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A simple and analytical model of quantum recurrences in wave packet dynamics of nonlinear vibrational systems 
is presented. I t  is shown that in addition to “normal” rephasing time TR the width of the packet experiences 
very strong recurrences a t  7R/2. In a quasiclassical limit, which can be studied explicitly in this model, the 
recurrences disappear and the decay becomes irreversible. Recent femtosecond experimental results of Zewail 
and co-workers are discussed in the framework of this analytical model. 

1. Introduction 
In general, quantum recurrences in dynamics of wave packets 

are associated with discreteness of the energy spectrum (perhaps 
with some broadening, and which is observed as a structure in 
the absorption spectrum). One example of a system with 
recurrences discussed in the chemical physics literature is the 
famous Bixon-Jortner model,’ which describes decay of a single 
zero-order state into a manifold of equally spaced backgriound 
states. This model played an important role in understanding 
the nature of the irreversibility of radiationless transitions in 
isolated polyatomicmolecules.*-5 Thediscretenessof thespectrum 
of the background states results in the recurrences in this model. 
Another example of recurrences has been found in the wave packet 
dynamics of molecular  vibration^.^^ Recurrences in this case 
are observed in time-resolved experiments as ”quantum beats” of 
coherently excited quantum states. 

Recently Zewail and co-worker~’”’~ observed the decay and 
recurrences of initially prepared localized wave packets of nuclear 
coordinates of diatomic molecules. NaI  and other diatomic 
molecules were studied in the femtosecond time-resolved experi- 
ments. In these experiments the decay signal was measured in 
real time for the dissociated molecules. The latter contribute to 
the signal as the wave packet sweeps through the region of crossing 
of stable and unstable potential curves. Chapman and Childk5 
calculated lifetimes of the predissociating states in NaI  and 
discussed the observed recurrence phenomena using a numerical 
simulation of the wave packet dynamics. The wave packet 
dynamics has also been studied in numerical simulations by other 
researchers, e.g., as in refs 16 and 17. 

In addition to the expected long-time recurrence with a period 
inversely proportional to the local anharmonicity, an unusual 
recurrence at  half of the period of this expected recurrence 
occurred in the experiments13 as well as in the numerical 
simulations. The purpose of this paper is to present an analytical 
model which allows one to obtain additional insight into the nature 
of this phenomenon. 

We consider the evolution of an initially prepared coherent 
state’s (a Gaussian wave packet in coordinate space) in an 
anharmonicvibrational mode and study the dynamicsof thecenter 
of mass of the packet and its width. The approach is an extension 
of that used in a recent paper,I9 where the angle-action 
representation for the semiclassical wave packet dynamics was 
used. The anharmonicity of the mode causes a spread of the 
wave packet, and the quantum nature of the system, Le., 
discreteness of the spectrum, results in recurrences. We will 
show that the classical limit of this model corresponds to the 
continuous approximation of a discrete (quantum) action variable 
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and to an approximate calculation of certain sums, by replacing 
them with integrals over the continuous action variable. This 
procedure is equivalent to a continuum approximation of the 
energy spectrum of the system. The present model allows one 
to trace what happens to the recurrences in this approximation. 
We also calculate and discuss, in the framework of this model, 
the form of the time-domain signal describing the dissociating 
molecules as the wave packet sweeps back and forth through the 
tunneling region in coordinate space. 

The structure of the paper is as follows. In sections 2 and 3 
the Hamiltonian and the initial state are discussed. In sections 
4 and 5 the analytical solutions for the dynamics of the center 
of mass and the width of the wave packet are described. The 
results are used then in section 6 to discuss comparison with the 
experimental data on the femtosecond predissociation of NaI. It 
is shown in this section that our analytical solution displays a 
feature in the wavepacket dynamics similar to that reported in 
the experiment. In section 7 the continuum approximation is 
discussed which provides an additional insight into the nature of 
the recurrences. 

2. Hamiltonian, Complex Phase Space, and Averages 

of the form ( h  = 1) 
Weconsider a nonlinear vibrational mode with the Hamiltonian 

H = o o a + -  - x w  a +  ( 1) 4 Y 
where it is the occupation number operator, A = at&, and 8, at 
are annihilation and creation operators, so that 

k2 + 8 2  
a=- (2.2) 2 

with x and p being the dimensionless coordinate and the 
canonically conjugate momentum respectively. (The usual units 
are recovered by substitution x - x(mwo/h)1/2 and p - p(m/ 
hwo)l/*, wherem is the mass.) This Hamiltonian yields the energy 
spectrum 

(2.3) 

For a positive x, eqs 2.1-2.3 describe a second-order perturbation 
vibrational Hamiltonian, when xandp are conventional coordinate 
and momentum. If, instead, the H in (2.1) referred to a Morse- 
type spectrum, the x and p in (2.2) would no longer be the 
conventional coordinate and momentum exactly. In this case, 
however, they still may provide the Cartesian coordinate and 
momentum in a zeroth-order anharmonic approximation. The 
quality of this approximation depends of the anharmonicity 
parameter x. This approximation is not, however, restricted to 
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nearly harmonic potential surfaces. As long as the local energy 
spectrum is smooth and can be presented as a quadratic 
approximation in action space, as in eq 2.3, thenour approximation 
is accurate. In this case, the local frequency, WO, is itself a smooth 
function of energy. 

The wave packet is described by a state I$(t)), which evolves 
in time from the initially prepared state I$(O)). We are interested 
in the evolution of two observables, one describing the center of 
mass of the packet and the other its width: 

Stuchebrukhov and Marcus 

packet. However, due to the discreteness of the frequencies of 
the oscillating exponentials, there will be also recurrences, as a 
result of rephasing. These recurrences are considered below in 
this paper. 

a2(t) = 2 ( t )  - 2 ( t )  (2.5) 

where we will use either a bar or ( ) to denote an average over 
the packet. The meaning of a2(t) will be seen most clearly in eq 
6.1 later. Because of the relations ii = (2 + i b ) / f i  and iit = 
(k - $)/A, one can find (a ( t ) )  and (a t ( t ) )  instead of ( x ( t ) ) ,  
and (a2( t ) )  and (a2t( t ) )  instead of (x2(t)), inorder tocalculate 
( x ( t ) )  and a2(t). The operators it(t) and iit(t) describe 
the evolution of the system in the complex phase space ( x  j: 
i p ) / A .  For these operators the Heisenburg equations read 

dil/dt = -i(wo - 2xwo(A + 1))a (2.6a) 

dEt2/dt = -2i(w0 - 2xwo(A + 3/2))ii2 (2.6b) 

Here, because fi = H(A), the occupation number operator, A, is 
a constant of motion. This property allows one to write the 
solutions of the Heisenberg equations, (2.6), in an explicit operator 
form 

d ( t )  = exp[-i(wo - 2xwo(A + l))t]a(O) (2.7a) 

a2(t) = exp[-2i(wo - 2xoO(A + 3/2))t]rt2(0) (2.7b) 

These solutions can be used to calculate the averages of present 

( a ( t ) )  = x[gne-t(w2xw(n+'))r] (a (0) )  (2.8a) 

interest 

n 

(2.8b) 

where the weighting factors, g,, and d,, 

gn = cn* ( nlal+(o) ) / (a(O) ) (2.9a) 

have been introduced. These quantities are expressed in terms 
of the amplitudes, cn, of the expansion of the initial state of the 
system in tmers of the eigenstates of the Hamiltonian H, In) 

(2.10) 

Equations 2.8 constitute the basis of the present model. 

Z(t ) ,  and the width of the packet, o2(t), are given by 
Using (2.4) and (2.5) the center of mass of the wave packet, 

f ( t )  = 2 1 / 2 ~ e ( a ( t ) )  (2.11a) 

a2(t) = ( f i  + l /2) + Re((a2(t))  - ( 4 0  )2) - (aW)  (at(t)) 
(2.11b) 

where h is the average value of n in the packet. 
For a harmonic system, where x = 0, there is no decay of the 

wave packet and (2.8) gives, as one expects, ( ~ ( 2 ) )  - e-'M and 
(a2(t)) - e-2iM. When x # 0, a dephasing of oscillating 
exponentials in (2.8) occurs, resulting in a decay of the initial 

3. Initial State: Coherent and Squeezed States 

Short optical femtosecond pulses have been used in some recent 
experiments on real-time dynamics in molecular systems. When 
the spectral width of the laser pulse is much larger than the 
absorption envelope, the Franck-Condon principle applies and 
the probability distribution of vibrational states in the wave packet 
formed on the upper electronic state is approximately Gaussian. 
(In the opposite case, when the pulse length is longer than the 
inverse band width of the absorption spectrum, only a prtion of 
the energy spectrum of the Franck-Condon envelop will be 
produced. The latter situation is closer than the former one to 
the case of the NaI system studied e~perimental ly .~"~~ Thus our 
comparison with experimental observations, discussed later in 
the paper, is of qualitative character.) This distribution in the 
coordinate space is close to that in the initial, Le., the ground 
vibrational state of the molecule. Under certain conditions, noted 
below, the initial state, )$(O)), on the upper electronic state can 
be described approximately by a coherent state18*20 

where a complex value LY is defined by the average initial value 
of the coordinate and conjugate momentum of the wave packet 
as 

R + ip  
(3.2) a=- 

21/2 

where f and p denote averages for the initial wave packet. 
If in the upper electronic state the equilibrium interatomic 

distance differs by 6 fTom that in the lower electronic state, and 
the vibrational frequency in the upper state is the same as in the 
ground state, the initial state will be a "shifted" ground vibrational 
state, i.e., a coherent state. In such a state the shift R = 6 and 
the uncertainty of distribution of coordinate and momentum will 
be the minimum possible, Le., AxAp = 1/2, and, moreover, Ax 
= Ap = 1/2II2. The average momentum remains unchanged, 
due to the Franck-Condon principle, p = 0, thus in eqs 3.1 and 
3.2 cy = f = 6. 

It should be noted that eq 3.1 describes the initial state in the 
upper electronic state exactly, after a short pulse excitation from 
the ground electronic state, only when the ground electronic state 
is harmonic and the vertically excited electronic state has the 
same local frequency (WO in eq 2.1) as the ground state frequency. 

In a more accurate description the vibrational frequency of the 
upper electronic state, w:, is different (smaller) from that in the 
lower state, wQ. The consequence of such an "instantaneous" 
change of the vibrational frequency, in addition to the shift of the 
origin of the coordinates by 6,  is that instead of a coherent state, 
with a symmetric distribution of x and p ,  Ax = Ap = 1/2'/*, the 
initial vibrational state after the electronic excitation will be a 
so-called squeezed state.21.22 In such a state the width of 
distribution of coordinates is smaller than that in the ground 
vibrational state (!) of the upper electronic state. (The distribution, 
however, remains the same as in the ground vibrational state of 
the lower electronic state.) This effect occurs because the 
(dimensionless) width of thecoordinate distribution is proportional 
to K = ( w : / w @ * / ~ .  The momentum, on the other hand, is 
proportional to 1 / ~ ,  and thus the joint distribution AxAp remains 
the same, Le., it has the minimum possible value ' / 2 .  The 
dynamical consequence of such an asymmetry in the distribution 
of coordinates and momenta is that in the harmonic approximation 
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the wave packet width will oscillate with double the vibrational 
frequency 0:. This result is easy to understand in the plane of 
dimensionless x and p ,  where all phase space points will move 
along the circles with the same angular frequency 0:. Projection 
of any asymmetric distribution will periodically change its width 
twice. during the vibrational period. In this paper we are interested 
in a much longer time scale evolution. Thus, we ignore such 
additional fast oscillations and, hence, neglect here the asymmetry 
between coordinate and momentum in the initial state. A more 
detailed description will be presented in a future publication.23 
Hence, our model provides only qualitatively correct description 
of the initial wave packet in the excited electronic state. 

Different zeroth-order quantum states are populated in the 
initial wave packet (3.1) according to the Poisson distribution 

(3.3) 

with an average A = as seen from eq 2.2. The width of the 
distribution in n-space is ( A ) * / 2  and in the vicinity of the maximum 
the distribution has the Gaussian form 

(n - A)' 
p =A exp [ -- ZA ] (3.4) 
- (2aF2)1'2 

The coherent state (3.1) is also a Gaussian in the coordinate 
x-space. 

The most important feature of the coherent state that we use 
is that ala) = ala). The usefulness of this equality is evident 
from (2.9). For a coherent state the distributions characterizing 
( ~ ( 0 ) )  and ( ~ ~ ( 0 ) )  for gn and dn in eq 2.9 take the form 

gn = dn = Pn (3.5) 
I.e., they coincide with the distribution p n  in the initial state, 
given by eq 3.3. Another simplification of the calculation is that 
for a coherent state we have 

( 4 0 ) )  = a (3.6a) 

(3.6b) 2 (a2(0)) = a 
After theaboveexplicit expressions forg,and d,  aresubstituted 

from (3.5) and (3.3) and with use of (3.6), the time-evolution of 
averaged operators of present interest, (2.Q takes the form 

These two formulas provide the solution to the problem of the 
time-evolution of the initial coherent state explicitly and allow 
a detailed analysis of the dynamics. 

4. Dynamics of the Center of Mass of the Wave Packet 

In the analysis we consider first eq 3.7a. The operator a(t )  is 
a linear combination of coordinate and momentum operators, so 
that the average ( u ( t ) )  gives the position of the center of the 
wave packet in the complex plane 

For simplicity one can imagine that initially the center of the 
packet in the complex ( x ,  p )  plane is located at  ( p ( 0 ) )  = 0, in 
correspondence with the usual vibrational condition in the upper 
electronic state just after the excitation. In this case, using (3.2), 
a = (x(O))/21/2,  where ( x ( 0 ) )  is the initial value of the center 
of mass coordinate of the wave packet. 

The second exponential factor in (3.7a), which can be written 
as exp(-#(t)), describes a rotation, # ( t ) ,  with a modulated 

Time 
Figure 1. Time evolution of the center of mass of the wave packet. Initial 
state is a coherent state. Units for time is r/x.  Parameters: ti = 3, x/w 
= 0.03. 

frequency, of the complex valued quantity (a ( t ) ) .  The x-  
coordinate of ( u ( t ) ) ,  i.e., the real part of it, gives the evolution 
of the center of the packet in real coordinate space, x .  The phase 
in this factor can be written in terms of a time-dependent frequency 
o(t), as J w ( t )  dt, where 

w ( t )  = wo - xu, + 2xooA cos(2xwot) (4.2) 
The modulated frequency oscillates in the interval wo - xwo f 
2xooii, and the frequency of modulations is 2x00. The amplitude 
of modulations, 2Axw0, is seen to depend upon the width of the 
wave packet, A. 

The first exponential factor in eq 3.7a, a real quantity, describes 
a variation of the absolute value of the J(a(t)) I ,  which represents 
the distance of the center of mass of the packet from the center 
of coordinates, x = p = 0, in the complex plane. This variation 
has the same modulation frequency, 2xw0. The evolution of the 
center of mass of the packet is shown in Figure 1. In the case 
of a harmonic mode the center of the packet would move along 
a circle of q constant radius in the complex plane x + ip. For 
a nonlinear mode the center of the packet moves along a spiral 
toward the center of the coordinate system, reaches the center 
at  TR/2 = 7~/2xw0,  and then moves out along the same spiral, 
completing the recurrence at  T R  = T / X W O .  The pulsating behavior 
of the center of the packet presents the first type of the recurrence 
which we discuss here. (The analogous behavior of the width of 
the packet presents the second type.) 

5. Dynamics of the Width of the Wave Packet 
We consider next the dynamics of the width of the wave packet, 

(2.5),  which occurs coherently with the motion of the center of 
the wave packet described above and whose experimental study 
prompted the present paper. 

Before we discuss the quantitative results for the present model, 
it is useful to discuss the qualitative picture in harmonic and 
anharmonic cases.24 In a harmonic case, for any initial wave 
packet, ( x ( t )  ) has a pure harmonic exp(io0t) time dependence 
due to the harmonic oscillator selection rule that only states 
differing by f 1 quanta have nonzero matrix elements. Removing 
this restriction in the anharmonic case gives higher harmonics to 
( x ( t ) ) ,  but the latter is still periodic with period 2a/w0. A general 
wave packet in a harmonic potential has a width that has a time 
dependence of a constant plus a term that oscillates with an angular 
frequency 200; that is the wave packet expands and then contracts 
to its initial value at  a time of half the classical oscillation period. 
The reason is due to the harmonic selection rule. The width 
depends upon (x2 ( t ) )  - (x ( t ) )2 .  The x2 operator has matrix 
elements that are diagonal (which leads to the time-independent 
contribution to the width) and off-diagonal by k 2 ,  which gives 
a pure harmonic exp(2iwot) time dependence. 

When the anharmonic case is considered (but with harmonic 
matrix elements, as assumed in the present paper), the various 
terms in ( x ( t ) )  no longer oscillate at  the same frequency, but at  
frequencies that differ by multiples of 2x00. These terms will 
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Figure 2. Time evolution of the wave packet width. The units and 
parameters are the same as in Figure 1. 

all rephase at  T R  = a /xwo .  Similarly, the terms contributing to 
the oscillations in the variance of the wave packet differ in 
frequency by multiples of 4xw0, and these cause the width to 
dephase and then rephase a t  a time ?r/2xw0 = T R / ~  (thedephasing 
time is just TR/An, where An is the width of the wave packet in 
quantum numbers). Thus, we expect this picture to hold for a 
fairly general anharmonic case and to be independent of the initial 
shape of the wave packet. We proceed next with more accurate 
calculations of our model. 

Theanalysisof (3.7b), similar to that of (3.7a), givesanexplicit 
expression for the width in coordinate space 

g2(t) = + f i (1 - e-2"(1-(2xW))) + 
fie-2"(1-(2X~t)) cos(2(wo - xwo) t  - 2fi sin(2xwot)) - 

c0s(2(w0 - 2 x o o ) t  - f i  sin(4xw0t)) (5.1) 

This expression contains two time scales defined by wo and xuo. 
We first suppose that these two time scales are well separated. 

To simplify the dynamics, we first average the whole expression 
over the fast period 217/w0, which leaves a simplified expression 
for the width 

&t) = + f i (  1 - e-2"('-(2xW))) (5 .2 )  
Initially the width of the packet is seen to be /2, which corresponds 
to minimum uncertainty in the coherent state.18q20 There is then 
an increase of the width, due to dephasing, as the center of the 
packet approaches the center of coordinates in the phase space 
(x, p ) .  The rate of the broadening of the wave packet is defined 
by the classical spread of the frequencies in the packet. If the 
spread of the frequencies is relatively large and if anharmonic 
constant is small, the center of the packet will spend much of the 
time in the vicinity of the poing (x ,p)  = (O,O), while the width 
of the packet will be very close to a microcanonical average value 
f i  + l /2 .  This type of the behavior resembles relaxation to some 
average microcanonical equilibrium. However, when time ap- 
proaches TR = U / X W O ,  the wave packet shrinks back to the initial 
width ' /z due to rephasing. This purely quantum effect is absent 
in the continuum (classical) picture described below in section 
7. The latter can be obtained, as will be seen below, by a formal 
expansion in the small constant XWO. The first terms of the 
expansion result in a decay of the wave packet to a micrmnonical- 
like distribution with the width u2 = l / 2  + ti. (We note that in 
the usual units of length, the width is ( l / 2  + f i )h /mwo.  In the 
semiclassical limit when h - 0, an initial width of the wave 
packet h/2mwo - 0. However, the width grows at  later times 
to a microcanonical value htilmwo, due to the spread of frequencies 
in the wave packet. Because i~ is proportional to h-1 at  finite 
action, the microcanonical width is finite as h - 0). 

A complete recurrence at  T R  = U / X W O  is not the only quantum 
effect. We consider now an exact wave packet dynamics with the 
fast oscillations included, as in (5.1). The typical evolution is 
shown in Figure 2. The most interesting feature here is the fast 
and very large oscillations of the width when the center of the 
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Figure 3. Theoretical FTS signal corresponding to a modulated part of 
the experimental signal of ref 13. (FTS stands for femtosecond transition- 
state spe~troscopy.'O-1~) 

II , , , , , , , , , , , 

Time 

Figure 4. Theoretical FTS signal with a single-exponential decay rate. 
packet is in the vicinity of the zero point. These oscillations take 
place at  exactly half the period of the normal recurrence time, 
T R / 2  = (7r/xw0)/2.  Again, these oscillations are absent in the 
continuum picture. The nature of this type of recurrences, as in 
the case with ( a ( ? ) ) ,  is connected with stepwise nature of 
vibrational amplitudes mixed in the wave packet. It is interesting 
to note that this type of recurrence, with a half-period of the 
usual recurrence time, may be the factor responsible for the 
observed features in the decay signal in ref 13, which we discuss 
below. 

6. Dynamics of the Probability Denisty. Experimental Signal 
We can make use of the analytical formulas 3.7a and 5.1 to 

calculate the time evolution of the probability density of the wave 
packet a t  some fixed point in the coordinate space. This value 
is proportional to the experimental signal of both the laser-induced 
fluorescence and, in the case of vibrational predissociation, of 
dissociating molecules due to "leaking" through the region of 
intersection of stable and unstable potential curves.13 For the 
latter case we do not take into account the decrease of population 
in the packet due to dissociation and any difference in dissociation 
rate from different quantum states.15 

The density can be calculated by the Gaussian approximation 
for the packet 

p(x )  = ( 2 7 r t ~ ~ ( t ) ) - ' / ~  exp(-(x - X ( t ) ) 2 / 2 a 2 ( t ) )  (6.1) 
wherea(t) is the real part of (3.7a) and d ( r )  is that of (5.1). The 
time evolution predicted by this formula at  x = 0 is shown in 
Figure 3. We note a feature of the signal a t  half-period of the 
normal recurrence time, T R / ~  = 7r/2xw0. The simulated 
exponential depletion of the total population in the packet due 
to dissociation is shown in Figure 4. Both results, Figures 3 and 
4 ,  are in a qualitative agreement with the experimental decay 
signal of ref 13, where the authors reported a pronounced tendency 
for the signal from NaI to recur both at  normal recurrence time 
(about 30 ps) and exactly half the the normal recurrence time 
(about 15 ps). 

7. Continuum Limit 
To understand better the origin of the recurrences discussed 
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above in the present paper, it is useful to compare the above result 
with that which is obtained in the limit when ii >> 1 and when 
thevariable n is treated as a continuous variable, as in the classical 
case. In this case for a constant classical action of the oscillator 
J = 27rhn, n is proportional to h-l. At the same time in order 
to have a finite anharmonic shift, as for example in eq 7.2 below, 
x must be proportional to h.  Hence, x vanishes as h - 0. 
However, the product n x  remains finite in the classical limit. 

For simplicity we consider only the behavior of the center of 
mass of the packet. 

For thedistribution function we can now substitute (3.4) instead 
of (3.3). Replacing the summation in (2.8a) by an integration 
over n (and noting that substitution (3.4) is equivalent to the 
integration by the steepest descent method) yields the result 

Comparison of this expression with quantum formula 3.7a reveals 
several interesting features. 

First, there is no longer a modulation of the frequency of rotation 
of the wave packet around the center of coordinates in the complex 
plane (x ,p) .  The rotation frequency now coincides with the 
classical anharmonic local frequency of vibrations which depends, 
in turn, on the classical amplitude of the vibration. This local 
frequency is an average 

It is seen from this expression that for the limit of large n to be 
explored at a meaningful, Le., finite, anharmonic frequency, the 
2xwon must remain finite as ii - 03.  Hence, xu0 must tend to 
zero, thus explaining how (7.1) immediately follows from (3.7a). 
(Alternatively, had we not used units of h = 1, we would have 
x w  - h - 0; however xwoii would remain finite, as we noted 
above.) 

Second, a pure real exponential factor in eq 7.1 now describes 
a trivial decay of the amplitude of vibrations of the wave packet. 
This decay is a a consequence of dephasing of the oscillating 
exponentials with different frequencies mixed in the wave packet. 
Thevibrational frequencies depend on the amplitude of vibrations, 
o(n) = or2xwo(n+ l/2), and, hence, thespreadofthe frequencies 
is defined, in the classical language, by the spread of the amplitudes 
of vibrations, ((n - A ) 2 )  = R, according to (3.3). The spread of 
frequencies then equals 2x2w3, in correspondence with the 
decay rate of (7.1). In this limit, described by eq 7.1, the center 
of the wave packet approaches asymptotically the center of the 
coordinate system, x = 0, p = 0. This behavior does not mean, 
of course, that the energy is not conserved. As is shown in section 
5 ,  this process is accompanied by the spread of the wave packet. 
(We note that in the true classical limit, however, when h = 0, 
the width of the initial packet, which is described in the present 
paper by a coherent state (3.1), is zero. In this limit, the 
semiclassical dephasing described by the first exponential in eq 
7.1 is absent, simply because the decay time, proportional to 
h-1/2, becomes infinitely large.) 

Thus, in contrast to the full quantum case, the the center of 
the wave packet in the above approximation approaches the zero 
point of the coordinate system asymptotically and never returns 
to the initial position. The recurrences observed in the quantum 
case are the consequence of a quantization of the amplitudes (or 
energies) of vibrations in (2.8). This quantization makes the 
dynamics of the wave packet quasiperiodic. The quantum nature 
of the final result (3.7) reveals itself in that the anharmonic 
constant, XWO, enters the equation by itself, rather than being 
multiplied by the large classical square amplitude, A. Really, the 
anharmonic constant gives the increase (or decrease) of the 
frequency of vibrations when the square of the amplitude of 
vibrations is changed in our units by 1. In the continuum 
approximation (7. l),  where the square amplitude of the vibration 
n >> 1, such change is insignificant. Hence, the small frequency 

xwo should be regarded formally as vanishingly small. This idea 
can be confirmed by taking the limit xwo - h - 0 of the quantum 
expression (3.7). The first nonvanishing terms give the continuum 
result (7.1). The period of the quantum recurrences due to 
anharmonicity, T/XWO, becomes infinitely large in the continuum 
limit, when xu0 - 0. This behavior is analogous to that of the 
recurrence period of the Bixon-Jortner model; namely, when the 
spacing between adjacent levels of the background manifold, A, 
of that model diminishes to zero, the recurrence period becomes 
infinitely 1arge.l~~ The anharmonic constant xwo in the present 
model describes spacings of the adjacentfrequencies - w.) 
of the anharmonic oscillator and plays a role analogous to the 
spacings of the energy levels A of the Bixon-Jortner model. 

8. Conclusion 

In this paper we have presented a simple and exactly solvable 
analytic model which explains the main quantum effects of 
recurrences in the dynamics of a wave packet in an anharmonic 
vibrational system. Theadvantageof this model is that thenature 
of quantum recurrence effects can be studied analytically. We 
have shown, in particular, that the width of the initially prepared 
coherent state, after relaxation to a microcanonical-like equi- 
librium, experiences strong recurrences at a half-time of the total 
recurrence time. The analytical solution obtained in the present 
paper provides the insight into the nature of recurrences at a 
half-time of the normal recurrence time. 
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