not require P: to be 
longitudinal. The equivalence of this result in ref 15 and that in 
Appendix IV of part I, which led to eq 4.1, is seen by noting that 
the JP.E dr term in eq 4.1 ( P  denotes Pi)  can be rewritten using 
eq 4.9 as JP-Do dr  - JP(r)-VJP(r‘).V’( l/lr - r‘l) dr’. Employing 
Gauss’s theorem twice converts the latter of these two integrals 
to JJ[V.P(r)V.P(r‘)]dr dr’/lr - rl. The final result is then seen 
to be equivalent to that in eq A1 of ref 15, taking into account 
the remark included with ref 15 regarding any surface terms. 
The class of D*’s considered in deriving eq 2.1 1 is restricted, on 
the other hand, to those given by eq 2.14. Equation 2.14a, for 
example, assumes a longitudinal P:(r). 
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