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Quantum calculations are reported for the intramolecular vibrational energy redistribution 
and absorption spectra of the first two excited states of the acetylenic CH stretch 
vibration in the polyatomic molecules (CX3),YCCH, where X=H or D and Y=C or Si. 
Using approximate potential energy surfaces, comparison is made with the corresponding 
recent experimental spectra. It is found that a model of intramolecular vibrational relaxation 
based on the assumption of sequential off-resonance transitions via third and fourth order 
vibrational couplings (as opposed to direct high order couplings) is in agreement with experi- 
mental results on spectral linewidths. In a semiclassical limit this type of relaxation corre- 
sponds to a dynamic tunneling in phase space. It is shown that the local density of reso- 
nances of third and fourth order, rather than the total density of states, plays a central role 
for the relaxation. It is found that in the Si molecule an accidental absence of appropriate 
resonances results in a bottleneck in the initial stages of relaxation. As a result, an almost 
complete localization of the initially prepared excitation occurs. It is shown that an increase 
of the mass alone of the central atom from C to Si cannot explain the observed difference in 
the C and Si molecules. The spectral linewidths were calculated with the Golden Rule for- 
mula after prediagonalization of the relevant vibrational states which are coupled in the mol- 
ecule to the CH vibration, directly or indirectly. For the spectral calculations, in addition to 
the direct diagonalization, a modified recursive residue generation method was used, allowing 
one to avoid diagonalization of the transformed Lanczos Hamiltonian. With this method up 
to 30 000 coupled states could be analyzed on a computer with relatively small memory. The 
efficiency of C programming language for the problem is discussed. 

I. INTRODUCTION 

In the present paper quantum calculations of intramo- 
lecular vibrational relaxation (IVR) of the acetylenic CH 
vibration in ( CX3) sYCCH molecules, where X-H, D and 
Y=C, Si, are reported. The study was motivated by the 
recent experimental results of Stoles, Lehmann, and col- 
laborators. ‘-* (A brief review of recent experimental 
progress in overtone relaxation dynamics is given in Ref. 1 
and references cited therein.) For these molecules ex- 
tremely narrow, lo-‘-lo-* cm-‘, vibrational lines have 
been observed. The lines are believed to be homogeneously 
broadened. Such a small broadening means that an initially 
prepared excitation would remain localized for hundreds 
of thousands of vibrational periods of the CH vibration, 
indicating a nonclassical mechanism for relaxation respon- 
sible for the spectral broadening in these molecules. 

The problem of numerical simulation of the quantum 
dynamics on the time scale of hundreds of picoseconds in 
large molecules is nontrivial. The total density of states 
involved in vibrational couplings should be of the order of 
several thousand states per cm-’ or higher, to have several 
spectral components in the interval of lo-* cm-‘. Impor- 
tant anharmonic couplings can be of the order of 10 cm-’ 
or larger. In an energy window of 50 cm-‘, which is a 
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minimum for such calculations, there would be more than 
50 000 states to diagonalize. The computational problem of 
dealing with enormous basis sets in vibrational dynamics 
and spectroscopy of polyatomic molecules has been exten- 
sively discussed by Wyatt and co-workers.3P4 

In the past there have been many theoretical studies of 
quantum and classical vibrational dynamics of over- 
tones.‘-*l A comprehensive review of general theories of 
IVR in polyatomic molecules was presented recently by 
Uzer.’ In the previous studies, however, primarily spectral 
features on the scale of 10-100 cm-’ were the focus of 
attention. The spectral resolution required to explain re- 
sults of Refs. 1 and 2 must be at least 2 orders of magnitude 
higher. 

The present analysis shows that the the vibrational re- 
laxation occurs through a sequence of many intermediate 
off-resonant transitions until the appropriate high density 
of quasiresonant states is reached. The number of sequen- 
tial virtual transitions required can be as large as ten or 
more in this treatment. Recently, we have shown** that 
this type of quantum dynamics involving many high order 
perturbation theory transitions in a semiclassical limit cor- 
responds to a dynamic tunneling**-*’ in phase space. Some 
time ago Davis and Heller published a short qualitative 
paper,24 which is directly related to this mechanism of re- 
laxation. They noted that, even when the motion of a clas- 
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sical system is dynamically confined in phase space to a 
torus with some action variables (I,...I,), different parts of 
the phase space might, however, be connected through tun- 
neling. In large polyatomic molecules, such as those men- 
tioned earlier, there are many quasidegenerate in energy 
tori (r;..Ji), which can can be coupled through dynamic 
tunneling to the “initial state” (1,...1,), providing a tun- 
neling mechanism for intramolecular relaxation. In this 
paper we, in fact, calculate a spectral width associated with 
this process in a quantum mechanical system. 

One of the most striking experimental results of Refs. 
1 and 2 is that the linewidth of the CH transition has 
seemingly no correlation with the total density of states. 
For example, the linewidth of the X=H, Y=Si compound 
is approximately ten times narrower than that of the 
X=H, Y--C compound. However, if one considered only 
the total density of states as the key factor in the broaden- 
ing one would expect the opposite effect. Moreover, for the 
first overtone, u=O+ 2, the linewidth of the Si compound 
decreased by factor of 2 compared with that of the v=O+ 1 
transition, while for the C compound it increased by factor 
of 2. The total density of states in both cases increases by 3 
orders of magnitude. One possible explanation is that there 
is a heavy atom (Si) blocking effect,28-34 although in this 
case the mass of Si seems to be still rather small to do much 
blocking. In the present paper we show that the mass in- 
crease from C to Si cannot explain the observed effect. 

Instead, we have found that a far more important fea- 
ture responsible for the anomalous lifetime of the CH vi- 
bration in the Si compound is connected with a bottleneck 
in relaxation pathways. The bottleneck substantially de- 
creases the cumulative transition amplitude from the initial 
state and virtually results in vibrational energy localiza- 
tion. 

Two opposite models of vibrational coupling in large 
molecules can be envisaged. In one limiting model the high 
order anharmonic couplings would be assumed to be 
equally important as the low order ones. That is, all zeroth- 
order harmonic states could be coupled directly indepen- 
dently of vibrational numbers of those states. In this model 
one would expect a strong correlation between the IVR 
rates and the total densities of states, since all states can be 
directly reached by the anharmonic couplings. 

In an alternative limiting model it would be assumed 
that the higher order couplings are, instead, mainly due to 
the high order perturbation theory interactions, arising 
from a sequential effect of low order anharmonicities, i.e., 
proceeding via many virtual transitions. The direct high 
order anharmonicity couplings are assumed to be less im- 
portant than the sequential ones. For example, two states 
differing in six vibrational quantum numbers can be cou- 
pled by the sixth-order anharmonicities with first-order 
perturbation theory, or, instead, with cubic couplings using 
second-order perturbation theory. With the latter type of 
couplings all states still can be mixed sequentially in a 
higher order perturbation theory. The importance of the 
total density of states is then less obvious. A key question 
concerns the relative importance of these direct and indi- 
rect couplings. 

In this paper we study a model of IVR based on cubic 
and quartic anharmonic couplings. The nature of the cou- 
pling in this model makes the total density of states, as 
noted earlier, less relevant than the details of the coupling, 
as far as relaxation dynamics of the initially prepared state 
and, hence, to the spectral broadening of the state are con- 
cerned. An assumption of low order couplings results in a 
quantum mechanical model in which all quantum states 
are grouped in sequentially coupled tiers. Levels from the 
first tier are directly coupled to the initially prepared state, 
the latter have been prepared through a radiative transition 
from the ground vibrational state, and is also coupled to 
the states in the second tier. The second tier, in turn, is 
coupled to third tier, etc. This model is referred to as a tier 
model. 10,*0,*1 

The number of states effectively coupled to the initially 
prepared state, and the cumulative density of states, in- 
creases rapidly with the number of tiers taken into account. 
For relaxation to occur the density of coupled states should 
be high enough to ensure the statistical limit. The average 
effective coupling of the initial state to levels in the nth tier 
is of the nth order. When the coupling between tiers is 
weak, this effective interaction is an exponentially decreas- 
ing function of n. In the weak coupling case it might hap- 
pen that the effective interaction decreases faster than the 
increase of the density of states. The statistical limit will 
then not be reached even when all states are included. In 
this situation localization of vibrational energy occurs. The 
localization means essentially that the initial state is effec- 
tively mixed with only a few states, at best, instead of being 
strongly mixed with almost all states of the same energy. 

An example of such a situation, namely Anderson 
(quantum) localization, is well known in the solid state 
physics, as in Refs. 35 and 36. Since the tier model of IVR 
resembles in many respects the electronic coupling scheme 
in a random solid, similar phenomena should be expected 
in both cases. The localization phenomenon has been re- 
cently discussed in a context of IVR by Logan and 
Wolynes.37 

When the localization occurs only a finite number of 
zeroth-order states contribute significantly to the eigen- 
states of the diagonalized system. In this case, instead of an 
exponential decay of the initially prepared state, at best 
quantum beats would be expected in the dynamics of that 
state. The absorption spectrum will contain only one or a 
few sharp lines instead of the Lorentzian-like contour that 
would occur when all states are mixed. Our calculations 
indicate that for the Si compound the dynamics of the CH 
vibration resembles the localization described earlier. 

We discuss also the computational details. It has been 
found that C programming, in connection with highly op- 
timized FORTRAN routines, provides a powerful tool to 
study pathways of vibrational relaxation in large mole- 
cules. Different methods have been tested, including a 
modified recursive residue generation method (RRGM) of 
Wyatt3 in which the calculation of overtone spectra does 
not require any diagonalization at all. In this method sys- 
tems including as many as 30 000 states were studied. 

The structure of the paper is as follows. In Sec. II some 
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theoretical aspects of the tier model are discussed. In Sec. 
III the construction of the model potential field of the 
molecules is outlined, and in Sec. IV theoretical methods 
used in the paper are briefly described. The results are 
discussed in Sec. V. 

II. TIER MODEL 

In this section the main approximation for a vibra- 
tional Hamiltonian of large molecules which results in a 
tier model is discussed. We consider a molecule in the 
ground electronic state and consider only the vibrational 
intramolecular interactions. Although IVR mediated by 
vibration-rotation interactions has been shown to play an 
important role in specific situations, e.g., in Refs. 38 and 
39, we concentrate, in the present article, on the case where 
the vibrational interactions are dominant. 

Before discussing a multitier model it is useful to recall 
a general model which has been adapted to IVR problema 
and to overtone spectroscopy. It consists of a “light” state 
coupled to a one-tier manifold of background “dark” 
states, { j I)}. The light state, directly accessible in an over- 
tone transition, is not an eigenstate of the molecule and, 
hence, is subject to a time evolution in which it mixes with 
the background states. The theory for this model predicts 
that if the density of background states, p, is high enough 
and coupling is strong, the initially prepared state will de- 
cay exponentially40 and its decay rate constant r can be 
calculated by the Golden Rule, 

r=24MI*p”, (2.1) 
where the density of states pU is the total density of vibra- 
tional states at the energy of the light state, and M is the 
effective average coupling matrix element, defined later. It 
is presumed that the background states are prediagonalized 
states for the whole system, apart from the light state. 
Depending on a parameter K, 

K= IWP”, (2.2) 
the time evolution of the light state can vary from this pure 
exponential decay, when K is large, with a decay constant 
given by Eq. (2.1), to an essentially localized behavior 
with no energy transfer at all, when K is small. For the 
intermediate values of K quantum beats in the time evolu- 
tion of the initial states would be predicted.N In this man- 
ner, for any given pu, M defines the dynamics of the initial 
state. The problem, hence, is to calculate M by prediago- 
m&zing all relevant states. 

A general model of sequentially coupled vibrational 
states in polyatomic molecules has been discussed in the 
literature in the past, for example in Refs. 10, 20, and 21. 
The theory is based on the assumption that the anharmonic 
interactions of the lower orders are the ones of principal 
importance in the Hamiltonian. High order interactions 
between zeroth-order states then arise in high orders of 
perturbation theory. 

The Hamiltonian in the present paper is assumed to be 
known in normal mode coordinates up to the fourth order 
in anharmonicity, 

H= i Woi 
i=l 

+$ C @ijkL?QjQkQl * 
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(2.3) 

The zeroth-order states are taken to be harmonic ones 
IV l...v,). Their energies, however, are calculated according 
to an expression which takes into account first-order intra- 
mode anharmonic corrections, 

E’(u~,...,u~) = i tici(ui+1/2) + i Xii(ui+ l/2)* (2.4) 
i i 

with spectroscopic constants Xi~ (The intermode anharmo- 
nicities Xii were not taken into account in the present cal- 
culations.) In calculating the cubic and quartic coupling 
matrix elements between modes, on the other hand, the 
wave functions used were the unperturbed harmonic oscil- 
lator ones. These matrix elements can be calculated from 
the harmonic oscillator rules and do not require numerical 
integration. As a perturbation between zeroth-order states 
we then include only anharmonic terms of the potential 
energy which do not contribute to the E(ul,...,uS) in Eq. 
(2.4) but which contribute to the mixing of quasiresonant 
zeroth-order states. Anharmonic terms which contribute to 
Eq. (2.4) can be represented as Morse oscillator terms in 
the individual normal modes, without cross-terms. 

Anharmonic cubic interactions in second-order pertur- 
bation theory couple states which could also be directly 
coupled by the quartic anharmonicity; in a similar way the 
third-order couplings could be reproduced by direct quin- 
tic coupling, etc. Thus, in principle, the cubic terms alone 
may lead to inclusion of all states in the system. However, 
such an approach based only on cubic terms would be valid 
only when the average occupation number in each of the 
vibrational modes is low. This situation is not the case for 
all vibrational states at a given energy. For example, when 
the entire energy of the acetylenic CH excitation becomes 
concentrated in a low frequency vibrational mode the oc- 
cupation number in the latter can be very large. In this case 
anharmonicities higher than cubic and quartic would be 
required to describe the potential energy function cor- 
rectly. However, the statistical weight of such states is very 
small and for the vast majority of states the Hamiltonian 
(2.3) is expected to be a reasonable approximation. 

We let the light state in a spectroscopic experiment 
correspond to a vibrational excitation in mode 1. For mol- 
ecules of interest in the present paper these states corre- 
spond to the excitation of the acetylenic CH bond. Thus, 
the zeroth-order state Iu,O,...), where u is the excitation 
number, can be accessed directly via a radiative transition. 
This state is coupled to quasiresonant vibrational states in 
which the excitation energy is distributed among different 
vibrational modes of the molecule, modes other than mode 
1. Cubic and quartic anharmonicity can couple directly 
only those states which differ in three and four quantum 
numbers, respectively. Most of the states will be coupled 
indirectly in high order perturbation theory. In order to 
distinguish between direct and indirect couplings all states 
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are sorted in tiers T,,, T*,... . States belonging to nth tier 
can be coupled only to states from T,,-, or T,+l tiers by 
cubic anharmonicities, while quartic interactions will mix 
states from n and n f 2 tiers. We separate states coupled by 
cubic and quartic interaction in different tiers in order to 
study their relative importance. 

Specifically, the states are placed in tiers according the 
following recursive procedure. The initial light state be- 
longs to tier To. Given all the states in tiers T,,...,T,, states 
in T,+I can be generated by applying the cubic anharmo- 
nicity operator, 

to the states in T,. This operation can produce not only 
states in T,, 1 but also states in a previous tier Tnml. The 
next step is to eliminate any states which belongs to the 
previous tier. Formally, this operation can be described as 
follows. Let P,, be the projection operator on the subspace 
of the tier T,. It can be written as 

P,= C In,i)G,nl, 
i 

(2.6) 

where jn,i) is the normalized ith state in tier T,. The 
normalizedjth state in T,,+, is then defined by the equation 

In+l,i)=(l-Pn-I)~~,In,i), (2.7) 

where the n operator is defined with harmonic creation 
and anihilation operators, a+ and a, for different vibra- 
tional modes in the molecule, 

a+a+a 
“&= 

[(u~+l)P(u:+~)u,]l~~ ’ 

iI&= a#v: 
12 [~pq~,+ul ’ * 

(2.8a) 

(2.8b) 

The creation and anihilation operators change the occupa- 
tion vibrational number in a mode by f 1. Starting from 
the initial state of To all other states can be generated by 
applying Eq. (2.7) recursively with all possible indices pqr. 
To generate I n+ 1,j) state with approximately the same 
energy as that of I n,i), only resonance anharmonic terms 
need be employed in Eq. (2.7). For such terms vibrational 
frequencies oP, o, and 0,. are in resonance, within a certain 
possible detuning described later, 

Wr3ql-o, (2.9) 
and, hence, r, p, and q are unequal. In this selection pro- 
cedure only states which are directly coupled by an ap- 
proximate resonance [in practice the detuning in Eq. (2.9) 
is of the order of 100 cm-’ or less] are considered. There 
are, however, quasiresonant states which are coupled indi- 
rectly through one or more significantly off-resonance 
states. Such states, which are at least four tiers away, can 
be created by applying operators ( Q3 or (u:)~ and then 
operators (2.8). The intermediate state in this case has a 
large detuning 3oP, which is typically of the order of 1000 
cm-‘. Thus, two states with are four tiers away can be 
coupled by a second order with one well off-resonance 
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state, or by the fourth order coupling with three interme- 
diate states which have much smaller detunings, as in Eqs. 
(2.7)-(2.9). In the procedure described by Eqs. (2.7)- 
(2.9) it is assumed that contribution of the couplings of the 
former type is negligible. 

Thus, all states are classified according to the order of 
coupling to the light state rather than according to the 
number of vibrational quanta, as in Ref. 1. According to 
the procedure described earlier, the first tier, T1, will con- 
tain states with two vibrational quanta directly coupled to 
the light state, the second tier, T1, will contain states with 
three quanta, or ‘with one quantum, because of the action 
of s1- operator which anihilates two quanta and creates 
only one, etc. Thus the nth tier will contain states with 
n+l, n-l, n-2,... states. The projection operator P in 
Eq. (2.7), applied to all tiers recursively starting from the 
first one, makes sure that among the states with say k 
quanta in the n+ lth tier T,, 1 there would be no states 
identical to the previously accounted ones also containing 
k quanta. To exclude the appearance of the same state in 
different tiers in a recursive procedure it is sufficient to 
check only the previous tier, T,-,, as in Eq. (2.7). All 
other tiers are then automatically checked in the previous 
steps of the recursive procedure. 

The procedure described above is readily implemented 
on a computer. A similar procedure was discussed earlier 
in a different context.41 For some molecules of present in- 
terest, (CH,) ,CCCH and (CH,) ,SiCCH, the first few tiers 
are shown in Fig. 1. 

An important characteristic of the tier model is the 
density of states in tiers, 7,. The densities in the tiers as 
well as the total number of tiers depend on the energy of a 
molecule. In the following analysis the accumulated den- 
sities will also be of interest: 

pn= i rim* 
ltZ=l 

(2.10) 

The total vibrational density, pu=pN, where N is the total 
number of tiers. The partial densities (2.10) correspond to 
the approximate diagonalization of the system in which 
only first n <N tiers are included. 

The background dark states, {I I)}, introduced in the 
beginning of this section, can now be specified as the eigen- 
states arising from the diagonalization of the first N tiers, 
T,,..., T,. The effective coupling of the initial state to a 
prediagonalized state, I, can be formally expressed as 

MO,= C@f(l,ilr)+ C,M@,jII), 
i i 

where 

(2.11) 

iag=<Ol fi3’I l,i),M$=(OI f14)12,j) (2.12) 

and f13’ , f14’ are the cubic and quartic anharmonic terms 
in Eq. (2.3)) respectively. Summation in Eq. (2.11) is over 
all states i in the first and overj in the second tiers, respec- 
tively, i@i and h$ are the matrix elements of the states 
directly coupled to the light state in the first two tiers, and 
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r3359 ,:I, -,---j From this expression it would be possible to estimate the 
linewidth, Eq. (2.1>, using only the states in the first two 
tiers. The spectrum of the system restricted to two tiers, 
however, would look quite different from the actual spec- 
trum because the number of states would be inadequate. A 
role of the remaining states then would be to provide an 
appropriate density of spectral lines, while the width itself 
would be completely defined at the first step of relaxation. 
Lorentzian broadening of the absorption line can be ex- 
pected when the effective matrix elements are large enough 
to satisfy the statistical limit condition, 

330” 
(4 

3342 

LV,, 
(W 

FIG. 1. First six tiers of sequentially coupled zero-order states in (a) 
(CH,) ,CCCH and in (b) (CH,) ,SiCCH. The first state on the left is the 
CH vibration, u= 1. 

(II I$), (II 2,j) are the appropriate coefficients of expan- 
sion of the prediagonalized state I I) expressed in terms of 
the zeroth-order states: 

11) = C hiI 0 I hi>. (2.13) 
n,i 

This I I) is an exact background state for N tiers, i.e., an 
eigenstate of the diagonalized system of T,,...,T,. The 
completeness condition for I I) states in Eq. (2.11) results 
in the sum rule 

IMlp,=( I@‘I*pm+ 1~*l*/v72)“*> 1. (2.16) 

Again, to make an estimate of whether or not there 
will be substantial broadening one seems from Eq. (2.16) 
to need only the parameters of the first two tiers and the 
total density of states pu. Those calculations, however, can 
provide only a very rough estimate of the width. A much 
more accurate procedure involves similar calculations with 
a large number of tiers. In this case the couplings and 
densities are calculated locally, at the quasiresonant posi- 
tion of the light state and on a scale corresponding to 
observed broadenings, i.e., roughly 1 to 10-i cm-‘. In 
contrast, for the first two tiers the energy window for the 
calculation can only be of the order of 100 cm-’ to have a 
sufficient number of states for good statistics. 

The application of Eqs. (2.15) and (2.16) is limited to 
a special case of very strong coupling, when all zeroth- 
order states with the same energy are strongly mixed. It 
may happen, however, that the matrix elements Ma, will 
vary with 1 to such an extent that averages IMe1 1 and 
l&f’-‘* I in Eqs. (2.15) and (2.16) will be meaningless. In an 
extreme case the vast majority of the M,, could be essen- 
tially zero and the density of spectral peaks would then be 
much smaller than the total density of states, even if the 
condition (2.16) were satisfied. This case corresponds to 
the localization of vibrational energy or, at least, to a sig- 
nificantly restricted IVR. 

III. MODEL POTENTIAL SURFACES 

The vibrational analysis was performed with a modi- 
fied version of the quantum chemistry program SPECTRO.~’ 
To find the anharmonic constants for the Hamiltonian 
(2.3) the following two-step procedure was used. 

c lMx12= c lM?Y+ c l@l’* 
I i i 

We note for use in Eq. (4.4) here that the right hand side, 
and hence the left hand side, of Eq. (2.14) is independent 
of the number of tiers. 

In the first step approximate quadratic force fields in 
internal coordinates for the molecules (CH,) ,CCCH and 
(CH,) ,SiCCH were determined by the procedure of fitting 
normal modes frequencies of the molecules to the experi- 
mental frequencies.43@ The equilibrium geometry param- 
eters are known from the electron diffraction data:45P46 Sic 
1.866; SiCr1.830; C=C 1.200; CH 1.100; =CH 1.077; 
L=CSiC 107.5; LSiCH 112.0. In the calculations C,, sym- 
metry was assumed, as suggested in Ref. 45. If all of the matrix elements in a tier were of the same 

order, given by the average values I Me1 I and I Mc2 1 for 
the first two tiers, respectively, and by I MI for the effective 
matrix element, then the sums in Eq. (2.14) could be re- 
written approximately in the form 

Iw*P”= I@‘12r11+ I@*l*112. (2.15) 
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In the second step a nonlinear transformation from 
internal coordinates to normal modes was used to generate 
anharmonic constants for the normal modes. Due to the 
nonlinear character of transformation from internal to nor- 
mal modes, even a pure harmonic force field in internal 
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TABLE I. Anharmonic constants in internal coordinates. 

(ijk)’ ftjk” Reference 

rwi -38.0 50 
hhr2 -33.2 48, 52, 51 
RlRlRl - 50.0 50, 60 
WA -24.5 51 
44 0.4 50 
rtRJh -0.012 50 
QWl -0.193 50 
r,aa -0.202 50 
R,aa - 0.802 50 
R&J 0.346 50 

‘Notation: r,(=CH); rd--CH); R,(C=C); R,(C-C,C-Si); 
a(LHC=C); /3(0&&C). 

bUnits for anharmonic constants consistent with energy measured in aJ, 
stretching coordinates in angstroms, and bending coordinates in radians. 

coordinates contains anharmonic corrections in the carte- 
sian normal modes. These corrections arise from the ki- 
netic couplings. The transformation matrix for anharmonic 
constants in internal and Cartesian normal modes is known 
in a general form47 and the procedure is implemented in 
the computer program SPECTRO.~’ This program was used 
in the calculation of the quadratic force field and the an- 
harmonic potential energy terms containing cubic and 
quartic constants. 

In addition to pure kinetic couplings the most essential 
anharmonic potential energy couplings were taken into ac- 
count. In the calculation we used curvilinear cubic anhar- 
manic constants based on values known for smaller mole- 
cules containing the same functional groups. Available 
cubic anharmonic constants for C2H2, CH3Y, Y=Br, I, Cl, 
(CX3)CCH, X=F, H, C2H6 were analyzed to find reason- 
able approximations for the present calculations. For the 
methyl groups a local mode model developed for (CH3)X 
molecules48’49 was used. It was thus possible to describe 
rather completely, but in an approximate way, anharmo- 
nicities of the methyl groups, the anharmonicities of the 
stretches of all CC and CH bonds and some bond-angle 
anharmonicities. The set of cubic anharmonic constants 
used in the calculations is given in Table I. On the other 
hand, anharmonicities of interaction between the methyl 
groups were not explicitly included, nor were the other 
anharmonic constants related to hindered rotation of these 
methyls. 

It should be stressed, of course, that these constants 
are only rough approximation to the actual anharmonici- 
ties of the real molecules. Only those constants were used 
which were available in the literature from ab initio calcu- 
lations or from other sources for similar molecules, and the 
assumption was made that those constants are transferable 
from one molecule to another. The idea of transferability of 
anharmonic constants has been tested and discussed in re- 
cent ab initio calculations of small molecules.50-‘2 Al- 
though this transferability is not exact and can vary from 
one molecule to another, this procedure seems to be the 
only way of constructing an at least qualitatively correct 
anharmonic field at present, in the absence of detailed cal- 
culations for these molecules. Because of the large number 

TABLE II. Anharmonicity factors and spectroscopic constants. Spectro- 
scopic constants xii were calculated from the anharmonicity factors xi of 
Ref. 53 for methyl acetylene. 

‘be Xi xii (d,P 

CH3 (~0 0.040 0.02(1),0.013(2) 
CH3 (b) 0.020 0.01(1),0.007(2) 
CC br) (b) 0.015 0.008( 1),0.005(2) 

“Shown in parentheses is a degeneracy of vibrational mode, d, 

of degrees of freedom the tables of anharmonic constants in 
normal modes are extremely large and are only available in 
a form of computer files. 

In the calculations of the zeroth-order energy levels 
given by Eq. (2.4), typical approximate values of spectro- 
scopic constants Xii were used for different groups of vibra- 
tions. The constants Xii were calculated from the anharmo- 
nicity parameters of Duncan et al.53 for methyl acetylene, 

dFii=Xi= (Oi-Yi)/Oi 3 (3.1) 

where w is the harmonic frequency, Y is the fundamental 
transition frequency, di is the degeneracy of the ith vibra- 
tional mode, and Xi is defined in the second equality ( 3.1) . 
The parameter Xi depends only on the type of vibration, as 
in Table II, but the spectroscopic constants Xii depend also 
on the degeneracy of a mode di. Generally, each vibrational 
mode was associated with a particular group in the mole- 
cule and a particular type of motion. Typical values of Xii 
were then taken for the same type of motion and for the 
same group. For example, we distinguished between the 
CH vibrations and the CC vibrations, between bond 
stretches and bendings, but, we did not distinguish between 
different CC bonds, as in Table II. For the vibration of the 
acetylenic CH the data of Refs. 1 and 2 were used. 

The potential surface with cubic and quartic anharmo- 
nicities was developed in this manner. As noted earlier, in 
this approach the internal rotations of the methyl groups 
were not described, but rather were treated as anharmonic 
oscillators. Intramolecular rotations is a significant feature 
of the ( CX3)3YCCH molecules, which requires a more 
complicated treatment. Such a treatment we plan to de- 
scribe in a future publication. 

IV. METHOD OF CALCULATION 

A. Zeroth-order system 

The zeroth-order system is constructed in the first step 
of the calculation. The problem here is to select from all 
the states only main ones that affect the relaxation dynam- 
ics. 

In a detailed description of vibrational couplings in the 
system each vibrational state is characterized by 42 vibra- 
tional quantum numbers, a zeroth-order vibrational energy 
which is defined by Eq. (2.4), the number of the tier to 
which the state belongs, the number of states coupled to 
this particular state in the next tier, a specification of the 
quantum states which are coupled to this state in the next 
tier, the matrix elements of this coupling, and some other 
parameters discussed below. In our computer codes the 

A. A. Stuchebrukhov and R. A. Marcus: Study of intramolecular vibrational relaxation 6049 

J. Chem. Phys., Vol. 98, No. 8, 15 April 1993 
Downloaded 03 Apr 2007 to 131.215.21.81. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



linked lists of the data structures of the C language are 
used to keep account of all this information. The descrip- 
tion of this technique is given in textbooks on C, such as 
Ref. 54. Each level is characterized by a data structure 
containing different types of information: integer vibra- 
tional quantum numbers, floating point matrix elements 
and energies, complex Green functions, pointers (a pointer 
being an address in computer memory to a block of data), 
and some other data referring to the level. In particular, 
pointers to levels connected to a given state are used to 
assign appropriate couplings. All data structures are then 
linked by pointers into a structure representing a blueprint 
of vibrational couplings in a molecule. 

Thus, in the first step the structure of coupled zeroth- 
order states is generated. The criterion of acceptance of a 
level in this structure is based on a perturbation theory 
expression for the effective matrix element. Namely, each 
of the levels 1 i) is characterized by a parameter lt 

where j denotes thejth state along the quantum path from 
the light state IO) to 1 i). If the energy denominator (& 
-EJ for a particular state is too small, so that pi param- 
eter is larger than unity, then the pi for this state is replaced 
by unity. (Subsequent states along that path then have as 5 
a product only of the subsequent factors, IIj 1 Vi-,,j/(Ec 
- Ej) I ). A lower limit of acceptance for all states was set 
equal to some value CL, and then only states with <>gL 
were accepted in the search. The parameter gL was varied 
in the range 0. l-l .O, apart from the parameter for the first 
two tiers. Because of the relatively small coupling of the 
CH vibration to the rest of the molecule, a substantially 
weaker criterion was used to form the first two tiers. All 
states in those tiers were assigned the parameter {= 1.0 
and then the rest of the system was generated according to 
the procedure described earlier. 

Finally, to generate all possible candidates for states in 
the next tier, in the procedure described by Eqs. (2.6)- 
(2.8) a list of third-order resonances allowed by symmetry, 

WiZajf@k 9 (4.2) 

was used, where Wj denotes the vibrational frequency of 
mode j, instead of a direct counting of states with all pos- 
sible quantum numbers. States which are sufficiently de- 
tuned from such a resonance will have a large denominator 
in Eq. (4.2) and, hence, have a small cumulative value c, 
Eq. (4.1), and so make little contribution. Because of the 
large number of degrees of freedom, 42, a direct brute force 
selection process with a systematic overcounting of all 
quantum numbers is extremely inefficient. On the other 
hand, the number of the third-order strongly coupled res- 
onances allowed by symmetry, even with a detuning of 500 
cm-’ from the resonance condition (4.2), is typically only 
of the order of 100 to 500. Searching the list of such reso- 
nances is much faster than the direct counting and one can 
generate directly, within some reasonable window, states 
already selected by symmetry. Again, during the selection 
of resonances only resonances with significant anharmonic 

constants were taken into account. Examples of zeroth- 
order states sequentially coupled in tiers are discussed in 
the next section. Once the structure of the zeroth-order 
coupled states is obtained various questions about the sys- 
tem can be addressed. 

B. Application of the sum rule 

As discussed in Sec. II, a sum rule can be used to 
calculate the spectral width. However, an estimate based 
only on the first two tiers is not accurate, because of fluc- 
tuations of matrix elements and inadequate statistics. In- 
stead of using the first two tiers in the calculations of the 
width, a sufficiently large number of tiers, n - 10, was pre- 
diagonalized to determine the appropriate background 
eigenstates. Effective couplings to those states, Mob were 
calculated according to Eq. (2.11). Then, a formal appli- 
cation of the Golden Rule yields 

YGR=~" 
wh’12-2~ wfo/12~ 

6 76 
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=277r( IMXI 2>p, 9 (4.3) 

where the sum is over eigenvalues I in an energy range S, K 
is the number of these background states in the energy 
window S, ( I Marl 2, is defined by the last equation, and pn 
is the cumulative density of the background states. To give 
a correct estimate, 6 in Eq. (4.3) should be small enough 
to provide local information about the couplings in the 
immediate vicinity of the resonance with a light state, and 
large enough to contain many states for good statistics. In 
our calculations S’s of the order of 1 cm-’ were used, while 
the calculated width was in the range 10-l to low2 cm-‘, 
and the number of states within the window S was K-20- 
50. It should be noted that even in this case the calculation 
is only meaningful if it is insensitive to changing the energy 
window S around the chosen small value of 1 cm- ‘. 

If [Me11 (S then the width y calculated with Eq. (4.3) 
will not depend on n, the number of tiers used, because of 
the sum rule. If there is a strong mixing in the system and 
if the line shape is Lorentzian when all states are taken into 
account and the density of states is high enough, the 
Golden Rule can predict the width without diagonalization 
of the entire system. However, in the case when there is 
insufficient mixing in the system, the Golden Rule width 
boa will be inapplicable to the spectrum. For example, the 
absorption spectrum may consist of only a few lines instead 
of smooth Lorentzian contour. In this case only a few ma- 
trix elements will be substantially large, while the vast ma- 
jority of the matrix elements will be virtually zero. 

To check if the additional tiers result in a higher mix- 
ing in the system, we calculated in addition to boa the 
average matrix element ( I Marl ) =X,1 MO/K ( and exam- 
ined how it behaves with increase of n. 

In the case of strong mixing one should expect from 
the sum rule 

wforl)2-w-for12)= 
Z~Iikf~~)~ const 

K =y’ (4.4) 
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where the last equality follows from the statement after Eq. 
(2.14), and, hence, the average matrix element, ( IMarl ), 
should behave as 

const”2 
( l”o/l ) - K’/2 * (4.5) 

@( 0) = 
1 

o+k--Ei- IIW’+*(~G’+~,~+~(W) ’ (4.10) 

If there were no mixing the decrease of ( I Marl ) would be 
expected to be much faster ( - l/K), because the number 
of nonzero matrix elements would be essentially un- 
changed with an increase of A? Hence, in the strong mixing 
case, it would be expected that the number 

F=274 IMOll j2p, (4.6) 

should be of the same order as eon (in the case of Gaussian 
statistics of the matrix elements, one should expect 
(lMo,l )2=2/5- ( pfOI12) and, hence, l?-O.6Ioa) and 
that its dependence on the number of tiers n would be 
weak. On the other hand, for the case when the mixing is 
restricted for some reason, 7 is expected to be much 
smaller than the actual width boa and to decrease with 
increasing number of states. 

In the present calculations the systems are prediago- 
nalized for various numbers of tiers and the behavior of 
both eon and 7 is studied. 

C. Calculation of the line shape 

It is straightforward to generate the Hamiltonian ma- 
trix and to diagonalize it once the the zeroth order struc- 
ture is given. For relatively large systems this problem can 
be solved by the RRGM method whose application to IVR 
has been described by Wyatt.3 This method provides an 
efficient technique, although it does require a special han- 
dling of the computer memory for large systems. In the 
present calculations in addition to RRGM we have also 
used the Green function (GF) technique, described below. 

In the Green function technique the spectral absorp- 
tion line shape is calculated as4’ 

Z(o) =i ImG&w), (4.7) 

Gcd~)=(ol (o+i:--H) IO), 

where w is the absorption frequency, E is a resolution of the 
spectral lines, H is the exact Hamiltonian, and IO) is the 
initial light state. For a number of cases Eq. (4.7) can be 
calculated exactly. 

For a one-tier system, the absorption spectrum is given 
by (see the Appendix) 

1 1 
z(“)=G1m w+i~-Eo--ZI(Mo~12/(w+k-E~) ’ 

(4.9) 

The formula can also be used, for example, after a predi- 
agonalization, i.e., when a system consisting of many tiers 
is reduced to a one-tier system. 

For a one-dimensional chain of levels (an n-tier system 
with only one state per tier, with energies Ej and couplings 
M”‘*‘) the absorption spectrum can be calculated with the 
following recursive relation (Appendix) 

where for the last state in the system, L, 

GLL(u) = 
1 

a+ie--EL ’ 
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This case is particularly interesting because in the RRGM 
procedure,3 after a number of Lanczos transformations, 
the original system is reduced to a one-dimensional chain 
of levels having the corresponding tridiagonal Hamiltonian 
matrix. Instead of diagonalizing this matrix one can use 
Eqs. (4.10) and (4.11) directly to calculate the absorption 
spectrum for a given frequency. The Lanczos transforma- 
tion can be applied directly to the data structure of zeroth- 
order states. This procedure is equivalent to keeping an 
account of only the nonzero matrix elements in the Hamil- 
tonian matrix. Thus, the Lanczos recursive procedure and 
the application of Eqs. (4.10) and (4.11) provides a mod- 
ification of RRGM which obviates use of the diagonaliza- 
tion step. An essentially same recursive method, described 
by Haydock in Ref. 41, was used for calculation of the 
local density of electronic states in disordered solids.41 A 
similar procedure has also been used by Wyatt and co- 
workers in quantum scattering problem.55 

Finally, a combination of the two cases described 
above results in another exactly solvable system. It is a 
system of N tiers with unlimited number of states in each 
tier, where each state interacts with an independent subset 
of levels from the next tier. In this case a generalization of 
the recursive formula similar to Eqs. (4.10) and (4.11) 
exists. For each state i from the nth tier the Green function 
is expressed in terms of the Green functions of coupled 
states from the next, (n + 1 ), tier, (see the Appendix) 

1 
G;%J> = w+i~-E~-Ej)M~~‘l 12G~,~‘vn+‘(~) ’ 

(4.12) 

where the summation is over all coupled states from the 
n + 1 tier. For the states from the final tier in the system, N, 
one has 

G;T;E”( W) = 
1 

w-kk-Er 

Starting from the last tier all the GF can be calculated 
recursively. The resulting last GF in this calculation will 
correspond to the initial light state, Goo. Then, the absorp- 
tion spectrum can be calculated using Eq. (4.7). All non- 
diagonal elements of the GF are exactly zero because of the 
independence of the relaxation paths in this hypothetical 
system. 

In the system considered earlier, described by Eqs. 
(4.12) and (4.13 ), no more than one state is coupled to the 
same state in the next tier and in this sense there are no 
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quantum interferences for relaxation paths of different 
states. The above formula might be used as an approxima- 
tion to a general N-tier system where there are quantum 
interferences, i.e., where there can be more than one state 
coupled to the same state in the next tier. This approxima- 
tion means that in the calculation of the quantum ampli- 
tude of the “light state-light state” transition of the resol- 
vent operator, JZq. (4.8), over all quantum paths the 
contribution of some quantum paths is neglected. This pro- 
cedure corresponds to a random phase approximation, 
which, on the basis of comparison with the exact diagonal- 
ization results, provides a good estimate of the linewidth in 
large systems. 

The complex-valued GF of energy levels for a given 
absorption frequency can be calculated recursively with 
Eqs. (4.12) and (4.13), starting from the last tier, N. At 
the nth step of recursion all GF’s of states in tiers k>N--n 
are known and written in the data structures of each of the 
levels. Then the next step of recursion is performed with 
Eq. (4.12). The process is continued until the light state is 
reached. 

V. RESULTS AND DISCUSSION 

A. (CH3)&CCH and (CH,),SICCH: v= 1 

All computations were performed on a CRAY-Y/IMP 
with 80 Mb of memory. Our computer program generates 
recursively all strongly coupled states starting from a given 
light state. Examples of such sequentially coupled vibra- 
tional states for ( CH3),CCCH and ( CH3),SiCCH mole- 
cules, v = 1, are shown in Fig. 1. Because of the extremely 
high density of states in higher tiers and the limited reso- 
lution of the plot only the first few tiers are shown. 

It was found that the data structures, linked lists, and 
pointers of the C language provide a natural way for a 
detailed description of vibrational couplings in large mol- 
ecules, as in Fig. 1. Each state shown in Fig. 1 corresponds 
to a data structure in the computer memory and the links 
between states correspond to pointers. The concept and 
techniques of linked lists and data structures in C language 
are discussed in detail in Ref. 54. All states in Fig. 1 are 
numbered, each level is described by 42 vibrational quan- 
tum numbers, its energy, its coupling matrix element to a 
state from the previous tier, the number of states coupled 
to it in the next tier, and some other characteristics dis- 
cussed earlier. All relevant information is stored in the data 
structures (a data structure is a block of data containing 
different types of information with an address in the com- 
puter memory54). All states in a tier coupled to the same 
state are linked into a list and the address of the list is 
stored in the pointer of the state in the previous tier to 
which those states are coupled. Each state has a pointer to 
a list of directly coupled states from the next tier. It can be 
an empty list if there are no coupled states in a given 
window. States from the same tier are linked into a larger 
list to facilitate manipulations with tiers. The main advan- 
tage of the data structures is that the all information rele- 
vant to a single state is stored in one place and can be 
manipulated as single unit. The whole tree of coupled 
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FIG. 2. Average cubic couplings in (CH3)$CCH in different tiers. 

structures stored in the computer memory reproduces a 
blueprint of vibrational couplings in a molecule. Up to 40 
tiers and 50 000 coupled states could be generated this 
way. 

The states shown in Fig. 1 provide the first steps of 
relaxation from the light state. We note that the densities 
of those states are substantially lower than those required 
to form broadening on the scale of 10-2-10-’ cm-‘, as 
can be seen in the energy scale on Fig. 1. Those states, 
hence, serve only as a bridge between the light state and the 
states in higher tiers, where the cumulative density is suf- 
ficiently large and where there are many states quasireso- 
nant with the light state in the window of 10-2-10-’ 
cm-‘. Those quasiresonant states will form an absorption 
contour. A correspondence between this type of relaxation 
and semiclassical dynamics has been recently discussed in 
context of local modes in symmetric triatomic molecules in 
Ref. 22. It has been shown22 that in the semiclassical limit 
this type of energy transfer corresponds to dynamic tun- 
neling in phase space.23-27 In a long distance electron trans- 
fer reaction this mechanism is also known as superex- 
change, as in Refs. 56 and 57, for example. This type of 
coupling for IVR problem can be called a vibrational su- 
perexchange. 

An example of the dependence of an average coupling 
matrix element on the tier index n is shown in Fig. 2. A 
striking and perhaps surprising feature there is that the 
average coupling does not change very much in the range 
of 5-19 tiers, as one might have expected from the depen- 
dence of the matrix element on vibrational quantum num- 
bers. This fact indicates that even in the higher tiers the 
average quantum vibrational number in a mode is between 
zero and one, because of large total number of degrees of 
freedom. The occurrence of large fluctuations in the first 
tiers, where the density of levels is relatively low, is due to 
poor statistics. Although the average coupling of states is 
less than 10 cm-‘, as shown in Fig. 2, there are also cou- 
plings in the range 10-30 cm-‘. For this reason the energy 
window for the search of the zeroth-order states cannot be 
made substantially smaller than that shown in Fig. 1. 
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FIG. 3. Partial density of coupled states in (CH,),CCCH. 

There are, however, also very weakly coupled states, with 
coupling substantially less than 1 cm-‘. Such states can 
participate in the relaxation dynamics, if they are in good 
resonance with the light state. The resulting wide range of 
equally important couplings constitutes the main technical 
problem in the simulation of such a system. It also results 
in three orders of magnitude range of different time scales 
in the system, which yields a substantial numerical prob- 
lem. 

In Fig. 1 a qualitative difference can be seen in the 
densities of coupled states in the first tiers for the C and Si 
molecules. Despite the fact that the total density of states 
in the Si molecule is approximately thirty times higher in 
this energy region, the local density of directly coupled 
states in the Si molecule is found to be substantially smaller 
than in the C molecule, for reasons described later. A par- 
ticularly low number of strongly coupled states in the tier 
3 (the light state is tier zero) of the Si molecule produces 
a bottleneck for the energy transfer from the acetylenic CH 
vibrational state. For the C molecule there are already a 
number of quasi-resonant states in tier 3, as one can see in 
Fig. l(a). 

A typical behavior of the densities of states directly 
coupled to a single state (the density per one state) in 
different tiers for the C molecule is shown in Fig. 3. The 
density has a tendency to level off in high tiers, which 
means that the number of different states coupled to the 
same single state, the branching number, remains more or 
less the same. The distribution of the total density of states 
in tiers is shown in Fig. 4. The total density in a tier is less 
than a sum of densities of states arising from each individ- 
ual state in the preceding tier, because several states from 
the previous tier can be coupled to the same state. On the 
average, typically 2.5 states in a given tier were found in 
the present calculations to be coupled to the same state in 
the next tier. 

Thus, the density of intermediate states which provide 
a bridge between the light state and quasiresonant states of 
higher tiers is larger for a C molecule than for a Si mole- 
cule. To address the question of why this behavior occurs, 

DISTRIBUTION OF DENSIM OF STATES IN TIERS 

TIER NUMBER 

FIG. 4. Distribution of densities of states in (CHJJCCH (middle 
curve), (CH,),SiCCH (lower curve), and in (CH,), **CCCH with a 
heavy central atom (upper curve). Energy corresponds to CH vibration, 
u=l. 

the calculations were made for a model C molecule in 
which the central atom C has the mass of the Si atom, i.e., 
M= 28, while all other parameters of the molecule, includ- 
ing the quadratic force field and the anharmonicities in 
internal coordinates, remain the same. The results for the 
densities of coupled states are shown in Fig. 3. The heavy 
C atom causes two opposite effects. On the one hand, the 
kinetic coupling between the CH vibration and the tertiary 
group becomes weaker, due to the heavy atom blocking 
effect, as discussed in Refs. 28-34. The weaker coupling 
should result in a lower density of strongly coupled states. 
On the other hand, due to the same heavy atom effect, the 
frequencies in the molecule become smaller on the average, 
an effect which should increase the total density of reso- 
nances. This increased total density of resonances is ex- 
pected to result in a higher density of strongly coupled 
states. Which factor prevails in (CH,) sCCCH molecule is 
illustrated in Fig. 3. The increased density of resonances 
clearly prevails over the reduced kinetic coupling in this 
case. 

In the next step of the calculation all states in the 
system except the light state were prediagonalized and the 
effective matrix elements between the light state and the 
eigenstates found in the prediagonalization were calculated 
according to Eq. (2.11). Then, the local density of states, 
the average square, and the average absolute value of the 
matrix elements were calculated for states where energy is 
in the immediate vicinity of that of the light state. The 
energy window, 6, for such calculations was varied in the 
range of l-5 cm-’ to ensure a statistical limit for averages. 
The Golden Rule width IoR was calculated from such 
data using Eqs. (4.3) and (4.6) as a function of the in- 
creasing number of tiers. The results for (CHs),CCCH, 
(CHs)$iCCH, and (CH,),CCCH with a heavy central 
atom, are shown in Figs. 5-8. As is seen there, the width 
calculated this way, although fluctuating from tier to tier, 
does not change substantially with the number of tiers. In 
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all cases the number of states taken into account in the 
averaging in a small energy window 6 varied between 10 
and 100. The total number of states diagonalized in this 
procedure varied between 400 and 2000, depending on 
number of tiers included in the calculation. 

The results for the Golden Rule width calculations, 
using Eq. (4.3), for different molecules and for the first 
two vibrational states of the CH vibration, are shown in 
Table III. An interesting difference between the C and Si 
molecules was found in the sensitivity of the Golden Rule 
width to the value of the fourth-order anharmonicities. 
When all quartic coupling matrix elements were changed 
from a typical value of the order of 0.05 cm-’ to a value of 
0.01 cm- ‘, instead, the Golden Rule width YGR remained 
practically unchanged for the C molecule but became 2 
orders of magnitude smaller for the Si molecule. This sen- 
sitivity in the latter case means that the width in the Si 
molecule case is mainly due to the fourth-order couplings. 

Fundamental Transition in (CH,),SiCCH 

+---I 

7GR -p-.‘.-.-.-u 

.’ 
o-.-.-.-’ 

i 
.’ 

.’ 
En .’ 
” I .’ 
-0 d 

ES 
0 7 
3 

L. 
-.-._. -A.-.- .-.- &.- .___. 4 

O/ 
5 6 7 a 9 10 

NUMBER OF TIERS 

FIG. 6. The Golden Rule width, boa (upper curve) and the average p 
[Eq. (4.7)] (lower curve) for (CH,),SiCCH, U= 1. 

6054 A. A. Stuchebrukhov and R. A. Marcus: Study of intramolecular vibrational relaxation 

Fundamental Transition in (CH,),SiCCH 

b 
5 7CR 

i 
n -~ ,_._. -.-a- .-.-.-.- q 

f!iY 

m.‘.-.-’ 

.O- 

Fi 
0 
s 1. . . 

r .-... 7 
o- -.*. -.-.-.-.*.-.-.-‘-’ . 

01 t 1 I I I 

5 6 7 a 9 10 

NUMBER OF TIERS 

FIG. 7. The same as in Fig. 6, but for cubic anharmonicities only. 

In absence of quartic and higher couplings the Golden 
Rule width of the Si molecule becomes so small that even 
for the total density of states it still remains smaller than 
the average spacings between states. In this situation the 
vibrational excitation in the acetylenic CH would remain 
localized, even when all states are taken into account. 
There might be an accidental degeneracy, in which case a 
multiplet of lines with splitting less than 10-l might be 
observed. However, the Lorentzian spectrum would never 
be formed, no matter how many states were diagonalized. 
The experimental width, Table III, for the Si molecule is 
extremely small, of the order of 10m3 cm-‘, and it does not 
increase, as it does in a “normal” case of the C molecule, 
with increase of excitation from fundamental to the first 
overtone. For such a small width the nature of the broad- 
ening is less clear than that of the C case, because of the 
possible inhomogeneous effects, perhaps accounting for at 
least a portion of the experimental width in this molecule. 
In our calculations the CH vibration in the Si molecule is 

Model (CH,),CCCH with heavy central atom M=28 

01 I I I I I 1 I 
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FIG. 8. The same as in Fig. 5, but for (CH,),CCCH with heavy central 
atom C, M=28. 
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TABLE III. Theoretical Golden Rule widths, yea, and experimental 
widths, full width at half maximum, in cm-‘, of acetilenic CH vibration 
in (CX,),YCCH molecules. 

Y 

C 
C 
Si 
Si 
C 
C 
Si 
Si 

V Y (Exp) YGR (Theor) 

1 0.026 0.02 
1 0.13 0.15 
1 0.0026 >O.ocOl 
1 0.0064 0.02 
2 0.048 0.056 
2 >0.25 0.1 
2 >0.0013 0.004 
2 0.042 0.03 

not broadened at all, on the scale of experimental width 
10m3 cm-‘. Experimental results show, however, that the 
absorption line for this molecule is undoubtedly homoge- 
neously broadened, ” but the width is extremely small, as 
in Table III. Perhaps, the internal rotations, which were 
not taken into account in our calculation, are responsible 
for this discrepancy between theory and experimental re- 
sults. 

Calculations of the spectrum itself are much more dif- 
ficult to perform for these molecules than the width, be- 
cause in the window of 60 cm-‘, which we found to be 
reasonable for tiers with high numbers, the number of 
states would be enormous in an exact diagonalization. For 
example, for the C molecule the density of states should be 
at least lo3 per cm-’ to reproduce the good Lorentzian 
observed in the experiment.2 Hence, the number of states 
needed to be diagonalized is larger than 60 000. For the 
spectral calculations the original RRGM method based on 
the Lanczos recursive transformation,3 or its modification 
discussed in the previous section, which does not require 
diagonalization, can be applied. At the present stage we 
were able to apply this method for systems with only cubic 
couplings. In this way systems with as large as 30 000 
states could be studied. 

We have found that the cubic anharmonicities alone do 
not produce a dense enough set of spectral lines on the 
scale of 10V2 cm-’ to form a smooth envelop for the ab- 
sorption band observed in the experiments.‘V2 (It should be 
noted, however, that the experimental spectrum for the C 
molecule is likely to have some inhomogeneous component 
which helps to fill in the Lorentzian line shape, without 
changing its width.58) This result means that quartic and 
perhaps higher anharmonicities are essential for the energy 
transfer in those molecules. We note that highly anhar- 
manic torsions and rotations, omitted in the present paper, 
should give rise to anharmonic interactions which may be 
important in the energy transfer. 

However, the exact role of quartic and higher anhar- 
monicities clearly can be different in different molecules. It 
was mentioned earlier that the Golden Rule width depends 
significantly on the quartic anharmonicities in the Si mol- 
ecule, but that results were insensitive to the quartic con- 
stants in the C molecule. At the same time the number of 
spectral lines depends substantially on the presence of 
quartic anharmonicities in both cases. With quartic cou- 

(cH,),CCCH . v=l 

r---- 

3226.3 
, I I 

3328.4 3328.5 3328.6 3328.7 

FREQUENCY 

FIG. 9. Calculated fundamental transition in (CHJ),CCCH. 

plings the number of states which can be reached directly 
from a single state is substantially increased and this prop- 
erty seems to be a crucial one for the number of spectral 
lines in the absorption band. 

The general theoretical basis of our calculations is that 
the width of the absorption band can be calculated from a 
sufficiently large but limited number of states. To repro- 
duce the line shape of this very highly resolved spectrum, a 
substantially larger number of states needs to be taken into 
account. The more states that are taken for diagonalization 
the closer the spectral absorption line shape should corre- 
spond to the exact one. 

Additional states are assumed to fill the frequency 
space between the spectral lines of a smaller system with 
additional spectral components. One can imitate such an 
effect to some extent with a low resolution calculation. The 
resolution, E, should be of the order of spacings between 
the spectral lines but less than the total width of the ab- 
sorption band. This kind of calculation for a fundamental 
transition in (CH,) $CCH, ( CH3) ,SiCCH, and for 

: 
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FIG. 10. Calculated fundamental transition in (CHJ)$iCCH. 
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FIG. 11. Calculated fundamental transition in (CH3)$CCH with heavy 
central atom C, M=28. 

( CH3)3CCCH with a heavy central atom is shown in Figs. 
9-l 1. About 2000 were included in each case. For the Si 
molecule the spectrum consists of a single line and is not 
broadened at all. The apparent width in Fig. 10 is due 
entirely to the low resolution, e=O.OOl cm-‘, of the spec- 
trum. An important fact here is that the widths of the 
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FIG. 12. Calculated fundamental transition in (a) (CH,),CCCH and in 
(b) (CH,),SiCCH with the same anharmonic field, but differing in the 
quadratic force field. 
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FIG. 13. Calculate-d fundamental transition in (CDj)$CCH. 

spectral bands in Figs. 9-l 1 (and also in Figs. 12-20 dis- 
cussed later) are very close to those predicted by the 
Golden Rule. This result supports the present assumption 
that when a substantially larger number of states is taken 
into account the spectral width will remain appropriately 
the same, while the spectrum will approach the Lorentzian 
form. 

To address, further, the key difference between the C 
and Si compounds, spectral calculations have also been 
performed for these two molecules using the same model 
anharmonic force field. We note that in the previous ex- 
ample of heavy atom substitution the anharmonic con- 
stants in internal coordinates were kept the same. How- 
ever, due to kinetic coupling effects the Cartesian 
coordinates were different. One may ask whether the dif- 
ference is connected principally with the anharmonic cou- 
plings or with the frequencies of vibrational modes. The 
present calculation can provide an answer to this question. 
The results are shown in Figs. 12 (a) and 12 (b) , which use 

8 

p 
8:: 
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FIG. 14. Calculated fundamental transition in (CD,),SiCCH. 
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(CD,),SiCCH , v=l 
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FIG. 15. Calculated fundamental transition in (CD,),SiCCH as in Fig. 
14, but with higher resolution. 

the same anharmonicities for the two molecules. About 
30 000 states were used in this calculation with the modi- 
fied RRGM. Although the anharmonic force fields for the 
two calculations, Figs. 9 and 10 (which have different an- 
harmonicities) and Figs. 12(a) and 12(b) (which do not), 
were different, the qualitative result is the same: The spec- 
tral width in the C molecule is much larger than that in the 
Si molecule and, hence, the vibrational relaxation from the 
acetylenic CH mode in the C molecule is substantially 
faster than in the Si molecule. Therefore, we may conclude 
that the main difference in relaxation rates for the C and Si 
molecules is primarily due to different frequencies of the 
normal modes. 

B. (CD&CCCH and (CD&SiCCH: v=l 

Results for the fundamental transition in deuterated 
molecules above are shown in Table III and in Figs. 13 and 
14. For both the Y--C and Si cases the deuteration results 

(CH,),SiCCH , v=2 
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FIG, 16. Calculated first overtone transition in (CH,),SiCCH. 
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FIG. 17. Calculated first overtone transition in (CD,),SiCCH. 

in substantially larger widths. This observation can be ex- 
plained by the increased density of resonances due to the 
lower vibrational frequencies in those molecules. In fact, 
the same effect was observed for the (CH,) ,CCCH mole- 
cule with the substituted heavy central atom, as in Figs. 9 
and 11. Surprisingly good agreement in Table III with the 
experimental data was obtained for the deuteration effect 
of the C molecule. The spectral line shapes are not the 
desired Lorentzians but consist of several peaks, peaks 
which can be seen in the spectrum with higher resolution, 
Fig. 15. As in the previous case the calculated width of the 
low resolution spectral band is in good agreement with the 
Golden Rule calculations. 

C. (CH&SiCCH, (CDJ&iCCH, (CH,),CCCH, 
and (CD&CCCH: v=2 

In the present calculation the first overtone in the 
(CH,),SiCCH molecules does not show any substantial 
sign of broadening. Instead, an additional peak, separated 

(~H&CCCH , v=2 
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FIG. 18. Calculated first overtone transition in (C!H,),CCCH. 
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(CD,),CCCH , v=2 

6556.8 6557 6! 
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FIG. 19. Calculated first overtone transition in (CD,),CCCH. 

from the main component by 0.05 cm-‘, has appeared in 
the spectrum, Fig. 16. This peak is clearly due to an acci- 
dental resonance of the light state with a state from a dis- 
tant tier. A total of eight tiers was diagonalized with a total 
density of states of about 270 states per cm-‘. The Golden 
Rule predicts a width of 0.004 cm-‘, as in Table III, which 
is smaller than the average spacing between the vibrational 
states at this energy. This result is in agreement with the 
spectral calculations shown in Fig. 16 which indicate no 
substantial mixing of the initial state with the background 
states. The density of states is still not sufficient for the 
mixing. A surprisingly weak mixing, even for the first over- 
tone in this molecule, is due to the extremely weak inter- 
actions of the light state (u=2) of the CH vibration with 
the states in the first two tiers. The average coupling to the 
first tier was found to be 0.16 cm-‘, while the density of 
directly coupled states was only 0.04 states per cm-‘. We 
have not seen the decrease of the width found on going 
from v = 1 to v = 2 in the experiment of Ref. 1. However, in 
general, our resolution for spectral calculation is not suffi- 
cient to describe what is happening on the scale of 10e3 
cm-‘. 

Compared with the X=H case, the average coupling 
to the first tier in the deuterated molecule (CD,) ,SiCCH 
remains approximately the same, 0.19 cm-‘, while the 
density of states in this first tier increases from 0.04 to 0.23 
states per cm- ‘, a substantial increase. The increase is due 
to the lower frequencies in the deuterated molecule, which 
provide more low-order resonances. As a result, the 
Golden Rule predicts a width of 0.03 cm-‘, as in Table III, 
which agrees approximately with the experimental width 
of the spectral absorption band. The absorption spectrum 
for (CDs),SiCCH is shown in Fig. 17. A remarkable fea- 
ture of the experimental spectrum for u=2 of the deuter- 
ated Si molecule was the presence of two weak but narrow 
additional features.58 Although we do not predict these 
exact features, but it is likely similar to the feature we do 

. predict for v=2 of the Si molecule with CH3 groups, Fig. 

L 
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FIG. 20. The same as in Fig. 19, but with higher resolution and for 
slightly different positions within [(a)-(c)] 0.2 cm-’ of the light state 
CH, v=2. 

16, which arises due to an accidental resonance in an in- 
termediate tier. 

Low resolution spectra of ( CH3)3CCCH and 
(CD,),CCCH are shown in Figs. 18 and 19. Correspond- 
ing Golden Rule widths are given in Table III. Although 
the calculated spectra are far from the observed Lorentzian 
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the spectral widths as well as the Golden Rule width is still 
in good agreement with the experimental data. 
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this mechanism in a pure dynamical picture. Further work 
in our group addressing some of the stated questions is in 
progress. The effect on the spectrum of changing slightly the 

frequency of the CH vibration is shown in Figs. 20(a)- 
20(c). It is seen that although the line shape changes as the 
intensity is redistributed among spectral components, the 
width of the absorption band practically remains the same. 
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APPENDIX 

VI. CONCLUSION 

As can be seen in Table III a surprisingly good corre- 
lation between the experimental results and the present 
calculations has been observed in the spectral linewidths 
for a variety of molecules. This correlation suggests that 
the bulk part of the estimated anharmonic force field is 
reasonably close to the reality. Several important questions 
were addressed within the present model of vibrational 
mixing in (CXs),YCCH molecules, such as the heavy Y 
atom effect and the effect of deuteration. However, other 
questions require additional study. First is the question of 
the importance of the hindered internal rotations of methyl 
groups. In our model they were represented by three an- 
harmonic low frequency oscillators. The actual potential 
surface is more complex than that. Due to strong anhar- 
monicity in this part of the molecule there are probably 
additional, to what we have accounted for, strong cou- 
plings of all zeroth order states in tiers with high numbers. 
The additional couplings can make the background states 
after prediagonalization more homogeneously mixed, a 
consequence which should facilitate the energy transfer 
from the CH vibration. Second, more accurate and direct 
ab initio calculations of the anharmonic field would be use- 
ful for these molecules to test the present model anhar- 
manic force field and to have a more detailed and reliable 
estimate of the couplings. Although the cubic and quartic 
interactions seem to be sufficient for rough estimates of the 
spectral linewidths, the importance of higher order terms 
for the line shape remains to be investigated. Finally, the 
mechanism of the relaxation corresponds to a dynamic 
tunneling.27 It would be interesting to study quantum and 
classical correspondence in those molecules and explore 

In this Appendix the derivation of Eqs. (4.9)-( 4.13) is 
sketched. The general Green function formalism used in 
the present paper is standard and is described, for example, 
in Refs. 41 and 59. The Green function of the system (GF) 
is defined as a matrix element of the resolvent operator. Of 
special interest for the present problem is Goo(E), the ma- 
trix element for the light state IO). In terms of this func- 
tion the overtone spectrum is calculated according to Eq. 
(4.7). G,(E) is defined as 

Gx,(~>=(Ol hHl 0) 

=(O& -J--v& 
E-Ho+E-Ho 0 

1 1 1 - - 
+E-Ho ‘E-Ho ‘E-Ho -+-*-IO>, 

(AlI 
where H is the Hamiltonian of the system, E is a complex 
energy lying in the upper half of the complex plane E, and 
IO) is the light zeroth order states of H. The Hamiltonian 
is divided into a zeroth-order part Ho and a perturbation V. 
The main idea is to express the unknown GF, G,(E), in 
terms of the zeroth-order GF, G$-,( E), defined in a similar 
way as in Eq. (Al ), but with H replaced by Ho and V= 0. 
The general equation for the GF can be written in a Dyson 
form,59 

+ *.*=[Gfm(E)]-‘-Z&E)-’ 

= [E-Eo--Z,(E)]-‘, (A21 
where Z,(E) is a so-called self-energy for the state IO). 
An explicit expression for Z, in operator form is derived 
in Ref. 59, 
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2,(E) = (01 V+ VQ&?VlOA (A3) 

where Q=l- lO>(Ol is a projection operator on a sub- 
space which excludes the light state IO) (01, and G is a 
resolvent operator defined in this Q subspace. Using Eq. 
(A3) one can obtain the exact solutions for several cases 
discussed later. Those solutions can also be obtained di- 
rectly from Rqs. (Al) and (A2). 

For example, inserting the resolution of the identity, 
Z I Z) (II = 1, in terms of all zeroth order states in the sys- 
tem in both sides of each V in Eq. (Al ), and then using 
Eq. (A2) as a definition of Zoo, it can be seen that in a 
one-tier system the self-energy for the light state is 

Wor12 Z,(E)= ; G  (A4) I 
Equations (A2) and (A4) result in Eq. (4.9). This result 
also immediately follows from Eq. (A3). 

For a system of a one-dimensional chain of levels, 
IO), I 1) ,... I L), with couplings i@*l, the self-energy of 
the light state, IO), can be obtained in a similar manner. 
Namely, in Eq. (Al) one again introduces the resolution 
of identity in both sides of each V. Only terms of the type 
(il VI ih 1) =Misi*i are nonzero, and so one finds for the 
light state 

2°0(E)=(O~V11)G”(11 VIO)=l~1~2G1’(E). 
(A5) 

Here G”(E) is defined for a system with the IO) state 
excluded, i.e., for a chain I l), 12) ,... / L). In a similar way, 
the self-energy for Gil, 8” is expressed in terms of G22, 

~11(E)=(1~V~2)G22(2~V11)=IM12~2G22(E) (A6) 

which is defined for a system with IO) and I 1) states ex- 
cluded, etc. For the last but one state in the system, L- 1, 
the self-energy is expressed in terms of Green function of 
the last state, L,. for a system where all states, except the 
last one, are excluded. The Green function of a system 
consisting of only one state is given by the zeroth-order 
GF, 

. G’L(E)=(L&l L)=& (A7) 
L 

and 

BLL(E) =O. (A81 

&Ming substitution in inverse order one can calculate the 
GF of the light state. Result of such calculation is given by 
Eqs. (4.10) and (4.11). 

Finally, for a system of N tiers, TI,...,T,, with unlim- 
ited number of states in each tier, where each state inter- 
acts with an independent subset of levels from the next tier, 
an exact solution for GF of the light state also exists. For 
each state i from the nth tier the self-energy is expressed in 
terms of the Green functions of coupled states from the 
next, (n+ l), tier, 
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where the summation is over all coupled states from the 
n + 1 tier. In a similar way as in the previous case of one- 
dimensional chain, the GF G~,~‘*“+‘(E) is defined for a 
system where all states from the previous tiers To, T1,...,Tn 
are excluded. Green functions of the last tier, TN, are 
known exactly, because they coincide with the zeroth- 
order functions, GrNco’(E), and given by Eq. (4.13). 
Again, making substitutions in reverse order, one arrives at 
Eq. (4.12). 

The structure of the GF in the last two examples is 
that of a continued fraction. The number of sequential 
denominators in such an expression can be very large for 
realistic systems containing hundreds of thousands of 
quantum states. To write down an explicit analytic expres- 
sion for GF in such a case would be very difficult. How- 
ever, to calculate such an expression on a computer is an 
easy task. 
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