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Quantum calculations are reported for the intramolecular vibrational energy redistribution
and absorption spectra of the first two excited states of the acetylenic CH stretch

vibration in the polyatomic molecules (CX;);YCCH, where X—H or D and Y=—C or Si.
Using approximate potential energy surfaces, comparison is made with the corresponding
recent experimental spectra. It is found that a model of intramolecular vibrational relaxation
based on the assumption of sequential off-resonance transitions via third and fourth order
vibrational couplings (as opposed to direct high order couplings) is in agreement with experi-
mental results on spectral linewidths. In a semiclassical limit this type of relaxation corre-
sponds to a dynamic tunneling in phase space. It is shown that the local density of reso-
nances of third and fourth order, rather than the total density of states, plays a central role
for the relaxation. It is found that in the Si molecule an accidental absence of appropriate
resonances results in a bottleneck in the initial stages of relaxation. As a result, an almost
complete localization of the initially prepared excitation occurs. It is shown that an increase
of the mass alone of the central atom from C to Si cannot explain the observed difference in
the C and Si molecules. The spectral linewidths were calculated with the Golden Rule for-
mula after prediagonalization of the relevant vibrational states which are coupled in the mol-
ecule to the CH vibration, directly or indirectly. For the spectral calculations, in addition to
the direct diagonalization, a modified recursive residue generation method was used, allowing
one to avoid diagonalization of the transformed Lanczos Hamiltonian. With this method up
to 30 000 coupled states could be analyzed on a computer with relatively small memory. The
efficiency of C programming language for the problem is discussed.

l. INTRODUCTION

In the present paper quantum calculations of intramo-
lecular vibrational relaxation (IVR) of the acetylenic CH
vibration in (CX;);YCCH molecules, where X—=H, D and
Y=C, Si, are reported. The study was motivated by the
recent experimental results of Scoles, Lehmann, and col-
Jaborators.!2 (A brief review of recent experimental
progress in overtone relaxation dynamics is given in Ref. 1
and references cited therein.) For these molecules ex-
tremely narrow, 10~'-10~2 cm™!, vibrational lines have
been observed. The lines are believed to be homogeneously
broadened. Such a small broadening means that an initially
prepared excitation would remain localized for hundreds
of thousands of vibrational periods of the CH vibration,
indicating a nonclassical mechanism for relaxation respon-
sible for the spectral broadening in these molecules.

The problem of numerical simulation of the quantum
dynamics on the time scale of hundreds of picoseconds in
large molecules is nontrivial. The total density of states
involved in vibrational couplings should be of the order of
several thousand states per cmlor higher, to have several
spectral components in the interval of 10~2 cm ™. Impor-
tant anharmonic couplings can be of the order of 10 cm ™!
or larger. In an energy window of 50 cm™!, which is a
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minimum for such calculations, there would be more than
50 000 states to diagonalize. The computational problem of
dealing with enormous basis sets in vibrational dynamics
and spectroscopy of polyatomic molecules has been exten-
sively discussed by Wyatt and co-workers.>*

In the past there have been many theoretical studies of
quantum and classical vibrational dynamics of over-
tones.>?! A comprehensive review of general theories of
IVR in polyatomic molecules was presented recently by
Uzer.’ In the previous studies, however, primarily spectral
features on the scale of 10-100 cm™' were the focus of
attention. The spectral resolution required to explain re-
sults of Refs. 1 and 2 must be at least 2 orders of magnitude
higher.

The present analysis shows that the the vibrational re-
laxation occurs through a sequence of many intermediate
off-resonant transitions until the appropriate high density
of quasiresonant states is reached. The number of sequen-
tial virtual transitions required can be as large as ten or
more in this treatment. Recently, we have shown?? that
this type of quantum dynamics involving many high order
perturbation theory transitions in a semiclassical limit cor-
responds to a dynamic tunneling??~?" in phase space. Some
time ago Davis and Heller published a short qualitative
paper,?* which is directly related to this mechanism of re-
laxation. They noted that, even when the motion of a clas-
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sical system is dynamically confined in phase space to a
torus with some action variables (7,...[,), different parts of
the phase space might, however, be connected through tun-
neling. In large polyatomic molecules, such as those men-
tioned earlier, there are many quasidegenerate in energy
tori (/]...1;), which can can be coupled through dynamic
tunneling to the “initial state” (/;...I;), providing a tun-
peling mechanism for intramolecular relaxation. In this
paper we, in fact, calculate a spectral width associated with
this process in a quantum mechanical system.

One of the most striking experimental results of Refs.
1 and 2 is that the linewidth of the CH transition has
seemingly no correlation with the total density of states.
For example, the linewidth of the X—H, Y==Si compound
is approximately ten times narrower than that of the
X—=H, Y=—C compound. However, if one considered only
the total density of states as the key factor in the broaden-
ing one would expect the opposite effect. Moreover, for the
first overtone, v=0-2, the linewidth of the Si compound
decreased by factor of 2 compared with that of the v=0-1
transition, while for the C compound it increased by factor
of 2. The total density of states in both cases increases by 3
orders of magnitude. One possible explanation is that there
is a heavy atom (Si) blocking effect, 2834 although in this
case the mass of Si seems to be still rather small to do much
blocking. In the present paper we show that the mass in-
crease from C to Si cannot explain the observed effect.

Instead, we have found that a far more important fea-
ture responsible for the anomalous lifetime of the CH vi-
bration in the Si compound is connected with a bottleneck
in relaxation pathways. The bottleneck substantially de-
creases the cumulative transition amplitude from the initial
state and virtually results in vibrational energy localiza-
tion.

Two opposite models of vibrational coupling in large
molecules can be envisaged. In one limiting model the high
order anharmonic couplings would be assumed to be
equally important as the low order ones. That is, all zeroth-
order harmonic states could be coupled directly indepen-
dently of vibrational numbers of those states. In this model
one would expect a strong correlation between the IVR
rates and the total densities of states, since all states can be
directly reached by the anharmonic couplings.

In an alternative limiting model it would be assumed
that the higher order couplings are, instead, mainly due to
the high order perturbation theory interactions, arising
from a sequential effect of low order anharmonicities, i.e.,
proceeding via many virtual transitions. The direct high
order anharmonicity couplings are assumed to be less im-
portant than the sequential ones. For example, two states
differing in six vibrational quantum numbers can be cou-
pled by the sixth-order anharmonicities with first-order
perturbation theory, or, instead, with cubic couplings using
second-order perturbation theory. With the latter type of
couplings all states still can be mixed sequentially in a
higher order perturbation theory. The importance of the
total density of states is then less obvious. A key question
concerns the relative importance of these direct and indi-

rect couplings.
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In this paper we study a model of IVR based on cubic
and quartic anharmonic couplings. The nature of the cou-
pling in this model makes the total density of states, as
noted earlier, less relevant than the details of the coupling,
as far as relaxation dynamics of the initially prepared state
and, hence, to the spectral broadening of the state are con-
cerned. An assumption of low order couplings results in a
quantum mechanical model in which all quantum states
are grouped in sequentially coupled tiers. Levels from the
first tier are directly coupled to the initially prepared state,
the latter have been prepared through a radiative transition
from the ground vibrational state, and is also coupled to
the states in the second tier. The second tier, in turn, is
coupled to third tier, etc. This model is referred to as a tier
model, 10:20:21

The number of states effectively coupled to the initially
prepared state, and the cumulative density of states, in-
creases rapidly with the number of tiers taken into account.
For relaxation to occur the density of coupled states should
be high enough to ensure the statistical limit. The average
effective coupling of the initial state to levels in the nth tier
is of the nth order. When the coupling between tiers is
weak, this effective interaction is an exponentially decreas-
ing function of #. In the weak coupling case it might hap-
pen that the effective interaction decreases faster than the
increase of the density of states. The statistical limit will
then not be reached even when all states are included. In
this situation localization of vibrational energy occurs. The
localization means essentially that the initial state is effec-
tively mixed with only a few states, at best, instead of being
strongly mixed with almost all states of the same energy.

An example of such a situation, namely Anderson
(quantum) localization, is well known in the solid state
physics, as in Refs. 35 and 36. Since the tier model of IVR
resembles in many respects the electronic coupling scheme
in a random solid, similar phenomena should be expected
in both cases. The localization phenomenon has been re-
cently discussed in a context of IVR by Logan and
Wolynes.*’

When the localization occurs only a finite number of
zeroth-order states contribute significantly to the eigen-
states of the diagonalized system. In this case, instead of an
exponential decay of the initially prepared state, at best
quantum beats would be expected in the dynamics of that
state. The absorption spectrum will contain only one or a
few sharp lines instead of the Lorentzian-like contour that
would occur when all states are mixed. Our calculations
indicate that for the Si compound the dynamics of the CH
vibration resembles the localization described earlier.

We discuss also the computational details. It has been
found that C programming, in connection with highly op-
timized FORTRAN routines, provides a powerful tool to
study pathways of vibrational relaxation in large mole-
cules. Different methods have been tested, including a
modified recursive residue generation method (RRGM) of
Wyatt® in which the calculation of overtone spectra does
not require any diagonalization at all. In this method sys-
tems including as many as 30 000 states were studied.

The structure of the paper is as follows. In Sec. IT some
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theoretical aspects of the tier model are discussed. In Sec.
III the conmstruction of the model potential field of the
molecules is outlined, and in Sec. IV theoretical methods
used in the paper are briefly described. The results are
discussed in Sec. V.

1. TIER MODEL

In this section the main approximation for a vibra-
tional Hamiltonian of large molecules which results in a
tier model is discussed. We consider a molecule in the
ground electronic state and consider only the vibrational
intramolecular interactions. Although IVR mediated by
vibration-rotation interactions has been shown to play an
important role in specific situations, e.g., in Refs. 38 and
39, we concentrate, in the present article, on the case where
the vibrational interactions are dominant.

Before discussing a multitier model it is useful to recall
a general model which has been adapted to IVR problem*
and to overtone spectroscopy. It consists of a “light” state
coupled to a one-tier manifold of background ‘“dark”
states, {|/)}. The light state, directly accessible in an over-
tone transition, is not an eigenstate of the molecule and,
hence, is subject to a time evolution in which it mixes with
the background states. The theory for this model predicts
that if the density of background states, p, is high enough
and coupling is strong, the initially prepared state will de-
cay exponentially‘“’ and its decay rate constant I" can be
calculated by the Golden Rule,

I'=27|M|%p,, (2.1)

where the density of states p, is the total density of vibra-
tional states at the energy of the light state, and M is the
effective average coupling matrix element, defined later. It
is presumed that the background states are prediagonalized
states for the whole system, apart from the light state.
Depending on a parameter k,

k=|M|p,, (2.2)

the time evolution of the light state can vary from this pure
exponential decay, when « is large, with a decay constant
given by Eq. (2.1), to an essentially localized behavior
with no energy transfer at all, when « is small. For the
intermediate values of x quantum beats in the time evolu-
tion of the initial states would be predicted.*’ In this man-
ner, for any given p,, M defines the dynamics of the initial
state. The problem, hence, is to calculate M by prediago-
nalizing all relevant states.

A general model of sequentially coupled vibrational
states in polyatomic molecules has been discussed in the
literature in the past, for example in Refs. 10, 20, and 21.
The theory is based on the assumption that the anharmonic
interactions of the lower orders are the ones of principal
importance in the Hamiltonian. High order interactions
between zeroth-order states then arise in high orders of
perturbation theory.

The Hamiltonian in the present paper is assumed to be
known in normal mode coordinates up to the fourth order
in anharmonicity,
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The zeroth-order states are taken to be harmonic ones
| vy...v5). Their energies, however, are calculated according
to an expression which takes into account first-order intra-
mode anharmonic corrections,

E(Ul,...,l)s) = z Cl)o,'(l),'-f- 1/2) + Z x,~,~(v,~+ 1/2)2 (24)
i i

with spectroscopic constants x;. (The intermode anharmo-
nicities x;; were not taken into account in the present cal-
culations.) In calculating the cubic and quartic coupling
matrix elements between modes, on the other hand, the
wave functions used were the unperturbed harmonic oscil-
lator ones. These matrix elements can be calculated from
the harmonic oscillator rules and do not require numerical
integration. As a perturbation between zeroth-order states
we then include only anharmonic terms of the potential
energy which do not contribute to the E(v,...,v;) in Eq.
(2.4) but which contribute to the mixing of quasiresonant
zeroth-order states. Anharmonic terms which contribute to
Eq. (2.4) can be represented as Morse oscillator terms in
the individual normal modes, without cross-terms.

Anharmonic cubic interactions in second-order pertur-
bation theory couple states which could also be directly
coupled by the quartic anharmonicity; in a similar way the
third-order couplings could be reproduced by direct quin-
tic coupling, etc. Thus, in principle, the cubic terms alone
may lead to inclusion of all states in the system. However,
such an approach based only on cubic terms would be valid
only when the average occupation number in each of the
vibrational modes is low. This situation is not the case for
all vibrational states at a given energy. For example, when
the entire energy of the acetylenic CH excitation becomes
concentrated in a low frequency vibrational mode the oc-
cupation number in the latter can be very large. In this case
anharmonicities higher than cubic and quartic would be
required to describe the potential energy function cor-
rectly. However, the statistical weight of such states is very
small and for the vast majority of states the Hamiltonian
(2.3) is expected to be a reasonable approximation.

We let the light state in a spectroscopic experiment
correspond to a vibrational excitation in mode 1. For mol-
ecules of interest in the present paper these states corre-
spond to the excitation of the acetylenic CH bond. Thus,
the zeroth-order state |v,0,...), where v is the excitation
number, can be accessed directly via a radiative transition.
This state is coupled to quasiresonant vibrational states in
which the excitation energy is distributed among different
vibrational modes of the molecule, modes other than mode
1. Cubic and quartic anharmonicity can couple directly
only those states which differ in three and four quantum
numbers, respectively. Most of the states will be coupled
indirectly in high order perturbation theory. In order to
distinguish between direct and indirect couplings all states
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are sorted in tiers T, T,... . States belonging to nth tier
can be coupled only to states from T,_; or T, tiers by
cubic anharmonicities, while quartic interactions will mix
states from 2 and n+ 2 tiers. We separate states coupled by
cubic and quartic interaction in different tiers in order to
study their relative importance.

Specifically, the states are placed in tiers according the
following recursive procedure. The initial light state be-
longs to tier T. Given all the states in tiers T,..., T, states
in T, can be generated by applying the cubic anharmo-
nicity operator,

i
V(3)=§ Z q)pququQr (25)

to the states in T,. This operation can produce not only

states in 7, . but also states in a prpvinnc tier T .. The

wdls i £ VLY S0 S1allo 151 4 PICYIORs uiel 2 I11C
n+1l —1°

next step is to eliminate any states which belongs to the
previous tier. Formally, this operation can be described as
follows. Let P, be the projection operator on the subspace
of the tier T,. It can be written as

Pn-"'— Z In’i><i)n|’
i

where |n,) is the normalized ith state in tier T,. The
normalized jth state in T, | is then defined by the equation

In+1,j)=(I_Pn—l)ﬂpiqun’i>, (2'7)

where the Q operator is defined with harmonic creation
and anihilation operators, a* and a, for different vibra-
tional modes in the molecule,

(2.6)

+ ap a a,
Q”’_[(v,,+1)(u,,+1)v,]v2 ; (2.8a)
+
R (2.8b)

P Togo, (0,4 1) 172

The creation and anihilation operators change the occupa-
tion vibrational number in a mode by = 1. Starting from
the initial state of T, all other states can be generated by
applying Eq. (2.7) recursively with all possible indices pgr.
To generate |n+1,j) state with approximately the same
energy as that of |»,i}, only resonance anharmonic terms
need be employed in Eq. (2.7). For such terms vibrational
frequencies w), »,, and , are in resonance, within a certain
possible detuning described later,

(2.9)

and, hence, 7, p, and ¢ are unequal. In this selection pro-
cedure only states which are directly coupled by an ap-
proximate resonance [in practice the detuning in Eq. (2.9)
is of the order of 100 cm™! or less] are considered. There
are, however, quasiresonant states which are coupled indi-
rectly through one or more significantly off-resonance
states. Such states, which are at least four tiers away, can
be created by applying operators (a[,)3 or (a: ) and then
operators (2.8). The intermediate state in this case has a
large detuning 3w, which is typically of the order of 1000
cm™!, Thus, two states wich are four tiers away can be

coupled by a second order with one well off-resonance

W, =Wp+ 0,
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state, or by the fourth order coupling with three interme-
diate states which have much smaller detunings, as in Egs.
(2.7)-(2.9). In the procedure described by Egs. (2.7)—
(2.9) it is assumed that contribution of the couplings of the
former type is negligible.

Thus, all states are classified according to the order of
coupling to the light state rather than according to the
number of vibrational quanta, as in Ref. 1. According to
the procedure described earlier, the first tier, T';, will con-
tain states with two vibrational quanta directly coupled to
the light state, the second tier, T,, will contain states with
three quama, or with one quantum, because of the action
of 2~ operator which anihilates two quanta and creates
only one, etc. Thus the nth tier will contain states with
n+1, n—1, n—2,... states. The projection operator P in
Eaq. (2.7), applied to all tiers recursively starting from the
first one, makes sure that among the states with say &
quanta in the n+ 1th tier T, there would be no states
identical to the previously accounted ones also containing
k quanta. To exclude the appearance of the same state in
different tiers in a recursive procedure it is sufficient to
check only the previous tier, T,_,, as in Eq. (2.7). All
other tiers are then automatically checked in the previous
steps of the recursive procedure.

The procedure described above is readily implemented
on a computer. A similar procedure was discussed earlier
in a different context.*! For some molecules of present in-
terest, (CH;);CCCH and (CHj;);SiCCH, the first few tiers
are shown in Fig. 1.

An important characteristic of the tier model is the
density of states in tiers, n,. The densities in the tiers as
well as the total number of tiers depend on the energy of a
molecule. In the following analysis the accumulated den-
sities will also be of interest:

T - (2.10)
1

Pn=

I VE

The total vibrational density, p,= py, where N is the total
number of tiers. The partial densities (2.10) correspond to
the approximate diagonalization of the system in which
only first n <N tiers are included.

The background dark states, {|/)}, introduced in the
beginning of this section, can now be specified as the eigen-
states arising from the diagonalization of the first & tiers,
Tis--»Tx. The effective coupling of the initial state to a
prediagonalized state, /, can be formally expressed as

My= 2 Mo (Lilh + 3 MoK2,j| D), (2.11)
4 J
where
MG = O] V| 1,i),MG= (0| V*|2,/) (2.12)

and ¥®, V¥ are the cubic and quartic anharmonic terms
in Eq. (2.3), respectively. Summation in Eq. (2.11) is over
all states i in the first and over j in the second tiers, respec-
tively, M%! and M‘l)f are the matrix elements of the states

directly coupled to the light state in the first two tiers, and
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FIG. 1. First six tiers of sequentially coupled zero-order states in (a)
(CH;);CCCH and in (b) (CHj;);SiCCH. The first state on the left is the
CH vibration, v=1.

{I| 1,7, {I}{2,j) are the appropriate coefficients of expan-
sion of the prediagonalized state |/) expressed in terms of
the zeroth-order states:

|y= 2 (n,i|l)|n,i). (2.13)
n,i

This |/} is an exact background state for N tiers, i.e., an

eigenstate of the diagonalized system of T,...,Ty. The

completeness condition for |/) states in Eq. (2.11) results

in the sum rule

; | Mo/|*= 2 | M5; |2+ Z | M5;1%
i J

We note for use in Eq. (4.4) here that the right hand side,

and hence the left hand side, of Eq. (2.14) is independent

of the number of tiers.

If all of the matrix elements in a tier were of the same
order, given by the average values |M°!| and | M| for
the first two tiers, respectively, and by | M| for the effective
matrix element, then the sums in Eq. (2.14) could be re-
written approximately in the form

|M|2p,= | MO 20+ | M% | 2.

(2.14)

(2.15)
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From this expression it would be possible to estimate the
linewidth, Eq. (2.1), using only the states in the first two
tiers. The spectrum of the system restricted to two tiers,
however, would look quite different from the actual spec-
trum because the number of states would be inadequate. A
role of the remaining states then would be to provide an
appropriate density of spectral lines, while the width itself
would be completely defined at the first step of relaxation.
Lorentzian broadening of the absorption line can be ex-
pected when the effective matrix elements are large enough
to satisfy the statistical limit condition,

| M| po= (|M® o+ | M%?pm) 2> 1. (2.16)

Again, to make an estimate of whether or not there
will be substantial broadening one seems from Eq. (2.16)
to need only the parameters of the first two tiers and the
total density of states p,. Those calculations, however, can
provide only a very rough estimate of the width. A much
more accurate procedure involves similar calculations with
a large number of tiers. In this case the couplings and
densities are calculated locally, at the quasiresonant posi-
tion of the light state and on a scale corresponding to
observed broadenings, i.e., roughly 1 to 107! ecm~!. In
contrast, for the first two tiers the energy window for the
calculation can only be of the order of 100 cm ™! to have a
sufficient number of states for good statistics.

The application of Egs. {2.15) and (2.16) is limited to
a special case of very strong coupling, when all zeroth-
order states with the same energy are strongly mixed. It
may happen, however, that the matrix elements M, will
vary with / to such an extent that averages |M°l| and
|M°2| in Egs. (2.15) and (2.16) will be meaningless. In an
extreme case the vast majority of the M, could be essen-
tially zero and the density of spectral peaks would then be
much smaller than the total density of states, even if the
condition (2.16) were satisfied. This case corresponds to
the localization of vibrational energy or, at least, to a sig-
nificantly restricted IVR.

. MODEL POTENTIAL SURFACES

The vibrational analysis was performed with a modi-
fied version of the quantum chemistry program SPECTRO.*
To find the anharmonic constants for the Hamiltonian
(2.3) the following two-step procedure was used.

In the first step approximate quadratic force fields in
internal coordinates for the molecules (CH;);CCCH and
(CH;);SiCCH were determined by the procedure of fitting
normal modes frequencies of the molecules to the experi-
mental frequencies.*** The equilibrium geometry param-
eters are known from the electron diffraction data:*"*¢ SiC
1.866; SiC=1.830; C=C 1.200; CH 1.100; =CH 1.077,;
£=CSiC 107.5; £8SiCH 112.0. In the calculations C;, sym-
metry was assumed, as suggested in Ref. 45.

In the second step a nonlinear transformation from
internal coordinates to normal modes was used to generate
anharmonic constants for the normal modes. Due to the
nonlinear character of transformation from internal to nor-
mal modes, even a pure harmonic force field in internal
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TABLE I. Anharmonic constants in internal coordinates.
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TABLE II. Anharmonicity factors and spectroscopic constants. Spectro-
scopic constants x; were calculated from the anharmonicity factors x; of

(ijk)* [ ,-jk" Reference Ref. 53 for methyl acetylene.

nnn —38.0 50 Type x; X (di)‘

nhn —33.2 48, 52, 51

RiR\R, —50.0 50, 60 CH; (st) 0.040 0.02(1),0.013(2)

RyR,R, —24.5 51 CH, (b) 0.020 0.01(1),0.007(2)

nrR, 0.4 50 CC (st) (b) 0.015 0.008(1),0.005(2)

rlRle —0.012 50

nR\R, —0.193 50 "Shown in parentheses is a degeneracy of vibrational mode, d.

roo —0.202 50

Riaa —0.802 50

RiaB 0.346 50 of degrees of freedom the tables of anharmonic constants in
normal modes are extremely large and are only available in

*Notation: r(=CH); ~r(—CH); R,(C=C); R,(C-C,C-Si);

a(LHC=C); B(LC=CC).
YUnits for anharmonic constants consistent with energy measured in aJ,
stretching coordinates in angstroms, and bending coordinates in radians.

coordinates contains anharmonic corrections in the carte-
sian normal modes. These corrections arise from the ki-
netic couplings. The transformation matrix for anharmonic
constants in internal and cartesian normal modes is known
in a general form*’ and the procedure is implemented in
the computer program SPECTRO.*? This program was used
in the calculation of the quadratic force field and the an-
harmonic potential energy terms containing cubic and
quartic constants.

In addition to pure kinetic couplings the most essential
anharmonic potential energy couplings were taken into ac-
count. In the calculation we used curvilinear cubic anhar-
monic constants based on values known for smaller mole-
cules containing the same functional groups. Available
cubic anharmonic constants for C,H,, CH,Y, Y=Br, I, C],
(CX3)CCH, X=F, H, C,H, were analyzed to find reason-
able approximations for the present calculations. For the
methyl groups a local mode model developed for (CH;3)X
molecules*®* was used. It was thus possible to describe
rather completely, but in an approximate way, anharmo-
nicities of the methyl groups, the anharmonicities of the
stretches of all CC and CH bonds and some bond-angle
anharmonicities. The set of cubic anharmonic constants
used in the calculations is given in Table I. On the other
hand, anharmonicities of interaction between the methyl
groups were not explicitly included, nor were the other
anharmonic constants related to hindered rotation of these
methyls.

It should be stressed, of course, that these constants
are only rough approximation to the actual anharmonici-
ties of the real molecules. Only those constants were used
which were available in the literature from ab initio calcu-
lations or from other sources for similar molecules, and the
assumption was made that those constants are transferable
from one molecule to another. The idea of transferability of
anharmonic constants has been tested and discussed in re-
cent ab initio calculations of small molecules.’®? Al-
though this transferability is not exact and can vary from
one molecule to another, this procedure seems to be the
only way of constructing an at least qualitatively correct
anharmonic field at present, in the absence of detailed cal-
culations for these molecules. Because of the large number

a form of computer files.

In the calculations of the zeroth-order energy levels
given by Eq. (2.4), typical approximate values of spectro-
scopic constants x,; were used for different groups of vibra-
tions. The constants x; were calculated from the anharmo-
nicity parameters of Duncan et al.>® for methyl acetylene,

(3.1)

where o is the harmonic frequency, v is the fundamental
transition frequency, d; is the degeneracy of the ith vibra-
tional mode, and x; is defined in the second equality (3.1).
The parameter x; depends only on the type of vibration, as
in Table II, but the spectroscopic constants x; depend also
on the degeneracy of a mode d;. Generally, each vibrational
mode was associated with a particular group in the mole-
cule and a particular type of motion. Typical values of x;;
were then taken for the same type of motion and for the
same group. For example, we distinguished between the
CH vibrations and the CC vibrations, between bond
stretches and bendings, but, we did not distinguish between
different CC bonds, as in Table II. For the vibration of the
acetylenic CH the data of Refs. 1 and 2 were used.

The potential surface with cubic and quartic anharmo-
nicities was developed in this manner. As noted earlier, in
this approach the internal rotations of the methyl groups
were not described, but rather were treated as anharmonic
oscillators. Intramolecular rotations is a significant feature
of the (CX;);YCCH molecules, which requires a more
complicated treatment. Such a treatment we plan to de-
scribe in a future publication.

dixii=xi= (Cz),'—-’V,')/COi ’

IV. METHOD OF CALCULATION
A. Zeroth-order system

The zeroth-order system is constructed in the first step
of the calculation. The problem here is to select from alil
the states only main ones that affect the relaxation dynam-
ics.

In a detailed description of vibrational couplings in the
system each vibrational state is characterized by 42 vibra-
tional quantum numbers, a zeroth-order vibrational energy
which is defined by Eq. (2.4), the number of the tier to
which the state belongs, the number of states coupled to
this particular state in the next tier, a specification of the
quantum states which are coupled to this state in the next
tier, the matrix elements of this coupling, and some other
parameters discussed below. In our computer codes the
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linked lists of the data structures of the C language are
used to keep account of all this information. The descrip-
tion of this technique is given in textbooks on C, such as
Ref. 54. Each level is characterized by a data structure
containing different types of information: integer vibra-
tional quantum numbers, floating point matrix elements
and energies, complex Green functions, pointers (a pointer
being an address in computer memory to a block of data),
and some other data referring to the level. In particular,
pointers to levels connected to a given state are used to
assign appropriate couplings. All data structures are then
linked by pointers into a structure representing a blueprint
of vibrational couplings in a molecule.

Thus, in the first step the structure of coupled zeroth-
order states is generated. The criterion of acceptance of a
level in this structure is based on a perturbation theory
expression for the effective matrix element. Namely, each
of the levels |7) is characterized by a parameter §,

'—1,1

|E= (4.1)

where j denotes the jth state along the quantum path from
the light state |0) to |7). If the energy denominator (E,
—E;) for a particular state is too small, so that £; param-
eter is larger than unity, then the &; for this state is replaced
by unity. (Subsequent states along that path then have as &
a product only of the subsequent factors, 1| Vi_v,i/ (Ey
—E Y| ). A lower limit of acceptance for all states was set
equal to some value £, and then only states with £>£%
were accepted in the search. The parameter £~ was varied
in the range 0.1-1.0, apart from the parameter for the first
two tiers. Because of the relatively small coupling of the
CH vibration to the rest of the molecule, a substantially
weaker criterion was used to form the first two tiers. All
states in those tiers were assigned the parameter £=1.0
and then the rest of the system was generated according to
the procedure described earlier.

Finally, to generate all possible candidates for states in
the next tier, in the procedure described by Eqs. (2.6)—
(2.8) a list of third-order resonances allowed by symmetry,

(4.2)

was used, where @ ; denotes the vibrational frequency of
mode j, instead of a direct counting of states with all pos-
sible quantum numbers. States which are sufficiently de-
tuned from such a resonance will have a large denominator
in Eq. (4.2) and, hence, have a small cumulative value &,
Eq. (4.1), and so make little contribution. Because of the
large number of degrees of freedom, 42, a direct brute force
selection process with a systematic overcounting of all
quantum numbers is extremely inefficient. On the other
hand, the number of the third-order strongly coupled res-
onances allowed by symmetry, even with a detuning of 500
cm ™! from the resonance condition (4.2), is typically only
of the order of 100 to 500. Searching the list of such reso-
nances is much faster than the direct counting and one can
generate directly, within some reasonable window, states
already selected by symmetry. Again, during the selection
of resonances only resonances with significant anharmonic

w,-zwj:i:a)k,

constants were taken into account. Examples of zeroth-
order states sequentially coupled in tiers are discussed in
the next section. Once the structure of the zeroth-order
coupled states is obtained various questions about the sys-
tem can be addressed.

B. Application of the sum rule

As discussed in Sec. II, a sum rule can be used to
calculate the spectral width. However, an estimate based
only on the first two tiers is not accurate, because of fluc-
tuations of matrix elements and inadequate statistics. In-
stead of using the first two tiers in the calculations of the
width, a sufficiently large number of tiers, n~ 10, was pre-
diagonalized to determine the appropriate background
eigenstates. Effective couplings to those states, M, were
calculated according to Eq. (2.11). Then, a formal appli-

cation of the Golden Rule yields

. 3|Ma’K
YeR=ET"5 =TT K &

=2m{| Mo |® pn (4.3)

where the sum is over eigenvalues / in an energy range 6, K
is the number of these background states in the energy
window 8, {|M,|?) is defined by the last equation, and p,
is the cumulative density of the background states. To give
a correct estimate, § in Eq. (4.3) should be small enough
to provide local information about the couplings in the
immediate vicinity of the resonance with a light state, and
large enough to contain many states for good statistics. In
our calculations &’s of the order of 1 cm ™! were used, while
the calculated width was in the range 10~! to 1072 cm™},
and the number of states within the window § was K ~ 20—
50. It should be noted that even in this case the calculation
is only meaningful if it is insensitive to changing the energy
window & around the chosen small value of 1 cm™

If | M| €6 then the width y calculated with Eq. (4.3)
will not depend on 7, the number of tiers used, because of
the sum rule. If there is a strong mixing in the system and
if the line shape is Lorentzian when all states are taken into
account and the density of states is high enough, the
Golden Rule can predict the width without diagonalization
of the entire system. However, in the case when there is
insufficient mixing in the system, the Golden Rule width
Ygr Will be inapplicable to the spectrum. For example, the
absorption spectrum may consist of only a few lines instead
of smooth Lorentzian contour. In this case only a few ma-
trix elements will be substantially large, while the vast ma-
jority of the matrix elements will be virtually zero.

To check if the additional tiers result in a higher mix-
ing in the system, we calculated in addition to ygg the
average matrix element {|My|)=2;|My/K| and exam-
ined how it behaves with increase of n.

In the case of strong mixing one should expect from
the sum rule

3| My|? const

2 2
(Mo | Y~ (| My ") = X s

(4.4)
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where the last equality follows from the statement after Eq.
(2.14), and, hence, the average matrix element, {|My,|),
should behave as

const!”?

I Moty ~—pmr—- (4.5)
If there were no mixing the decrease of (|My,|) would be
expected to be much faster (~1/XK), because the number
of nonzero matrix elements would be essentially un-
changed with an increase of N. Hence, in the strong mixing
case, it would be expected that the number
7=2m(| Moi| Y pn (4.6)
should be of the same order as ygr (in the case of Gaussian
statistics of the matrix elements, one should expect
(Mo Yr=2/m {|My|?) and, hence, T ~0.6I'gg) and

that its dependence on the number of tiers n would be

e GO QLIS w210 A0CH O 11CI> uil

weak. On the other hand, for the case when the mixing is
restricted for some reason, 7 is expected to be much
smaller than the actual width ygg and to decrease with
increasing number of states.

In the present calculations the systems are prediago-
nalized for various numbers of tiers and the behavior of
both ygr and ¥ is studied.

C. Calculation of the line shape

It is straightforward to generate the Hamiltonian ma-
trix and to diagonalize it once the the zeroth order struc-
ture is given. For relatively large systems this problem can
be solved by the RRGM method whose application to IVR
has been described by Wyatt.> This method provides an
efficient technique, although it does require a special han-
dling of the computer memory for large systems. In the
present calculations in addition to RRGM we have also
used the Green function (GF) technique, described below.

In the Green function technique the spectral absorp-
tion line shape is calculated as*!

1
I(w)=; ImGy(w), 4.7)

Gylw)= (4.8)

1

(0] (w+ie—H) 10>,
where w is the absorption frequency, € is a resolution of the
spectral lines, H is the exact Hamiltonian, and |0} is the
initial light state. For a number of cases Eq. (4.7) can be
calculated exactly.

For a one-tier system, the absorption spectrum is given
by (see the Appendix)

1

w+ie—Eqg—3;|My|*/(w+i€e—E) "
(4.9)

1
IH{w)=—Im
T

The formula can also be used, for example, after a predi-
agonalization, i.e., when a system consisting of many tiers
is reduced to a one-tier system.

n 6051

For a one-dimensional chain of levels (an n-tier system
with only one state per tier, with energies E; and couplings
M"*1y the absorption spectrum can be calculated with the
following recursive relation (Appendix)

1

Gie N

G (w)wa)—l-l'e—E,-—|M"'+1|2GI+1’I+1(&)) ’ (410)
where for the last state in the system, L,

GH(w)= (4.11)

Cl)+i€—EL ’

This case is particularly interesting because in the RRGM
procedure,3 after a number of Lanczos transformations,
the original system is reduced to a one-dimensional chain
of levels having the corresponding tridiagonal Hamiltonian
matrix. Instead of diagonalizing this matrix one can use
Egs. (4.10) and (4.11) directly to calculate the absorption
spectrum for a given frequency. The Lanczos transforma-
tion can be apphed directly to the data structure of zeroth-
order states. This procedure is equivalent to keeping an
account of only the nonzero matrix elements in the Hamil-
tonian matrix. Thus, the Lanczos recursive procedure and
the application of Eqs. (4.10) and (4.11) provides a mod-
ification of RRGM which obviates use of the diagonaliza-
tion step. An essentially same recursive method, described
by Haydock in Ref. 41, was used for calculation of the
local density of electronic states in disordered solids.*!
similar procedure has also been used by Wyatt and co-
workers in quantum scattering problem 55

Finally, a combination of the two cases described
above results in another exactly solvable system. It is a
system of N tiers with unlimited number of states in each
tier, where each state interacts with an independent subset
of levels from the next tier. In this case a generalization of
the recursive formula similar to Egs. (4.10) and (4.11)
exists. For each state / from the nth tier the Green function
is expressed in terms of the Green functions of coupled
states from the next, (n+4 1), tier, (see the Appendix)

1
Ct)+i€—En s, ann+l|2Gn+1n+l( )
(4.12)
where the summation is over all coupled states from the

n+1 tier. For the states from the final tier in the system, N,
one has

Gi'(w)=

NN

G ()= —m (4.13)
Starting from the last tier all the GF can be calculated
recursively. The resulting last GF in this calculation will
correspond to the initial light state, Gyy. Then, the absorp-
tion spectrum can be calculated using Eq. (4.7). All non-
diagonal elements of the GF are exactly zero because of the
independence of the relaxation paths in this hypothetical
system.

In the system considered earlier, described by Egs.
(4.12) and (4.13), no more than one state is coupled to the
same state in the next tier and in this sense there are no
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quantum interferences for relaxation paths of different
states. The above formula might be used as an approxima-
tion to a general N-tier system where there are quantum
interferences, i.e., where there can be more than one state
coupled to the same state in the next tier. This approxima-
tion means that in the calculation of the quantum ampli-
tude of the “light state-light state” transition of the resol-
vent operator, Eq. (4.8), over all quantum paths the
contribution of some quantum paths is neglected. This pro-
cedure corresponds to a random phase approximation,
which, on the basis of comparison with the exact diagonal-
ization results, provides a good estimate of the linewidth in
large systems.

The complex-valued GF of energy levels for a given
absorption frequency can be calculated recursively with
Eqgs. (4.12) and (4.13), starting from the last tier, N. At
the nth step of recursion all GF’s of states in tiers k>N —n
are known and written in the data structures of each of the
levels. Then the next step of recursion is performed with
Eq. (4.12). The process is continued until the light state is
reached.

V. RESULTS AND DISCUSSION
A. (CH,);CCCH and (CH,);SICCH: v=1

All computations were performed on a CRAY-Y/MP
with 80 Mb of memory. Our computer program generates
recursively all strongly coupled states starting from a given
light state. Examples of such sequentially coupled vibra-
tional states for (CH;);CCCH and (CH;);SiCCH mole-
cules, v=1, are shown in Fig. 1. Because of the extremely
high density of states in higher tiers and the limited reso-
lution of the plot only the first few tiers are shown.

It was found that the data structures, linked lists, and
pointers of the C language provide a natural way for a
detailed description of vibrational couplings in large mol-
ecules, as in Fig. 1. Each state shown in Fig. 1 corresponds
to a data structure in the computer memory and the links
between states correspond to pointers. The concept and
techniques of linked lists and data structures in C language
are discussed in detail in Ref. 54. All states in Fig. 1 are
numbered, each level is described by 42 vibrational quan-
tum numbers, its energy, its coupling matrix element to a
state from the previous tier, the number of states coupled
to it in the next tier, and some other characteristics dis-
cussed earlier. All relevant information is stored in the data
structures (a data structure is a block of data containing
different types of information with an address in the com-
puter memory>*). All states in a tier coupled to the same
state are linked into a list and the address of the list is
stored in the pointer of the state in the previous tier to
which those states are coupled. Each state has a pointer to
a list of directly coupled states from the next tier. It can be
an empty list if there are no coupled states in a given
window. States from the same tier are linked into a larger
list to facilitate manipulations with tiers. The main advan-
tage of the data structures is that the all information rele-
vant to a single state is stored in one place and can be
manipulated as single unit. The whole tree of coupled
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AVERAGE CUBIC COUPLINGS IN (CHy),CCCH
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FIG. 2. Average cubic couplings in (CH;);CCCH in different tiers.

structures stored in the computer memory reproduces a
blueprint of vibrational couplings in a molecule. Up to 40
tiers and 50 000 coupled states could be generated this
way.

The states shown in Fig. 1 provide the first steps of
relaxation from the light state. We note that the densities
of those states are substantially lower than those required
to form broadening on the scale of 10~2-10"! em™!, as
can be seen in the energy scale on Fig. 1. Those states,
hence, serve only as a bridge between the light state and the
states in higher tiers, where the cumulative density is suf-
ficiently large and where there are many states quasireso-
nant with the light state in the window of 10~2-10~!
cm™~!. Those quasiresonant states will form an absorption
contour. A correspondence between this type of relaxation
and semiclassical dynamics has been recently discussed in
context of local modes in symmetric triatomic molecules in
Ref. 22. It has been shown?? that in the semiclassical limit
this type of energy transfer corresponds to dynamic tun-
neling in phase space.?*~?” In a long distance electron trans-
fer reaction this mechanism is also known as superex-
change, as in Refs. 56 and 57, for example. This type of
coupling for IVR problem can be called a vibrational su-
perexchange.

An example of the dependence of an average coupling
matrix element on the tier index » is shown in Fig. 2. A
striking and perhaps surprising feature there is that the
average coupling does not change very much in the range
of 5-19 tiers, as one might have expected from the depen-
dence of the matrix element on vibrational quantum num-
bers. This fact indicates that even in the higher tiers the
average quantum vibrational number in a mode is between
zero and one, because of large total number of degrees of
freedom. The occurrence of large fluctuations in the first
tiers, where the density of levels is relatively low, is due to
poor statistics. Although the average coupling of states is
less than 10 cm™, as shown in Fig. 2, there are also cou-
plings in the range 10~30 cm~". For this reason the energy
window for the search of the zeroth-order states cannot be
made substantially smaller than that shown in Fig. 1.
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PARTIAL DENSITY OF COUPLED STATES IN (CH,);CCCH
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FIG. 3. Partial density of coupled states in (CH;),CCCH.

There are, however, also very weakly coupled states, with
coupling substantially less than 1 cm™!, Such states can
participate in the relaxation dynamics, if they are in good
resonance with the light state. The resulting wide range of
equally important couplings constitutes the main technical
problem in the simulation of such a system. It also results
in three orders of magnitude range of different time scales
in the system, which yields a substantial numerical prob-
lem.

In Fig. 1 a qualitative difference can be seen in the
densities of coupled states in the first tiers for the C and Si
molecules. Despite the fact that the total density of states
in the Si molecule is approximately thirty times higher in
this energy region, the local density of directly coupled
states in the Si molecule is found to be substantially smaller
than in the C molecule, for reasons described later. A par-
ticularly low number of strongly coupled states in the tier
3 (the light state is tier zero) of the Si molecule produces
a bottleneck for the energy transfer from the acetylenic CH
vibrational state. For the C molecule there are already a
number of quasi-resonant states in tier 3, as one can see in
Fig. 1(a).

A typical behavior of the densities of states directly
coupled to a single state (the density per one state) in
different tiers for the C molecule is shown in Fig. 3. The
density has a tendency to level off in high tiers, which
means that the number of different states coupled to the
same single state, the branching number, remains more or
less the same. The distribution of the total density of states
in tiers is shown in Fig. 4. The total density in a tier is less
than a sum of densities of states arising from each individ-
ual state in the preceding tier, because several states from
the previous tier can be coupled to the same state. On the
average, typically 2.5 states in a given tier were found in
the present calculations to be coupled to the same state in
the next tier.

Thus, the density of intermediate states which provide
a bridge between the light state and quasiresonant states of
higher tiers is larger for a C molecule than for a Si mole-
cule. To address the question of why this behavior occurs,
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DISTRIBUTION OF DENSITY OF STATES IN TIERS
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FIG. 4. Distribution of densities of states in (CH,;);CCCH (middle
curve), (CH;);SiCCH (lower curve), and in (CH;); ®CCCH with a
heavy central atom (upper curve). Energy corresponds to CH vibration,
v=1.

the calculations were made for a model C molecule in
which the central atom C has the mass of the Si atom, i.e.,
M =28, while all other parameters of the molecule, includ-
ing the quadratic force field and the anharmonicities in
internal coordinates, remain the same. The results for the
densities of coupled states are shown in Fig. 3. The heavy
C atom causes two opposite effects. On the one hand, the
kinetic coupling between the CH vibration and the tertiary
group becomes weaker, due to the heavy atom blocking
effect, as discussed in Refs. 28-34. The weaker coupling
should result in a lower density of strongly coupled states.
On the other hand, due to the same heavy atom effect, the
frequencies in the molecule become smaller on the average,
an effect which should increase the total density of reso-
nances. This increased total density of resonances is ex-
pected to result in a higher density of strongly coupled
states. Which factor prevails in (CH;);CCCH molecule is
illustrated in Fig. 3. The increased density of resonances
clearly prevails over the reduced kinetic coupling in this
case.

In the next step of the calculation all states in the
system except the light state were prediagonalized and the
effective matrix elements between the light state and the
eigenstates found in the prediagonalization were calculated
according to Eq. (2.11). Then, the local density of states,
the average square, and the average absolute value of the
matrix elements were calculated for states where energy is
in the immediate vicinity of that of the light state. The
energy window, 8, for such calculations was varied in the
range of 1-5 cm™! to ensure a statistical limit for averages.
The Golden Rule width I'gg was calculated from such
data using Eqgs. (4.3) and (4.6) as a function of the in-
creasing number of tiers. The results for (CH;),;CCCH,
(CH;3);SiCCH, and (CH;);CCCH with a heavy central
atom, are shown in Figs. 5-8. As is seen there, the width
calculated this way, although fluctuating from tier to tier,

does not change substantially with the number of tiers. In
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FIG. 5. The Golden Rule width ygg (upper curve), and the average ¥
[Eq. (4.7)] (lower curve) for (CH,);CCCH, v=1.

all cases the number of states taken into account in the
averaging in a small energy window & varied between 10
and 100. The total number of states diagonalized in this
procedure varied between 400 and 2000, depending on
number of tiers included in the calculation.

The results for the Golden Rule width calculations,
using Eq. (4.3), for different molecules and for the first
two vibrational states of the CH vibration, are shown in
Table III. An interesting difference between the C and Si
molecules was found in the sensitivity of the Golden Rule
width to the value of the fourth-order anharmonicities.
When all quartic coupling matrix elements were changed
from a typical value of the order of 0.05 cm™! to a value of
0.01 cm™!, instead, the Golden Rule width ygg remained
practically unchanged for the C molecule but became 2
orders of magnitude smaller for the Si molecule. This sen-
sitivity in the latter case means that the width in the Si
molecule case is mainly due to the fourth-order couplings.

Fundamental Transition in (CH;)sSiCCH
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FIG. 6. The Golden Rule width, ygg (upper curve) and the average 7
[Eq. (4.7)] (lower curve) for (CH;);SiCCH, v=1.
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Fundamental Transition in (CHy)sSICCH
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FIG. 7. The same as in Fig. 6, but for cubic anharmonicities only.

In absence of quartic and higher couplings the Golden
Rule width of the Si molecule becomes so small that even
for the total density of states it still remains smaller than
the average spacings between states. In this situation the
vibrational excitation in the acetylenic CH would remain
localized, even when all states are taken into account.
There might be an accidental degeneracy, in which case a
multiplet of lines with splitting less than 10~! might be
observed. However, the Lorentzian spectrum would never
be formed, no matter how many states were diagonalized.
The experimental width, Table III, for the Si molecule is
extremely small, of the order of 107 3ecm™ ! and it does not
increase, as it does in a “normal” case of the C molecule,
with increase of excitation from fundamental to the first
overtone. For such a small width the nature of the broad-
ening is less clear than that of the C case, because of the
possible inhomogeneous effects, perhaps accounting for at
least a portion of the experimental width in this molecule.
In our calculations the CH vibration in the Si molecule is

Mode! (CH;);CCCH with heavy central atom M=28
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FIG. 8. The same as in Fig. §, but for (CH;);CCCH with heavy central
atom C, M=28.
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TABLE II1. Theoretical Golden Rule widths, yggr, and experimental
widths, full width at half maximum, in cm™, of acetilenic CH vibration
in (CX,;);YCCH molecules.

X Y v ¥ (Exp) Ygr (Theor)
H C 1 0.026 0.02

D C 1 0.13 0.15

H Si 1 0.0026 >0.0001

D Si 1 0.0064 0.02

H C 2 0.048 0.056

D C 2 »>0.25 0.1

H Si 2 >0.0013 0.004

D Si 2 0.042 0.03

not broadened at all, on the scale of experimental width
1073 em™. Experimental results show, however, that the
absorption line for this molecule is undoubtedly homoge-
neously broadened,58 but the width is extremely small, as
in Table III. Perhaps, the internal rotations, which were
not taken into account in our calculation, are responsible
for this discrepancy between theory and experimental re-
sults.

Calculations of the spectrum itself are much more dif-
ficult to perform for these molecules than the width, be-
cause in the window of 60 cm_l, which we found to be
reasonable for tiers with high numbers, the number of
states would be enormous in an exact diagonalization. For
example, for the C molecule the density of states should be
at least 10° per cm™! to reproduce the good Lorentzian
observed in the experiment.2 Hence, the number of states
needed to be diagonalized is larger than 60 000. For the
spectral calculations the original RRGM method based on
the Lanczos recursive transformation,” or its modification
discussed in the previous section, which does not require
diagonalization, can be applied. At the present stage we
were able to apply this method for systems with only cubic
couplings. In this way systems with as large as 30 000
states could be studied.

We have found that the cubic anharmonicities alone do
not produce a dense enough set of spectral lines on the
scale of 102 cm™! to form a smooth envelop for the ab-
sorption band observed in the experiments."? (It should be
noted, however, that the experimental spectrum for the C
molecule is likely to have some inhomogeneous component
which helps to fill in the Lorentzian line shape, without
changing its width.’®) This result means that quartic and
perhaps higher anharmonicities are essential for the energy
transfer in those molecules. We note that highly anhar-
monic torsions and rotations, omitted in the present paper,
should give rise to anharmonic interactions which may be
important in the energy transfer.

However, the exact role of quartic and higher anhar-
monicities clearly can be different in different molecules. It
was mentioned earlier that the Golden Rule width depends
significantly on the quartic anharmonicities in the Si mol-
ecule, but that results were insensitive to the quartic con-
stants in the C molecule. At the same time the number of
spectral lines depends substantially on the presence of
quartic anharmonicities in both cases. With quartic cou-
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FIG. 9. Calculated fundamental transition in (CH;);CCCH.

plings the number of states which can be reached directly
from a single state is substantially increased and this prop-
erty seems to be a crucial one for the number of spectral
lines in the absorption band.

The general theoretical basis of our calculations is that
the width of the absorption band can be calculated from a
sufficiently large but limited number of states. To repro-
duce the line shape of this very highly resolved spectrum, a
substantially larger number of states needs to be taken into
account. The more states that are taken for diagonalization
the closer the spectral absorption line shape should corre-
spond to the exact one.

Additional states are assumed to fill the frequency
space between the spectral lines of a smaller system with
additional spectral components. One can imitate such an
effect to some extent with a low resolution calculation. The
resolution, €, should be of the order of spacings between
the spectral lines but less than the total width of the ab-
sorption band. This kind of calculation for a fundamental
transition in (CH;);CCCH, (CH,);SiCCH, and for
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FIG. 10. Calculated fundamental transition in (CH,),SiCCH.
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Model (CH;)CCCH with heavy central atom M=28
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FIG. 11. Calculated fundamental transition in (CH;);CCCH with heavy
central atom C, M =28.

(CH;);CCCH with a heavy central atom is shown in Figs.
9-11. About 2000 were included in each case. For the Si
molecule the spectrum consists of a single line and is not
broadened at all. The apparent width in Fig. 10 is due
entirely to the low resolution, e=0.001 cm ™!, of the spec-
trum. An important fact here is that the widths of the

Q
8 T 1 11 T
(CH3)5CCCH
c v=1
2
2o
8 aT
<
o 1 I 1
3329.3 3329.35 3329.4 3329.45
(a) Laser frequency
=}
8 ¥ L) T 1
(CH3)3SiCCH
- v=1
S
o
83T 1
2
o | 1 J
3312.4 3312.45 3312.5 3312.55
(b) Laser frequency

FIG. 12. Calculated fundamental transition in (a) (CH;);CCCH and in
(b) (CH;);SiCCH with the same anharmonic field, but differing in the
quadratic force field.
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FIG. 13. Calculated fundamental transition in (CD;);CCCH.

spectral bands in Figs. 9-11 (and also in Figs. 12-20 dis-
cussed later) are very close to those predicted by the
Golden Rule. This result supports the present assumption
that when a substantially larger number of states is taken
into account the spectral width will remain appropriately
the same, while the spectrum will approach the Lorentzian
form.

To address, further, the key difference between the C
and Si compounds, spectral calculations have also been
performed for these two molecules using the same model
anharmonic force field. We note that in the previous ex-
ample of heavy atom substitution the anharmonic con-
stants in internal coordinates were kept the same. How-
ever, due to kinetic coupling effects the cartesian
coordinates were different. One may ask whether the dif-
ference is connected principally with the anharmonic cou-
plings or with the frequencies of vibrational modes. The
present calculation can provide an answer to this question.
The results are shown in Figs. 12(a) and 12(b), which use
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FIG. 14. Calculated fundamental transition in (CD;);SiCCH.
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(CDy)5SICCH , v=1
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FIG. 15. Calculated fundamental transition in (CD;);SiCCH as in Fig.
14, but with higher resolution.

the same anharmonicities for the two molecules. About
30 000 states were used in this calculation with the modi-
fied RRGM. Although the anharmonic force fields for the
two calculations, Figs. 9 and 10 (which have different an-
harmonicities) and Figs. 12(a) and 12(b) (which do not),
were different, the qualitative result is the same: The spec-
tral width in the C molecule is much larger than that in the
Si molecule and, hence, the vibrational relaxation from the
acetylenic CH mode in the C molecule is substantially
faster than in the Si molecule. Therefore, we may conclude
that the main difference in relaxation rates for the C and Si
molecules is primarily due to different frequencies of the
normal modes.

B. (CD3);CCCH and (CD;);SICCH: v=1

Results for the fundamental transition in deuterated
molecules above are shown in Table III and in Figs. 13 and
14. For both the Y—C and Si cases the deuteration results
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FIG. 16. Calculated first overtone transition in (CH,),SiCCH.
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FIG. 17. Calculated first overtone transition in (CD;);SiCCH.

in substantially larger widths. This observation can be ex-
plained by the increased density of resonances due to the
lower vibrational frequencies in those molecules. In fact,
the same effect was observed for the (CH;);CCCH mole-
cule with the substituted heavy central atom, as in Figs. 9
and 11. Surprisingly good agreement in Table III with the
experimental data was obtained for the deuteration effect
of the C molecule. The spectral line shapes are not the
desired Lorentzians but consist of several peaks, peaks
which can be seen in the spectrum with higher resolution,
Fig. 15. As in the previous case the calculated width of the
low resolution spectral band is in good agreement with the
Golden Rule calculations.

C. (CH5)sSIiCCH, (CD;);SICCH, (CH,);CCCH,
and (CD3);CCCH: v=2

In the present calculation the first overtone in the
(CH,;);SiCCH molecules does not show any substantial
sign of broadening. Instead, an additional peak, separated
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FIG. 18. Calculated first overtone transition in (CH,),CCCH.
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FIG. 19. Calculated first overtone transition in (CD;);CCCH.

from the main component by 0.05 cm™!, has appeared in
the spectrum, Fig. 16. This peak is clearly due to an acci-
dental resonance of the light state with a state from a dis-
tant tier. A total of eight tiers was diagonalized with a total
density of states of about 270 states per cm ™. The Golden
Rule predicts a width of 0.004 cm™ 1 as in Table III, which
is smaller than the average spacing between the vibrational
states at this energy. This result is in agreement with the
spectral calculations shown in Fig. 16 which indicate no
substantial mixing of the initial state with the background
states. The density of states is still not sufficient for the
mixing. A surprisingly weak mixing, even for the first over-
tone in this molecule, is due to the extremely weak inter-
actions of the light state (v=2) of the CH vibration with
the states in the first two tiers. The average coupling to the
first tier was found to be 0.16 cm™", while the density of
directly coupled states was only 0.04 states per cm™'. We
have not seen the decrease of the width found on going
from v=1 to v=2 in the experiment of Ref. 1. However, in
general, our resolution for spectral calculation is not suffi-
cient1 to describe what is happening on the scale of 1073
cm™ .

Compared with the X—H case, the average coupling
to the first tier in the deuterated molecule (CD;),SiCCH
remains approximately the same, 0.19 cm™!, while the
density of states in this first tier increases from 0.04 to 0.23
states per cm™ 1 a substantial increase. The increase is due
to the lower frequencies in the deuterated molecule, which
provide more low-order resonances. As a result, the
Golden Rule predicts a width of 0.03 cm™ 1, as in Table II1,
which agrees approximately with the experimental width
of the spectral absorption band. The absorption spectrum
for (CDj3;);SiCCH is shown in Fig. 17. A remarkable fea-
ture of the experimental spectrum for v=2 of the deuter-
ated Si molecule was the presence of two weak but narrow
additional features.’® Although we do not predict these
exact features, but it is likely similar to the feature we do
predict for v=2 of the Si molecule with CH; groups, Fig.
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(CD3)5CCCH , v=2

100

T T T T

ABSORPTION
50
T
1

A M

[=)

6556.2 6556.4 6556.6 6556.8 6557 6557.2
(a) FREQUENCY

(CD3);CCCH , v=2

o

= T T T T
z
o
T o
£8r :
172
m
<L

o j\L _ a 1 \

6556.2 6556.4 6556.6 6556.8 6557 6557.2
(b) FREQUENCY

(CDy)5CCCH , v=2

Q

=) T T T T
=z
=)
& o
swer }
[72]
[is]
<C

o L I J \

6556.2 6556.4 6556.6 6556.8 6557 6557.2
(c) FREQUENCY

FIG. 20. The same as in Fig. 19, but with higher resolution and for
slightly different positions within [(a)-(c)] 0.2 cm™' of the light state
CH, v=2.

16, which arises due to an accidental resonance in an in-
termediate tier.

Low resolution spectra of (CH;);CCCH and
(CD;);CCCH are shown in Figs. 18 and 19. Correspond-
ing Golden Rule widths are given in Table III. Although
the calculated spectra are far from the observed Lorentzian

J. Chem. Phys., Vol. 98, No. 8, 15 April 1993

Downloaded 03 Apr 2007 to 131.215.21.81. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



A. A. Stuchebrukhov and R. A. Marcus: Study of intramolecular vibrational relaxation

the spectral widths as well as the Golden Rule width is still
in good agreement with the experimental data.

The effect on the spectrum of changing slightly the
frequency of the CH vibration is shown in Figs. 20(a)-
20(c). It is seen that although the line shape changes as the
intensity is redistributed among spectral components, the
width of the absorption band practically remains the same.

By the nature of the present calculations, only widths
of the absorption bands can be considered as a reliable
estimate of the IVR rates. Individual peaks of the absorp-
tion bands may have very little to do with the real line
shape, when all states are taken into account. Given all the
uncertainties in the anharmonic force field it is impossible
to predict exact position of individual lines in the spectrum
on the scale of 1072-10~! cm~. However, it can be hoped
that average characteristics, which are only important
when many thousands of states contribute to the formation
of the spectrum, can be reasonably predicted by the kind of
calculations described in the present paper. To understand
better a higher resolution behavior and the actually ob-
served Lorentzian nature of the spectral line shape, it will
be necessary to include a treatment of the internal rotations
of the CH; groups, in a way other than the present treat-
ment as anharmonic oscillators.

VI. CONCLUSION

As can be seen in Table III a surprisingly good corre-
lation between the experimental results and the present
calculations has been observed in the spectral linewidths
for a variety of molecules. This correlation suggests that
the bulk part of the estimated anharmonic force field is
reasonably close to the reality. Several important questions
were addressed within the present model of vibrational
mixing in (CX;);YCCH molecules, such as the heavy Y
atom effect and the effect of deuteration. However, other
questions require additional study. First is the question of
the importance of the hindered internal rotations of methyl
groups. In our model they were represented by three an-
harmonic low frequency oscillators. The actual potential
surface is more complex than that. Due to strong anhar-
monicity in this part of the molecule there are probably
additional, to what we have accounted for, strong cou-
plings of all zeroth order states in tiers with high numbers.
The additional couplings can make the background states
after prediagonalization more homogeneously mixed, a
consequence which should facilitate the energy transfer
from the CH vibration. Second, more accurate and direct
ab initio calculations of the anharmonic field would be use-
ful for these molecules to test the present model anhar-
monic force field and to have a more detailed and reliable
estimate of the couplings. Although the cubic and quartic
interactions seem to be sufficient for rough estimates of the
spectral linewidths, the importance of higher order terms
for the line shape remains to be investigated. Finally, the
mechanism of the relaxation corresponds to a dynamic
tunneling.?” It would be interesting to study quantum and
classical correspondence in those molecules and explore
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this mechanism in a pure dynamical picture. Further work
in our group addressing some of the stated questions is in
progress.
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APPENDIX

In this Appendix the derivation of Eqs. (4.9)-(4.13) is
sketched. The general Green function formalism used in
the present paper is standard and is described, for example,
in Refs. 41 and 59. The Green function of the system (GF)
is defined as a matrix element of the resolvent operator. Of
special interest for the present problem is Gy (E), the ma-
trix element for the light state |0). In terms of this func-
tion the overtone spectrum is calculated according to Eq.
(4.7). Gyo(E) is defined as

1
Goo(E) =(0| =510

1 1
=0l 5w, -n,
1 1 1

te—m ' 5=m Y E— A,

++++10),

(A1)
where H is the Hamiltonian of the system, E is a complex
energy lying in the upper half of the complex plane E, and
|0) is the light zeroth order states of H. The Hamiltonian
is divided into a zeroth-order part H, and a perturbation V.
The main idea is to express the unknown GF, Gy (E), in
terms of the zeroth-order GF, Ggo(E ), defined in a similar
way as in Eq. (A1), but with A replaced by H, and V'=0.
The general equation for the GF can be written in a Dyson
form,59

Goo(E) = Goo(E) + G (E) 20 (E) G ( E)
+ G (E)200( E) G (E) Z0( E) G (E)
+o0 = [Goo(E) ] ™!~ Zgo(B) !

=[E—Ey—32(E)]7}, (A2)

where 2y (E) is a so-called self-energy for the state |0).
An explicit expression for 2, in operator form is derived

in Ref. 59,
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So(E)=(0| V+VQGQV |0}, (A3)

where Q=1—]0)(0| is a projection operator on a sub-
space which excludes the light state |0)¢0|, and G is a
resolvent operator defined in this Q subspace. Using Eq.
(A3) one can obtain the exact solutions for several cases
discussed later. Those solutions can also be obtained di-
rectly from Eqgs. (A1) and (A2).

For example, inserting the resolution of the identity,
Z|DH{I| =1, in terms of all zeroth order states in the sys-
tem in both sides of each ¥ in Eq. (Al), and then using
Eq. (A2) as a definition of 2y, it can be seen that in a
one-tier system the self-energy for the light state is

My|?

Soo(E) = 2 lE':‘EL,
Equations (A2) and (A4) result in Eq. (4.9). This result
also immediately follows from Eq. (A3).

For a system of a one-dimensional chain of levels,
10Y,[1),...} LY, with couplings M"*=! the self-energy of
the light state, |0), can be obtained in a similar manner.
Namely, in Eq. (A1) one again introduces the resolution
of identity in both sides of each V. Only terms of the type
(| V]ixl) =M"*1 are nonzero, and so one finds for the
light state

SE)= (0] V[ 1)G'(1|¥|0)= | M |*G" (E).

(A4)

AS)

Here G'Y(E) is defined for a system with the |0) state
excluded, i.e., for a chain |1),|2),...| L). In a similar way,
the self-energy for G”, pALETY expressed in terms of G*,

SWE)=(1|V]2)G?2|V|1)=|M"?|>G®(E) (A6)

which is defined for a system with |0) and |1) states ex-
cluded, etc. For the last but one state in the system, L—1,
the self-energy is expressed in terms of Green function of
the last state, L, for a system where all states, except the
last one, are excluded. The Green function of a system
consisting of only one state is given by the zeroth-order
GF,

GLE(E) = (L | m—r | Ly = (AT)
E—H,

E—E;
and

SLLEy=0. (A8)

Making substitution in inverse order one can calculate the
GF of the light state. Result of such calculation is given by
Egs. (4.10) and (4.11).

Finally, for a system of N tiers, T,...,T,, with unlim-
ited number of states in each tier, where each state inter-
acts with an independent subset of levels from the next tier,
an exact solution for GF of the light state also exists. For
each state / from the nth tier the self-energy is expressed in
terms of the Green functions of coupled states from the
next, (n+1), tier,

2B = 2 | MG (E), (A9)
7
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where the summation is over all coupled states from the
n+1 tier. In a similar way as in the previous case of one-
dimensional chain, the GF G}F""*!(E) is defined for a
system where all states from the previous tiers Ty, T'y,...,T",
are excluded. Green functions of the last tier, T, are
known exactly, because they coincide with the zeroth-
order functions, Gf,‘-'” O E), and given by Eq. (4.13).
Again, making substitutions in reverse order, one arrives at
Eq. (4.12).

The structure of the GF in the last two examples is
that of a continued fraction. The number of sequential
denominators in such an expression can be very large for
realistic systems containing hundreds of thousands of
quantum states. To write down an explicit analytic expres-
sion for GF in such a case would be very difficult. How-
ever, to calculate such an expression on a computer is an
easy task.
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