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The electron. transfer rate constant is treated using the spin-boson Hamiltonian model. The
spectral density is related to the experimentally accessible data on the dielectric dispersion of the
solvent, using a dielectric continuum approximation. On this basis the quantum correction for
the ferrous—ferric electron transfer rate is found to be a factor 9.6. This value is smaller than the
corresponding result (36) of Chandler and co-workers in their pioneering quantum simulation
using a molecular model of the system [J. S. Bader, R. A. Kuharski, and D. Chandler, J. Chem.
Phys. 93, 230 (1990)]. The likely reason for the difference lies in use of a rigid water molecular
model in the simulation, since we find that other models for water in the literature which neglect
the electronic and vibrational polarizability also give a large quantum effect. Such models are
shown to overestimate the dielectric dispersion in one part of the quantum mechanically
important region and fo underestimate it in another part. It will be useful to explore a
polarizable molecular model which reproduces the experimental dielectric response over the

relevant part of the frequency spectrum.

1. INTRODUCTION

Electron transfer reactions are among the most funda-
mental chemical processes.!™ As a prototypical model sys-
tem, the Fet2=Fe™*? clectron exchange in water has been
actively studied.** Recently, Chandler and co-workers®’
used a molecular model to study this process by quantum
and classical simulation methods. Their results have shed
an illuminating light on this system.

By classical and quantum simulation methods they ob-
served the parabolic behavior of the free energy surface
with respect to the solvent polarization coordinate, a be-
havior which plays the important role in the theory devel-
oped by one of us.! They also studied the quantum correc-
tion for the electron transfer rate constant. The fuil
quantum Monte Carlo simulation gave a quantum correc-
tion factor for the rate of about 65 for water.® Under a
harmonic approximation their quantum correction was
about 36, which is still substantially larger than the tradi-
tional estimate’ of a factor of about 7.

In the present paper an expression for the nonadiabatic
rate constant (the Golden Rule rate expression) is used in
which the rate is expressed in terms of the spectral density
(the dielectric response) of the system. The spectral den-
sity is then obtained from experimental data, for fixed po-
sition of the reactants, using the dielectric continuum ap-
proximation and the harmonic approximation for the inner
shell of ion—water complex breathing modes. For the elec-
tron transfer rate constant for the aqueous ferrous—ferric
system it is found that under the above approximation our
estimation of the quantum correction factor is a factor of
9.6, which is smaller than the above result of 36 for the
harmonic case. Other computer simulation models of wa-
ter which also neglect the vibrational and the electronic
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polarization are also considered. We again find a large
quantum effect for the rate constant of the model water
solvent and find that these models overestimate the dielec-
tric response in one region important for the quantum cor-
rection and underestimate it in another.

This paper is organized as follows: In Sec. II the the-
oretical basis of this paper is discussed. The nonadiabatic
rate constant is expressed there in terms of the spectral
density of the system. The relations between the spectral
density and the experimental data are given. In Sec. I1I the

" calculation details are presented and the role of the elec-

tronic polarizability in electron transfer is discussed. The
paper concludes with some remarks.

II. THEORY
A. Introduction

In this section a brief discussion of the nonadiabatic
rate constant expression is given. Then, the relation be-
tween the spectral density and the experimentally accessi-
ble data, which forms the basis of the calculations, is pre-
sented.

In electron transfer reactions the reactant and product
electronic states can usually be approximated as a two
electronic-state system. If the solvent and the nuclear mo-
tion of the reactants and products are described as a har-
monic bath, the electron transfer can be viewed as an elec-
tron jump between the two states modulated by a harmonic
bath. This kind of system has been described by the spin-
boson Hamiltonian®%°

HAB € o} N
H=T O'x—*—i 0",‘—*-7z igl 20,-y,-

N 2 2.2
Dy mw;y;
+ igl (2m,-+ ) )
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where H ,5/2 is the electronic matrix element which cou-
ples the reactants’ state | —) and the products’ state | +).
The y; is a polarization coordinate, p; is the canonically
conjugate momentum, and € is the driving force of the
reaction (i.e., —AG®). o, and 0, are Pauli matrices in the
two-state (|+) and |—)) representation. A harmonic
bath having the same frequencies for the reactants’ and the
products’ electronic states is assumed in this Hamiltonian.
In such an approximation any changes in metal-ligand fre-
quencies accompanying the electron transfer are replaced
by a particular symmetric combination.’

For the nonadiabatic case, the electron transfer rate
constant is given by the following Golden Rule formula:>*

H 4p* 07,0
ﬁzbi ‘ 2 ; exp(—BEN | (x71xP |2

X8(ES— E{+e), (2.2)

where 7 and f specify the quantum numbers of the reactant
and the product system, E° and E‘} are the energy levels of
their systems, X, and X '+ are the corresponding wave func-
tions, and Z, is the partition function of the reactant sys-
tem.

Upon using the usual §-function expression

8(ES—E}+e),

_B( expl —i(ES— E+€)BRIdR

v I (2.3)

and the overlap integral of the wave functions assumed to
be harmonic, the following formula has been obtained:* 23

H + 0
k=~ —A-—Bl f dR exp|— (B+iBR)e
J(co) cosh (Bfiw/2) —cosh(i RpBhw)
— f sinh (B#iw/2) ’
(2.4)
where J(w) is spectral density of the system
N 2
= 3 mSlo—w) — 2.5)
J(®) T ) .

i=1 i

This well-known quantum rate constant expression of
electron transfer in the nonadiabatic case was first derived
by Soviet scientists.>® Later Chandler and co-workers® re-
derived this result within a spin-boson Hamiltonian de-
scription by the Golden Rule. Recently,® Song and Stuche-
brukhov gave a general description of electron transfer
reactions using the spin-boson Hamiltonian, in which the
above formula appears as a special case of a more general
one. A key assumption in the above formula is the use of a
harmonic approximation for the bath modes.2 Equation
(2.4) is the fundamental result of nonadiabatic quantum
electron transfer theory within the harmonic approxima-
tion. Another approach in which only a linear respomnse
approximation is used for the solvent bath, 2(¢) Jeads to the
same result, where the J(w) is expressed, as given later, in
terms of the dielectric response function.
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TABLE 1. The quantum correction of aqueous ferrous—ferric system
(T=298 K).

Saddle-point approximation®

Inner part Outer part Total Ratio

Quantum exponential  —12.97 —10.84 —23.81

8.4
Classical exponential —14.11 —11.86 —25.97
Quantum prefactor 1.65 x 10!

1.1
Classical prefactor 1.48 x 10%
Quantum rate (s~!) 7.53

9.6(36°%)
Classical rate (s™1) 0.78
- Full calculation®

Quantum rate (s™}). . 178

10.0
Classical rate (s—!) 0.78

*From Eq. (2.13).
“From Eq. (2.4) with e=0.
°From Ref. 6.

For the ferrous—ferric system € is zero. The saddlepoint
of R is zero in this case. The rate constant can be expressed
in the following simple form using the saddlepoint approx-
imation,’

2 —-1/2
; H;B 4hf doJ (@) cosh (B ﬁa’)]

2 (o J Fico
X exp _W_ﬁfo da,_(f‘;_) anh(B4 )] (2.6)

In the classical approximation for bath (B7iw<1) Eq.
(2.6) reduces to the usual classical nonadiabatic expression
for the rate of electron transfer in symmetric reactions. A
test of the saddlepoint approximation, by a comparison of
Egs. (2.6) and (2.4), is given later in Table L

In order to calculate the electron transfer rate constant
for the actual system the explicit form of spectral density
J(®) is needed. There are several ways of obtaining this
quantity. For example, Bader et al 67 calculate it by a
quantum Monte Carlo simulation using a microscopic
model of aqueous ferrous-ferric system. Another way is to
relate this quantity to some phenomenological experimen-
tally measurable variable.? In the present paper the latter
approach is used; the bath is divided into an inner part [the
first coordination shell, consisting of Fe(H,0)¢ %
Fe(H,0)? subsystem] contributing an amount J;(®) to
the spectral density, and an outer part, namely the rest of
the water solvent interacting with the hexacoordinated
aqueous Fet? and Fe*3 ions, treated as spheres. The outer
contribution Jy(@) to the spectral density is then related to
experimental data on the dielectric response of the solvent.
Thus we have

J(w)=Jo(0) +J(a). (2.7)
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The electron transfer rate constant is then calculated.
B. The spectral density of the outer contribution

Phenomenologically, the outer contribution can be
treated using a dielectric continuum interacting with the
ionic charge distribution.? The response of the dielectric to
the electric field is defined by the dielectric permittivity
function e(w), which is experimentally available. If the
polar medium is treated as a collection of harmonic oscil-
lators characterizing the dielectric polarization, the
changes in electric field of the ions, where the products are
compared with the reactants, shift the equilibrium posi-
tions of oscillators describing the polarization. According
to Eq. (3.87) in Ref. 3, the shift of the dielectric polariza-
tion oscillator of the medium g is related to the dielectric
constant in the following way, neglecting spatial disper-
sion:

1 » [ dr| DF—Di|? (= doIme(w)
2 iﬁmi o= 4o J-o o |e(w)]*’
(2.8)
where €(®) is the dielectric constant as a function of fre-
quency, the imaginary part of it being related to the ab-
sorption of the medium, D/ and D' are the dielectric dis-
placement vectors of the products’ and the reactants’ forms
of the ions. For two ionic spheres with radii a; and a, and
separated by a center-to-center distance R (Ae is the
charge difference) we have,!7 neglecting dielectric image
effects,

1 1 1 1
_  pi2 (-, = - 2
rye fdr[pf D' _(2a1+202 R)(Ae) . (2.9)

The left-hand side of Eq. (2.8), Ay, represents the classical
form of the outer part of the reorganization energy of the
system. For the spin-boson model this reorganization en-
ergy can be written as® )

2c§ o
l — = f
0 zz: mzwf 0
The same formula relating A; to J;(®) also applies. Com-

paring Egs. (2.8) and (2.10), the outer contribution Jy(@)
to the spectral density can be written as

[ dr| D — D!|? Im e(w)

8T le(w)|*”
Equation (2.4), with J given by Eq. (2.11), was first ob-
tained by a different method by Ovchinnikov and
Ovchinnikova.?(® They showed that above result is valid
under linear response theory. A more elaborate descrip-
tion, based on e(k,w) could be deduced from the results
given in Ref. 3, k being the wave vector. However, the
relevant experimental data for e(k,o) do not appear to be
available.

(2.10)

Jolw)=

(2.11)

C. The spectral density of the inner-shell contribution

The inner part of the spectral density J;(w), i.e., the
contribution from the inner-shell, is relatively simple. The
main contribution for electron transfer comes from the two

shifted symmetric breathing modes (they are normal
modes) of the reactant pair, Fe(H,0) ¢ 2-Fe(H,0)¢?, and
the product pair, Fe(H,0)¢ *~Fe(H,0)2.1%!! The equi-
librium shift of harmonic coordinates is the equilibrium
bond length change d, from Fe(H,0)¢? to Fe(H,0){?,
the breathing mode frequency is o, for Fe(H,0)¢? and w,
for Fe(H,0)¢ 3, and the constant frequency w, used in the
Hamiltonian can be expressed approximately”® by
ot =20w3/ (0% +w?3); min Eq. (2.5) for J,is the mass for
a ligand molecule in a symmetric breathing mode. Thus,
the spectral density of the inner contribution can be written
as

J (o) = (1/2)08(o—ag);, (2.12a)
where
Ai=6mwids, (2.12b)

using the fact that there are six ligands for the symmetric
breathing mode in Fe(H,0)¢? and in Fe(H,0)¢.

D. Rate constant result

The calculation of the electron transfer rate constant
can be made by direct numerical integration of Eq. (2.4),
using Egs. (2.7), (2.11), (2.12), and the spectral density
obtained from the experimental data. Or the saddle-point
approximation can be used, so that a somewhat more
transparent picture can be obtained. In this case Eq. (2.6)
can be written in the following form:

2
Hyp

k 27
~% |3

® » i
4 J; d(In 0)Jo(@)#iw cosh(BT)

o, —1/2
+2mhiwoh ; cosh(B 0) ]

2
© 2J,
Xexp|— f d(ln w) ole) tanh (?)
0 Thew
A Bt
: —-ﬁ;,;tanh( 7 )] (2.13)

where Jy(w) is given by Eq. (2.11) and A, is given by Eq.
(2.12b). Because of the wide range of @’s which contribute
to the integrand from the outer part it was convenient to
introduce In @ as the integration variable in Eq. (2.13).
Equations (2.4) [with Egs. (2.7), (2.11), and (2.12)] and
Eq. (2.13) represent the starting point for the present cal-
culation.

ill. CALCULATIONS AND DISCUSSION

In this section the quantum and classical rate constants
are calculated from the experimental data for the present
model. From the above formulas, a key step is to use the
experimentally observed complex-valued dielectric con-
stant of solvent as a function of frequency. In general, there
exist two broad regions of absorption in water, the Debye
region (or orientational region) and the resonance region.
In the Debye region, the Debye formula can be used to
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FIG. 1. The experimental data (Refs. 12-15) and the empirical fit. O
denotes the real part of the experimental dielectric constant; @ the imag-
inary part. The solid line is a cubic spline interpolation and the dotted line
is Debye fit. ]

provide an excellent description of the experimental data,
using the following parameters:'® e =4.21, €,=78.3,
7=8.2X 10712 5 in the expressions

€,—€,

Ree=e_, +1+_w71:i , (3.1a)
Im e= S E=)0T 3.1b
me="1T A7 (3.16)

In the resonance region there is no general formula to
fit the experimental data. Here, a cubic spline interpola-
tion'® is used to fit the experimental data and the integral is
evaluated using this spline to interpolate the experimental
results. For a thermal electron transfer only, frequencies
below the electronic excitation region are relevant to our
calculation. Thereby, the angular frequency (@) region we
consider is from 0 to 7.2 10" rad/s, abbreviated in the
following as s—! (3844 em™1), since from 7.2 X 10" st to
the optical frequency the imaginary part of dielectric con-
stant is extremely small®® (cf. Fig. 1). From 0 to 1.0X 10!
s~! the Debye formula is used and from 1.0 10! to 7.2
X 10 s~! the spline interpolation is employed. The exper-
imental data and the fitted results are collected in Fig. 1.

The inner contribution data is well-known from the
literature, '*!! @, =390 cm ™!, w,=490 cm~!, dy=0.14 &,
m=3.0%10"2¢ kg/molecule.

The results of these calculations are given in Table I.
Comparing the values for the quantum rate constant it is
clear that the saddlepoint approximation is very good, and
the following discussion is based on that approximation.
This quantum effect is seen in Table I to be substantially
smaller than the simulation result from Chandler and co-
workers®” who used the SPC model for water. This differ-
ence is due to the different spectral density employed. In
their calculations the spectral density is obtained from the
cosine transformation of the classical real time bath auto-
correlation function which is calculated from the computer
simulation. To illustrate this point we plot in Fig. 2 the

FIG. 2. The experimental data (Refs. 12-15) and the simulation result of
the SPC model (Ref. 6). O denotes the integrand of experimental quan-
tum correction factor from the outer part of the spectral density J,, with
y=PpFw/4. The solid line is the integrand of SPC model quantum correc-
tion from the spectral density of Ref. 7, noting that the two small peaks
around In @=32 arise from the inner part contribution.

integrand difference between the exact expression and the
classical expression in the exponential part of Eq. (2.13)
which gives most of the quantum correction factor (cf.
Table I). In Fig. 2 the result is given for both the experi-
mental outer spectral density and for the SPC water model,
using in the latter case the results of Ref. 7. It should be
remembered that the two small peaks around w=1.0X 10
s~ ! are contributed by the inner part of the spectral density
J:(w) since the curve is the total spectral density calcu-
lated from their simulation. From Fig. 2 we see that in one
region (around 1.6 X 10'* s—1y important for the quantum
correction the SPC model considerably overestimates the
dielectric response. In another region (around 6.5% 10™
s~!) important for quantum correction it has no contribu-
tion at all. Thus, we believe that the spectral density used
in the SPC model is not accurate due to the rigid model of
the solvent molecules employed—it contains neither the
electronic nor the vibrational polarizability of the individ-

_ual solvent molecules.

In order to test this supposition we have used two
computer simulations available in the literature'® for the
water, namely the TIP4P and the MCY models, both of
which also omit the two molecular polarizabilities just
mentioned. Although there exist some polarizable water
models in the literature!® no detailed dielectric dispersion
curve appears to be available from them. We have used the
spectral density for the TIP4P and MCY models, with Egs.
(2.12) and (2.13), to calculate the quantum correction
factor under the saddlepoint approximation. For the
TIP4P model the outer spectral density Jy(®) is calculated
from a phenomenological formula, given in Ref. 18, which
fits the simulation result well (Fig. 9 in Ref. 18), and the
inner part, J;(@), is kept the same as above. The resulting
quantum correction factor is 26 when the upper limit is
2.1x 10" s_l, which is the valid limit of the phenomeno-
logical formula. For the MCY model the quantum correc-
tion factor is 21 when the upper limit is 2.2 10" s~%,
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FIG. 3. The experimental data (Refs. 12-15) and the simulation result of
the MCY and TIP4P models (Ref. 18). O denotes the integrand of
experimental quantum correction from the outer part spectral density Jg,
with y=pfiw/4. The solid line is the integrand of MCY model quantum
correction from the outer part of the spectral density of Ref. 18. The
dotted line is the integrand of the TIP4P model quantum correction from
the outer part of the spectral density of Ref. 18.

These results can be understood from Fig. 3. Like the SPC
model both the TIP4P and the MCY models overestimate
the dielectric response in a region (32<In w<33) and un-
derestimate in another (33<In ©<34.3), regions which are
critical for the quantum effect calculation. For the TIP4P
and the MCY models the large spectral density is due to
the small Re € of the model simulations in a critical region
(Fig. 4).

For comparison with previous work, we give next an
approximation to the outer contribution in Eq. (2.13) by
dividing the complete frequency range of the dielectric re-
sponse into two parts, a “classical” part and a “quantum”
part, where a separation frequency o is defined by relation
PBliwy/4=1.0. From 0 to @, the classical approximation

) or Log Ime(w)

Log Ree(w

0. 11 12 13 14 15

Loeg w . ST

FIG. 4. The experimental data (Refs. 12—-15) and the simulation result of
the TIP4P model (Ref. 18). O denotes the real part of dielectric con-
stant; @ the imaginary part. The solid line is the real part of the model
simulation, and the dotted line is the imaginary part of the model
simulation.

P T T T T T ([
st ' .
3
1& 4 _
.
3
\%;2_ -]
o
‘]_ ]
8
. 0

FIG. 5. The separation of classical modes and quantum modes approxi-
mation. O denotes the integrand of experimental data from the outer part
of the spectral density [ f{w)=tanh(B%w/4)]; the solid curve is the clas-
sical integrand [ /(@) =p#w/4] from the experimental data; and the dot-
ted curve the quantum integrand [ f(@)=1.0] from the experimental
data. The arrow mark gives the separation frequency with B#w/4=1.0.

(Pfiw/4<«1.0) is used for the first part of the exponential
factor in Eq. (2.13), written as exp[-—B/lf(,l)/df], where

Ly J1P/=D%dr rea  Ime(w)
Ag ==z ), w—ﬁwle(@)l . (3.2)
By a sum rule,’ we have
J‘wcl do E Im e(w) _ 1 __1_ ‘ (3.3)
0 Tole(@)|* e(wg) €

Equations (3.2) and (3.3) give the well-known classical
type of expression for reorganization energy arising from
this portion of the outer contribution. From o to @, the
quantum limit gives tanh(B#w/4) =~ 1, and that contribu-
tion to the exponential factor in Eq. (2.13) can then be
written as

_ 2 [|D/—Di|%dr (oo Im e(w)
(3.4)

This latter factor is temperature independent and produces
the tunneling factor arising from the quantum modes. A
similar discussion can be found in Ref. 20. In general, the
quantum modes renormalize the coupling matrix.® This
limiting situation of dividing the modes into quantum and
classical modes yields a fairly good approximation as seen
in Fig. 5, the rate calculated from this approximation is
smaller by a factor of 2. These two types of modes tend to
play different roles in the electron transfer, the former giv-
ing a nuclear tunneling effect and the latter generating an
activation barrier, an effect which has been often discussed
in the literature.”»* From the tunneling factor expression
(3.4), it is clear the really high frequency modes (say,
higher than 7.2 X 10" s~1) do not make a significant con-
tribution to the tunneling effect due to the negligible imag-
inary part of the dielectric constant. In this sense the elec-
tronic polarization does not make large contribution to the
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electron transfer rate. However, the electronic polariza-
tion, by creating a shielding effect, does influence the other
aspect of the €(w) behavior. Furthermore, the atomic po-
larization (in the vibrational resonance region) does con-
tribute to the electron transfer, both directly and via shield-
ing, indirectly.

IV. CONCLUDING REMARKS

One of the particular features of the present work is to
illustrate the calculation of nonadiabatic electron transfer
rate from the experimentally available data using the linear
response approximation and to test certain solvent molec-
ular models (SPC, TIP4P, and MCY) in the literature.
For aqueous ferrous—ferric system, the calculated rate from
the experimental data is near the traditional estima’ce,“’5
but different from a recent pioneering molecular simulation
result of Chandler and co-workers. Even where the latter is
approximated by introducing a harmonic bath approxima-
tion a significant difference remains. It will be interesting to
repeat the molecular simulation using a molecular model
of liquid water which includes both the atomic and elec-
tronic polarization and gives the correct dielectric disper-
sion behavior of water, rather than mainly the static dielec-
tric constant.
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