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A treatment of one- or two-photon fluorescence excitation spectra is described using the 
vibration-rotation coupling of zeroth order states in the excited electronic state and 
nonadiabatic coupling to the ground state. Using perturbation theory, experimental harmonic 
frequencies, an anharmonic force field, and various theoretical Coriolis coupling constants, a 
quasistationary molecular eigenstate in an excited electronic state S, is first calculated. The S, 
eigenstate is then coupled via the nonadiabatic nuclear kinetic energy operator (internal con- 
version) to rovibronic states in the ground state manifold, the latter states approximated in a 
simple manner. A search algorithm is used to select the S, dark states and the Sc states. Both 
the perturbation theory coefficient and the Franck-Condon factors are employed in the evalu- 
ation function used in the search. The results are applied in part II to the channel three problem 
in benzene. 

I. INTRODUCTION 

Radiationless transitions, internal conversion (IC), 
and intersystem crossing (ISC) in molecules have been the 
subject of numerous studies.lA Both processes may com- 
pete with radiative decay channels, such as fluorescence 
from spin singlets and phosphorescence from spin triplets. 
The behavior of an isolated molecule under collision-free 
conditions is determined by the density of states at the 
energy of the prepared vibronic state in the initial elec- 
tronic state, the density of states in the final electronic state 
at the same energy, and other more specific factors. The 
small, intermediate, and large molecule cases2*3 result from 
the interplay of these state densities with the magnitude of 
the various couplings. 

One of the systems where an increasingly detailed body 
of spectroscopic information has become available is ben- 
zene. In the benzene system, a “channel three” region oc- 
curs, namely, a region where the benzene fluorescence dis- 
appears rather suddenly with increasing excess energy in 
the tirst excited singlet state Si. It occurs at an energy 
somewhat above 3000 cm-‘. The-explanation most fre- 
quently invoked is that of internal conversion.‘-’ In early, 
vibrationally resolved studies below channel three, inter- 
system crossing was cited as the dominant channel for ra- 
diationless decay in benzene.g However, whereas the ISC 
rate is weakly dependent on the initial vibrational energy in 
Si , the IC rate increases greatly with increasing vibrational 
energy. loJ ’ Thereby, IC becomes the dominant decay 
channel at energies over 3000 cm-‘. In the past decade, the 
J and K dependencies of the fiuorescence excitation spectra 
of various bands in benzene have been studied,5-8 J refer- 
ring to the total angular momentum and K to its compo- 
nent along the sixfold symmetry axis. Our own interest was 
prompted by these results and their relationship to more 
general questions such as intramolecular vibrational 
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relaxation and “non-Rice-Ramsperger-Kassel-Marcus 
(RRKM)” behavior. In the present paper, a treatment of 
the problem is formulated, drawing on previous work. It is 
applied in part 1112 to the channel three problem. 

In the present paper, the internal conversion and the 
fluorescence quantum yield and excitation spectra are 
treated. A vibrational-rotational perturbation expression is 
set up for a quasimolecular eigenstate in the excited elec- 
tronic state Si. The availability of a cubic anharmonic 
force field and various low and higher order Coriolis coef- 
ficients for benzene makes a detailed application appealing. 
Numerous states enter into the perturbation expression, 
and their relative importance for inclusion in the wave 
function is assessed using a search algorithm which 
weights the state according to its Franck-Condon factors 
for internal conversion and according to its coefficient in 
the perturbation expression. The Si quasimolecular eigen- 
state is then introduced into a “discrete state in a contin- 
uum formalism” to obtain the behavior of the resulting 
spectral line including its width and fluorescence intensity. 

One question is whether or not, for the molecule and 
energy investigated, the bath of states in Si form a contin- 
uum, or a lumpy continuum, which is coupled to the light 
state and to the continuum of states in &. When there are 
about N important states per cm-’ in Si that couple sig- 
nificantly to the light state N as estimated later in this 
paper, the “molecular eigenstates” in S, in which the light 
zeroth order state has a significant contribution have a 
mean separation of l/N cm-‘. When this separation is 
significantly larger than the experimental width of the ro- 
tational line of interest in S, , one can use, as in the present 
paper, a single S1 molecular eigenstate to treat the present 
phenomenon and couple it with the continuum of states in 
So. A procedure modified from that used here would be 
needed in cases where there are a number of S’i molecular 
eigenstates involving the light state within the observed 
width of the rotational line. Furthermore, the presumption 
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of a single light state is not essential, and the treatment can 
be extended to the more general case. 

The outline of the paper is as follows: In Sec. II, the 
interaction of a quasieigenstate of a molecule in Si with a 
large number of states in So is discussed, using the discrete 
state in a continuum formalism. Expressions for the fluo- 
rescence quantum yield and fluorescence excitation spec- 
tral intensity are given in Eqs. (2.1) and (2.2) for the one- 
and two-photon absorption cases, respectively. The nonra- 
diative linewidth which appears in Eq. (2.3) is treated in 
Sec. III using a golden rule type formula, account being 
taken of the explicit S1 and So states to be summed over, as 
selected by an artificial intelligence (AI) search. Evalua- 
tion of matrix elements for the internal conversion is dis- 
cussed there. In Sec. IV, the method used for determining 
terms in the quasieigenstate in Si , which is dominantly the 
zeroth order light state in character, is described, using 
high order perturbation theory. In Sec. V, the selection of 
states in the dense manifold of So states is’ discussed. A 
brief summary is given in Sec. VI. 

II. FLUORESCENCE EXCITATION SPECTRUM 

The model of a single state coupled to a quasicontin- 
uum of states has been treated theoretically many times, 
e.g., Ref. 13-15. This model, which has also been applied 
to predissociation,16”7 among other problems, is useful for 
treating the two-photon Doppler-free fluorescence excita- 
tion spectra of particular interest in part II. The density of 
states in the ground state electronic manifold So is so high 
that it can be regarded as a quasicontinuum of those states 
at the energies of interest.‘8’1g 

In applying this formalism to the channel three ben- 
zene problem, the discrete state consists of the “light” state 
in Si perturbed by other (dark) zeroth order states in Si , 
the light state in part II being 114l 12; J,K). The most im- 
portant dark states in part II typically differ from that state 
by five or six vibrational quanta. 

In a fluorescence excitation spectrum, the total fluo- 
rescence intensity is measured at a given absorption fre- 
quency, upon integrating the fluorescence over all emission 
frequencies. In the present case, the fluorescence quantum 
yield under collision-free conditions #f in a simple kinetic 
prescription for a single rotational line is given by 

~f=kf/(kf+kIc+kIsc) (2.1) 

~=kf/(kf+k~,)=A~/(Ahf+A~~)t (2.2) 

where kf, kIc, and kIsc are rate constants for the compet- 
ing processes of fluorescence, internal conversion, and in- 
tersystem crossing, respectively, and the A’s are the corre- 
sponding linewidths for the excited state eigenstates (Arc 
=kIc in Hertz). Equation (2.2) follows in the absence of 
intersystem crossing, which can be important in the decay 
of other vibronic bands, however.20 The quantity kf is 
known, in the case of benzene, from experiments in which 
the excitation is of vibronic bands in the S1 state well below 
the onset of competing processes. A golden rule-like ex- 
pression is given below for k,, and is used in the subse- 
quent detailed calculations. 

The problem of a prepared light state interacting with 
a quasicontinuum of dark states has been treated previ- 
ously, l* l5 and only the final results are given here, as spe- 
cialized to the one- and two-photon absorption (TPA) 
cases. By the light state, we shall refer to a zeroth order 
rigid rotor-harmonic oscillator (RRHO) state that is ac- 
cessible by one- or two-photon absorption from the ground 
state. A zeroth order dark state is dark with respect to 
absorption, i.e., not readily accessible from the ground 
state by absorption, but it is not dark with respect to emis- 
sion. The focus of the present study is in the rotational 
state (J,K) dependence of the fluorescence excitation spec- 
tra. The fluorescence intensity 1 for a homogeneously 
broadened line is written as a Lorenzian function of exci- 
tation energy E, where Es is the energy of the S1 eigenstate 
by the proportionality2’.21 

ICE--Es,) ack(J’X’) ( 1 Ccl * CvibCrot(J’tK’,J”,K”) 1 I2 

X (W+ l>f,,,(J”,K”)f,,l,,(J”,K”) 

x [Af/(Af+A,) 1~ 
A,+&, 

X(E-Es1)2+(1/4)(Af+A,,)2’ (2.3) 

In Eq. (2.3), q, denotes the coefficient of the light state 
in the S1 eigenstate. Gel is the electronic matrix element22 
for the relevant component of the electric dipole operator 
in the one-photon case, or of the two-photon absorption 
(TPA) tensor from state So to S,; in the two photon case, 
C,, is the vibrational matrix element of the dipole moment 
operator (one photon), or of the appropriate component of 
the TPA tensor22 (two photon) for the transition from the 
ground state vibrational level to the “light” vibrational 
state in the excited state,22 fnuc(J”,K”) is a nuclear spin 
statistical factor for the ground state species prior to exci- 
tation,23-25 fBoltz(J”,K”) is the Boltzmann weighting for 
the ground state at the rotational temperature of the ex- 
periment, and C,,(S,K’,J”,K”) is the rotational matrix 
element, possibly complex, of J, (a=0 or f 1) in the 
one-photon case, or in the two-photon case, is a sum of 
rotational matrix elements for several components of the 
TPA tensor.22 In Eq. (2.3), the I(E - Esl) contains both 
the above (J,K) dependent terms and others such as A,,. 

III. CALCULATION OF THE INTERNAL CONVERSION 
RATE A,, 

The statistical limit expression for the nonradiative 
linewidth Anr is given by a golden rule formula which al- 
lows for different magnitudes of the coupling matrix ele- 
ment V, between the state s in S’, and background states 
{I) in So,26 

A,,,=297 c I V,l 2K%-E,) (3.1) I 
in units of fi= 1. In our case, s is a quasimolecular eigen- 
state in Si (a product of electronic and vibration-rotation 
wave functions @$1$~), and 2 labels quasimolecular eigen- 
states in So. 
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For practical implementation, it is desirable to re- 
express Eq. (3.1) in terms of the zeroth order rigid rotor 
harmonic oscillator (RRHO) states 1 i) in So, instead of in 
terms of its eigenstates 1 I). If H denotes the electronic- 
rovibrational Hamiltonian for Se, then introducing El1 Z) 
=H 1 I) and the completeness relation X1( I) (11 =I in Eq. 
(3.1), the latter can be rewritten as 

=-2 Im(sIVrcG(E,)V1,Is), (3.2) 
where Vrc is the perturbation operator responsible for the 
S,-+S, IC, G(E) is the Green’s function 

G(E) = (E-H-tie)-’ 
and where the well-known relation27 

(3.3) 

&P ; FiTrc3(X) 
0 

(3.4) 

was used, P denoting “principal part of.” Upon introduc- 
ing before and after G in Eq. (3.2), the completeness re- 
lation Bil i) (i 1 =I for the zeroth order states in Sc, and 
assuming that in a statistical limit the phases in the off- 
diagonal (i,j) terms cancel in the double sum for A,,, we 
have 

Am= m-2 Im C ) V.il 2Gii(Es>, 

where V, and Gii denote (~IVroli) and (ilG\i). 

(3.5) 

Each zeroth order state ( i} in Se can itself be regarded 
as a discrete state in a quasicontinuum. That formalism is 
then used to obtain a more convenient functional form for 
Gii. Using the standard partitioning argument, summa- 
rized in Appendix A, where the approximations used are 
noted, it follows that in terms of the RRHO states 1 i) in 
So, we have 

A,=2r C 1 V,12 
rJ27T 

(Es-l$-A,)2f(K’J2)2’ (3.6) i 
Here, Ti represents the rate of disappearance of the state 
) i) due to intramolecular vibrational redistribution (IVR) 
in Se. In effect, in the formalism this decay is treated as 
exponential. I$ is the energy of the ith zeroth order state in 
Se, and Ai represents the level shift of that state due to the 
interactions with the other zeroth order states in S0.28 

The quantity in parentheses in Eq. (3.6) serves as a 
smoothed delta function-it is peaked near Es and yields 
unity upon integration over Ej ( =@’ + Ai), after neglecting 
the dependence of ri and Ai on E and i. In applying Eq. 
(3.6) in part II, we shall use an essentially equivalent ex- 
pression 

A mTzi-- T T ‘Ivsi129 (3.7) 

the prime indicating a sum over the states I i> in So lying in 
a range A of energies comparable with I?. If, as in the 
present case, the density of relevant states in S’s is large 
enough, the right-hand side of Eq. (3.7) becomes indepen- 
dent of A in this range, the number of states 1 i) being 

proportional to A over a narrow range. The lack of detailed 
knowledge of Ai and Ii in Eq. (3.6) makes such a step 
necessary. For Eq. (3.7) to be meaningful, the density of 
relevant states in 5’s must be large enough that the result is, 
indeed, independent of the small A selected. 

We consider next the evaluation of V,. The state Is) 
denotes the eigenstate &r@z, in Sr, while i denotes 
$$$gO,i, an electronic-RRHO (rovibronic) state in Se. 
The perturbation operator Vrc is the usual nonadiabatic 
nuclear kinetic energy operator -$“/aQ”, and in the ma- 
trix element yields a term in which a/aQ operates once 
each on @$ and $Z&, and another term where it operates 
twice on r/go. The latter contribution is smaller than the 
firstI and so we write 

V,Z -C~~~l~l~~,)(~~l~l~~,i)~ (3.8) 
P P 

where mode Qp is of the appropriate symmetry to induce 
the internal conversion. 

by13 
In Eq. (3.8), the electronic matrix element is given 

a 

(3.9) 
(&‘,(r,Q) I W(r,QVaQ,l I$$,kQ)> 

= _ 
Es,(Q) --Es,,(Q) , 

where in the Condon approximation it is estimated at some 
point, e.g., Q=Qs, which may be removed from an equi- 
librium position (the “Q-centroid approximation” ) .29 We 
next introduce the perturbation expression for vs: in terms 
of the zeroth order (RRHO) states in St, 

q= c cjqj. (3.10) 
i 

When mode Q, is the inducing mode, thejth RRHO com- 
ponent of the S1 eigenstate contributes a term 

(4,jl~l~~,i,=(~~,il~l~~,j, 
P 

x Gp (+$il +;,j)’ (3.11) 

as the vibrational factor in Eq. (3.8). The product is over 
all vibrational modes Q,, there being s such modes, except 
for that mode QP which induces the transition.30 In Eq. 
(3.1 l), the usual approximation has been made that the 
vibrational wave function is a product of one-dimensional 
(or two-dimensional in the case of doubly degenerate 
modes) harmonic oscillator wave functions. The rotational 
matrix element in internal conversion gives unity. Overlap 
integrals for one- and two-dimensional harmonic oscilla- 
tors were evaluated by standard means.31-35 Any Duchin- 
sky mixing of ground and excited state vibrational modes is 
neglected for simplicity in the present study.8 In practice, 
some Duchinsky mixing could be included in the evalua- 
tion of the right-hand side of Eq. (3.9). 
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Ref. 50. They were obtained for the So state so those for S’r , 
needed for calculation of +K$, are approximated by those in 
So as before.50 The St component of the prepared state, an eigenstate 

of the St Born-Oppenheimer (BO) Hamiltonian, is writ- 
ten as The terms H,, in Eq. (4.2) include those arising from 

expansion of the inverse inertia tensor ,U which appears in 
the quantum-mechanical vibration-rotation Hamiltonian 
H (Ref. 51) ySl=k!Z,$~=+il C cj$z,j9 I 

where $J!$ ,j is the&h RRHO state. In the spectral region of 
interest, the formulas simplify when one of these RRHO 
states in St is the light state, i.e., carries the oscillator 
strength in the absorption (one or two photon) from the 
ground state. In a perturbation calculation, the remaining 
RRHO states in the above sum enter from vibrational and 
rotational coupling in S, with this light state. We next 
consider the vibration-rotation Hamiltonian, which per- 
mits calculation of cj . The most important of these cj’s are 
determined using an “artificial intelligence” (AI) search, 
with an evaluation function given later by Eq. (5.7). 

H=; G P,~(J,--P,) (Jg-p,d +; ; J$+U(Q> 
4 

J, is a body-fixed component of the rotational angular 
momentum operator J, with a=x, y, z. pa is the ath com- 
ponent of the vibrational angular momentum operator 

Pa = c sr& ,s&wkProp k,Ok ,b~[ 
The well-known method for treating matrix elements 

and eigenvalues of vibrating-rotating molecules is used, 
which involves a perturbation expansion of the molecular 
Hamiltonian, with terms arranged according to the pertur- 
bation order of the vibrational and rotational operators36-43 

H= c c Am+“-2Hm,. (4.2) 
m n 

Here, ,l. is a perturbation parameter, and m and n denote 
the degree of vibrational and rotational operators, respec- 
tively, Hz0 corresponding to the harmonic oscillator (HO) 
Hamiltonian and Hs2 to the rigid rotor (RR) one. The 
lowest order term containing Coriolis coupling H,, in- 
volves two normal modes Qk and Ql.44945 The higher order 
Coriolis terms HJ1 and H,, are also used. 

where the (T subscripts label components of degenerate 
modes and are absent for nondegenerate modes, Qk,flk is 
the operator for the (mass-weighted) normal mode (k,ak), 
Pbc, is the momentum conjugate to QI,,, and {&k,bF, is a 
Coriolis coupling coefficient. Its magnitude does not exceed 
unity.52The second and third terms on the right-hand side 
of Eq. (4.4) are the kinetic part of the normal mode ener- 
gies and the harmonic plus anharmonic potential energy 
U(Q), respectively. In its equilibrium nuclear configura- 
tion, the molecule has a principal axis system in which the 
inertia tensor is diagonal ,u$ = 6 aeJ. The rigid rotor 
Hamiltonian is recovered using ,uit and neglecting vibra- 
tional angular momenta and vibrational anharmonicities. 

The rovibrational energy of a planar oblate symmetric 
top, such as benzene, is given using RRHO and first order 
Coriolis terms by 

E=Evib+ B,[J(J+ 1) -iK2] F Beg&, (4.3) 

where Evib denotes the rotational origin. The total rota- 
tional quantum number is J, K is the magnitude of the 
body-fixed component of the angular momentum along the 
sixfold symmetry axis, and B, (replacing 2C,)46947 is the 
rotational constant (equilibrium configuration) for rota- 
tion about one of the in-plane axes. The Coriolis term on 
the right-hand side of Eq. (4.3) has a sign determined by 
the symmetry of the electronic state, and cekff is a coefficient 
which contains a sum over the degenerate vibrational 
modes which possess vibrational angular momenta Z$i .48 

The lowest order Coriolis interaction H,, arises from 
the cross terms in J and p in Eq. (4.4) upon substitution of 
,u~Z for pap there. As seen from Eqs. (4.4)-(4.5) H,, is a 
sum of terms, each of which contains two vibrational op- 
erators and one rotational operator. The terms Hml, m>3 
arise from the expansion of ,unp in Eq. (4.4) in normal 
mode coordinates. The Hml terms contain m vibrational 
operators and one rotational operator. In particular, for 
m = 2 and 3, we have 

In part II, the vibrational potential energy in the 
Hamiltonian is expanded as a polynomial in normal coor- 
dinates, while the kinetic energy has only terms quadratic 
in their conjugate momenta with coefficients which are 
constants. (Alternatively, the potential could be expanded 
in curvilinear coordinates.) Ab initio cubic curvilinear con- 
stants have been calculated for benzene,49 e.g., and are 
equal to the corresponding cubic anharmonic constants in 
a normal mode (rectilinear) description, e.g., as noted in 

X (P,Q,,Qb,,+Q,,Qb,,,P,) $3 (4.7) 

where ti~,~~aD and @$& are coefficients in the expansion 
OfP& 

pap = (I:;$ > - ’ 
I 
IZI;;’ + b; @,:;‘QL,,~~ 

9 b 

1 . 
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The coordinates Q are defined so that they vanish at the 
equilibrium geometry. Hsl and Hbl are seen to reflect a 
vibrational dependence of the Coriolis term. All of these 
operators play a role in the ensuing calculation. Terms in 
H up to the order A3 of perturbation theory will be in- 
cluded in the application in part II,53 so including, thereby, 
the H,l terms. 

In tist order, aside from the HZ1 Coriolis operator, the 
centrifugal distortion operator Hi, is included, which con- 
sists of the linear coordinate dependence of the pap coeffi- 
cient of the J,Jp terms. Hi2 is readily calculable, since the 
same fii,2zD coefficient enters as in H,, .53 The cubic an- 
harmonicity contributions H,, are also terms iirst order in 
A. h ab initio cubic force field is employed in the appli- 
cation in part II,2 together with the other relevant molec- 
ular constants used. 

origin has an energy slightly different from the simple sum 
of fundamental frequencies5’ because of extra anharmonic 
contributions. (The experimental fundamentals have some 
anharmonic contributions.) In the case of the S1 state of 
benzene, use of the experimental fundamental frequen- 
cies55p56 Yi yields calculated combination band origins with 
an estimated accuracy of perhaps f 10 cm-‘. The figure of 
f 10 cm-’ is based on comparison with calculated theo- 
retical fundamental and combination band frequencies us- 
ing the ab initio cubic anharmonic force field employed.49 

Vibrational matrix elements, including those found in 
Coriolis operators, typically contain factors such as @i/2 
and ~7~‘~) where these o/s are the harmonic frequencies. 
Since we use experimental frequencies instead of harmonic 
ones, an error is made in these terms, but it is small, much 
smaller than other error sources. 

In addition to the Coriolis operator H,, , terms second 
order in d include H,, Hvfl, and HM, where H, con- 
tains the quadratic coordinate term in the expansion of pap 
in the J,Jp term, and is again immediately obtained. It 
involves the same @$$~~~ as that in H41.54 The principal 
effect of H22 is-to shift the RRHO levels. Hyp is the term 
quadratic in vibrational angular momenta p,pp and by Eq. 
(4.5) is available from knowledge of the Coriolis coupling 
coefficients I$~~~,,,~~.~~ HN is the quartic anharmonicity. In 
the absence of data on the quartic anharmonicities, they 
are neglected in part II. 

In employing perturbation theory to obtain, order by 
order, the corrections to the light state which will yield 
Ys, the S1 component of the eigenstate, we note first that 
when the zeroth order light state is nondegenerate, nonde- 
generate perturbation theory may be used to expand $: in 
powers of the perturbation. For example, in part II, the 
1 14112;J,K) light state in benzene is nondegenerate, apart 
from doubling due to positive and negative k, since modes 
Qt and Q14 are both nondegenerate. 

Among the third order terms, one is quintic anharmo- 
nicity, which is neglected in part II. It is presently unavail- 
able, and in any case, is expected to contribute relatively 
few paths to dark states differing in five or six quanta, as 
discussed in part II. The third order term analogous to H22 
is H32. H32 has off-diagonal matrix elements whose mag- 
nitudes are very small, due a cubic coordinate dependence 
on the inertia tensor, and is neglected in part II. HiipS is a 
second order operator having two rotational matrix ele- 
ments that give inherently smaller couplings than when 
cubic anharmonic matrix elements alone are present. Its 
linear dependence on vibrational coordinates, which arises 
in third order, is neglected in part II. Thereby, the only 
third order term that is included there is the Coriolis op- 
erator H4i. 

The wave function I$$) can be expressed in terms of 
a projection operator P and the unperturbed light state 
I Icy>, where 

lfiGy=W~) (4.9) 

and, in the case -of nondegenerate perturbation theory,59 
the part of P operating on the ) &) subspace is 

P=P,+T V,lPo+: Vs, T v,,p,+ -. . , (4.10) 

where a denotes @&Ho, I$ is the eigenvalue for 1 r,@), 
VS, denotes the perturbation terms in the Hamiltonian for 
St, and PO and Q. are the projection operators 

po= l&><IclT:l~ (4.11) 

Qo= i;I I&%&l. (4.12) 

The symmetry requirements for nonzero cubic force 
constants in H3, and for Coriolis coupling coefficients in 
Hz1 are well known. 54 The symmetry restrictions for the 
terms containing the fig;,:: and !$$tQb,Ub coefficients for 
benzene, e.g., such as H3, and H41, have been derived 
individually and are given in Appendix B of Ref. 50. Be- 
cause of the symmetry restrictions, the number of terms 
which are summed over in the perturbation expressions is 
greatly reduced. 

In Eq. (4. lo), terms which do not end in PO have been 
omitted, since Q. I &) =O. Terms in which PO occurs more 
than once are present in Eq. (4. lo), but make only a minor 
contribution. 

To obtain RRHO energies, we use Eq. (4.3) (less the 
Coriolis energy which appears there), the vibrational en- 
ergy being the sum of harmonic frequencies that appear in 
the combination required. [The Coriolis energy, formally 
Hz1 in the expansion (4.2), is added to the RRHO energy 
subsequently in the calculation.] The combination band 

This perturbation expansion for the S1 wave function 
thereby involves multidimensional sums over “paths” 
which lead from the light state I to dark states in S,. A 
path contains a series of these virtual states that are cou- 
pled sequentially by terms in the vibration-rotation Hamil- 
tonian, states sometimes coupled by more than one path. 
In part II, the application to benzene involves paths that 
contain zero, one, and two Coriolis operators. A path with 
no Coriolis operator has only cubic anharmonic terms and, 
aside from shifts in energy levels, couples the light state to 
dark states in S, and, via internal conversion to the So 
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quasicontinuum, in a manner independent of J and K. 
Paths with a single Coriolis operator couple light and dark 
states with a matrix element proportional to K for parallel 
and to [J( J+ 1) - K(Kh 1 >] “2 for perpendicular Coriolis 
coupling. Paths with two Coriolis operators couple in a 
more complicated fashion. Their inclusion in part II en- 
sured that the calculations at high J were of an order con- 
sistent with the order used at low J.38 The coefficients ci for 
the components of [ $5) in Eq. (4.1) were obtained from 
the results of the perturbation expansion in Eq. (4.10). 

The individual matrix elements of the perturbation 
Vs,, which may be any of the operators through third 
order in the vibration-rotation Hamiltonian, are obtained 
in the usual way after factoring into vibrational and rota- 
tional matrix elements of the relevant vibrational and ro- 
tational operators. Matrix elements of vibrational opera- 
tors for one- and two-dimensional harmonic oscillators are 
well known.60 For matrix elements of rotational operators 
J,, JY, and J,, these latter are transformed to spherical 
tensor operators J, , and Jo and evaluated in the standard 
way.43 

V. SELECTION OF STATES IN THE S, AND S,, 
MANIFOLDS 

In the present procedure, a method is used in which 
specific So rovibronic states are selected for coupling with 
S’i based on their having large Franck-Condon factors 
with states in St having large coefficients Ci. The algorithm 
employed for the selection of these So states is a directed 
search over So states quasienergetic with the St eigenen- 
ergy Es1 (or really with the energy of the zeroth order light 
state), The range of energies is described below. Within the 
limitations imposed by energy and symmetry requirements 
discussed below, all So states are searched in a fashion 
which, in the language of artificial intelligence algorithms, 
is termed a “depth-first” search.61 Included in the search 
algorithm is the distinguishing between active vs inactive 
modes, an active mode Qk being defined as any mode with 
a sizeable overlap integral for nonzero changes Auk in its 
principal vibrational quantum number for internal conver- 
sion. An inactive mode has by definition an appreciable 
overlap integral only when A+=O. In general, a large 
change in frequency and, for totally symmetric modes, in 
displacement as we1131732 between the excited and the 
ground states contribute to the activity-of a normal mode 
from the resulting large overlap integral. 

The selection rules in internal conversion for specific 
vibrational modes are determined by the molecular point 
group and the irreducible representations of the modes in 
question. When an active mode is totally symmetric and is 
an accepting mode [i.e., is not involved in the nonadiabatic 
operator in Eq. (3.8)], we have 

Avk=O,h 1,~2,... (5.1) 
with any change in degree of excitation allowed.62 For non- 
totally symmetric active accepting modes 

Avk=0,~2,&4 ,..., (5.2) 

A. Helman and R. A. Marcus: Fluorescence excitation spectra. I 5007 

while for inactive modes, by definition 

Avk=O. (5.3) 

Finally, we have the additional restriction for degenerate 
modes 

Alk=O, (5.4) 

since otherwise the angular integration over a coordinate 4 
in a two-dimensional (degenerate) harmonic oscillator 
representation yields zero. When the promoting mode Qr is 
nondegenerate, Eq. (5.4) does not apply for the corre- 
sponding matrix element involving the operator a/aQ,. 
Equation (5.4) reduces a 3N- 6-dimensional search for So 
states to a (3N-6) -nnddimensional search, where nd is 
the number of degenerate modes (N is the number of at- 
oms). 

Since the quantum state for all inactive modes is spec- 
ified, one need not search over these modes when searching 
for states in So with large Franck-Condon overlap to a 
given RRHO basis state in the S1 eigenvector. If ni is the 
number of inactive modes, then the dimensionality of the 
search for So states is further reduced to na= (3N- 6) -nd 
--ni and is equal to the number of active vibrational 
modes. 

For these n, active modes, an n-dimensional search in 
the So manifold is performed, subject to the constraints 
imposed by Eqs. (5.1)-( 5.4). A prospective rovibronic 
state in the So manifold must satisfy several additional 
criteria in order to be selected. 

( 1) For internal conversion via the nuclear kinetic en- 
ergy operator, AJGO. and, when K exists, AK=0.63 

(2) The So state should lie in a prespecified narrow 
energy range A centered about the S1 energy Es,. In prac- 
tice, it is sufficient to choose the energy center as the zeroth 
order energy of the RRHO state in S’, that is the dominant 
contributor to the S1 eigenvector, which is typically the 
light state. In the statistical limit, it should be immaterial 
where one places this energy “window.” There is a large 
enough density of states in So, with similar numbers and 
coupling strengths, regardless of the placement of energy 
center. 

(3) Symmetry criteria specific to the promoting 
modes should be satisfied. For example, if Qn and Qb are 
promoting modes of the appropriate symmetry, with Q, 
active and Qb inactive, then when Q, is the promoting 
mode [a Q, in Eq. (3.8)] 

Au,= f 1,&3,... and Avb=O, (5.5) 

since there is a a/aQ, operator in the integrand of the 
mode Q, overlap integral in Eq. (3.11)) thereby switching 
the even-only rule in Eq. (5.2) to odd only, since mode Qb 
is inactive. If Qb is the promoting mode, then 

Av,=O,rt2,zt4 ,... and Avb=+l, (5.6) 

since mode Q, is active. Mode Qb is subject to the odd-only 
rule due to the a/dQb operator, and being inactive, is fur- 
ther restricted to the smallest allowed changes in its quan- 
tum number, namely, f 1. 
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When there is more than one promoting mode, care 
must be taken to first sum over the allowed couplings to a 
given RRHO state in So and then take the squared ampli- 
tude [cf. Eq. (3.7)]. If, as in-the case of benzene, access to 
a given RRHO state in So occurs via only one promoting 
mode, owing to the even-odd selection rules, this consid- 
eration is unnecessary. For the 5’i -So internal conversion 
in benzene, e.g., Q, and Q6 correspond to modes Qi4 (ac- 
tive) and Qr5 (inactive), respectively. 

(4) The tentative So rovibronic state must have a 
large Franck-Condon overlap integral with the dark ze- 
roth order state in the Si eigenvector to which it is coupled 
via internal conversion. A cut-off value for the magnitude 
of this overlap is empioyed, since consideration of all ten- 
tative So states would be impractical. Specifically, an eval- 
uation function (E.F.) is defined 

E-F.= Ici($~,ila/aQpI~~,i> I (5.7) 

for the coupling of the ith RRHO state in the S1 eigenvec- 
tor (with coefficient Ci there) to thefih RRHO state in the 
So manifold. The state I $&) is accepted provided its E.F. 
equals or exceeds the predetermined minimal value and the 
other criteria ( 1) -( 3) are also satisfied. 

Let us suppose that N states in S, have been selected in 
the AI search. A diagonalization of these states determines 
the approximate S1 “eigenstates,” where the light state 
makes nonnegligible contributions. If those with a substan- 
tial light state content are rather sparse, there may only be 
one such eigenstate in the observed width of the rotational 
line. In that case, the formalism described in this paper is 
appropriate. 

If there are two or more such light state rich eigen- 
states, e.g., because of a resonance between the light state 
and one or more dark states, there will be a splitting in the 
line, unless the broadening of each due to IC to So is com- 
parable with or exceeds the separation of these two or more 
St eigenstates. In the application to a particular band in 
part II, the system treated has one S, eigenstate. If two S, 
eigenstates overlap because of the broadening arising from 
coupling to So, a two discrete state in a continuum formal- 
ism would be employed.7 

VI. CONCLUDING REMARKS 

A formalism is given for the calculation of fluorescence 
excitation spectra for systems in which a molecular eigen- 
state contains a first excited (St) electronic state compo- 
nent and components in So due to internal conversion cou- 
pling, and is separated from other such states. The method 
is readily applicable to systems having vibration-rotation 
coupling and internal conversion, provided that detailed 
molecular parameters are available. The So and St states 
are selected using an AI search algorithm that accepts can- 
didate states in So and S1 having the largest product of the 
coefficients in the perturbation expansion in S, and the 
Franck-Condon factors to the So state, i.e., the terms with 
the largest E.F. defined by Eq. (5.7). The calculated fluo- 
rescence spectral lines are approximated as Lorentzians 
whose widths are determined by the effective coupling to 

the So manifold, a coupling found by summation over the 
explicit couplings between the selected S, and So states. 
The formalism is applied in part II to the channel three 
problem in benzene. 
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APPENDIX A: DERIVATION OF EQ. (3.6) FOR Anr 

Each zeroth order state 1 i) in So is treated as a discrete 
state in a quasicontinuum of the remaining states in So, 
I j), j#i. The usual partitioning formalism is employed.59 
Let P and Q denote the projection operators I i) (il and 
Zi~iI j) ( j ( , and H denote the Hamiltonian for So. 

If G(E) denotes the resolvent operator (E-H 
+ ie) -I, then inserting P + Q into the identity 

(E-H+k)G(E) =I (Al) 
before G and operating on the left by P and on the right by 
P to obtain Eq. (A2), and alternatively on the left by Q 
and on the right by P to obtain Eq. (A3), we have 

(E-HpP+iE)Gpp-HHpeGep=P, (AZ) 

LH~pGpp~ (E-HH,,+ie)G,=O, (A3) 

where Hpp, Gpp,... denote PHP, PGP,... . Elimination of 
GeP yields the well-known result 

Gpp= [E-HH,,--H&E-HH,+k)-‘H,]-‘P. 
C-44) 

Using Eq. (3.41, H&E--HHQq+k)-‘HQ, can be 
written in terms of its real xpp and imaginary irpp/2 parts 

GPP= (E-Hpp-xpp+irPP/2)-1P, (A5) 

where 

XPP=P[HP~W-H~~> -‘HQpI, 

l?pp/2=?rHpQS(E-HQQ)HQP. 

(A6) 

(A7) 

Gii the quantity defined in Eq. (3.5) of the text is equal to 
<i\ Gppl i). Introducing the expressions for P and Q, we 
then have 

Xi=P ( k,k’ ’ ( 
C H.k k (As) 

lF’i=2T C, H,(klS(E-HQQ) I k’)Hkti, 
k,kt 

= (A9) 

where P denotes the principal part, and Xi and Fi denote 
(il;yppl i) and- -( i I rppl i) . Strictly speaking, the evaluation 
of these expressions would involve diagonalization of the 
Hamiltonian H,, , the I k)‘s being coupled by anharmonic 
and Coriolis interactions. If one assumes a phase averaging 
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when summing over k’ at a fixed k and approximates the 
eigenvalues of HQQ y b their zeroth order values ,5$ Eqs. 
(A8) and (A9) become 

*i=P( ; s), (AlO) 

l?iZ2TC IHik12S(E-Eok>, 
k 

(All) 
where Eq. (AlO) is to be understood as an integral over 
the k states in S,-,, which are treated as a continuum. 

We note that (il Hpp+xppI i} equals @ + VsO,ii + Xi 
when H is written as Ho + VS,, , where VS, is the perturba- 
tion part of the S,-, vibrational-rotational Hamiltonian. One 
then sees from Eq. (AlO) that this quantity represents the 
energy of the ith state up to and including second order of 
perturbation theory, its zeroth order nature being de- 
scribed by I i). In Eq. (Al 1 ), I’j represents the usual 
golden rule result for decay into a “prediagonalized” con- 
tinuum (here, prediagonalized by neglecting the off- 
diagonal terms in H&. The Ai in Eq. (3.6) represents the 
shift VsO,ii + ~f of the ith level @, due to the interactions, to 
second order, with the other states in 5’c. 
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