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Decay and Recurrences of Wave Packets in Nonlinear Quantum Systems?
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A simple and analytical model of quantum recurrences in wave packet dynamics of nonlinear vibrational systems
is presented. It is shown that in addition to “normal” rephasing time rg the width of the packet experiences
very strong recurrences at /2. In a quasiclassical limit, which can be studied explicitly in this model, the
recurrences disappear and the decay becomes irreversible. Recent femtosecond experimental results of Zewail
and co-workers are discussed in the framework of this analytical model.

1. Introduction

In general, quantum recurrences in dynamics of wave packets
are associated with discreteness of the energy spectrum (perhaps
with some broadening, and which is observed as a structure in
the absorption spectrum). One example of a system with
recurrences discussed in the chemical physics literature is the
famous Bixon-Jortner model,! which describes decay of a single
zero-order state into a manifold of equally spaced backgriound
states. This model played an important role in understanding
the nature of the irreversibility of radiationless transitions in
isolated polyatomic molecules.23 Thediscreteness of the spectrum
of the background states results in the recurrences in this model.
Another example of recurrences has been found in the wave packet
dynamics of molecular vibrations.®® Recurrences in this case
are observed in time-resolved experiments as “quantum beats” of
coherently excited quantum states.

Recently Zewail and co-workers!®-14 observed the decay and
recurrences of initially prepared localized wave packets of nuclear
coordinates of diatomic molecules. Nal and other diatomic
molecules were studied in the femtosecond time-resolved experi-
ments. In these experiments the decay signal was measured in
real time for the dissociated molecules. The latter contribute to
the signal as the wave packet sweeps through the region of crossing
of stable and unstable potential curves. Chapman and Child!*
calculated lifetimes of the predissociating states in Nal and
discussed the observed recurrence phenomena using a numerical
simulation of the wave packet dynamics. The wave packet
dynamics has also been studied in numerical simulations by other
researchers, e.g., as in refs 16 and 17.

In addition to the expected long-time recurrence with a period
inversely proportional to the local anharmonicity, an unusual
recurrence at half of the period of this expected recurrence
occurred in the experiments!® as well as in the numerical
simulations. The purpose of this paper is to present an analytical
model which allows one to obtain additional insight into the nature
of this phenomenon.

We consider the evolution of an initially prepared coherent
state!® (a Gaussian wave packet in coordinate space) in an
anharmonic vibrational mode and study the dynamics of the center
of mass of the packet and its width. The approach is an extension
of that used in a recent paper,! where the angle-action
representation for the semiclassical wave packet dynamics was
used. The anharmonicity of the mode causes a spread of the
wave packet, and the quantum nature of the system, i.e.,
discreteness of the spectrum, results in recurrences. We will
show that the classical limit of this model corresponds to the
continuous approximation of a discrete (quantum) action variable
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and to an approximate calculation of certain sums, by replacing
them with integrals over the continuous action variable. This
procedure is equivalent to a continuum approximation of the
energy spectrum of the system. The present model allows one
to trace what happens to the recurrences in this approximation.
We also calculate and discuss, in the framework of this model,
the form of the time-domain signal describing the dissociating
molecules as the wave packet sweeps back and forth through the
tunneling region in coordinate space.

The structure of the paper is as follows. In sections 2 and 3
the Hamiltonian and the initial state are discussed. In sections
4 and 5 the analytical solutions for the dynamics of the center
of mass and the width of the wave packet are described. The
results are used then in section 6 to discuss comparison with the
experimental data on the femtosecond predissociation of Nal. It
is shown in this section that our analytical solution displays a
feature in the wavepacket dynamics similar to that reported in
the experiment. In section 7 the continuum approximation is
discussed which provides an additional insight into the nature of
the recurrences.

2. Hamiltonian, Complex Phase Space, and Averages

Weconsider a nonlinear vibrational mode with the Hamiltonian
of the form (A = 1)

. 2

H=afn+ %) ~ xwh+ %) 2.1)
where 7 is the occupation number operator, ## = 414, and &, 4t
are annihilation and creation operators, so that

22+ p?

2
with x and p being the dimensionless coordinate and the
canonically conjugate momentum respectively. (The usual units
are recovered by substitution x — x(mwe/#)!/2 and p — p(m/

hwg)!/2, where misthe mass.) This Hamiltonian yields the energy
spectrum

= (2.2)

E, = wo(n + %) - xwo(n + %)2 (2.3)

For a positive x, eqs 2.1-2.3 describe a second-order perturbation
vibrational Hamiltonian, when x and p are conventional coordinate
and momentum. If, instead, the H in (2.1) referred to a Morse-
type spectrum, the x and p in (2.2) would no longer be the
conventional coordinate and momentum exactly. In this case,
however, they still may provide the Cartesian coordinate and
momentum in a zeroth-order anharmonic approximation. The
quality of this approximation depends of the anharmonicity
parameter x. This approximation is not, however, restricted to
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nearly harmonic potential surfaces. As long as the local energy
spectrum is smooth and can be presented as a quadratic
approximation inaction space, asineq 2.3, then our approximation
isaccurate. Inthiscase, the local frequency, w, is itself a smooth
function of energy.

The wave packet is described by a state j(z) }, which evolves
in time from the initially prepared state [{(0) ). Weare interested
in the evolution of two observables, one describing the center of
mass of the packet and the other its width:

x(1) = (x(1)) = (WO = (W(O)x(N¥(0)) (2.4)

aX(1) = #(t) - 24(1) (2.5)

where we will use either a bar or { ) to denote an average over
the packet. The meaning of 02(¢) will be seen most clearly in eq
6.1 later. Because of the relations a4 = (% + ip)/\/i and &t =
(% - iﬁ)/\/i, one can find (a(¢)) and (a'()) instead of (x(¢)},
and (a2(2)) and (a?t(¢)) instead of {x2(¢)), in order to calculate
(x(#)) and o¢2(f). The operators &(¢) and at(¢) describe
the evolution of the system in the complex phase space (x *
ip) /\/5. For these operators the Heisenburg equations read

da/dt = —i(w, - 2xwe(h + 1))a (2.6)

da?/dt = -2i(wy— 2xwo(h + 3/2))8*  (2.6b)

Here, because & = H(h), the occupation number operator, A, is
a constant of motion. This property aliows one to write the
solutions of the Heisenberg equations, (2.6), in an explicit operator
form

a(t) = expl-i(w, - 2xwo(h + 1))1]2(0)  (2.7a)

aX(t) = exp[-2i(w, — 2xwo(h + 3/,))2]4%(0) (2.7b)

These solutions can be used to calculate the averages of present
interest

(@) = 3 [ge D (a(0))  (28a)

(@(1)) = Y_[d,e o/ (g7(0))  (2.8b)

n

where the weighting factors, g, and d,

g, = ¢,*(nlaly(0))/(a(0)) (2.92)

d, = c,*(nja®¥(0))/{a*(0)) (2.9b)

have been introduced. These quantities are expressed in terms
of the amplitudes, c,, of the expansion of the initial state of the
system in tmers of the eigenstates of the Hamiltonian H, |n)

l¥(0)) = chlm (2.10)

Equations 2.8 constitute the basis of the present model.
Using (2.4) and (2.5) the center of mass of the wave packet,
x(1), and the width of the packet, o%(¢), are given by

x(1) = 2'2Re(a(1)) (2.11a)

dX(t) = (R +'/,) + Re({a*(1)) - (a(®))?) - (a(t))(a'(¢))
(2.11b)
where # is the average value of n in the packet.
For a harmonic system, where x = 0, there is no decay of the
wave packet and (2.8) gives, as one expects, {a(#)} ~ e~wo* and

(a%(t)) ~ e, When x = 0, a dephasing of oscillating
exponentials in (2.8) occurs, resulting in a decay of the initial
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packet. However, due to the discreteness of the frequencies of
the oscillating exponentials, there will be also recurrences, as a
result of rephasing. These recurrences are considered below in
this paper.

3. Initial State: Coherent and Squeezed States

Short optical femtosecond pulses have been used in some recent
experiments on real-time dynamics in molecular systems. When
the spectral width of the laser pulse is much larger than the
absorption envelope, the Franck—Condon principle applies and
the probability distribution of vibrational states in the wave packet
formed on the upper electronic state is approximately Gaussian.
(In the opposite case, when the pulse length is longer than the
inverse band width of the absorption spectrum, only a prtion of
the energy spectrum of the Franck-Condon envelop will be
produced. The latter situation is closer than the former one to
the case of the Nal system studied experimentally.!%-4 Thus our
comparison with experimental observations, discussed later in
the paper, is of qualitative character.) This distribution in the
coordinate space is close to that in the initial, i.e., the ground
vibrational state of the molecule. Under certain conditions, noted
below, the initial state, jf(0)), on the upper electronic state can
be described approximately by a coherent state!8:20

W(0)) = lay = *F2y"——in) (3.1)

n (n!)l/2

where a complex value a is defined by the average initial value
of the coordinate and conjugate momentum of the wave packet
as

o

x+ip

" 62

where % and p denote averages for the initial wave packet.

If in the upper electronic state the equilibrium interatomic
distance differs by & from that in the lower electronic state, and
the vibrational frequency in the upper state is the same as in the
ground state, the initial state will be a “shifted” ground vibrational
state, i.e., a coherent state. In such a state the shift * = 6 and
the uncertainty of distribution of coordinate and momentum will
be the minimum possible, i.e., AxAp = !/,, and, moreover, Ax
= Ap = 1/21/2, The average momentum remains unchanged,
due to the Franck—Condon principle, p = 0, thus in eqs 3.1 and
32a=x=

It should be noted that eq 3.1 describes the initial state in the
upper electronic state exactly, after a short pulse excitation from
the ground electronic state, only when the ground electronic state
is harmonic and the vertically excited electronic state has the
same local frequency (wpin eq 2.1) as the ground state frequency.

Ina more accurate description the vibrational frequency of the
upper electronic state, wg, is different (smaller) from that in the
lower state, w§. The consequence of such an “instantaneous”
change of the vibrational frequency, in addition to the shift of the
origin of the coordinates by §, is that instead of a coherent state,
with a symmetric distribution of x and p, Ax = Ap = 1/21/2, the
initial vibrational state after the electronic excitation will be a
so-called squeezed state.222 In such a state the width of
distribution of coordinates is smaller than that in the ground
vibrational state (!) of the upper electronicstate. (Thedistribution,
however, remains the same as in the ground vibrational state of
the lower electronic state.) This effect occurs because the
(dimensionless) width of the coordinate distribution is proportional
to k = (wj/w§)/2. The momentum, on the other hand, is
proportional to 1/, and thus the joint distribution AxAp remains
the same, i.e., it has the minimum possible value !/,. The
dynamical consequence of such an asymmetry in the distribution
of coordinates and momenta is that in the harmonic approximation
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the wave packet width will oscillate with double the vibrational
frequency wy. This result is easy to understand in the plane of
dimensionless x and p, where all phase space points will move
along the circles with the same angular frequency wy. Projection
of any asymmetric distribution will periodically change its width
twice during the vibrational period. Inthis paper weareinterested
in a much longer time scale evolution. Thus, we ignore such
additional fast oscillations and, hence, neglect here the asymmetry
between coordinate and momentum in the initial state. A more
detailed description will be presented in a future publication.??
Hence, our model provides only qualitatively correct description
of the initial wave packet in the excited electronic state.
Different zeroth-order quantum states are populated in the
initial wave packet (3.1) according to the Poisson distribution

2n
2oy
P =lirla)f = rled” (33)
with an average 7 = |2, as seen from eq 2.2. The width of the

distribution in n-space is (#)!/2and in the vicinity of the maximum
the distribution has the Gaussian form

(n-R)’
Py — p[— 2,.,] (3.4

@)

[l

The coherent state (3.1) is also a Gaussian in the coordinate
x-space.

The most important feature of the coherent state that we use
is that ala) = a|a). The usefulness of this equality is evident
from (2.9). For a coherent state the distributions characterizing
{a(0)) and (@%(0)) for g, and d, in eq 2.9 take the form

g.=d,=p, (3.3)

Le., they coincide with the distribution p, in the initial state,
given by eq 3.3. Another simplification of the calculation is that
for a coherent state we have

(a(0)) =« (3.6a)

(a*(0)) = o? (3.6b)

After the above explicit expressions for g, and d, are substituted
from (3.5) and (3.3) and with use of (3.6), the time-evolution of
averaged operators of present interest, (2.8), takes the form

(a(t)) = ae—ﬁ(l—cosaxwot)) e—i[(wo-xwo)'—ﬂsin(waot)] (3.7a)

(a2(t) )y = aZe—ﬁ(l-Oos(“xwol)) e—i[2(wo-2xwo)l-ﬂsin(4xwo')] (3.7b)

These two formulas provide the solution to the problem of the
time-evolution of the initial coherent state explicitly and allow
a detailed analysis of the dynamics.

4. Dynamics of the Center of Mass of the Wave Packet

In the analysis we consider first eq 3.7a. The operator a(t) is
a linear combination of coordinate and momentum operators, so
that the average (a(t)) gives the position of the center of the
wave packet in the complex plane

X(t) + ip(0)
(at)) = x—(w—:p (41)

For simplicity one can imagine that initially the center of the
packet in the complex (x, p) plane is located at {(p(0)) = 0, in
correspondence with the usual vibrational condition in the upper
electronicstate just after the excitation. In thiscase, using (3.2),
a = {x(0))/2!/2, where (x(0)) is the initial value of the center
of mass coordinate of the wave packet.

The second exponential factor in (3.7a), which can be written
as exp(—¢(t)), describes a rotation, ¢(¢), with a modulated
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Figure 1. Time evolution of the center of mass of the wave packet. Initial
state isa coherent state. Units for timeis »/x. Parameters: 2=3,x/wo
= 0.03.

frequency, of the complex valued quantity (a(#)). The x-
coordinate of {a(t)), i.e., the real part of it, gives the evolution
of the center of the packet in real coordinate space, x. The phase
inthis factor can be written in terms of a time-dependent frequency
w(?), as fw(?) dt, where

w(f) = wg ~ xwy + 2xweh cOs(2xwot) 4.2)

The modulated frequency oscillates in the interval wyp — xwo %
2xwoh, and the frequency of modulationsis 2xwg. The amplitude
of modulations, 27ixwo, is seen to depend upon the width of the
wave packet, 7.

The first exponential factor in eq 3.7a, a real quantity, describes
a variation of the absolute value of the |(a(2) )|, which represents
the distance of the center of mass of the packet from the center
of coordinates, x = p = 0, in the complex plane. This variation
has the same modulation frequency, 2xwo. The evolution of the
center of mass of the packet is shown in Figure 1. In the case
of a harmonic mode the center of the packet would move along
a circle of g constant radius in the complex plane x + ip. For
a nonlinear mode the center of the packet moves along a spiral
toward the center of the coordinate system, reaches the center
at 7r/2 = m/2xwq, and then moves out along the same spiral,
completing the recurrenceat rg = 7 /xwo. The pulsating behavior
of the center of the packet presents the first type of the recurrence
which we discuss here. (The analogous behavior of the width of
the packet presents the second type.)

5. Dynamics of the Width of the Wave Packet

We consider next the dynamics of the width of the wave packet,
(2.5), which occurs coherently with the motion of the center of
the wave packet described above and whose experimental study
prompted the present paper.

Before we discuss the quantitative results for the present model,
it is useful to discuss the qualitative picture in harmonic and
anharmonic cases.2* In a harmonic case, for any initial wave
packet, (x(7)) has a pure harmonic exp(iwgf) time dependence
due to the harmonic oscillator selection rule that only states
differing by =1 quanta have nonzero matrix elements. Removing
this restriction in the anharmonic case gives higher harmonics to
{x(2)), but thelatter is still periodic with period 27 /w,. A general
wave packet in a harmonic potential has a width that has a time
dependence of a constant plus a term that oscillates with an angular
frequency 2wo; that is the wave packet expands and then contracts
toits initial value at a time of half the classical oscillation period.
The reason is due to the harmonic selection rule. The width
depends upon (x2(#)) — (x(¢))%. The x2 operator has matrix
elements that are diagonal (which leads to the time-independent
contribution to the width) and off-diagonal by £2, which gives
a pure harmonic exp(2iwet) time dependence.

When the anharmonic case is considered (but with harmonic
matrix elements, as assumed in the present paper), the various
terms in (x()) no longer oscillate at the same frequency, but at
frequencies that differ by multiples of 2xwp. These terms will
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Figure 2. Time evolution of the wave packet width. The units and
parameters are the same as in Figure 1.

all rephase at 7r = w/xwo. Similarly, the terms contributing to
the oscillations in the variance of the wave packet differ in
frequency by multiples of 4xwq, and these cause the width to
dephase and thenrephase ata time x/2xwo = 7r /2 (the dephasing
time is just 7r/An, where An is the width of the wave packet in
quantum numbers). Thus, we expect this picture to hold for a
fairly general anharmonic case and to be independent of the initial
shape of the wave packet. We proceed next with more accurate
calculations of our model.

The analysis of (3.7b), similar to that of (3.7a), gives an explicit
expression for the width in coordinate space

0'2([) = 1/2 + a1 - e-2ﬂ(1-¢08(2xwo‘))) +
Re 20008 xa) 0052w, — xwo)t — 27 sin(2xwel)) —
fig™M-e0slxen) cog(2(w, — 2xwg)t — A sin(dxwet)) (5.1)

This expression contains two time scales defined by wo and xwo.

We first suppose that these two time scales are well separated.
To simplify the dynamics, we first average the whole expression
over the fast period 27 /wp, which leaves a simplified expression
for the width

X (1) =/, + A1 - e (oo Zxwn)y (5.2)

Initially the width of the packet is seen to be! /,, which corresponds
to minimum uncertainty in the coherent state.!820 There is then
an increase of the width, due to dephasing, as the center of the
packet approaches the center of coordinates in the phase space
(x, p). The rate of the broadening of the wave packet is defined
by the classical spread of the frequencies in the packet. If the
spread of the frequencies is relatively large and if anharmonic
constant is small, the center of the packet will spend much of the
time in the vicinity of the poing (x,p) = (0,0), while the width
of the packet will be very close to a microcanonical average value
A+ 1/, This type of the behavior resembles relaxation to some
average microcanonical equilibrium. However, when time ap-
proaches Tg = w/xwo, the wave packet shrinks back to the initial
width !/, due to rephasing. This purely quantum effect is absent
in the continuum (classical) picture described below in section
7. The latter can be obtained, as will be seen below, by a formal
expansion in the small constant xwo. The first terms of the
expansionresultin a decay of the wave packet to a microcanonical-
like distribution with the width ¢2 = !/, + A, (We note that in
the usual units of length, the width is (/, + A)h /mwy. In the
semiclassical limit when A — 0, an initial width of the wave
packet ki /2mwy — 0. However, the width grows at later times
toa microcanonical value A 71/ mwy, due tothe spread of frequencies
in the wave packet. Because # is proportional to A-! at finite
action, the microcanonical width is finite as A — 0).

A complete recurrence at Tr = /xwp is not the only quantum
effect. We consider now an exact wave packet dynamics with the
fast oscillations included, as in (5.1). The typical evolution is
shown in Figure 2. The most interesting feature here is the fast
and very large oscillations of the width when the center of the
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Figure 3. Theoretical FTS signal corresponding to a modulated part of
the experimental signal of ref 13. (FTS stands for femtosecond transition-
state spectroscopy.!0-14)
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Figure 4. Theoretical FTS signal with a single-exponential decay rate.
packet is in the vicinity of the zero point. These oscillations take
place at exactly half the period of the normal recurrence time,
TR/2 = (w/xwo)/2. Again, these oscillations are absent in the
continuum picture. The nature of this type of recurrences, as in
the case with (a(f)), is connected with stepwise nature of
vibrational amplitudes mixed in the wave packet. Itisinteresting
to note that this type of recurrence, with a half-period of the
usual recurrence time, may be the factor responsible for the
observed features in the decay signal in ref 13, which we discuss
below.

6. Dynamics of the Probability Denisty. Experimental Signal

We can make use of the analytical formulas 3.7a and 5.1 to
calculate the time evolution of the probability density of the wave
packet at some fixed point in the coordinate space. This value
is proportional to the experimental signal of both the laser-induced
fluorescence and, in the case of vibrational predissociation, of
dissociating molecules due to “leaking” through the region of
intersection of stable and unstable potential curves.!3 For the
latter case we do not take into account the decrease of population
inthe packet due todissociation and any difference in dissociation
rate from different quantum states.!®

The density can be calculated by the Gaussian approximation
for the packet

p(x) = (2wa*(1) /2 exp(-(x - 2(1))*/26%(2))  (6.1)

where %(2) is the real part of (3.7a) and ¢2(¢) is that of (5.1). The
time evolution predicted by this formula at x = 0 is shown in
Figure 3. We note a feature of the signal at half-period of the
normal recurrence time, 7r/2 = w/2xwo. The simulated
exponential depletion of the total population in the packet due
to dissociation is shown in Figure 4. Both results, Figures 3 and
4, are in a qualitative agreement with the experimental decay
signal of ref 13, where the authors reported a pronounced tendency
for the signal from Nal to recur both at normal recurrence time
(about 30 ps) and exactly half the the normal recurrence time
(about 15 ps).

7. Continuum Limit
To understand better the origin of the recurrences discussed
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above in the present paper, it is useful to compare the above result
with that which is obtained in the limit when # > 1 and when
thevariable nis treated as a continuous variable, as in the classical
case. In this case for a constant classical action of the oscillator
J = 2zhn, nis proportional to A-!. At the same time in order
to have a finite anharmonic shift, as for example in eq 7.2 below,
X must be proportional to k. Hence, x vanishes as A — 0.
However, the product #x remains finite in the classical limit.

For simplicity we consider only the behavior of the center of
mass of the packet.

For the distribution function we can now substitute (3.4) instead
of (3.3). Replacing the summation in (2.8a) by an integration
over n (and noting that substitution (3.4) is equivalent to the
integration by the steepest descent method) yields the result

(@(1))yy = e Dl o—i(wg-2xwo(A+! /7))t (7.1)

Comparison of this expression with quantum formula 3.7a reveals
several interesting features.

First, there is nolonger a modulation of the frequency of rotation
of the wave packet around the center of coordinates in the complex
plane (x,p). The rotation frequency now coincides with the
classical anharmonic local frequency of vibrations which depends,
in turn, on the classical amplitude of the vibration. This local
frequency is an average

(Wppi1) = (Eppy — Ep) = wg = 2xwy(R + 1/z) (7.2)

It is seen from this expression that for the limit of large n to be
explored at a meaningful, i.e., finite, anharmonic frequency, the
2xwon must remain finite as A — «, Hence, xwo must tend to
zero, thus explaining how (7.1) immediately follows from (3.7a).
(Alternatively, had we not used units of A = 1, we would have
xw ~ h — 0; however xwoi would remain finite, as we noted
above.)

Second, a pure real exponential factor in eq 7.1 now describes
a trivial decay of the amplitude of vibrations of the wave packet.
This decay is a a consequence of dephasing of the oscillating
exponentials with different frequencies mixed in the wave packet.
Thevibrational frequencies depend on the amplitude of vibrations,
w(n) = wg—2xwe(n+1/2),and, hence, thespread of the frequencies
isdefined, in the classical language, by the spread of the amplitudes
of vibrations, ((n — #)?) = &, according to (3.3). The spread of
frequencies then equals 2x2w(2,r'1, in correspondence with the
decay rate of (7.1). In this limit, described by eq 7.1, the center
of the wave packet approaches asymptotically the center of the
coordinate system, x = 0, p = 0. This behavior does not mean,
of course, that the energy is not conserved. Asis shown in section
5, this process is accompanied by the spread of the wave packet.
(We note that in the true classical limit, however, when & = 0,
the width of the initial packet, which is described in the present
paper by a coherent state (3.1), is zero. In this limit, the
semiclassical dephasing described by the first exponential in eq
7.1 is absent, simply because the decay time, proportional to
h-1/2, becomes infinitely large.)

Thus, in contrast to the full quantum case, the the center of
the wave packet in the above approximation approaches the zero
point of the coordinate system asymptotically and never returns
to the initial position. The recurrences observed in the quantum
case are the consequence of a quantization of the amplitudes (or
energies) of vibrations in (2.8). This quantization makes the
dynamics of the wave packet quasiperiodic. The quantum nature
of the final result (3.7) reveals itself in that the anharmonic
constant, xwo, enters the equation by itself, rather than being
multiplied by the large classical square amplitude, 7. Really, the
anharmonic constant gives the increase (or decrease) of the
frequency of vibrations when the square of the amplitude of
vibrations is changed in our units by 1. In the continuum
approximation (7.1), where the square amplitude of the vibration
n>> 1, such change is insignificant. Hence, the small frequency
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xwg should be regarded formally as vanishingly small. Thisidea
can be confirmed by taking the limit xwo ~ # — Qof thequantum
expression (3.7). Thefirst nonvanishing terms give the continuum
result (7.1). The period of the quantum recurrences due to
anharmonicity, 7/ xwo, becomes infinitely large in the continuum
limit, when xwo — 0. This behavior is analogous to that of the
recurrence period of the Bixon—Jortner model; namely, when the
spacing between adjacent levels of the background manifold, A,
of that model diminishes to zero, the recurrence period becomes
infinitely large.!* The anharmonic constant xwy in the present
model describes spacings of the adjacent frequencies (wp+) — wn)
of the anharmonic oscillator and plays a role analogous to the
spacings of the energy levels A -of the Bixon—Jortner model.

8. Conclusion

In this paper we have presented a simple and exactly solvable
analytic model which explains the main quantum effects of
recurrences in the dynamics of a wave packet in an anharmonic
vibrational system. The advantage of this modelisthat the nature
of quantum recurrence effects can be studied analytically. We
have shown, in particular, that the width of the initially prepared
coherent state, after relaxation to a microcanonical-like equi-
librium, experiences strong recurrences at a half-time of the total
recurrence time. The analytical solution obtained in the present
paper provides the insight into the nature of recurrences at a
half-time of the normal recurrence time.
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