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An expression for the scanning tunneling microscopy (STM) current between the tip and 
sample is presented using first-order perturbation theory for a two-Hamiltonian 
formalism (“reactants” and “products”). The calculated STM current depends on the square 
of the sample-tip matrix elements, averaged over a selection of random points in wave 
vector space. In the limit of low voltage and temperature, this averaging is over the Fermi 
surface of the sample. The model is applied to the graphite (0001) and Au( 111) 
surfaces using a simple model (chain) of a tungsten tip and the tight-binding approximation. 
Comparisons with experiments and with the result for graphite obtained by Tersoff and 
Lang using a molybdenum tip are given. The theory is applied elsewhere to STM of adsorbates. 

I. INTRODUCTION 

Scanning tunneling microscopy (STM) has provided a 
stimulating development in the study of surfaces.“* It of- 
fers the possibility of giving a direct real space image of the 
surface structure at atomic resolution. In addition to bare 
surfaces, e.g., Refs. 1 and 2, images of surfaces with adsor- 
bates ranging from single atoms3 to molecules of biological 
interest4 have been reported. 

One goal of theory is to explain how the STM current 
in the experiments varies with the tip position, voltage, 
and, when an adsorbate is present, adsorbate. A variety of 
theoretical models have been developed to interpret STM 
experiments and the tunneling mechanism.5-‘3 Since the 
real tip structure in STM is unknown, a somewhat arbi- 
trary tip model is typically introduced into the theoretical 
treatments. One of the very first and still widely used mod- 
els for STM is due to Tersoff and Hamann,’ who based 
their theory on Bardeen’s transfer Hamiltonian ap- 
proach’4.‘5 and an s-wave tip model. In the limit of low 
voltage and low temperature, Tersoff and Hamann found 
that the STM current is proportional to the local density of 
states (LDOS) of the sample at the position of the tip rn5 

Ia c 1 Y&9 l*SW,-Ef> =LDOS, 
s 

(1) 

where ES and Y!, denote the energy eigenvalue and the wave 
function of quantum state s of the sample, respectively. 
Thus, in the constant current mode, the STM image at low 
voltage represents a contour map of constant LDOS at the 
Fermi level Ep Equation ( 1) has served as a foundation 
for many theoretical calculations5~‘6”7 of STM images and 
has been reported to be a good approximation for simple 
surfaces, such as Au(ll0) 2X1 and 3X1, and Si(ll1) 
7X7.‘s In spite of its success in these systems,” it is rec- 
ognized that an s-wave model oversimplifies the electronic 
structure of the tip and has been reported by Tersoff and 
Lang and others to break down for graphite’g*20 and for 
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close-packed metals surfaces such as Au( 111) and 
A1(111).21Y22 Other tip models have also been introduced 
for STM instead of the s-wave tip approximation, e.g., in 
Refs. 6-13. 

An aim of the present paper is to develop a model for 
STM whose formulation is applicable for a wide range of 
calculational methods, such as density-functional,23-26 
Hartree-Fock-Slater,*“** and tight-binding,2g130 but which 
still offers a relatively simple interpretation of the STM 
image. The tip-sample interaction is assumed to be weak in 
the present treatment. Since the experiments are performed 
at room temperature, the low temperature limit for the 
electronic states of the solid and for the Fermi-Dirac dis- 
tribution is used throughout. 

In the present paper, an expression for the STM cur- 
rent is first deduced using the time-dependent first-order 
perturbation theory for a two-Hamiltonian system.31 The 
STM current is then related to the interaction matrix ele- 
ments between sample and tip, which may be treated by 
density-functional or quantum chemistry calculations, or 
by the method subsequently used in the present paper, the 
tight-binding/extended Hiicke132 approach. For concrete- 
ness, the present treatment is next specialized by making 
use of a simplified tip model in which the tip is assumed to 
be a semi-infinite linear chain of atoms. The theory is given 
in Sec. II and applied to the STM images of the graphite 
(0001) and Au( 111) surfaces in Sec. III. Some compari- 
son with the transfer Hamiltonian approach of Tersoff and 
Hamann is given in Sec. IV, and some concluding remarks 
are given in Sec. V. 

II. THEORETICAL MODEL 

A. The STM current between tip and sample 

A one-electron Schriidinger equation is used for the tip 
and a similar one for the sample (in units of fi= 1) 

-A V*+bdr) 4dr) =-%W&Ar>, 1 (2) 
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where &Jr) and E,(k) are the wave function and the 
eigenvalue with band index II and wave vector k, respec- 
tively, and ueff is an effective local potential whose explicit 
form is not immediately needed in the following derivation. 
A local potential implies that u,s(r) is the same for differ- 
ent &(r> and E,(k) . This u,& r > can be chosen to be any 
iocal potential such as the Kahn-Sham effective potential24 
in density-functional theory,23-26 the potential in Hartree- 
Fock-Slater theory,27y28 
,,i&e,g*%30 

and the potential used in tight- 
or extended Hiickel calculations.32 We note, on 

the other hand, that the HartreeFock potential itself is 
not a local potential due to the nonlocality of its exchange 
part, e.g., Refs. 26 and 27. Symbols s and t are added later 
to the potentials and to the Hamiltonians, wave functions, 
and eigenvalues. 

(4). However, the result is readily generalized to the multi- 
band case, and the final result for the latter is given later in 
Eq. (14b) below. 

Introducing this Yk(r,t> into the time-dependent 
Schrbdinger equation 

i & vkht> = & V2+~s-t+Ht+Hs \uk(r,t> 
( ) 

(5) 

and noting that Et is the eigenvalue of Hi (i=s or t), we 
obtain, after some rearrangement, 

i &k,(t>&(r)e-iEg+ 
1 s 

dk,~ks(t>+ks(r)e-iE’ 1 
-k,(t) (U~ff+U,-t)~k,(r)e-iEl’ 

We consider an electron moving in a system consisting 
of the sample and the tip in STM. The Hamiltonian for this 
electron within any of the local theories mentioned above is 
given by 

H= -&- V2+u:R+~R+~~_t~H~+Hs+~~-i+~V2, 

(3) 

where H, and H, and v& and v& are the Hamiltonians and 
the effective potentials for the isolated sample and tip, re- 
spectively, and uset is the samplctip interaction potential. 
Ht is the sum of the first two terms and H, is the sum of the 
first and third terms in the first equality in Eq. (3). 

+ 
s 

dk,a$(t) (u~ff+u,_r)~ks(r>e-‘~~, (6) 

where the dot denotes d/dt. Multiplying Eq. (6) by 
#t,(r), integrating over all space, and using a Dirac delta 

function normalization for &,( r ) , 

($i$I$k,)= j- dr~a(r)~k~(r)=6(k,-k~), (7) 

one obtains 

In applying time-dependent perturbation theory, the 
electron at the initial time t=O can be taken to be localized 
in the &$r) state of the tip, where k, denotes the wave 
vector for the tip states. Similarly, k, is the wave vector for 
the sample states. In a three-dimensional treatment of the 
solid, each k, represents a running wave parallel to the 
surface and a standing wave pointing inward from the sur- 
face, but denotes only a standing wave in a one- 
dimensional system. When a voltage is applied, we denote 
by Pt+, the steady-state transition rate of transfer of an 
electron from a &Jr) state of the tip to a &k,(r) state of 
the sample per unit volume of k, space and per unit volume 
of k, space. We denote by P,,, the corresponding transi- 
tion rate for the reverse process. The arguments involve 
standard time-dependent perturbation theory, but we give 
them here because of the presence of the two Hamiltonians 
and the delta function normalization33 employed in this 
paper.34 (State counting and units for the transition rate of 
a process using the present normalization are discussed in 
Ref. 33.) 

+ 
s 

& aks(t) @k; 1 (&i%t) 1 $bk,>e-"@- (8) 

In a first-order approximation, it is assumed as usual that 
ak,(t) = 1 and aks(t) N 0 on the right-hand side of Eq. 
(8). We neglect the overlap integral (C&i I &,), which im- 
plies that the electron is assumed to be strongly localized 
on the tip and on the sample before and after the transition, 
respectively. Equation (8) then becomes, upon omitting 
the final primes, 

i&,( t)e- iE,‘=($ksI &-&-tI$k,)e-iE’- (9) 

After integration, one then obtains P,-, from 
lb+ m 1 ak 1 */t, using a standard argument, with 
lb, m (GA* xt)/x*t=d(x>, yielding 

Pr-,=2~!(~k,l~tf+U,-tI~k,) I*~(Es--Et) 

For P,,, a linear combination of the initial state 
&Jr) for the tip and of the final states &(r) for the 
sample is used as the time-dependent wave function31 

=24 @‘k,IH--Htl#kr) I*U$---Et) 

yk(r,t) =ak,(t)$k,(r)e-iE’+ 
s 

dk,aks(t)$kS(r)e-iESt 

(4) 

-271-IH(k,k,) 1*&E,-E,) (10) 

after using Hdk, = &jk, and then again neglecting the over- 
lap (C$k, 1 $k,). In Eq. ( lo), Es and Et are the energies of 
states of the sample and tip, respectively,35 and I H( k,k,) I * 
denotes I @k,l HI 4k,) I *. 

For notational brevity, E(ki) has been written as Ei, where 
i=s or t, and only a single-band system is considered in Eq. 

It is useful to rewrite E, and Et in terms of values 
relative to the respective Fermi levels (the chemical poten- 
tials) ps and ,+ of the two solids 

J. Chem. Phys., Vol. 98, No. 9, 1 May 1993 

Downloaded 03 Apr 2007 to 131.215.21.81. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



us=-%---11, et=&-pt , (11) 
and to note that the net current vanishes when P~=,LQ. The 
quantities E,, E, ,uts and pt are all linearly dependent on 
the respective potentials acting on s and on t, and so we 
may also writes6 
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respectively. In the present paper, we shall be only con- 
cerned with this limiting case, but in later work the full 
formulas (14a) and ( 14b) will be used to study the effect 
of v. Using a specific tip model, it is next shown here how 
I H(k,k,) I * or I H,,,(k,k,) I * can be simplified. 

ps--pt=ev, (12) 

where v is the potential of the tip minus that of the sam- 
ple.36 Accordingly, we have S(E,-Et) =6(e,-$+ev). 

The electronic current from tip to sample is given by 
Eq. (lo), multiplied by the probability f( et) that the tip 
level t is occupied, and by [l -f( E,)], the probability that 
the sample level s is unoccupied, and integrated over all k, 
and k, (by virtue of the units of &, and #J~,),.~~ Here f(e) 
is the Fermi-Dirac distribution function [ 1 +exp( e/ 
k,T)]-‘, with kB and T being the Boltzmann constant 
and absolute temperature, respectively. We then obtain 

I{++}=2~e J-J- mc,&[W&) 1 “f(d 

X [l--f(E,)lS(~,--E,+ev). 
Similarly, we have 

(134 

B. A tip model-semi-infinite chain of atoms 

We make use of a simple tip model in which the tip is 
assumed to be a semi-infinite linear chain of atoms. A sim- 
ilar tip model was used by Sacks and Noguera.13 Ulti- 
mately, one would wish to introduce, for comparison, tip 
models with other geometrical shapes. For simplicity of 
presentation, we consider a chain with one electron per 
atom and one orbital per atom, the hopping integral Hij 
between nearest neighbors being denoted by 8, and Hii by 
a. The tight-binding approximation will be used neglecting 
the overlap integrals for simplicity and retaining only the 
Hamiltonian matrix elements between nearest neighbors. 
For this model, et(kt) defined in Eq. ( 11) and &Jr) are37 

I {s}.+{t}=2re J-J- & &I H&&) I 2fk) 

X [ l-f(d 16(es--3+ev). (13b) 
The net current from tip to sample is then given by 

I=qt}-{s}-I{s}+{t} 

et(kt) =a-,ut+2fl cos 2rkt=2/3 cos 2rrk,, (164 

h,(r) =a I;1 sin 2rk#dz), (16b) 

= 2re 
JJ mc,~tIH(k&t) 1*Lfktb-fk,>l 

XS(e,-e,+ev). (144 
In the multiband case, treating the bands as prediago- 

nalized, the Hamiltonian matrix element (#Jam, I HI &kt) 
now depends on n and m, the band indices for the sample 
and tip, respectively. If this matrix element is denoted by 
H,,( k,k,), one sums Eqs. ( 13a) and ( 13b) over m and IZ 
and, instead of Eq. ( 14a), obtains 

where z is the linear coordinate along the chain; 4l(z) de- 
notes the atomic orbital on site t and &,(r), &,(z) being 
normalized via (&, I c#Q;) = S (k, - kj >, 0 < k, < a. For this 
model, as noted in the second equality in Eq. (16a), pt 
equals a, since the Fermi level occurs at the middle of the 
single band system where there is, per atom, one electron 
and one orbital. 

Introducing Eqs. (16) for et(kt) and #k,(z) into Eq. 
(15b), we have 

I=27re C 
n,m J-J- &&IfLn(Wt) 1*Lf(+--fk)1 

XS(e,--E,+ev). (14b) 
In the limit of low voltage v, Eqs. (14a) and (14b) reduce 
to 

I=~{t}-{s}--~{s}-{t} 

I=47re2v C dks 
l/2 

d&l WIfWn~,) l*Nd n s s 0 

x6(et)sin2 2?rk,, (17) 

where, as an approximation, only the matrix element be- 
tween the first tip atom [orbital C/Q is used to denote the $i 
in Eq. (16b)] and the sample has been included. We next 
note that 

= 277e*v 
J-J mc, &lfWv,k,) 1 *~(dN~t> (154 

and 

4nlPI Jo*‘* dk, sin* 2?rkJ ( et) 

s 

1 
= d(cos2?rk,) ,/(l-cos22~kt)S(cos2~k~)=1:- 

-1 
(18) 

I=2?re2v C 
nm 

dk, &IJL,AWt) I *NWQt>, 

(15b) Equation (17) for I becomes 
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s 

l/2 
237 dk, sin* 2?rkJ (a -pClt-t 2& cos 2n-k,) 

0 
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I=$z, dk,l ‘+tlHl#‘nk,) I*%) 

-$ ii j- dlr,IHt,nks12%) 
n 

=3J:( IHt,nk,l*)av 7 (194 
Eq. (21) for I becomes 

= E CWm>*- (pt-a>21”2/CW,)2, 

where pt denotes the sample density of states at the Fermi 
energy E,=O with P,(E) being defined as P,(E) 
= 2,s dk$ ( E- E,) and where ( 1 Ht,nk, I*) aV denotes the av- 
erage over the Fermi surface 

(IHt,nk,l*)av= ; j- mc,IHt&12 

XHd I s c %$(G). (19b) n 
It is seen from Eq. (19a) that the STM current in this 

model is simply proportional to ( 1 Ht,nksI *),” the squared 
electronic matrix element averaged over a selection of ran- 
dom points in wave vector space on the Fermi surface of 
the sample. The STM image is then simply a contour of 
constd ( I Ht,nksl *jav. 

We next consider a tip consisting of transition metal 
atoms in which the d electrons (bands) dominate the prop- 
erties, including the Fermi surface. It can be readily shown 
that for a semi-infinite linear chain of transition metal at- 
oms, the five d orbitals ds, dxz-g dx,,, dyn and d, do not 
interact with each other.38 We then have five noninteract- 
ing d bands whose energies and wave functions are given 
by 

tz,(kJ =a,-,ut+2& cos 2?rk, (204 

&k,(r) =a jFjl sin 271.ik& (2Ob) 

where dk denotes the mth d orbital on the site j and where 
the parameters a, and & are defined as am= (dj;, I HI dA) 
and &=(dj,IHIdh*‘), respectively. In the extended 
Hiickel calculation, five a,‘s are approximated to be the 
same and a will then be used in place of a,,, in the follow- 
ing. 

Introducing Eqs. (20a) and (2Ob) for l ,(kJ and 
&k,(r) into Eq. ( 15b), we have 

x sin2 2n-k&a-pt+2& cos 2?rk,)6(@, (21) 

where dk denotes the mth d orbital of the first tip atom 
(the atom closest to the sample). Here again, as an ap- 
proximation, only the matrix elements between the sample 
and the atomic orbitals d;, of the first tip atom have been 
included. Using 

I=2e2v C C J dkJ G&J*- (yt-a)*l”* It m  

I=2e2v{[ (2P)*- &-a)*] “*/(2B)*> 

XC 
s 

dk,IHt,nks12%) 
n 

where 1 Ht,nks I * denotes 

IHt,nks12= i, 1 @ :,IHbh) I*- 

(22) 

X 1 (&nlHhc,) 1*~ks)/(2&>*. (234 
When & is approximated to be independent of m and is 
then denoted by p, we have 

(23b) 

(24) 

Here again, pt denotes the sample density of states at the 
Fermi energy E,=O and ( I Ht,nksl *),” is defined in Eq. 
( 19b). Some features of the formalism are next illustrated 
by treating bare graphite and gold, where previous results 
are available for comparison. 

III. RESULTS 

A. Graphite (0001) surface 

Despite extensive studies of graphite,‘6~1g’20 the present 
knowledge of the corrugation and the asymmetry between 
a and p sites (atoms) is still limited, with the a sites 
having carbon atoms directly below them and the fi sites 
having no atoms immediately below. The corrugation is 
defined to be the difference between the maximum and 
minimum tip heights in the constant current mode, and the 
asymmetry is the difference in the current in the constant 
height mode or the tip heights in the constant current 
mode between adjacent sites. In this section, calculations 
for the corrugation of graphite in the constant current 
mode are performed, using the theoretical model described 
in the preceding section. The wave functions and other 
properties of graphite needed in the calculations were ob- 
tained in a previous paper.37 For comparison, both the 
tungsten and hydrogen tips are used. In the following, we 
first derive expressions for I Ht,nksI * in Eqs. ( 19a) and 
(23b), a key quantity in calculation of the STM images, 
and then give the calculated results in the constant current 
mode. 

by37 
For graphite a tight-binding result for &k,(r) is given 
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sin 2?rk3Z3e’kll 
i 

. “p,( r - r;) 

+ i=sa, A,,,. i 2 sin 2?rk313e’kll ‘rf 
11=2,4,6 l,,l, 

Xp,(r-rf), (j=a,P; i=a’,P’), (25) 

where k,=kll + k3b3, kll = klbl + k2b2, and bi denotes a re- 
ciprocal lattice vector.4g k,l represents the two- 
dimensional wave vector parallel to the surface ( -$<kl, 
k,<& 0 < k3 ~5). In Eq. (25), I$! is the lattice vector for g 
type atoms g=a, fi, a’, and fl’, and the subscript I denotes 
the triad (Z,Z2Z3).37 p,(r-fl> is the pz wave function cen- 
tered at r =$. The approximations used to obtain Eq. (25) 
for &k,(r) and to determine the coefficients A, are given 
in detail in Ref. 37.50 We consider a hydrogen tip (a semi- 
infinite chain of hydrogen atoms) first. 

The distance between two graphite layers is 3.35 A 
(Ref. 5 1) and it is thus natural to neglect the interactions 
between the tip atoms with the second and further layers of 
graphite. The interactions due to the second and further 
atoms of the tip are also ignored. The matrix element 
Ht,Plks in Eq. (19a) can then be written as 

Ht,nks=(StIHldQ,)= CAniF sin2rk3eLll ‘d(s,lHlpf), 
i 

(26d 

where s, denotes the s orbital of the first hydrogen atom of 
the semi-infinite chain tip. Writing Ad = a,j + ib,, j = a,fl, 
we have 

Ht,nks= c 2 sin 2rk3 [ (a,j cos kll . d- bd sin kll l I$) 
i I 

--i(bnj cos kll l d+a,j sin kll .r{)] (s,lHlp~), 

(26b) 

where the coefficients a,j and b, are determined by the 
method discussed in Ref. 37. We then obtain the expres- 
sion for I Ht,nks I *, 

lHt,nks12= ,+, z (s~2~~3)*(~tlHl~~~~~l~l~t) , I 
X [ (anjanjt+bnjbnjt)cos kll * (d,‘-r:‘, 

-(a,jb,j,-aa,j,b,j)sin kll * (~$‘-d)]. (27a) 

We next consider a tungsten tip where d orbitals dominate 
at the Fermi surface. A simplified expression for I Ht,nksI * 
in Eqs. (23b) and (24) for the tungsten tip can then be 
written as 
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FIG. 1. Calculated scan for graphite with a tungsten tip. (The geometry 
and other properties of graphite are given in Ref. 38.) 

IHt,nkx12= c c c (sin2lrks)*(d~lHlp~)~~lHld~) 
m jJ' IJ’ 

X [ (anjanj,+bnjbnjt)cos kll + (~$-ri) 

-(adbnj,-a,j,bnj)sin kll * (r$‘:-d,], 
(27b) 

where m sums over the five d orbitals, the superscript t 
indicating the first atom of the tip. According to Eqs. 
( 19a) and (23b), in the constant current mode, the STM 
image follows a contour of constant ( I Ht,nk, I 2)aV 

The calculational procedure for obtaining a,j, b,j, and 
the k points in Eqs. (27a) and (27b) is described in Ref. 
37. In the present calculations of ( I Ht,nk, I *),“, 60 k points 
are randomly chosen from the Fermi surface of graphite. 
The calculated STM scans for graphite with a tungsten tip 
and a hydrogen tip are shown in Figs. 1 and 2, respectively. 

0 5 10 15 20 25 30 

Points within unit cell 

FIG. 2. Calculated scan for graphite with a hydrogen tip. 
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In both cases, the tip is moved from the p site through the 
a and the H (hollow) sites, and then back to the fi site, 
where the H site is the point in the middle of the hexagon. 
In both calculations, the tip is initially placed 4.5 A above 
the j3 site, at which ( 1 Ht,nks 1 2)aV is evaluated, and the value 
of that averaged matrix element is then fixed. In order to 
achieve constancy of ( 1 Hr,nksj 2)aV over other sites such as 
the a and H along the line, the tip is moved up or down in 
the direction perpendicular to the graphite surface (the z 
direction). 

gation and the asymmetry related to the current are also 
tip dependent. 

In the above way, corrugations of slightly over 0.1 and 
of about 2 A are found for the tungsten and hydrogen tips, 
respectively. The small corrugation for the tungsten tip is 
similar to that obtained by Tersoff and Lang, who esti- 
mated a corrugation of about 0.1 A for the MO tip, smaller 
than the values reportedly seen in any experiments.19 

The Tersoff-Lang calculation appeared to be the only 
one going both beyond the s-wave model and addressing 
the corrugation problem. Experimentally, conclusive val- 
ues of the corrugation and asymmetry have not yet been 
determined, and the tip dependence of these properties has 
not been investigated systematically. The reported experi- 
mental corrugation of graphite can be unphysically as large 
as 24 A.46 Abnormally high corrugation has been postu- 
lated to be related to the surface deformation and contam- 
ination. A smaller corrugation of about 1 A has been 
reported in vacuum.3g942 However, Tersoff and Lang have 
argued that even the 1 A corrugation includes substantial 
enhancement from mechanical interactions, which are not 
fully understood.” In that case, the experimental corruga- 
tion that purely reflects the electronic interaction between 
the tip and sample is still unknown. 

A picture of these variations may be qualitatively given 
as follows involving the wave functions of graphite on the 
Fermi surface: These wave functions occupied at the Fermi 
energy are composed chiefly of the pz orbitals localized at 
the fl sites, though a small portion of the pz orbitals at the 
a sites are also occupied at the Fermi energy. The 1s or- 
bital of a hydrogen atom is well localized around its nu- 
cleus and its interaction with the H site of the graphite 
surface is weak because there is no localized atomic orbital 
at the H site. This interaction increases as the tip moves 
from the H site to the a and to the p sites. For a tungsten 
tip, the d orbitals are more diffuse. Even when the tip is 
over the H site, these d orbitals still interact well with the 
pz orbitals at the p and a sites (there are three nearest 0 
and a sites in each case). When the tip is over an a site, the 
d orbitals couple with three dominant p orbitals, as well as 
with one a orbital below with a small coefficient. It appears 
from the calculations that for the tungsten tip, the a site is 
almost the same as the H site in terms of their couplings 
with the tip as in Fig. 1. It is clear that among the H, a, 
and p sites, the calculated differences in interactions with 
the tip are much less for a tungsten tip than for a hydrogen 
tip, so there is less corrugation, as seen on comparing Figs. 
1 and 2. 

B. Au(lll) surface 

The behavior of the a and p sites of graphite is of 
interest. One explanation for the asymmetry of the STM 
images of graphite is provided by Tomanek et al., who 
argued that the wave functions of graphite at the Fermi 
level consist mainly of the 2p, states of the fl atoms, so that 
p atoms instead of a atoms show up in the STM im- 
ages.46,‘2 A tip dependence of the asymmetry, i.e., of the 
different behavior of a and p sites, was calculated by 
Tsukada and co-workers, using various clusters to model 
the tip.48 The present calculations indicate an additional 
feature on the tip dependence of the asymmetry between 
the a and p sites and of the difference in tip positions 
between the a and H sites. The positions of a and H are 
depicted in Figs. 1 and 2. In Figs. 1 and 2, the tip positions 
over the a and H sites are about the same for a tungsten 
tip, but the tip position is substantially higher over the a 
site than that over the H site for a hydrogen tip. The dif- 
ference in the tip heights between a and p, or equivalently 
the asymmetry between a and fi, also increases from the 
tungsten to hydrogen tips, as already noted. The small 
calculated corrugation of the STM images of graphite of 
about 0.1 A using a tungsten tip (Fig. 1) contrasts mark- 
edly with that of about 2 A using a hydrogen tip. In the 
present model, the STM current is tip dependent through 
I Ht+,J 2. As a result, all the quantities such as the corru- 

Atomically resolved images of closed-packed metal 
surfaces such as Au(ll1) (Ref. 53) and Al(lll) (Ref. 
54) have been obtained with STM, and tungsten (W) tips 
were used in those experiments. It was noted that these 
images cannot be explained by the s-wave tip mode1.21122 
Calculations for the corrugation of the Al ( 111) surface, 
using more detailed tip models, were also reported, and the 
calculated corrugations are in reasonable agreement with 
the experimental values.21722 In the present section, the cor- 
rugation is calculated for the Au ( 111) surface, using the 
present model and a W tip consisting of the semi-infinite 
linear chain of W atoms. 

It is recalled that in the limit of low voltage, only the 
wave functions at the Fermi level contribute to calculation 
of the relevant I Ht,nks I 2. Determination of the Fermi sur- 
face of bulk Au has demonstrated that the s band domi- 
nates the wave functions at the Fermi level and that the d 
bands lie at energies lower than the Fermi energy.” As an 
approximation, we consider only the s band in the calcu- 
lation of the wave functions for a semi-infinite Au with the 
( 111) surface. In this case, the wave functions are given 
by3’ 

#h=&=lk,(r) =fi 5 r,,z,=-, ,3z1 ( IFI/F)‘3 sin2hh 

Xexp(z~ll l rzMr--rb, (28) 
where F is defined as 

F=P[exp(i2nki) +exp(i2rk2) + 11, (29) 

J. Chem. Phys., Vol. 98, No. 9, 1 May 1993 
Downloaded 03 Apr 2007 to 131.215.21.81. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



a2 

i i +&%I 

FIG. 3. The geometry of the Au ( 111) surface. Solid circles are located 
on Z,th layer, open circles on ( Zs  + 1) th layer, and crosses on (I, - 1) th 
layer. The side of a cubic unit cell, a, is 4.08 A, and the spacing between 
layers is u/e. 

with p being the hopping integral between two neighboring 
s orbitals, and using the earlier definition of k, in terms of 
the reciprocal lattice vector coordinates ( kl,k2,k3). Also, 
rl=BElZ$i, the subscript Zdenoting the triad (Z,Z,Z,) and ai 
denoting a lattice vector. A more detailed discussion of 
Eqs. (28) and (29) is given in Ref. 37. 1 Ht,nksI 2 can now 
be explicitly written as 

lHt,,ks12= c c (sin2~k3)2(s,,lHld~)(df,lHls,,,) 1 .1’ m  
XCOS +I . (q-q), (30) 

where only the interactions between the first W  tip atom 
and atoms within the first layer of the Au ( 111) surface are 
included, and where m  denotes the five d orbitals of the W  
atom. In the calculations of ( I Ht,nk,12), 60 k(kl,k2,k3) 
points were randomly chosen from the Fermi surface for a 
semi-inlinite Au metal with a ( 111) surface. 

The geometry of a  closed-packed Au( 111) surface is 
depicted in Fig. 3. The tip positions, along the path ASAH 
in Fig. 3  and corresponding to a constant ( I Ht,nksI 2)av, are 
shown in Fig. 4. The tip starts at 4.5 A over a Au atom, 
reaches a local minimum at the midbond site S, and a 
minimum at the H site (in the middle of the triangle). The 

- 4.5 52 
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calculated corrugation is about 0.11 A, which is in reason- 
able agreement with the experimental value of 0.15 f 0.04 
o 53 A. 

IV. COMPARISON W ITH THE TRANSFER 
HAMILTONIAN EXPRESSION 

The expression for the STM current given by the trans- 
fer Hamiltonian model of Tersoff and Hamann’ is of the 
same form as Eqs. (14a) and (14b) or Eqs. (15a) and 
(15b), but with IH,,(k,k,) I2 replaced by IM,,(k,k,) 12, 
with the.latter given by5*14P’5 

~,,&&,) =& s ds - ( YfQ”%k,- ‘JL,~~Q. 
(31) 

In Eq. (3 1 ), the integral is over any surface lying entirely 
within the region between the sample (left) and tip (right) 
electrodes, and Y,, and Ymk are the eigenfunctions of H, 
and H, respectively, where’ H, and Ht are the model 
Hamiltonians defined as14,15 

H,=H for z<Z, H,=H for z>O, 

and H=H,=H, for O<z<l. (32) 

Here, Z  is the distance between the two electrodes (z=O, 
z=Z) and the z direction is perpendicular to the elec- 
trodes.15 For example, similar to Eq. ( 14b), we have 

I=25-e C 
f&m 

dk, ~,I~nm(W,) 121: f(d --f(d I 

XS(e,--E,+eu), (33) 

where Ei denotes Ei-~i, with Ei and ,Ui being the eigenvalue 
of Hi defined in Eq. (32) and the chemical potential of the 
i electrode, respectively, i=s,t. 

Using exponentially decaying wave functions outside 
of the surface of the metal and of the tip, and using a 
radially symmetric wave function for the tip, the integral in 
Eq. (3 1) for M,,( k,k,) was evaluated by Tersoff and Ha- 
mann. In the limit of low voltage, an expression [Eq. ( 1) 
given earlier] for the current I was obtained.5 Other tip 
models have also been employed to evaluate this matrix 
element, e.g., in Refs. 6-13. 

Equation (19a), the expression for the STM current in 
the present model, can also yield the local density of states 
(LDOS) or Eq. ( 1  >, when one introduces approximations 
into Eq. ( 19a). We  let the matrix element (C&J HI &) be 
proportional to the overlap integral (c#~~, I c#Q), the function 
4* being concentrated at the tip position rD and it is next 
assumed that (4nksl 4t> is proportional to (4nksl rt), i.e., to 
the wave function &&(rt). We  then have 

FIG. 4. Calculated scan for Au ( 111) with a tungsten tip. (34) 
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Thereby, the STM current in the present model then be- 
comes proportional to the local density of states (LDOS), 
as in the Tersoff-Hamann model. In the actual applica- 
tions, however, we shall use Eq. (19a) and compare with 
the approximation given by Eq. (34). 

V. CONCLUDING REMARKS 

The STM current in the present theoretical model de- 
pends on the average of the square of the sample-tip ma- 
trix elements ( 1 Ht,nk,I 2)aV defined in Eq. ( 19b). The latter 
is, in turn, expressed in terms of the atomic coefficients in 
the crystal wave functions of the isolated sample and tip, 
and of the matrix elements between the atomic orbitals of 
the sample and those of the tip. In the present model, the 
properties such as the wave functions and constant energy 
surfaces of the tip and sample can be calculated using 
methods such as the density-functional theory and a vari- 
ety of quantum chemistry methods, e.g., the tight-binding 
model. We employ the latter here. 

As pointed out by Tersoff, most such methods using 
local orbitals (Gaussian type or Slater type) as a basis, 
though well adapted to problems of total energy and band 
structure, are inaccurate for the quantitative calculation of 
the STM current. When the sample and tip are separated 
by a very large distance, say 10 A, in this case only, the 
tails of the wave functions at a large distance from the 
surface are important. Those local orbitals behave rather 
inaccurately at a large distance from the surface. On the 
other hand, use of the local orbitals may be justified if the 
sampletip separation is such as to ensure the validity of 
the perturbation treatment, but not so large that the local 
orbitals interact strongly. When the sample-tip interaction 
is reasonably well treated as being between two well- 
localized nearest neighboring atomic orbitals, the nearest- 
neighbor tight-binding approximation becomes reasonable. 

The present model is then applied to the graphite 
(COO1 ) and Au( 111) surfaces. It is found that the calcu- 
lated corrugation for the Au( 111) surface is in reasonble 
agreement with the experiment. In the case of graphite, for 
an experimentally relevant W tip, a very small corrugation 
amplitude of slightly over 0.1 A is obtained, similar to the 
result by Tersoff and Lang, but smaller than the experi- 
mental values to date. 

A number of assumptions have been employed in this 
treatment of STM and in its later application to adsorbates. 
For this reason, until calculations based on these formulas 
are extensively tested experimentally, any conclusions 
drawn from them should be treated with some reserve. 
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