Theory of fluorescence excitation spectra using anharmonic-coriolis
coupling in S, and internal conversion to S,. I. General formalism

Adam Helman and R. A. Marcus

Arthur Amos Noyes Laboratory of Chemical Physics,® California Institute of Technology, Pasadena,

California 91125

(Received April 24 1992; accepted 24 June 1993)

A treatment of one- or two-photon fluorescence excitation spectra is described using the
vibration—rotation coupling of zeroth order states in the excited electronic state and
nonadiabatic coupling to the ground state. Using perturbation theory, experimental harmonic
frequencies, an anharmonic force field, and various theoretical Coriolis coupling constants, a
quasistationary molecular eigenstate in an excited electronic state S is first calculated. The S,
eigenstate is then coupled via the nonadiabatic nuclear kinetic energy operator (internal con-
version) to rovibronic states in the ground state manifold, the latter states approximated in a
simple manner. A search algorithm is used to select the S, dark states and the S states. Both
the perturbation theory coefficient and the Franck-Condon factors are employed in the evalu-
ation function used in the search. The results are applied in part II to the channel three problem

in benzene.

I. INTRODUCTION

Radiationless transitions, internal conversion (IC),

and intersystem crossing (ISC) in molecules have been the
subject of numerous studies./™ Both processes may com-
pete with radiative decay channels, such as fluorescence
from spin singlets and phosphorescence from spin triplets.
The behavior of an isolated molecule under collision-free
conditions is determined by the density of states at the
energy of the prepared vibronic state in the initial elec-
tronic state, the density of states in the final electronic state
at the same energy, and other more specific factors. The
small, intermediate, and large molecule cases®® result from
the interplay of these state densities with the magnitude of
the various couplings.

One of the systems where an increasingly detailed body
of spectroscopic information has become available is ben-

zene. In the benzene system, a “‘channel three” region oc-
curs, namely, a region where the benzene fluorescence dis- .

appears rather suddenly with increasing excess energy in
the first excited singlet state S;. It occurs at an energy
somewhat above 3000 cm~'. The explanation most fre-
quently invoked is that of internal conversion.” ™ In early,
vibrationally resolved studies below channel three, inter-
system crossing was cited as the dominant channel for ra-
diationless decay in benzene.” However, whereas the ISC
rate is weakly dependent on the initial vibrational energy in
S, the IC rate increases greatly with increasing vibrational
energy. 1011 Thereby, IC becomes the dominant decay
channel at energies over 3000 cm™!. In the past decade, the
J and K dependencies of the filuorescence excitation spectra
of various bands in benzene have been studied,” J refer-
ring o the total angular momentum and X to its compo-
nent along the sixfold symmetry axis. Qur own interest was
prompted by these results and their relationship to more
general questions such as intramolecular vibrational
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relaxation and ‘“non-Rice-Ramsperger—Kassel-Marcus
(RRKM)” behavior. In the present paper, a treatment of

- the problem is formulated, drawing on previous work. It is

applied in part I1'? to the channel three problem.

" In the present paper, the internal conversion and the
fluorescence quantum yield and excitation spectra are
treated. A vibrational-rotational perturbation expression is
set up for a quasimolecular eigenstate in the excited elec-
tronic stdate S;. The availability of a cubic anharmonic
force field and various low and higher order Coriolis coef-
ficients for benzene makes a detailed application appealing.
Numerous states enter into the perturbation expression,
and their relative importance for inclusion in the wave
function is assessed using a search algorithm which
weights the state according to its Franck—Condon factors
for internal conversion and according to its coefficient in
the perturbation expression. The §; quasimolecular eigen-
state is then introduced into a “discrete state in a contin-
uum formalism” to obtain the behavior of the resulting
spectral line including its width and fluorescence intensity.

One question is whether or not, for the molecule and
energy investigated, the bath of states in .S; form a contin-
uum, or a lumpy continuum, which is coupled to the light
state and to the continuum of states in S;. When there are
about N important states per cm ™! in §; that couple sig-
nificantly to the light state NV as estimated later in this
paper, the “molecular eigenstates” in .S in which the light
zeroth order state has a significant contribution have a
mean separation of 1/N cm~'. When this separation is
significantly larger than the experimental width of the ro-
tational line of interest in .S, one can use, as in the present
paper, a single .S; molecular eigenstate to treat the present
phenomenon and couple it with the continuum of states in
So. A procedure modified from that used here would be
needed in cases where there are a number of .§; molecular
eigenstates involving the light state within the observed
width of the rotational line. Furthermore, the presumption
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of a single light state is not essential, and the treatment can
be extended to the more general case.

The outline of the paper is as follows: In Sec. II, the
interaction of a quasieigenstate of a molecule in S; with a
large number of states in .Sy is discussed, using the discrete
state in a continuum formalism. Expressions for the fluo-
rescence quantum yield and fluorescence excitation spec-
tral intensity are given in Egs. (2.1) and (2.2) for the one-
and two-photon absorption cases, respectively. The nonra-
diative linewidth which appears in Eq. (2.3) is treated in
Sec. III using a golden rule type formula, account being
taken of the explicit .S and .S, states to be summed over, as
selected by an artificial intelligence (AI) search. Evalua-
tion of matrix elements for the internal conversion is dis-
cussed there. In Sec. IV, the method used for determining
terms in the quasieigenstate in .5, which is dominantly the
zeroth order light state in character, is described, using
high order perturbation theory. In Sec. V, the selection of
states in the dense manifold of S states is’ discussed. A
brief summary is given in Sec. VI.

Il. FLUORESCENCE EXCITATION SPECTRUM

The model of a single state coupled to a quasicontin-

uum of states has been treated theoretically many times,

e.g., Ref. 13—-15. This model, which has also been applied
to predissociation,16'17 among other problems, is useful for
treating the two-photon Doppler-free fluorescence excita-
tion spectra of particular interest in part II. The density of
states in the ground state electronic manifold .S, is so high
that it can be regarded as a quasicontinuum of those states
at the energies of interest,'®!°

In applying this formalism to the channel three ben-
zene problem, the discrete state consists of the “light” state
in S perturbed by other (dark) zeroth order states in .S,
the light state in part II being |14}1% J,K). The most im-
portant dark states in part II typically differ from that state
by five or six vibrational quanta.

In a fluorescence excitation spectrum, the total fluo-
rescence intensity is measured at a given absorption fre-
quency, upon integrating the fluorescence over all emission
frequencies. In the present case, the fluorescence quantum
yield under collision-free conditions ¢ in a simple kinetic
prescription for a single rotational line is given by

@ r=kz/(ks+kic+kisc)

where &y, kic, and kigc are rate constants for the compet-
ing processes of fluorescence, internal conversion, and in-
tersystem crossing, respectively, and the A’s are the corre-
sponding linewidths for the excited state eigenstates (A
=kjc in Hertz). Equation (2.2) follows in the absence of
intersystem crossing, which can be important in the decay
of other vibronic bands, however.?’ The quantity k £ s
known, in the case of benzene, from experiments in which
the excitation is of vibronic bands in the S, state well below
the onset of competing processes. A golden rule-like ex-
pression is given below for k- and is used in the subse-
quent detailed calculations.

(2.1)
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The problem of a prepared light state interacting with
a quasicontinuum of dark states has been treated previ-
ously,!*!® and only the final results are given here, as spe-
cialized to the one- and two-photon absorption (TPA)
cases. By the light state, we shall refer to a zeroth order
rigid rotor-harmonic oscillator (RRHO) state that is ac-
cessible by one- or two-photon absorption from the ground
state. A zeroth order dark state is dark with respect to
absorption, i.e., not readily accessible from the ground
state by absorption, but it is not dark with respect to emis-
sion. The focus of the present study is in the rotational
state (J,K) dependence of the fluorescence excitation spec-
tra. The fluorescence intensity I for a homogeneously
broadened line is written as a Lorenzian function of exci-
tation energy E, where Eg_is the energy of the S, eigenstate

by the proportionality?+

I(E—~Es,) < (J"K") (| Ca* CyiCrot( T, K" ", K") | )?

X (2J+ 1)fnuc(‘]"’K")fBoltz(J”’K")
XA/ (Ap+Ag)]

AptA,
XE—Es D2+ (U8 (Ap+ AL

In Eq. (2.3), ¢; denotes the coefficient of the light state
in the S eigenstate. C, is the electronic matrix element®
for the relevant component of the electric dipole operator
in the one-photon case, or of the two-photon absorption
(TPA) tensor from state S; to S;; in the two photon case,
C.ip is the vibrational matrix element of the dipole moment
operator (one photon), or of the appropriate component of
the TPA tensor? (two photon) for the transition from the
ground state vibrational level to the “light” vibrational
state in the excited state,”? f,,.(J”,K”) is a nuclear spin
statistical factor for the ground state species prior to exci-
tation, % fp 1., (J",K") is the Boltzmann weighting for
the ground state at the rotational temperature of the ex-
periment, and C,,(J'.K’,J",K") is the rotational matrix
element, possibly complex, of J, (=0 or 1) in the
one-photon case, or in the two-photon case, is a sum of
rotational matrix elements for several components of the
TPA tensor.”” In Eq. (2.3), the I(E — Eg,) contains both

the above (/,K) dependent terms and others such as A,.

- (2.3)

ll. CALCULATION OF THE INTERNAL CONVERSION
RATE A,

The statistical limit expression for the nonradiative
linewidth A, is given by a golden rule formula which al-
lows for different magnitudes of the coupling matrix ele-
ment V; between the state s in §; and background states
{l} in S,,%®

Ape=21, | Vy|28(E,—E)) (3.1)
I

in units of #=1. In our case, s is a quasimolecular eigen-
state in S; (a product of electronic and vibration—rotation
wave functions z/r ¢ ), and / labels quasimolecular eigen-

states in 5.
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For practical implementation, it is desirable to re-
express Eq. (3.1) in terms of the zeroth order rigid rotor
harmonic oscillator (RRHO) states |7) in Sy, instead of in
terms of its eigenstates |/). If H denotes the electronic-
rovibrational Hamiltonian for Sy, then introducing E;| )
=H|/) and the completeness relation =,|7) (/| =1 in Eq.
(3.1), the latter can be rewritten as

Anr=21T<SI VIC6(ES'—H)VICIS>
=2 Im{s| VicG(E,) Vic|s), (3.2)

where V¢ is the perturbation operator respons1b1e for the
S1-8, IC, G(E) is the Green’s function

G(E)=(E—H-+ie)™! (3.3)
and where the well-known relation®’
! —-P( 1) Fird(x) (3.4)
xtie

was used, P denoting “principal part of.” Upon introduc-
ing before and after G in Eq. (3.2), the completeness re-
lation 3;|7){i|=I for the zeroth order states in S, and
assuming that in a statistical limit the phases in the off-
diagonal (i,j) terms cancel in the double sum for A, we
have

Ayp=—2Im Z | V|G Ey), (3.5)
where V; and G; denote (s[Vlclz) and (zlGiz)

Each zeroth order state | /) in S can itself be regarded
as a discrete state in a quasicontinuum. That formalism is
then used to obtain a more convenient functional form for
G;. Using the standard partitioning argument, summa-
rized in Appendix A, where the approximations used are
noted, it follows that in terms of the RRHO states |{) in
Sy, we have

I-‘,/Z’IT
E—~E}—A)*+(T/2)%

Ape=2m 2 |Vg|? ( (3.6)
H
Here, I'; represents the rate of disappearance of the state
}7) due to intramolecular vibrational redistribution (IVR)
in Sy. In effect, in the formalism this decay is treated as
exponential. E? is the energy of the ith zeroth order state in
S, and A, represents the level shift of that state due to the
interactions with the other zeroth order states in S;.2
The quantity in parentheses in Eq. (3.6) serves as a
smoothed delta function—it is peaked near E, and yields
unity upon integration over E; (=EJ+ A,), after neglecting
the dependence of I'; and A; on E and i. In applying Eq.
(3.6) in part II, we shall use an essentially equivalent ex-
pression

27
z_ 2 Sil2’
i

the prime indicating a sum over the states |7) in S; lying in
a range A of energies comparable with I'. If, as in the

(3.7

present case, the density of relevant states in S, is large

enough, the right-hand side of Eq. (3.7) becomes indepen-
dent of A in this range, the number of states |i) being

hys., Vol. 9
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proportional to A over a narrow range. The lack of detailed
knowledge of A; and I'; in Eq. (3.6) makes such a step
necessary. For Eq. (3.7) to be meaningful, the density of
relevant states in .Sy must be large enough that the result is,
indeed, independent of the small A selected.

‘We consider next the evaluation of ¥;. The state |s)
denotes the eigenstate }11 s, in S, while i denotes
e xp s 21 electronic-RRHO (rovibronic) state in Sj.
The perturbation operator Vic is the usual nonadiabatic
nuclear kinetic energy operator —132/8Q?, and in the ma-
trix element yields a term in which 3/9Q operates once
each on and 1,lls ,i» and another term where it operates

The Iatter contribution is smaller than the
first!? and so we write

twice on

Vi — AP aQ 195, (3.8)

#5614
where mode Q, is of the appropriate symmetry to induce
the internal conversion.

In Eq. (3.8), the electronic matrix element is given
by'? .

(r,Q)la—Q-l (LQ))
(3.9)
(%, Q) | [U(1,Q) /00,1 | 45, (r,Q))
o E5(Q)—Es,(Q) ’

where in the Condon approximation it is estimated at some
point, e.g., Q=Q,, which may be removed from an equi-
librium position (the “Q-centroid approximation”).”’ We
next introduce the perturbation expression for ¢§1 in terms

of the zeroth order (RRHO) states in S,

Ec} S]:J

When mode @, is the inducing mode, the jth RRHO com-
ponent of the S, eigenstate contributes a term

(3.10)

d S5
<¢S0,1|8Q l S1,1> (¢ ,lla—(TpquQp 1>

So 145

x I 65,197, (3.11)
as the vibrational factor in Eq. (3.8). The product is over
all vibrational modes Q,, there being s such modes, except
for that mode Q, which induces the transition.*® In Eq.
(3.11), the usual approximation has been made that the
vibrational wave function is a product of one-dimensional
(or two-dimensional in the case of doubly degenerate
modes) harmonic oscillator wave functions. The rotational
matrix element in internal conversion gives unity. Overlap
integrals for one- and two-dimensional harmonic oscilla-
tors were evaluated by standard means.’"* Any Duchin-
sky mixing of ground and excited state vibrational modes is
neglected for simplicity in the present study.® In practice,
some Duchinsky mixing could be included in the evalua-
tion of the right-hand side of Eq. (3.9).
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IV. DETERMINATION OF THE S, QUASIEIGENSTATE

The S; component of the prepared state, an eigenstate
of the S| Born~Oppenheimer (BO) Hamiltonian, is writ-
ten as

Ws, =95 9% =95, Z VS s (4.1)

where 1,[:?; 7 is the jth RRHO state. In the spectral region of

interest, the formulas simplify when one of these RRHO
states in S| is the light state, i.e., carries the oscillator
strength in the absorption (one or two photon) from the
ground state. In a perturbation calculation, the remaining
RRHO states in the above sum enter from vibrational and
rotational coupling in §; with this light state. We next
consider the vibration-rotation Hamiltonian, which per-
mits calculation of ¢;. The most important of these c;’s are
determined using an “artificial intelligence” (AI) search,
with an evaluation function given later by Eq. (5.7).

The well-known method for treating matrix elements
and eigenvalues of vibrating-rotating molecules is used,
which involves a perturbation expansion of the molecular
Hamiltonian, with terms arranged according to the pertur-
bation order of the vibrational and rotational operators>¢—*

H=2 X A™"—?H, (4.2)
m n

Here, A is a perturbation parameter, and m and » denote
the degree of vibrational and rotational operators, respec-
tively, Hy, corresponding to the harmonic oscillator (HO)
Hamiltonian and Hy, to the rigid rotor (RR) one. The
lowest order term containing Coriolis coupling H,; in-
volves two normal modes Q, and Q;.*** The higher order
Coriolis terms Hj; and Hy; are also used.

The rovibrational energy of a planar oblate symmetric
top, such as benzene, is given using RRHO and first order
Coriolis terms by

E=Evib+ Be[J(J+ 1) _%Kz] + Begeﬂ‘K’ (4‘-3)

where E; denotes the rotational origin. The total rota-
tional quantum number is J, K is the magnitude of the
body-fixed component of the angular momentum along the
sixfold symmetry axis, and B, (replacing 2C,)** is the
rotational constant (equilibrium configuration) for rota-
tion about one of the in-plane axes. The Coriolis term on
the right-hand side of Eq. (4.3) has a sign determined by
the symmetry of the electronic state, and {4 is a coefficient
which contains a sum over the degenerate vibrational
modes which possess vibrational angular momenta /4 4
In part II, the vibrational potential energy in the
Hamiltonian is expanded as a polynomial in normal coor-
dinates, while the kinetic energy has only terms quadratic
in their conjugate momenta with coefficients which are
constants. (Alternatively, the potential could be expanded
in curvilinear coordinates.) 4b initio cubic curvilinear con-
stants have been calculated for benzene,49 e.g., and are
equal to the corresponding cubic anharmonic constants in
a normal mode (rectilinear) description, e.g., as noted in

5005

Ref. 50. They were obtained for the .S, state so those for S|,
needed for calculatlon of Y. , are approximated by those in

S, as before.

The terms H,,,,, in Eq. (4.2) include those arising from
expansion of the inverse inertia tensor u which appears in
the quantum-mechanical vibration-rotation Hamiltonian
H (Ref. 51)

1 1 o
=3 2 HasFa—pa) (Jg—pp) +3 2 Pi+UQ)

1
57 2 ea- (4.4)
24
J, is a body-fixed component of the rotational angﬁlar
momentum operator J, with a=x, y, z. p, is the ath com-
ponent of the vibrational angular momentum operator

Pa= 2 &2 10QkoPlop (4.5)

k,o‘k ,1,0'1

where the o subscripts label components of degenerate
modes and are absent for nondegenerate modes, Qk,ak is

the operator for the (mass-weighted) normal mode (k,01),
P;;, is the momentum conjugate to Q;,,, and gl b is a
Coriolis coupling coefficient. Its magnitude does not exceed
unity.’ The second and third terms on the nght-hand side
of Eq. (4.4) are the kinetic part of the normal mode ener-
gies and the harmonic plus anharmonic potential energy
U(Q), respectively. In its equilibrium nuclear configura-
tion, the molecule has a principal axis system in which the
inertia tensor is diagonal p{y=38,qu%; . The rigid rotor
Hamiltonian is recovered using uSy and neglecting vibra-
tional angular momenta and vibrational anharmonicities.

The lowest order Coriolis interaction H,; arises from
the cross terms in J and p in Eq. (4.4) upon substitution of
g9 for pi,p there. As seen from Egs. (4.4)—(4.5) H, is a
sum of terms, each of which contains two vibrational op-
erators and one rotational operator. The terms H,,;, m>3
arise from the expansion of p,p in Eq. (4.4) in normal
mode coordinates. The H,,; terms contain m vibrational
operators and one rotational operator. In partlcular, for
m=2 and 3, we have

H31——— 2 2 dorg )-la‘”“‘*(paoa,%+Qa,,,ap,,)J,;,
afB a0, *
(4.6)
H41——— 2 X urghadd,

a,B a,a,b,0y

X (paQa,a-aQb,o-b + Qa,o-aQb,abpa ) JB ’ ) (47 )

where Q,(,lgfﬁ and Q2

a0 o, ar€ coefficients in the expansion
of Haps

Bop= (I(B)I(e))—l I(é)_,_ z Q(I)OLBQ b0,

’Ub
b,oy

2
) + Z z Q((:,o)-;‘{;a'ch,cerc,ac‘f'

boy o,

(4.8)
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The coordinates Q are defined so that they vanish at the
equilibrium geometry. H3; and H,; are seen to reflect a
vibrational dependence of the Coriolis term. All of these
operators play a role in the ensuing calculation. Terms in
H up to the order A3 of perturbation theory will be in-
cluded in the application in part II,> so including, thereby,
the Hy, terms. : :
In first order, aside from the H,; Coriolis operator, the
centrifugal distortion operator H,, is included, which con-
sists of the linear coordinate dependence of the p,z coeffi-
cient of the J,Jg terms. H, is readily calculable, since the
same Qf,l():ﬁ coefficient enters as in Hj;.>® The cubic an-

harmonicity contributions H, are also terms first order in
A. An ab initio cubic force field is employed in the appli-
cation in part I, together with the other relevant molec-
ular constants used.

In addition to the Coriolis operator Hj,, terms second
order in A include H,,, H}3”, and Hy,, where H,, con-
tains the quadratic coordinate term in the expansion of g
in the J,Jz term, and is again immediately obtained. It

involves the same Qf;:;fob as that in Hy;.%* The principal

effect of Hj, is to shift the RRHO levels. VHgng is the term
quadratic in vibrational angular momenta p,pgz and by Eq.
(4.5) is available from knowledge of the Coriolis coupling
coefficients §§cf‘a)k, ,’01.38 H,, is the quartic anharmonicity. In
the absence of data on the quartic anharmonicities, they
are neglected in part II.

Among the third order terms, one is quintic anharmo-
nicity, which is neglected in part II. It is presently unavail-
able, and in any case, is expected to contribute relatively
few paths to dark states differing in five or six quanta, as
discussed in part II. The third order term analogous to H,,
is Hy,. Hj, has off-diagonal matrix elements whose mag-
nitudes are very small, due a cubic coordinate dependence
on the inertia tensor, and is neglected in part IL. H}?" is a
second order operator having two rotational matrix ele-
ments that give inherently smaller couplings than when
cubic anharmonic matrix elements alone are present. Its
linear dependence on vibrational coordinates, which arises
in third order, is neglected in part II. Thereby, the only
third order term that is included there is the Coriolis op-
erator H41.

The symmetry requirements for nonzero cubic force
constants in Hjy and for Coriolis coupling coefficients in
H,, are well known.>* The symmetry restrictions for the

terms containing the QSH)":’,‘: and Q(Qza)"ffng,% coefficients for

benzene, e.g., such as Hj;, and H,;, have been derived
individually and are given in Appendix B of Ref. 50. Be-
cause of the symmetry restrictions, the number of terms
which are summed over in the perturbation expressions is
greatly reduced.

To obtain RRHO energies, we use Eq. (4.3) (less the
Coriolis energy which appears there), the vibrational en-
ergy being the sum of harmonic frequencies that appear in
the combination required. [The Coriolis energy, formally
H,; in the expansion (4.2), is added to the RRHO energy
subsequently in the calculation.] The combination band

A. Helman and R. A. Marcus: Fluorescence excitation spectra. |

origin has an energy slightly different from the simple sum
of fundamental frequencies™ because of extra anharmonic
contributions. (The experimental fundamentals have some
anharmonic contributions.) In the case of the S, state of
benzene, use of the experimental fundamental frequen-
cies®* v, yields calculated combination band origins with
an estimated accuracy of perhaps =+ 10 cm ™. The figure of
%10 cm™! is based on comparison with calculated theo-
retical fundamental and combination band frequencies us-
ing the ab initio cubic anharmonic force field employed.*

Vibrational matrix elements, including those found in
Coriolis operators, typically contain factors such as w}?
and wj /2| where these w;’s are the harmonic frequencies.
Since we use experimental frequencies instead of harmonic
ones, an error is made in these terms, but it is small, much
smaller than other error sources. )

In employing perturbation theory to obtain, order by
order, the corrections to the light state which will yield
Ws, the S; component of the eigenstate, we note first that

when the zeroth order light state is nondegenerate, nonde-
generate perturbation theory may be used to expand 1/1}‘1 in

powers of the perturbation. For example, in part II, the
| 1411%,J,K) light state in benzene is nondegenerate, apart
from doubling due to positive and negative %, since modes
Q, and Q,, are both nondegenerate.>”*®

The wave function | 2'9‘1 ) can be expressed in terms of

a projection operator P and the unperturbed light state
|¢(}), where

|45)=P| 4

and, in the case of nondegenerate perturbation theory,”
the part of P operating on the |3) subspace is
Q Q_ Q

70
"; ‘lslf)()—‘—‘:‘f‘fs1 ;‘ VSIP0+ ST,y

(4.9)

P=P,+ (4.10)

where a denotes E3—H,, EJ is the eigenvalue for |4J),
Vs, denotes the perturbation terms in the Hamiltonian for

S, and Py and Q, are the projection operators

Po= |y (¥, (4.11)
Qo= 2 |49 (4.12)
=T

In Eq. (4.10), terms which do not end in Py have been
omitted, since Q,|¥7) =0. Terms in which P, occurs more
than once are present in Eq.- (4.10), but make only a minor
contribution.

This perturbation expansion for the S; wave function
thereby involves multidimensional sums over “paths”
which lead from the light state I to dark states in S;. A
path contains a series of these virtual states that are cou-
pled sequentially by terms in the vibration—rotation Hamil-
tonian, states sometimes coupled by more than one path.
In part II, the application to benzene involves paths that
contain zero, one, and two Coriolis operators. A path with
no Coriolis operator has only cubic anharmonic terms and,
aside from shifis in energy levels, couples the light state to
dark states in S| and, via internal conversion to the S,

J. Chem. Phys., Vol. 99, No. 7, 1 October 1993
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quasicontinuum, in a manner independent of J and K.
Paths with a single Coriolis operator couple light and dark
states with a matrix element proportional to X for parallel
and to [J(J+1) —K(K+1)]"2 for perpendicular Coriolis
coupling. Paths with two Coriolis operators couple in a
more complicated fashion. Their inclusion in part II en-
sured that the calculations at high J were of an order con-
sistent with the order used at low J.*® The coefficients c; for
the components of |¢g ) in Eq. (4.1) were obtained from

the results of the perturbation expansion in Eq. (4.10).
The individual matrix elements of the perturbation
VS,» which may be any of the operators through third

order in the vibration—rotation Hamiltonian, are obtained
in the usual way after factoring into vibrational and rota-
tional matrix elements of the relevant vibrational and ro-
tational operators. Matrix elements of vibrational opera-
tors for one- and two-dimensional harmonic oscillators are
well known.® For matrix elements of rotational operators
Jx, J,, and J;, these latter are transformed to spherical
tensor operators J.. , and J; and evaluated in the standard

way.® )

V. SELECTION OF STATES IN THE S, AND S,
MANIFOLDS

In the present procedure, a method is used in which
specific S, rovibronic states are selected for coupling with
S based on their having large Franck—Condon factors
with states in S having large coefficients ¢;. The algorithm
employed for the selection of these .S, states is a directed
search over Sy states quasienergetic with the S eigenen-
ergy Eg, (or really with the energy of the zeroth order light
state). The range of energies is described below. Within the
limitations imposed by energy and symmetry requirements
discussed below, all S, states are searched in a fashion
which, in the language of artificial intelligence algorithms,
is termed a “depth-first” search.®! Included in the search
algorithm is the distinguishing between active vs inactive
modes, an active mode Qy, being defined as any mode with
a sizeable overlap integral for nonzero changes Avy in its
principal vibrational quantum number for internal conver-
sion. An inactive mode has by definition an appreciable
overlap integral only when Av,=0. In general, a large
change in frequency and, for totally symmetric modes, in
displacement as well*’”? between the excited and the
ground states contribute to the activity of a normal mode
from the resulting large overlap integral.

The selection rules in internal conversion for specific
vibrational modes are determined by the molecular point
group and the irreducible representations of the modes in
question. When an active mode is totally symmetric and is
an accepting mode [i.e., is not involved in the nonadiabatic
operator in Eq. (3.8)], we have

(5.1)

with any change in degree of excitation allowed.%? For non-
totally symmetric active accepting modes

Av=0,21,22,...

Avp=0,x£2,+4,..., (5.2)

while for inactive modes, by definition

Avk=0. (53)

Finally, we have the additional restriction for degenerate
modes o

Al,=0, (5.4)

since otherwise the angular integration over a coordinate ¢
in a two-dimensional (degenerate) harmonic oscillator
representation yields zero. When the promoting mode @, is
nondegenerate, Eq. (5.4) does not apply for the corre-
sponding matrix element involving the operator d/9Q,.
Equation (5.4) reduces a 3.V —6-dimensional search for .S,
states to a (3N—6) —n,dimensional search, where n; is
the number of degenerate modes (X is the number of at-
oms). ]

Since the quantum state for all inactive modes is spec-
ified, one need not search over these modes when searching
for states in S, with large Franck—-Condon overlap to a
given RRHO basis state in the S eigenvector. If »; is the
number of inactive modes, then the dimensionality of the
search for S states is further reduced to n,= (3N —6) —n,
—n; and is equal to the number of active vibrational
modes.

For these n, active modes, an n-dimensional search in
the S, manifold is performed, subject to the constraints
imposed by Egs. (5.1)—(5.4). A prospective rovibronic
state in the S, manifold must satisfy several additional
criteria in order to be selected.

(1) For internal conversion via the nuclear kinetic en-
ergy operator, AJ=0 and, when K exists, AK=0.

(2) The S, state should lie in a prespecified narrow
energy range A centered about the S energy E 5 In prac-
tice, it is sufficient to choose the energy center as the zeroth
order energy of the RRHO state in .S that is the dominant
contributor to the S, eigenvector, which is typically the
light state. In the statistical limit, it should be immaterial
where one places this energy “window.” There is a large
enough density of states in S, with similar numbers and
coupling strengths, regardless of the placement of energy
center.

(3) Symmetry criteria specific to the promoting
modes should be satisfied. For example, if Q, and Q, are
promoting modes of the appropriate symmetry, with Q,
active and Q, inactive, then when Q, is the promoting
mode [a @, in Eq. (3.8)]

Av,=+1,+3,... and Av,=0, (5.5)

since there is a d/3Q, operator in the integrand of the
mode Q, overlap integral in Eq. (3.11), thereby switching
the even-only rule in Eq. (5.2) to odd only, since mode @,
is inactive. If Q, is the promoting mode, then

Av,=0,+2,+4,. and Avy==+1, (5.6)

since mode @, is active. Mode Q,, is subject to the odd-only
rule due to the 8/9Q, operator, and being inactive, is fur-
ther restricted to the smallest allowed changes in its quan-
tum number, namely, 1.
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When there is more than one promoting mode, care
must be taken to first sum over the allowed couplings to a
given RRHO staté¢ in .S and then take the squared ampli-
tude [cf. Eq. (3.7)]. If, as in'the case of benzene, access to
a given RRHO state in S, occurs via only one promoting
mode, owing to the even—odd selection rules, this consid-
eration is unnecessary. For the §;— S internal conversion
in benzene, e.g., @, and @, correspond to modes Q;4 (ac-
tive) and Q;5 (inactive), respectively.

(4) The tentative Sy rovibronic state must have a
large Franck-Condon overlap integral with the dark ze-
roth order state in the .S eigenvector to which it is coupled
via internal conversion. A cut-off value for the magnitude
of this overlap is employed, since consideration of all ten-
tative S, states would be impractical. Specifically, an eval-
uation function (E.F.) is defined

EF.=|cAy% 10/0Q 105 | (5.7)

for the coupling of the ith RRHO state in the .S eigenvec-
tor (with coefficient ¢; there) to the jth RRHO state in the
S, manifold. The state |5 ) is accepted provided its E.F.

equals or exceeds the predetermmed minimal value and the
other criteria (1)—(3) are also satisfied.

Let us suppose that N states in S| have been selected in
the Al search. A diagonalization of these states determines
the approximate S| “eigenstates,” where the light state
makes nonnegligible contributions. If those with a substan-
tial light state content are rather sparse, there may only be
one such eigenstate in the observed width of the rotational
line. In that case, the formalism described in this paper is
appropriate.

If there are two or more such light state rich elgen
states, e.g., because of a resonance between the light state
and one or more dark states, there will be a splitting in the
line, unless the broadening of each due to IC to S is com-
parable with or exceeds the separation of these two or more
S eigenstates. In the application to a particular band in
part II, the system treated has one S, eigenstate. If two S,
eigenstates overlap because of the broadening arising from
coupling to Sy, a two discrete state in a continuum formal-
ism would be employed.’

VI. CONCLUDING REMARKS

A formalism is given for the calculation of fluorescence
excitation spectra for systems in which a molecular eigen-

state contains a first excited (S,) electronic state compo- -

nent and components in S due to internal conversion cou-
pling, and is separated from other such states. The method
is readily applicable to systems having vibration—rotation
coupling and internal conversion, provided that detailed
molecular parameters are available. The S; and S, states
are selected using an Al search algorithm that accepts can-
didate states in S and S having the largest product of the
coefficients in the perturbation expansion in S, and the
Franck—-Condon factors to the S, state, i.e., the terms with
the largest E.F. defined by Eq. (5.7). The calculated fiuo-
rescence spectral lines are approximated as Lorentzians
whose widths are determined by the effective coupling to

A. Helman and R. A. Marcus: Fluorescence excitation spectra. |

the Sy manifold, a coupling found by summation over the
explicit couplings between the selected .S, and S states.
The formalism is applied in part II to the channel three
problem in benzene.
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APPENDIX A: DERIVATION OF EQ. (3.6) FOR A,

Each zeroth order state |i) in Sy is treated as a discrete
state in a quasicontinuum of the remaining states in .S,
| 7, j=%i. The usual partitioning formalism is employed.*
Let P and Q denote the projection operators |#) (/| and
3;.4:17){Jj|, and H denote the Hamiltonian for Sj.

If G(E) denotes the resolvent operator (E—H
++i€) "1, then inserting P+Q into the identity

(E—H+ie)G(E)=1 (A1)

before G and operating on the left by P and on the right by
P to obtain Eq. (A2), and alternatively on the left by Q
and on the right by P to obtain Eq. (A3), we have

(E—Hpp+i€)Gpp—HpgGop=P,

~HyGpp+ (E—Hyp+i€) Ggp=0,
where Hpp, Gpp,... denote PHP, PGP,... .
Gp yields the well-known result
Gpp=[E~Hpp—Hpo(E—Hgpp+i€) ~'Hpp] ~'P.
(A4)

. Using Eq. (3.4), Hpp(E—Hpy+ie) 'Hyp can be
written in terms of its real y pp and imaginary /T pp/2 parts

(A2)
(A3)

Elimination of

Gpp=(E~Hpp—xpp+iTpp/2)'P (A5)
where

xpp=P[Hpo(E—Hpg) ~'Hgppl, (A6)

T/ 2=7Hpg5(E—Hgg)Hop. (A7)

G;; the quantity defined in Eq. (3.5) of the text is equal to

“(i|Gpp|i). Introducing the expressions for P and Q, we

then have
——P( SH <k‘——1— k>H ) (A8)
Xi= & ik E_HQQ‘ ki s
T=2r g{) Hylk|8(E—Hgg) | k') Hy;, (A9)

where P denotes the principal part, and y; and I'; denote
(] xpp|i) and (le‘Pplz) Strictly speaking, the evaluat1on
of these expressions would involve diagonalization of the
Hamiltonian Hy,, the | k)’s being coupled by anharmonic
and Coriolis interactions. If one assumes a phase averaging
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when summing over &’ at a fixed k and approximates the
eigenvalues of Hy, by their zeroth order values E3, Egs.
(A8) and (A9) become

v (Z | Hy|? )

=27 % | Hy| ZS(E—E?J»

(A10)

(Al11)

where Eq. (A10) is to be understood as an integral over
the k states in .Sy, which are treated as a continuum.

We note that (/| Hpp+ypp|i) equals EY + Vs,ii + Xi
when H is written as Hy + Vs, where Vg is the perturba-

tion part of the S, vibrational-rotational Hamiltonian. One
then sees from Eq. (A10) that this quantity represents the
energy of the ith state up to and including second order of
perturbation theory, its zeroth order nature being de-
scribed by [i). In Eq. (All), T'; represents the usual
golden rule result for decay into a “prediagonalized” con-
tinuum (here, prediagonalized by neglecting the off-
diagonal terms in Hyp). The A, in Eq. (3.6) represents the
shift Vs, iz + x:of the zth levelE0 due to the interactions, to

second order, with the other states in .S,.
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