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An expression for the scanning tunneling microscopy (STM) current between the tip and
sample is presented using first-order perturbation theory for a two-Hamiltonian

formalism (“reactants” and “products”). The calculated STM current depends on the square
of the sample-tip matrix elements, averaged over a selection of random points in wave

vector space. In the limit of low voltage and temperature, this averaging is over the Fermi
surface of the sample. The model is applied to the graphite (0001) and Au(111)

surfaces using a simple model (chain) of a tungsten tip and the tight-binding approximation.
Comparisons with experiments and with the result for graphite obtained by Tersoff and

Lang using a molybdenum tip are given. The theory is applied elsewhere to STM of adsorbates.

I. INTRODUCTION

Scanning tunneling microscopy (STM) has provided a
stimulating development in the study of surfaces.!” It of-
fers the possibility of giving a direct real space image of the
surface structure at atomic resolution. In addition to bare
surfaces, e.g., Refs. 1 and 2, images of surfaces with adsor-
bates ranging from single atoms” to molecules of biological
interest* have been reported.

One goal of theory is to explain how the STM current
in the experiments varies with the tip position, voltage,
and, when an adsorbate is present, adsorbate. A variety of
theoretical models have been developed to interpret STM
experiments and the tunneling mechanism.>** Since the
real tip structure in STM is unknown, a somewhat arbi-
trary tip model is typically introduced into the theoretical
treatments. One of the very first and still widely used mod-
els for STM is due to Tersoff and Hamann,” who based
their theory on Bardeen’s transfer Hamiltonian ap-
proach!*!® and an s-wave tip model. In the limit of low
voltage and low temperature, Tersoff and Hamann found
that the STM current is proportional to the local density of
states (LDOS) of the sample at the position of the tip r,

I« Y, |¥y(r) |*5(E,—Ef)=LDOS, (1)

where E; and ¥, denote the energy eigenvalue and the wave
function of quantum state s of the sample, respectively.
Thus, in the constant current mode, the STM image at low
voltage represents a contour map of constant LDOS at the
Fermi level E . Equation (1) has served as a foundation
for many theoretical calculations>!%!7 of STM images and
has been reported to be a good approximation for simple
surfaces, such as Au(110) 2X1 and 3X1, and Si(111)
7% 7.8 In spite of its success in these systems,'® it is rec-
ognized that an s-wave model oversimplifies the electronic
structure of the tip and has been reported by Tersoff and
Lang and others to break down for graphite19’2° and for

*)Contribution No. 8772.

close-packed metals surfaces such as Au(111) and
A1(111).21’22 Other tip models have also been introduced
for STM instead of the s-wave tip approximation, e.g., in
Refs. 6-13.

An aim of the present paper is to develop a model for
STM whose formulation is applicable for a wide range of
calculational methods, such as density-functional,23‘26
Hartree-Fock-Slater,?”?® and tight-binding,2** but which
still offers a relatively simple interpretation of the STM
image. The tip-sample interaction is assumed to be weak in
the present treatment. Since the experiments are performed
at room temperature, the low temperature limit for the
electronic states of the solid and for the Fermi-Dirac dis-
tribution is used throughout.

In the present paper, an expression for the STM cur-
rent is first deduced using the time-dependent first-order
perturbation theory for a two-Hamiltonian system.?! The
STM current is then related to the interaction matrix ele-
ments between sample and tip, which may be treated by
density-functional or quantum chemistry calculations, or
by the method subsequently used in the present paper, the
tight-binding/extended Hiickel®? approach. For concrete-
ness, the present treatment is next specialized by making
use of a simplified tip model in which the tip is assumed to
be a semi-infinite linear chain of atoms. The theory is given
in Sec. II and applied to the STM images of the graphite
(0001) and Au(111) surfaces in Sec. III. Some compari-
son with the transfer Hamiltonian approach of Tersoff and
Hamann is given in Sec. IV, and some concluding remarks
are given in Sec. V.

Ii. THEORETICAL MODEL
A. The STM current between tip and sample

A one-electron Schrédinger equation is used for the tip
and a similar one for the sample (in units of z=1)

1
_E;n— V2+veﬁ‘(r) ¢nk(r) =En(k)¢nk(r)y (2)
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where ¢, (r) and E, (k) are the wave function and the
eigenvalue with band index » and wave vector Kk, respec-
tively, and v.4 is an effective local potential whose explicit
form is not immediately needed in the following derivation.
A local potential implies that v.z(r) is the same for differ-
ent ¢, (r) and E, (k). This vg(r) can be chosen to be any
local potential such as the Kohn—Sham effective potential*
in density-functional theory,?*¢ the potential in Hartree—
Fock-Slater theory,””?® and the potential used in tight-
binding®”*° or extended Hiickel calculations.’? We note, on
the other hand, that the Hartree—Fock potential itself is
not a local potential due to the nonlocality of its exchange
part, e.g., Refs. 26 and 27. Symbols s and ¢ are added later
to the potentials and to the Hamiltonians, wave functions,
and eigenvalues.

We consider an electron moving in a system consisting
of the sample and the tip in STM. The Hamiltonian for this
electron within any of the local theories mentioned above is
given by

1 1
H= _E;,; V2+Uéﬁ'+vf}ﬁ'+ Us—tEHt+Hs+ vs—t+—2';n_ VZ:

(3)

where H; and H,, and v}; and vl are the Hamiltonians and
the effective potentials for the isolated sample and tip, re-
spectively, and v,_, is the sample-tip interaction potential.
H, is the sum of the first two terms and H is the sum of the
first and third terms in the first equality in Eq. (3).

In applying time-dependent perturbation theory, the
electron at the initial time 7=0 can be taken to be localized
in the ¢, (r) state of the tip, where k, denotes the wave
vector for the tip states. Similarly, k, is the wave vector for
the sample states. In a three-dimensional treatment of the
solid, each Kk, represents a running wave parallel to the
surface and a standing wave pointing inward from the sur-
face, but denotes only a standing wave in a one-
dimensional system. When a voltage is applied, we denote
by P, the steady-state transition rate of transfer of an
electron from a ¢ «k,(T) state of the tip to a P (r) state of
the sample per unit volume of k; space and per unit volume
of k, space. We denote by P,_ , the corresponding transi-
tion rate for the reverse process. The arguments involve
standard time-dependent perturbation theory, but we give
them here because of the presence of the two Hamiltonians
and the delta function normalization®® employed in this
paper.®* (State counting and units for the transition rate of
a process using the present normalization are discussed in
Ref. 33.)

For P,,, a linear combination of the initial state
¢y (r) for the tip and of the final states ¢y (r) for the

sample is used as the time-dependent wave function®'
W(n) =ay (D ()™ 5+ f dk ay (2) i (r)e™ 5.
4)

For notational brevity, E(k;) has been written as E;, where
i=s or ¢, and only a single-band system is considered in Eq.
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(4). However, the result is readily generalized to the multi-
band case, and the final result for the latter is given later in
Eq. (14b) below.

Introducing this W,(r,) into the time-dependent
Schrédinger equation

d 1
ia_tlyk(r:t)=(ﬁ V2+Us—t+Ht+Hs)\Ilk(r,t) (5)

and noting that E; is the eigenvalue of H; ({=s or t), we
obtain, after some rearrangement,

i

dye () ¢y (r)e et f dk; dy (1) (r)e™

=a (?) (Veg+ Us—t)¢k,(1‘)e_iE‘t

+ [ a0 Glato )b e, )

where the dot denotes d/dt. Multiplying Eq. (6) by
¢]’f,(r), integrating over all space, and using a Dirac delta

function normalization for ¢ks(r),

() = f dr §ic (1)1, (1) =5k, — k), 7)
one obtains
a5 (e | By B+ dig (1) e

=akt(t) (ﬁbk;[ (U:ﬂ"i‘ Us_s) |¢kt)e"iE’t

+ [ da Oyl Gatv_ e ™. ©)

In a first-order approximation, it is assumed as usual that
akt(t) ~ 1 and aks(t) =~ 0 on the right-hand side of Eq.
(8). We neglect the overlap integral (qSk; | ¢k;)’ which im-
plies that the electron is assumed to be strongly localized
on the tip and on the sample before and after the transition,
respectively. Equation (8) then becomes, upon omitting
the final primes,

idy ()e™ 5=y |vig+vs_| i Y. €))

After integration, one then obtains P, ; from
lim,_,w|aks|2/t, using a standard argument, with
lim,_,  (sin® xt)/x*=n8(x), yielding

Py =27 [7<¢kx| v§ﬁ+ Us—t; ¢kt> | 26(Es_Et)
=27 | (¢ | H—H,| ¢y} |*8 (E,—~E))

=2m|H(kyk,) |*5(E,—E,) (10)

after using H, ,gbkr =E, ’¢kt and then again neglecting the over-
lap (¢ |¢y). In Eq. (10), E; and E, are the energies of
states of the sample and tip, respectively,*’ and | H(kk,) |2
denotes |{(¢y | H|¢y ) |*

It is useful to rewrite E; and E, in terms of values
relative to the respective Fermi levels (the chemical poten-
tials) p; and p, of the two solids
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1 (1D
\+27

and to note that the net current vanishes when y=u,. The
quantities £, E, p, and u, are all linearly dependent on
the respective potentials acting on s and on £, and so we
may also write®

Ms— L =¢ev, (12)

where v is the potential of the tip minus that of the sam-
ple.36 Accordingly, we have 8(E,—E,) =8(¢,—¢€,+ev).
The electronic current from tip to sample is given by
Eq. (10), multiplied by the probability f(¢,) that the tip
level ¢ is occupied, and by [1— f(€,)], the probability that
the sample level s is unoccupied, and integrated over all k;
and k, (by virtue of the units of ¢ks and ¢k:)~'33 Here f(€)
is the Fermi-Dirac distribution function [1-}exp(e/
kBT)]_l, with kpz and T being the Boltzmann constant
and absolute temperature, respectively. We then obtain

I{f}~{5}=277eff dk, dk,| H(kok,) | 2f( €;)

X[1—f(€;) ]6(e;—€4-ev). (13a)
Similarly, we have
I {s}~{t}=2ﬂeff dk, dk,| H(kyk,) |2f (&)
X[1—f(€)16(€,—€+-ev). (13b)

The net current from tip to sample is then given by

I=Itg (g—1g-1n
—2e f f ke, dicg| H(koko) |2[ f(e) — f(€)]

X 6(e;—e+ev). (14a)

In the multiband case, treating the bands as prediago-
nalized, the Hamiltonian matrix element (gb,,ks]H | ¢mk;)

now depends on 7 and m, the band indices for the sample
and tip, respectively. If this matrix element is denoted by
H,, (k.k,), one sums Egs. (13a) and (13b) over m and n
and, instead of Eq. (14a), obtains

I—2me S ” K, dk,| Hyp (ko) | 2] F () — £ (€]

X 6(e;,—e€+-ev). (14b)

In the limit of low voltage v, Egs. (14a) and (14b) reduce
to

I=Iy (3— 191
=2qre2uf dk, dk,| H(kk,) | *5(€,)8(€,) (152)

and

T—2mety S f f i, d,| Hyp (ki) | %5(€)5(0),
w (15b)
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respectively. In the present paper, we shall be only con-
cerned with this limiting case, but in later work the full
formulas (14a) and (14b) will be used to study the effect
of v. Using a specific tip model, it is next shown here how
| H(kyk,)|* or |H,,,(kyk,)|? can be simplified.

B. A tip model—semi-infinite chain of atoms

We make use of a simple tip model in which the tip is
assumed to be a semi-infinite linear chain of atoms. A sim-
ilar tip model was used by Sacks and Noguera.”® Ulti-
mately, one would wish to introduce, for comparison, tip
models with other geometrical shapes. For simplicity of
presentation, we consider a chain with one electron per
atom and one orbital per atom, the hopping integral H;;
between nearest neighbors being denoted by B, and H; by
a. The tight-binding approximation will be used neglecting
the overlap integrals for simplicity and retaining only the
Hamiltonian matrix elements between nearest neighbors.
For this model, €,(k,) defined in Eq. (11) and ¢k1(r) are®’

e,(k,) =a—u,+2B cos 2wk, =2p cos 27k, (16a)
4 () =v2 X sin 2mlks,(2), (16b)
=1

where z is the linear coordinate along the chain; ¢,(z) de-
notes the atomic orbital on site /; and ¢k,(1'), ¢kt(z) being
normalized via (¢ |¢x) = 6(k; — k;), 0 < k,<3. For this
model, as noted in the second equality in Eq. (16a), u,
equals a, since the Fermi level occurs at the middle of the
single band system where there is, per atom, one electron
and one orbital.

Introducing Eqgs. (16) for €,(k,) and ¢kt(z) into Eq.
(15b), we have

1/2
1=tz S [ di [ die) G| b))

X 8(e,)sin® 27k, (17)

where, as an approximation, only the matrix element be-
tween the first tip atom [orbital ¢, is used to denote the ¢,
in Eq. (16b)] and the sample has been included. We next
note that

172
47 |B| fo dk, sin® 2wk 5 (€,)

1 v L. .
= f d(cos 2mk,) /(1 —cos? 2k,)8(cos 2mk,) =1.
—1

(18)

Equation (17) for I becomes
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€2U

_ev 2

1= 3 | i) @ #1125
)

EW En:f dkslHt,nksizs(es)

OCpg(|I{t,nkslz>av’ (193.)

where p? denotes the sample density of states at the Fermi
energy €=0 with pg(€) being defined as p,(€)
=3,[ dkS(e—¢,) and where (| H, . | ) denotes the av-

erage over the Fermi surface
B Vo= D [ | Ep 2
n

x(e) [ > [ axse.

(19b)

1t is seen from Eq. (19a) that the STM current in this
model is simply proportional to (|H, t,,,kslz)av the squared
electronic matrix element averaged over a selection of ran-
dom points in wave vector space on the Fermi surface of
the sample. The STM image is then simply a contour of
constant | Hyux |*)ay-

We next consider a tip consisting of transition metal
atoms in which the d electrons (bands) dominate the prop-
erties, including the Fermi surface. It can be readily shown
that for a semi-infinite linear chain of transition metal at-
oms, the five d orbitals d2, d,2_2 d,, d,,, and d,, do not
interact with each other.>® We then have five noninteract-

ing d bands whose energies and wave functions are given
by

€n(k,) =ap,~—p,+2p,, cos 27k, (20a)
St (1) =V2Z 2, sin 2mjkdl, (20b)
i=1

where dZ, denotes the mth d orbital on the site j and where
the parameters a,, and 3, are defined as a,,= (d.,| H|d’,)
and B,,=(d’,|H]| di*1y, respectively. In the extended
Hiickel calculation, five a,,’s are approximated to be the
same and a will then be used in place of «,, in the follow-
ing.

Introducing Egs. (20a) and (20b) for ¢,(k,) and
¢mk,(l') into Eq. (15b), we have

172
I=4re Y, S f dk, fo k| (| H| ) |2

X sin? 2k S(a—pi,+2B,, cos 2mk,)8(e;),  (21)
where di, denotes the mth d orbital of the first tip atom
(the atom closest to the sample). Here again, as an ap-
proximation, only the matrix elements between the sample
and the atomic orbitals d, of the first tip atom have been
included. Using
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12
217-J~ dk, sin? 27k 8 (&t —pu,+2B,, cos 27k,)
0

=128~ (—a)*1%/(28,)*, (22)
Eq. (21) for I becomes
=23 Y f I, (28— (pe—)?] /2
X (a0 | H $uc ) 1?6(€5)/ (2B,m)> (23a)

When S, is approximated to be independent of m and is
then denoted by 3, we have

I=2¢{[(2B)*— (u,—a)?1V%/(2B)%}

X Z f dkslﬂt,nkslz‘s(es)
n

o pX | Hypic | Dav » (23b)
where |Hy, |* denotes
5
| H | = —21 | (5| H | ) |~ (24)

Here again, p? denotes the sample density of states at the
Fermi energy €,=0 and (|H,, | 2y, is defined in Eq.
(19b). Some features of the formalism are next illustrated
by treating bare graphite and gold, where previous results
are available for comparison.

Ill. RESULTS
A. Graphite (0001) surface

Despite extensive studies of graphite, the present
knowledge of the corrugation and the asymmetry between
a and S sites (atoms) is still limited, with the « sites
having carbon atoms directly below them and the B sites
having no atoms immediately below. The corrugation is
defined to be the difference between the maximum and
minimum tip heights in the constant current mode, and the
asymmetry is the difference in the current in the constant
height mode or the tip heights in the constant current
mode between adjacent sites. In this section, calculations
for the corrugation of graphite in the constant current
mode are performed, using the theoretical model described
in the preceding section. The wave functions and other
properties of graphite needed in the calculations were ob-
tained in a previous paper.’ For comparison, both the
tungsten and hydrogen tips are used. In the following, we
first derive expressions for |Ht,nks|2 in Egs. (19a) and
(23b), a key quantity in calculation of the STM images,
and then give the calculated results in the constant current
mode.

For graphite a tight-binding result for P (1) is given
by37

16,19,20
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o

P (W)= X Ay X X sin2mkyle™ “ip (r—r%)

j=aB8 =135 Ii,h
i i
-+ z Am' z z sin 27Tk3l3e[k" T
imah B h=246 I,

Xp(r—1d), (j=aB; i=a'B"), (25)

where k,=Xk) +ksbs, ky =k;b, +k>b,, and b; denotes a re-
ciprocal lattice vector.” k; represents the two-
dimensional wave vector parallel to the surface ( —3<k,
ky<}; 0<k;<3). In Eq. (25), rf is the lattice vector for g
type atoms g=a, 3, a’, and B, and the subscript / denotes
the triad (/;,53).”" p,(r—r§) is the p, wave function cen-
tered at r=r{. The approximations used to obtain Eq. (25)
for ¢ (r) and to determine the coefficients 4,, are given
in detail in Ref. 37.°° We consider a hydrogen tip (a semi-
infinite chain of hydrogen atoms) first.

The distance between two graphite layers is 3.35 A
(Ref. 51) and it is thus natural to neglect the interactions
between the tip atoms with the second and further layers of
graphite. The interactions due to the second and further
atoms of the tip are also ignored. The matrix element
H, i in Eq. (192) can then be written as

. w0 v
Hy o= (s;| H|$ )= 2 Ay 2, sin 2mkse™ i (s,| H|p),
£ s j 1
(262)

where s, denotes the s orbital of the first hydrogen atom of
the semi-infinite chain tip. Writing 4,,;=a,;+ib,;, j=a,B,
we have

Hy = Z Y sin 27ks[ (a,; cos K 'r{—bnj sin k; -rlf)

s 7 1
—i(by cos ky xf+a,; sinky ¥ s | |5,

(26b)

where the coefficients a,; and b,; are determined by the
method discussed in Ref. 37. We then obtain the expres-
sion for | Hy . |%,

. o 7
| Hye |?= 2 g (sin 2mks)*(s,| H| P, Y p, | H|s)
A A

X [(@njanj+byibyj)cos ky - (rf,'—r{)

— (@b —anyrby)sinky - (v —xD1.  (27a)

We next consider a tungsten tip where d orbitals dominate
at the Fermi surface. A simplified expression for | H, . | 2
in Egs. (23b) and (24) for the tungsten tip can then be
written as
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FIG. 1. Calculated scan for graphite with a tungsten tip. (The geometry
and other properties of graphite are given in Ref. 38.)

: oy,
|Hye | =2 2 g(sm 2mks)d,, | H|p, Y v} |H|d,)
mJJ s

X [(a,ljanj, +b,,jb,,j,)cos k" ° (l'{, —l"ll)

— (a,,jbnj,—anj:bnj)sin k“ : (l'{,’—l'{)],
(27b)

where m sums over the five d orbitals, the superscript ¢
indicating the first atom of the tip. According to Egs.
(19a) and (23b), in the constant current mode, the STM
image follows a contour of constant (|Ht,,,kS|2)av.

The calculational procedure for obtaining a,;, b,;, and
the k points in Eqs. (27a) and (27b) is described in Ref.
37. In the present calculations of (| H, |, 60 k points
are randomly chosen from the Fermi surface of graphite.
The calculated STM scans for graphite with a tungsten tip
and a hydrogen tip are shown in Figs. 1 and 2, respectively.

o
o
1

»
o
|

@
)
|

25 # | la ] |H i |’6

0 5 10 15 20 25 30
Points within unit cell

Distance between tip and surface (A)
:

FIG. 2. Calculated scan for graphite with a hydrogen tip.
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In both cases, the tip is moved from the 3 site through the
a and the H (hollow) sites, and then back to the B site,
where the H site is the point in the middle of the hexagon.
In both calculations, the tip is initially placed 4.5 A above
the B site, at which (| H,x | 2y, is evaluated, and the value

of that averaged matrix element is then fixed. In order to
achieve constancy of {[H, | 2w over other sites such as

the a and H along the line, the tip is moved up or down in
the direction perpendicular to the graphite surface (the z
direction).

In the above way, corrugations of slightly over 0.1 and
of about 2 A are found for the tungsten and hydrogen tips,
respectively. The small corrugation for the tungsten tip is
similar to that obtained by Tersoff and Lang, who esti-
mated a corrugation of about 0.1 A for the Mo tip, smaller
than the values reportedly seen in any experiments.'®

The Tersoff-Lang calculation appeared to be the only
one going both beyond the s-wave model and addressing
the corrugation problem. Experimentally, conclusive val-
ues of the corrugation and asymmetry have not yet been
determined, and the tip dependence of these properties has
not been investigated systematically. The reported experi-
mental corrugation of graphite can be unphysically as large
as 24 A.*® Abnormally high corrugation has been postu-
lated to be related to the surface deformation and contam-
ination.*® A smaller corrugation of about 1 A has been
reported in vacuum.**? However, Tersoff and Lang have
argued that even the 1 A corrugation includes substantial
enhancement from mechanical interactions, which are not
fully understood.!® In that case, the experimental corruga-
tion that purely reflects the electronic interaction between
the tip and sample is still unknown.

The behavior of the a and S sites of graphite is of
interest. One explanation for the asymmetry of the STM
images of graphite is provided by Tomanek ef al, who
argued that the wave functions of graphite at the Fermi
level consist mainly of the 2p, states of the  atoms, so that
B atoms instead of a atoms show up in the STM im-
ages.**52 A tip dependence of the asymmetry, i.e., of the
different behavior of ¢ and S sites, was calculated by
Tsukada and co-workers, using various clusters to model
the tip.*® The present calculations indicate an additional
feature on the tip dependence of the asymmetry between
the a and B sites and of the difference in tip positions
between the a and H sites. The positions of a and H are
depicted in Figs. 1 and 2. In Figs. 1 and 2, the tip positions
over the a and H sites are about the same for a tungsten
tip, but the tip position is substantially higher over the o
site than that over the H site for a hydrogen tip. The dif-
ference in the tip heights between a and B, or equivalently
the asymmetry between a and 3, also increases from the
tungsten to hydrogen tips, as already noted. The small
calculated corrugation of the STM images of graphite of
about 0.1 A using a tungsten tip (Fig. 1) contrasts mark-
edly with that of about 2 A using a hydrogen tip. In the
present model, the STM current is tip dependent through
| H, t’"ksl 2, As a result, all the quantities such as the corru-
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gation and the asymmetry related to the current are also
tip dependent.

A picture of these variations may be qualitatively given
as follows involving the wave functions of graphite on the
Fermi surface: These wave functions occupied at the Fermi
energy are composed chiefly of the p, orbitals localized at
the B sites, though a small portion of the p, orbitals at the
a sites are also occupied at the Fermi energy. The 1s or-
bital of a hydrogen atom is well localized around its nu-
cleus and its interaction with the H site of the graphite
surface is weak because there is no localized atomic orbital
at the H site. This interaction increases as the tip moves
from the H site to the « and to the 3 sites. For a tungsten
tip, the d orbitals are more diffuse. Even when the tip is
over the H site, these d orbitals still interact well with the
P, orbitals at the 8 and « sites (there are three nearest 3
and « sites in each case). When the tip is over an « site, the
d orbitals couple with three dominant S orbitals, as well as
with one o orbital below with a small coefficient. It appears
from the calculations that for the tungsten tip, the « site is
almost the same as the H site in terms of their couplings
with the tip as in Fig. 1. It is clear that among the H, «,
and B sites, the calculated differences in interactions with
the tip are much less for a tungsten tip than for a hydrogen
tip, so there is less corrugation, as seen on comparing Figs.
1 and 2.

B. Au(111) surface

Atomically resolved images of closed-packed metal
surfaces such as Au(111) (Ref. 53) and Al1(111) (Ref.
54) have been obtained with STM, and tungsten (W) tips
were used in those experiments. It was noted that these
images cannot be explained by the s-wave tip model.2"??
Calculations for the corrugation of the A1(111) surface,
using more detailed tip models, were also reported, and the
calculated corrugations are in reasonable agreement with
the experimental values.”"*? In the present section, the cor-
rugation is calculated for the Au(111) surface, using the
present model and a W tip consisting of the semi-infinite
linear chain of W atoms.

It is recalled that in the limit of low voltage, only the
wave functions at the Fermi level contribute to calculation
of the relevant | H, t,,,kslz. Determination of the Fermi sur-
face of bulk Au has demonstrated that the s band domi-
nates the wave functions at the Fermi level and that the d
bands lie at energies lower than the Fermi energy.> As an
approximation, we consider only the s band in the calcu-
lation of the wave functions for a semi-infinite Au with the
(1;71) surface. In this case, the wave functions are given
by

Pau=tne (N=Y2 2 X (|F|/F)5sin2wksl

hh=—w L=1

Xexp (k) *r)s(r—r)), (28)
where F is defined as
F=pexp(i2mk,) +exp(i2wk,) + 1], 29)
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FIG. 3. The geometry of the Au (111) surface. Solid circles are located
on /;th layer, open circles on (;-+1)th layer, and crosses on (/;—1)th
layer. The side of a cubic unit cell, @, is 4.08 A, and the spacing between
layers is a/V3.

with B being the hopping integral between two neighboring
s orbitals, and using the earlier definition of k; in terms of
the remprocal lattice vector coordinates (ky,ky,k;). Also,
r;)==}_,/a, the subscript / denoting the triad ( L) and a;
denoting a lattice vector. A more detailed discussion of
Eqgs. (28) and (29) is given in Ref. 37. IH,,,,kslz can now
be explicitly written as

| Hye,|*= g 2 (sin 2ak3) (s | H|dy, )y, | H]|s;,)

(30)

where only the interactions between the first W tip atom
and atoms within the first layer of the Au (111) surface are
included, and where m denotes the five d orbitals of the W
atom. In the calculations of (|H,,,,ks|2)av 60 k(ky,kyk3)
points were randomly chosen from the Fermi surface for a
semi-infinite Au metal with a (111) surface.

The geometry of a closed-packed Au(111) surface is
depicted in Fig. 3. The tip positions, along the path ASAH
in Fig. 3 and corresponding to a constant (| H, ik, |2 av» are
shown in Fig. 4. The tip starts at 4.5 A over a Au atom,
reaches a local minimum at the midbond site S, and a
minimum at the H site (in the middle of the triangle). The

X cos k" “(rp—ry),

>
[l

A S A H
| | ] | i | I }

Distance between tip and surface (A)
9
-y

b
[
o

5 10 15 20 25 30 35 40
Points within unit cell

FIG. 4. Calculated scan for Au (111) with a tungsten tip.
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calculated corrugation is about 0.11 A, which is in reason-
able agreement with the experimental value of 0.15=+0.04
A5

IV. COMPARISON WITH THE TRANSFER
HAMILTONIAN EXPRESSION

The expression for the STM current given by the trans-
fer Hamiltonian model of Tersoff and Hamann® is of the
same form as Eqs. (14a) and (14b) or Egs. (15a) and
(15b), but with IH,,m(k k) |? replaced by |M,,,(k.k,) |,
with the latter given by> 4!

N L

Mun(ksk) =5 | dS- (Vi VW —¥pu IV ).

(31)

In Eq. (31), the integral is over any surface lying entirely
within the region between the sample (left) and tip (right)
electrodes, and Wy and ¥, are the eigenfunctions of H
and H, respectively, where H; and H, are the model
Hamiltonians defined as'“!

H=H for z<|,
and H=H,—=H, (32)

Here, / is the distance between the two electrodes (z=0,
z=1) and the z direction is perpendicular to the elec-
trodes.!® For example, similar to Eq. (14b), we have

H,=H for z>0,

for O0<z<l.

127 3 [ [ o] 3, 0c ) L f (&) - £(e]

X8(e;—e€,+ev), (33)

where €; denotes E;—u,;, with E; and u; being the eigenvalue
of H; defined in Eq. (32) and the chemical potential of the
i electrode, respectively, i=s,t.

Using exponentially decaying wave functions outside
of the surface of the metal and of the tip, and using a
radially symmetric wave function for the tip, the integral in
Eq. (31) for M, (k.k,) was evaluated by Tersoff and Ha-
mann. In the limit of low voltage, an expression [Eq. (1)
given earlier] for the current J was obtained.’ Other tip
models have also been employed to evaluate this matrix
element, e.g., in Refs. 6-13.

Equation (19a), the expression for the STM current in
the present model, can also yield the local density of states
(LDOS) or Eq. (1), when one introduces approximations
into Eq. (19a). We let the matrix element (b | H|$,) be

proportional to the overlap integral <¢"ks| ¢, the function

¢, being concentrated at the tip position r,, and it is next
assumed that (¢, |¢,) is proportional to (¢, |ry), ie., to

the wave function ¢;,"ks(rt). We then have

T3 [ di] (| H160 1%5(e)

=constant X ), f K| b (r2) | %8 (€;)

=constant X LDOS. (34)
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Thereby, the STM current in the present model then be-
comes proportional to the local density of states (LDOS),
as in the Tersoff-Hamann model. In the actual applica-
tions, however, we shall use Eq. (19a) and compare with
the approximation given by Eq. (34).

V. CONCLUDING REMARKS

The STM current in the present theoretical model de-
pends on the average of the square of the sample-tip ma-
trix elements (| H,x |*)ay defined in Eq. (19b). The latter
is, in turn, expressed in terms of the atomic coefficients in
the crystal wave functions of the isolated sample and tip,
and of the matrix elements between the atomic orbitals of
the sample and those of the tip. In the present model, the
properties such as the wave functions and constant energy
surfaces of the tip and sample can be calculated using
methods such as the density-functional theory and a vari-
ety of quantum chemistry methods, e.g., the tight-binding
model. We employ the latter here.

As pointed out by Tersoff, most such methods using
local orbitals (Gaussian type or Slater type) as a basis,
though well adapted to problems of total energy and band
structure, are inaccurate for the quantitative calculation of
the STM current. When the sample and tip are separated
by a very large distance, say 10 A, in this case only, the
tails of the wave functions at a large distance from the
surface are important. Those local orbitals behave rather
inaccurately at a large distance from the surface. On the
other hand, use of the local orbitals may be justified if the
sample—tip separation is such as to ensure the validity of
the perturbation treatment, but not so large that the local
orbitals interact strongly. When the sample—tip interaction
is reasonably well treated as being between two well-
localized nearest neighboring atomic orbitals, the nearest-
neighbor tight-binding approximation becomes reasonable.

The present model is then applied to the graphite
(0001) and Au(111) surfaces. It is found that the calcu-
lated corrugation for the Au(111) surface is in reasonble
agreement with the experiment. In the case of graphite, for
an experimentally relevant W tip, a very small corrugation
amplitude of slightly over 0.1 A is obtained, similar to the
result by Tersoff and Lang, but smaller than the experi-
mental values to date.

A number of assumptions have been employed in this
treatment of STM and in its later application to adsorbates.
For this reason, until calculations based on these formulas
are extensively tested experimentally, any conclusions
drawn from them should be treated with some reserve.
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