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We introduce a point of view for treating the dynamical tunneling splitting of symmetric local
mode vibrational states in ABA molecules (A =H typically) which is the one we have employed
in treating the vibrational spectroscopy of CH overtones in molecules such as (CX;);YCCH.
Namely, the vibrational coupling corresponding to the dynamical tunneling in semiclassical
mechanics via many intermediate off-resonance weak transitions between initial and final states
can be treated by a standard high-order perturbation theory. We apply that method to the
present simpler problem of tunneling splittings in ABA molecules, and compare the results with
those of exact diagonalization, the semiclassical method, and the periodic orbit quantization. Of
all the approximate methods, the perturbation theory was found to provide the best approxi-
mation to the results of exact diagonalization for the system treated. The relationship between
these three methods and application to the problem of vibrational relaxation in polyatomic

Perturbation theory approach to dynamical tunneling splitting of local
mode vibrational states in ABA molecules

molecules with tunneling mechanism of intramolecular vibrational relaxation is discussed.

. INTRODUCTION

In recent experiments' on intramolecular vibrational
relaxation (IVR) of the acetylenic CH stretch excitation in
(CH;),CCCH and (CHj;);SiCCH molecules, an unusually
slow relaxation, on the time scale of several hundred pico-
seconds, has been observed. Our analysis® has shown that
in these molecules the vibrational relaxation of the excited
CH states to the appropriate quasiresonant background
states occurs through a sequence of many weak intermedi-
ate off-resonance transitions. This type of relaxation in the
semiclassical limit of quantum mechanics corresponds to
tunneling in action space between tori, which has been
called in the literature dynamical tunneling.**

In this paper we discuss the concept of dynamical tun-
neling in a simplier one-dimensional case and apply a con-
ventional perturbation theory, which we employed for
treating vibrational couplings in the (CX;);YCCH mole-
cules, to treat the splittings of symmetric local mode vibra-
tional states in ABA molecules, which are attributéd to
dynamical tunneling. For a model local mode Hamiltonian
we compare the results of perturbation theory with those of
the semiclassical method, the periodic orbit quantization
method, and with the results of exact diagonalization and
show how different approaches are related to each other.
Our results provide, we believe, a deeper insight into the
nature of the dynamical tunneling phenomenon.

The qualitative semiclassical concept of dynamical bar-
riers and dynamical tunneling emerged more than a decade
ago in the studies of near degenerate vibrational states in
two-dimensional potentials with the symmetry of ABA
molecules.>® Lawton and Child® proposed that the small
splittings of the vibrational states of H,O corresponding to
the excitation of individual OH bonds (local modes) are
due to tunneling. The tunneling appeared to be unusual in
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that it was in momentum space rather than in coordinate
space. Later, Heller and Davis* generalized and refined this
qualitative idea and introduced a term of dynamical tun-
neling in order to distinguish it from the usual potential
tunneling. They noted that even in the absence of any bar-
riers of the potential function, classical integrals of motion
can break the phase space into several equivalent zones
(tori) such that a trajectory with initial conditions in one
of the zones would remain localized in the same zone in-
definitely long, thereby breaking the symmetry of the po-
tential. The localized zones were associated with dynami-
cal wells separated by dynamical barriers. The classical
trajectories localized in the equivalent zones can be asso-
ciated with the degenerate quantum states. Due to tunnel-
ing these states mix to produce correct symmetry combi-
nations, and the degenerate states split. In this picture the
resulting split components in the energy spectrum of ABA
molecules, the doublets, were associated with tunneling
through the dynamical barriers.

In a related study Kellman’ developed a concept of
dynamical symmetry breaking. Harter and Patterson®’ re-
cently treated the problem of multiplets in rotational spec-
tra of polyatomic molecules from a semiclassical perspec-
tive and came to the same conclusion that the clusters of
eigenstates observed in the energy spectrum result from
tunneling in phase space. The equivalence of the local
mode problem and the rotational problem was discussed by
Lehmann.’ In a more general context the correspondence
between vibrational resonant interactions and the rota-
tional problem has been recently reviewed by Uzer.!! Sim-
ilar ideas of quantum mechanical tunneling have also been
discussed in connection with a heavy atom blocking effect!?
in symmetric molecular chains such as CCMCC and for
the problem of avoided crossings in nonlinear vibrational
sys’cems.13

A quantitative one-dimensional semiclassical treat-
ment of a local mode problem in ABA molecules was de-
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veloped by Sibert, Reinhardt, and Hynes.!*! Using
Chirikov’s angle-action representation of a resonant sys-
tem,'® these authors found that the local mode problem
can be reduced to quantization of an effective hindered
rotor. Their analysis provides a transparent distinction be-
tween local and normal mode states as those associated
with two different types of motion—a hindered rotation
and torsion. A similar classification of two possible types of
motion in a nonlinear system with an isolated resonance
was introduced earlier by Noid and Marcus,'” who also
implicitly considered dynamical barriers and developed a
quantitative semiclassical method for treating the splittings
of degenerate bound states. Sibert, Reinhardt, and
Hynes!*!® showed that the removal of the twofold degen-
eracy of free rotor states by a hindering potential corre-
sponds to the splitting of local mode states. To find the
splittings they applied semiclassical formulas developed by
Miller'® for the hindered rotor problem.

The picture of Sibert, Reinhardt, and Hynesl“'15
seemed to be in contradiction with the analysis of Lawton
and Child® and that of Davis and Heller.* The latter au-
‘thors associated local mode states with the motion below a
dynamical barrier, a barrier in momentum (action) space,
while in the picture of Sibert, Reinhardt, and Hynes!4!?
those states were associated with the rotor motion above
the hindering potential barrier, but in angle space. Later
Stefanski and Pollak!® provided an explanation to this ap-
parent paradox with their method utilizing the periodic
orbit quantization.?>?* Their method is based on the sta-
bility analysis and semiclassical quantization of stable pe-
riodic classical trajectories corresponding to the local mode
wells and unstable periodic trajectories corresponding to
the dynamical barriers.*?>

In the present paper a high-order perturbation theory
approach to dynamical tunneling splitting of local modes is
described. In this approach the tunneling amplitude (and
the splitting) A is calculated as a product of appropriate
matrix elements V;; with corresponding energy denomina-
tors along the quantum path over virtual off-resonance
states connecting two local mode states {a) and |b),

Vi Vs Vw
' (E\—E,) (E,—Ep) (E,—E;) "

A=V, (1.1)
We show how this familiar expression is related to the
semiclassical tunneling formula and periodic orbit quanti-
zation method, providing a practical way of treating dy-
namical tunneling in multidimensional -cases. Of all the
approximate methods, the perturbation theory method was
found to provide the best approximation to the results of
exact diagonalization.

The structure of the paper is as follows. In Sec. II the
rotor Hamiltonian for the local mode problem is intro-
duced. In Secs. III and IV the semiclassical and periodic
orbit methods are briefly reviewed. Our main result is pre-
sented in Sec. V, where the relationship between the per-
turbation theory approach to dynamical tunneling and two
other approximate methods of the previous sections are
discussed, and the results of various approximations are
compared with those of exact diagonalization. In Sec. VI a
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generalization of the perturbation method to multidimen-
sional systems and some aspects of the dynamical tunnel-
ing mechanism of IVR in polyatomic molecules are dis-
cussed.

ll. ROTOR HAMILTONIAN

It is well known'® that a system of two coupled non-
linear oscillators in the vicinity of an isolated resonance
can be reduced to an effective hindered rotor, if action-
angle variables are used. The case of two Morse oscillators
with a bilinear coupling, which describes the vibrational
Hamiltonian for the ABA molecule with a frozen bending
motion, was treated with this method in Refs. 14 and 15.
The bilinear coupling is sufficient to describe the 1:1 reso-
nance between two bonds AB and BA,?* it can be of po-
tential or kinetic nature.*'%13

After transformation to a sum P and a difference p of
the action variables of the two bonds, the original vibra-
tional Hamiltonian, consisting of two coupled identical
Morse oscillators, takes the following form:'*13

H=Hy—Hy. 2.1

In this equation H,, is the Morse oscillator for the action
variable P,

02
Hy=0P—75 P, (22)
where Q and D are the parameters of the bonds. Hpy, is the
hindered rotor Hamiltonian,

2
HR=%+ Ve cos(24)), (2.3)
where p and 9 are the action variable (momentum) and
the conjugate angle, respectively, and ¥V, and I are the
effective barrier and the moment of inertia of the rotor.
The higher frequency terms in Eq. (2.3), corresponding to
other than the 1:1 resonances, have been ne:glected.l“’15

In a quantized form P=(m--1), where m is the sum
of vibrational quantum numbers of the two bonds, m=n;
+#,, and p=r=n;—n, is the difference of these quantum
numbers. The Hamiltonian (2.1) does not contain a coor-
dinate conjugate to P, hence P is an integral of the motion
and m is a good quantum number. Accordingly, the dy-
namics of (2.1) is reduced to an effective one-dimensional
hindered rotor (2.3). The factor 2 in the argument of
cos(2%) in Eq. (2.3) accounts for the fact that the variable
pin a quantized form can change only by quanta =2, when
a one quantum exchange occurs between n; and n,,

Ap=A(n;—ny)=+2. (2.4)

In the absence of interaction between the vibrational
bonds, V=0, the quantum states of the whole molecule
are then described by the two quantum numbers, m and »,
with the energy

2 R I‘2
o (m+ 1P~

E(mpr)=0(m+1)— 2"

(2.5)
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The barrier height ¥, is a function of both P and p. In
Refs. 14 and 15 the authors adopted an approximation in
which ¥, depends only upon the zero-order energy of the
system E°. As will be seen later, this simplified assumption
of independence of ¥, of the individual actions of bonds is,
in fact, a critical point for applicability of the semiclassical
formula, since only in this case can one easily express the
action of the rotor as an explicit function of the angle. This
function is explicitly used in the calculation of the semi-
classical action, as in Eq. (3.2). Although such an approx-
imation is not important for the perturbation method dis-
cussed later in the present paper, we follow the approach of
Refs. 14 and 15 in order to be able to compare their results
with ours. Thus, for each unperturbed state with a pair of
quantum numbers (m,r), there is a corresponding rotor
Hamiltonian (2.3) with a barrier

V0= Vo(m,r). (26)
An explicit expression for ¥} is given in Refs. 14 and 15.

There are two possible types of classical motion of the
effective hindered rotor—precession and libration,!*!>!7
depending upon whether the energy of the rotor is higher
than the potential barrier ¥, or not. This allows one to
distinguish naturally between normal and local modes of
ABA molecules.>'*!3 The difference between classical nor-
mal and local modes is in the degree of the vibrational
mixing of AB and BA bonds. For libration the momentum
p oscillates with changing sign, such that the average mo-
mentum p is zero, while for precession it is not. The im-
plication of this fact for a vibrational system is easy to
understand. If one recalls that the momentum p is a dif-
ference of the action variables of the two bonds in the ABA
molecule (i.e., p is proportional to the difference of vibra-
tional energies in two bonds) then it becomes clear that in
the course of libration the total vibrational energy symmet-
rically oscillates between AB and BA. bonds, which is typ-
ical for normal modes. For precession the vibrational en-
ergy is asymmetrically distributed between AB and BA
bonds all the time (because the average p=n;—n,, where
n, and n, are vibrational numbers of AB and BA bonds, is
nonzero), and vibrational exchange between AB and BA is
restricted. The higher the asymmetry of distribution of en-
ergy the smaller the energy exchange and vibrational mix-
ing. This occurs because the vibrational frequency of a
bond depends on the degree of excitation. The higher the
difference in excitation, the farther vibrational frequencies
of the two bonds from the 1:1 resonance, which is a nec-
essary condition for the classical energy exchange. Thus,
vibrations of AB and BA bonds can essentially be uncor-
related, if the difference of vibrational energies (or, equiv-
alently, of the actions) of the two bonds is large. This type
of behavior is typical for local modes. %13

In the rotor picture, a large difference in energies of
two bonds for a local mode trajectory corresponds to a
large value of the rotational energy p*/21I, large compared
with the barrier ¥,. For each rotational energy there are
two symmetric local mode trajectories corresponding to
two opposite directions of rotation. The classical evolution
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of the rotational momentum for such symmetric trajecto-
ries is described as follows:

p(2) = £po-+ (Vo/wg)cos(2wgt), (2.7)

where p, is a constant and wy, is the unperturbed rotational
frequency, wg=0Hg(py)/dpy=py/I. As is seen from Eq.
(2.7), when py is large compared with Vy/wp, the changes
of p(t) are small, which is a sign of the vibrational decou-
pling of the two bonds. Two different signs of p, corre-
spond to two opposite directions of rotation of the rotor
with the same energy. In a quantum picture these two
trajectories correspond to two degenerate quantum local
mode states, which split when tunneling between the two
trajectories is allowed. This splitting is the subject of dis-
cussion in the following sections in this paper.

ll. SEMICLASSICAL DYNAMICAL TUNNELING

The semiclassical expression for the splitting of two
degenerate levels in a symmetric double well has been
known for a long time?®

A o
A : (3.1)

2 27
where @, is the frequency of vibrations in the well and the
action integral of the system, 6, is calculated between two
turning points on both sides of the double well barrier.
Usually this formula is used in coordinate space. It can also
be used for momentum coordinate p, which is a “tunneling
coordinate” for a local mode problem.? The two minima of
a double well problem correspond to +p,, the opposite
momenta of two degenerate classical trajectories of the hin-
dered rotor, as discussed in the preceding section. We note
that in coordinate space the local mode states lie above the
barrier top ¥, of the hindering potential; however, in mo-
mentum space the same local states are separated by a
dynamic barrier. The frequency w, is associated with the
time evolution of the momentum variable p which oscil-
lates around zp, in each of the dynamic wells, as in Eq.
(2.7). From the classical equations of motion for the
Hamiltonian (2.3) one finds that the frequency associated
with the p variable is approximately two times the rota-
tional frequency, wog=2wr=208Hy/dp, as is seen in Eq.
(2.7). The factor of 2 comes from the fact that the pertur-
bation ¥, cos 21, which give rise to oscillations of p, has a
double frequency. Hence, in the period of one rotation the
system passes twice the point from which it can tunnel.
The action integral 0 is calculated as usual:

o= f PP (3.2)
with
p=[21(E}— V; cos(2¢))1V?, (3.3)

where E% is the rotational energy of the unperturbed state
and the integral (3.2) is taken between two turning points,
p=0. We note that the action integral can be explicitly
calculated only when ¥ is independent of p, which is usu-
ally not the case.
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TABLE 1. Splittings of the local mode vibrational states for the effective rotor Hamiltonian, Eq. (2.3).
Parameters for the Hamiltonian correspond to H,O (Refs. 14 and 15): I=4D/Q? D=44500 cm~},
0 =3871 cm™!. For each of the local mode states (m,r) shown are the corresponding rotational energy Eg,
the rotation barrier V,, Eq. (2.6), the exact splitting A, the perturbation theory splitting Apy, the

semiclassical splitting Age, and the periodic orbit splitting Apg .

(m,r) E} Vo Ay Apr Agc Apo
(2,2) 168.36 76.74 16.12 17.49 19.98 17.88
(3,3) 378.83 97.81 2.01 2.06 2.25 1.24
(4,4) 673.46 116.77 0.134 0.135 0.144 0.032
(5,5) 1052.0 133.72 5.7 x1073 5.8 x1073 6.1x1073 3.3x10~*
(6,6) 1515.3 148.79 1.73x 10~* 1.74x10™* 1.8x10~* 1.5% 1076
(3.2) 168.36 99.10 25.7 29.2 34.1 32.6
(5,3) 378.80 137.35 5.4 5.7 6.4 47

As has been argued in Sec. II, the local mode states are
those lying above the barrier, Ex> V. In this case the
turning points, p=0, correspond to pure imaginary values
of angle ¥y=i7n. For a pure imaginary argument cos 2
becomes an exponentially growing function, cosh(27). Ac-
tual integration then takes the form

£ ]

o= 1" *dn[zz(E%— ¥, cosh(21m))1V2, (3.4)
—1

where 7* is the point where the expression under the

square root becomes zero,

¥ =% Arch(E%/Vy). (3.5)

Thus, the semiclassical procedure of calculation of the
splitting of a degenerate local mode state, within the rotor
Hamiltonian model, is as follows. For a particular state
(m,r), one defines Vy(m,r) from Eq. (2.3), substitutes
ES=+*/2I in Eq. (3.4), and finally uses wo=2wz=2r/I to
calculate the splitting by Eq. (3.1). There are several ap-
proximations involved in this procedure, as, for example,
in the equation for E%. More detailed and accurate semi-
classical theory of tunneling splittings for a hindered rotor
was developed in Refs. 18 and 26. The splitting for a num-
ber of local mode states in a system with parameters given
in Refs. 14 and 15 were recalculated with a procedure
described above, and the results are shown in Table 1.

IV. PERIODIC ORBIT QUANTIZATION METHOD.
HARMONIC APPROXIMATION

Although the rotor Hamiltonian method described
above gives a quantitative answer to the problem of dy-
namical tunneling, the qualitative picture stemmed from
this method seems to be quite different from that suggested
by Lawton and Child® and that of Davis and Heller.* In-
deed, in the rotor picture the local mode states are those
lying above the barrier ¥} and splitting of the degenerate
states seems to arise due to the over-the-barrier reflection
rather than due to the underbarrier tunneling, as one
would expect. Stefanski and Pollak' proposed to use a
periodic quantization method?®?? which helps to resolve
this paradox.

In this method the stability properties of the classical
periodic trajectories are studied. Two stable local mode
periodic orbits correspond to two symmetric wells while

the unstable periodic orbit, which is a symmetric stretch of
ABA, corresponds to the dynamical barrier. The complex
stability frequency (the stability frequency is a frequency
associated with the time evolution of small deviations from
a periodic trajectory'®?2) of the unstable periodic orbit is
then associated with the frequency at the barrier maximum
and the real stability frequency of the stable periodic orbit
is associated with the harmonic frequencies for the wells.
Energies corresponding to the barrier top and the bottoms
of the wells are then calculated from the usual semiclassi-
cal quantization rules applied to corresponding periodic
trajectories. Finally, the conventional semiclassical for-
mula (3.1) for the harmonic barrier {(which contains only
the frequencies of the wells and the barrier and the barrier
height) is used with self-evident substitutions.

The two stable local mode orbits in the rotor picture
correspond to free rotation with opposite direction, i.e., to
two rotor states with +r. The corresponding quantized
total energy is Eoy(m)—E%(r), as seen in Eq. (2.5). The
unstable periodic orbit (the symmetric stretch of the ABA
molecule) corresponds to the rotor at rest, p=0, at one of
the maxima of the potential ¥ cos(2¢). The correspond-
ing quantized total energy is E3,(m) — V. Hence, the dy-
namical barrier height is E%(#) — Vp. One then finds the
stability frequencies of the periodic orbits. Real frequency
of the stable orbit corresponds to the frequency of vibra-
tions in the well, i.e., frequency of oscillations of the mo-
mentum variable p(z). In this case it is 20z, as we dis-
cussed in the preceding section, and also after Eq. (2.7).
The pure imaginary frequency of the unstable orbit corre-
sponds to the frequency of the barrier. The latter in our
case is the imaginary frequency o, at one of the maxima of
the potential ¥, cos 24, which is

w,=(4Vy/ V2 (4.1)

The next step is to calculate the action integral under
the barrier, assuming that it has a form of an inverted
parabola. As Stefanski and Pollak'® realized, the result is
just the harmonic approximation of Egs. (3.2)-(3.4),

m dnT2I(E° 12{ 4 2¥o 2 v
Ghzf—nz‘ MI2I(EG— V)] ( —mn)

=7 (EY— Vo) (I/4V) V2, (4.2)
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where the turning points now correspond to the harmonic
approximation, %F. Thus, the periodic quantization
method provides a harmonic approximation of the semi-
classical expression, and so it is not surprising that the
results are less accurate than those of the original semiclas-
sical expression, as seen in Table I. The method, however,
clearly shows that the top of the dynamical barrier can be
associated with the rotor quantum states with small mo-
mentum p=r. Further insight into the nature of dynamical
tunneling can be be obtained by studying the relationship
between the semiclassical approximation and the quantum
perturbation theory result.

V. PERTURBATION THEORY APPROACH

In this section we show how the two semiclassical ap-
proaches, briefly reviewed in the previous sections, are re-
lated to ordinary quantum perturbation theory.

In a quantum approach one considers the potential
Vo, cos(21) of the Hamiltonian (2.3) as a perturbation for
a free rotor with energies Ex(k) and wave functions

(¢|k),

E%(k)=K%/21, (5.1)
(P k) =1/ 2me™. (5.2)

The perturbation couples states which differ in two rota-
tional quanta with the matrix element Vy/2. Two local
mode states (m,2r) are coupled through a sequence of
intermediate virtual transitions over the states with quan-
tum numbers — (r—2) <k<(r—2).

The local mode nature of the vibrational states indi-
cates that there is no significant mixing of the zero-order
states of the two bonds with different energies. (However,
the degenerate states are strongly mixed.) This means, in
turn, that the coupling matrix elements, ¥/2, between the
zeroth-order states is small, compared with the appropriate
energy differences. Otherwise, the states would be strongly
mixed, as in the normal mode picture. The relative small-
ness of ¥V, provides the basis for application of the pertur-
bation theory.

Formally, for the perturbation calculation of the split-
ting of two rotor states (+7) [or two local mode states
(m,+r) as in Sec. II] to be valid, it is sufficient to require
that the matrix element V,/2 be small compared with the
following energy denominator:

Vo

7<ER(r) —ERp(r—2)=2wg. (5.3)

The splitting of the degenerate states (=x7) is two
times the value of the effective coupling matrix element
between these states. In the lowest nonzero order of per-
turbation theory the effective coupling is a product

s @
272 m=_—{(r—2) E%(r)— R(m)

This expression is related in a simple way to semiclassical
expression (3.1).

(5.4)
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To show this result we first change the variable of
integration in Eq. (3.2). Instead of integrating over the
angle variable in Eq. (3.2) we integrate over the momen-
tum p. After integration by parts the integral for 8 can be
rewritten as

o= " dom(p), (5.5)

—Pm

where 7= — i is a complex angle variable. In Eq. (5.5) p,,
is the minimum classical value of the momentum of the
rotor excited above the barrier V. The integration in Eq.
(5.5) is over classically forbidden values of the momen-
tum, |p|<p,. The appropriate expression for n(p) is
found from Eq. (3.3) with ¢=iny,

1re=1 Ex(r)—Eg(p)
2 2 ’

cosh(n)= (5.6)
where E%(p) =p?/2I. For most values of p in the interval
— D <D<Pn except for those in the vicinity of =p,,, 0<p,,
— |p|<Vo/@g, one can disregard the negative exponent in
the cosh and write

E%(r) —ES
1 ( (7 R(P)). (5.7)

n(p)=51n Vo2

The integral (5.5) then can be approximated by a sum over
discrete points, as in Fig. 1. The discrete integration points
are chosen in such a way as to correspond to the quantized
values of the p variable, which are the integer points within
the interval —p,,<p<p,,. The integration step is Ap=2, in
accordance with allowed increments of the quantized val-
ues of p, as in Eq. (2.3). Then, the whole expression for
exp(—0) can be written (as in the Appendix) as

v, =2 Vy/2
—0_p 2 5.8
=y k=_1(1,_2> ES(r) —Ex(k)’ (3.8)
/ (5.9)

F=m o —EBt—2)

where E?Q(k) =Kk2/2I are the energies of a free rotor. Ex-
cept for the factor F, Eq. (5.8) coincides with the pertur-
bation theory expression for the effective matrix element
between two local mode states (m,7) and (m,—r). This
part of the expression comes from a trapezoidal approxi-
mation of the integral over the internal discrete points — (#
—2)<m<(r—2), as in Fig. 1. The factor F is the contri-
bution of the end points of the interval. As is shown in the
Appendix, the factor fin Eq. (5.9) is well approximated by
ez—s, where 8 is a small, compared with unity, positive
number which depends on V. We note that the numerical

value of f is very close to 2,
[~ 0m. (5.10)

The energy denominator of the factor F can be written as

OER(r)

ER(r)—ER(r—2)=2 ar

=205. (5.11)
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FIG. 1. (a) Complex phase angle 7 as a function of the momentum p (in
units of #) in Eq. (5.5) for a local mode state (m,r)=(6,6). The inte-
gration in (5.5) is over the interval between the two turning points,
P+ (r— Vo/wp), where 7=0. Within the interval there are several
discrete integration points — (r—2)<k<(r—2), corresponding to the in-
termediate quantum states of the rotor. Contribution of the end points,
dashed segments, are evaluated separately from the internal points; see
the Appendix. (b) Two quantum local mode states, (m,d-r)=(6,+6),
are coupled through a sequence of the intermediate rotor states, —(»
—2)<k<(r—2), corresponding to the discrete integration points in (a).
The transition amplitude between the neighboring states is Vy/2. The
energy scale is —Ejy, in accordance with the rotor contribution to the
total energy, Eq. (2.1).

In this expression wg is the free rotor frequency corre-
sponding to the local state (m,+r), which is the same
frequency wy as in the preceding section, discussed after
Eq. (3.1).

It is seen now that the multiplication of the exponen-
tial factor e~% in Eq. (5.8) by wy/2, according to Eq.
(3.1), reproduces essentially the perturbation expression
for the matrix element (5.4). It is not exactly the same
expression because of the approximations made.

In Table I the perturbation theory results are com-
pared with those of numerical integration of the semiclas-
sical expressions, and the results of exact diagonalization.
As is seen in Table I, perturbation theory gives the best
approximation to the exact diagonalization. From the
above analysis one can conclude that the perturbation the-
ory provides a discrete counterpart to the integrals of the
semiclassical expression. It is interesting that the two
methods agree as well as they do even when there are only
few off-resonance states coupling them, as in the case of
(m,+2) local states. One reason for such an agreement is
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that the function being integrated in Eq. (5.5) is a loga-
rithm which is a slowly varying function at most of the
points of the integration interval except those in the vicin-
ity of the end points.

It is worthwhile mentioning the similarity of the re-
sults and ideas of this section and those of the discrete

variable representation, discussed recently®”?® in a different
context.

V1. DISCUSSION

As is shown in the preceding section, in addition to
two semiclassical points of view on dynamical tunneling
perturbation theory provides another description of the
phenomenon as a sequence of weak virtual transitions over
the intermediate off-resonance states. In Ref. 29 it was
argued that such a “nonclassical” mechanism of energy
transfer is basically different from tunneling and resembles
an activation barrier crossing, rather than tunneling. It is
interesting to observe, however, that the case of the usual
potential tunneling can be presented in a similar way, as a
sequence of virtual transitions through the off-resonance
states.

__Consider tunneling between two points a and b sepa-
rated by a potential barrier ¥ (x). Instead of a continuum
coordinate x we introduce a discrete approximation {x;},
as one would do for a numerical integration. The best way
to choose a given number of points of integration has been
discussed in the literature.””*® For our purpose it is suffi-
cient to choose them equally spaced on the x axis. In the
discrete representation of the x coordinate one can write an
equivalent Hamiltonian of a particle hopping between the
discrete sites {x;}. In this Hamiltonian the potential energy
at a point x; can be associated with the energy of the state,
| ;3. The discrete form of the kinetic energy operator pro-
vides the hopping amplitudes between neighboring states.
In the lowest order of approximation for the discrete ki-
netic energy operator, there are only transitions between
the nearest-neighbor states,

1
H= Z Vi(x;) | %) {x;| + E ) 2 x) €xif — 1% 1)

il

X (x| — %=1 4% ), (6.1)

where m is the mass of a tunneling particle and § is a
distance between adjacent x points. From Eq. (6.1) one
can see that the two turning points |x=a){x=a| and |x
=b){x=>b|, having the same energy and separated by the
barrier, are connected through a sequence of virtual tran-
sitions over the off-resonance states, |x;){x;| with a<x;
<b. One can show, in a way similar to that of the preced-
ing section, that the perturbation theory expression of the
amplitude of the transition between |x=a)(x=a| and |x
=b){x=>b|, written as a product of the terms correspond-
ing to each virtual transition, reduces to the usual expo-
nential expression e~% where @ is the action integral
calculated under the potential barrier ¥ (x) between points
x=q and x=b. Thus, the whole picture is equivalent to
that of the preceding section.
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It is also worthwhile mentioning quite a different situ-
ation where tunneling is revealed as a sequence of virtual
transitions. Namely, in the long-distance electron transfer
theory a similar mechanism of the quantum transition over
off-resonance bridge states is known as superexchange®*=?
and is also associated with tunneling. For this reason the
dynamical tunneling considered in the present paper and
also in Ref. 2 can be termed also as a vibrational superex-
change.

The discussion in the previous sections shows that the
semiclassical methods contain essentially nothing new
compared with the perturbation theory. This qualitative
result is important for the problem of generalization of the
concept of dynamical tunneling to the multidimensional
cases and to polyatomic molecules. Neither the semiclassi-
cal nor the periodic orbit method have been generalized, to
the best of our knowledge, to the multidimensional case,
although some work has been done for systems with two
and three degrees of freedom.!”**3* On the other hand, the
generalization of the perturbation method to the multidi-
mensional case is quite straightforward. Of course, the per-
turbation theory approach is possible only for the systems
where the zeroth-order states (local mode basis, or local-
mode-normal-mode basis) are readily recognizable. If the
perturbations in a molecule are so large that one is not able
to find a simple zeroth-order basis, the perturbation theory
would not be appropriate. For such systems direct diago-
nalization or the semiclassical periodic orbit method is
preferable.

In recent experiments' on intramolecular vibrational
relaxation of the acetylenic CH excitation in
(CH;);CCCH and (CHj;);SiCCH extremely narrow ho-
mogeneously broadened vibrational lines have been ob-
served, which correspond to an unusually slow relaxation
on the time scale of several hundred picoseconds. Our anal-
ysis? shows that the vibrational relaxation in these mole-
cules of the CH vibrational states to the appropriate qua-
siresonant background vibrational states occurs through a
sequence of many weak intermediate off-resonance transi-
tions.? This type of vibrational coupling resembles, as we
have already mentioned, the superexchange in a long-
distance electron transfer’®>? and can be called a vibra-
tional superexchange. In the semiclassical limit, as has
been argued in the preceding section, such a type of quan-
tum dynamics is associated with dynamical tunneling in
action space of the molecule. This is a new type of the
intramolecular irreversible vibrational relaxation where the
quantum tunneling in phase space is involved.?

The easiest way to treat such a multidimensional tun-
neling is to use a discrete space of zeroth-order quantum
states instead of using the continuum action-angle vari-
ables. As we have seen, using a simple one-dimensional
case as an example, this procedure is almost equivalent to
the semiclassical method. In a one-dimensional case there
is only one path coupling two degenerate states. In the
multidimensional case there are many such paths. As in
the conventional semiclassical methods of continuum vari-
ables, the action associated with the discrete paths can be
analyzed in order to identify the most important paths for
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the relaxation. Such a procedure has been implemented?
recently for the case of (CX;),YCCH molecules.

Although we have described the method of calculation
of tunneling relaxation rates in polyatomic molecules with
ideas of perturbation theory, to complete the qualitative
picture of multidimensional dynamical tunneling it would
be interesting to find in action space of the molecule
I,,....I, an explicit form of the effective dynamic potential
with barriers which separate the initially prepared state
from other quasiresonant states in a molecule and result in
tunneling relaxation. At present this problem is not solved.
However, we believe that the discrete variable representa-
tion of the dynamic barriers in action space with quantum
states |v;,..,0,), Where v; are quantum numbers corre-
sponding to continuum action variables I;, #iv;=1;, in the
present paper and in Ref. 2, provides a clue to this prob-
lem.
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APPENDIX

The details of the discrete approximation of the action
integral (5.5) are discussed here.

As is seen in Fig. 1, within the integration interval
there are several discrete points, — (r—2),...,(r—2). The
integration step is 2. Outside the interval, in the immediate
vicinity of the end points, +p,,, there are two discrete
points =7 corresponding to the degenerate local mode
states. The contribution of the end points of the integration
interval, which represent the turning points in the complex
plane for 1, is evaluated separately from the contribution
of the internal points.

For the internal points the usual trapezoidal rule is
applied,

(r-2) r® Ex(r) —Eg(k)
f_(r_z) = % 1n( v )
(A1)
where for 7(p) the approximate expression (5.7) is used.
The latter is a good approximation, as explained in Sec. I'V.
At each end point the following approximations are
made. First, for the function 7(p) its logarithmic approx-
imation is taken. The deviation of the logarithmic function
from the Arch function in the immediate vicinity of the
end points +p,, is of the order Vy/wg, which is assumed to
be small. This deviation contributes (¥y/wg)? to the inte-
gral and, hence, can be neglected. Second, the range of the
integration is slightly shifted to

ﬁm=pm+V0/2wR, (A2)

where +p5,, are the turning points of the logarithmic ap-
proximation of n(p). For the same reason as above the
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contribution of this correction is also small. Finally, the
rotation energy E%(p) in the vicinity of the turning points
is written in a linear approximation as

EX(0)=EY(£7r)—Vo/2F 0g(p—Fp)- (A3)

For p=+p,, the logarithmic expression for 7{(p), Eq.
(5.7), vanishes.

With these approximations, the contribution of each of
the end intervals can be evaluated as

1 2 20px E?g(r)—E%(r—2) 8
2 fo ln(l—i- Vs )dx=ln( Vo2 )—1-{-2,

(A4)
where in the left-hand side we substituted for 2wy, its orig-
inal expression in terms of energies, Ep(r) —Egz(r—2). A
small positive number, §, is defined as

=, - - (A5)

Summation of contributions (A1) and (A4) results in Eqgs.
(5.8) and (5.9).
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