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A semi-infinite approach (rather than a slab method or finite number of layers) is used to
treat surface properties such as wave functions, energy levels, and Fermi surfaces of
semi-infinite solids within the tight-binding (TB) approximation. Previous single-band results
for the face-centered cubic lattice with a (111) surface and for the simple cubic lattice

with a (001) surface are extended to semi-infinite layers, while the extension to calculations
of other surfaces is straightforward. Treatment of more complicated systems is

illustrated in the calculation of the graphite (0001) surface. Four interacting bands are
considered in the determination of the wave functions, energies, and Fermi surface of the
graphite (0001) surface. For the TB model used, the matrix elements in the secular
determinants for the semi-infinite solid and for the infinite bulk solid obey the same expressions,
and the wave functions are closely related. Accordingly, the results for the bulk system

can then be directly applied to the semi-infinite one. The main purpose of the present paper is
to provide wave functions and other properties used elsewhere to treat phenomena such

as scanning tunneling microscopy and electron transfer rates at electrodes.

I. INTRODUCTION

A number of interrelated phenomena at surfaces in-
clude electron transfer processes at electrodes,! scanning
tunneling microscopy (STM) in the presence and absence
of adsorbates,2 and electrochemical inverse photoemis-
sion. To aid in the understanding of these phenomena,
electronic matrix elements are needed, such as those be-
tween the electrode and the acceptor or donor in electron
transfers and between the metal or semiconductor surface
and the tip in scanning tunneling microscopy. Surface
properties such as the wave functions, energy levels, and
Fermi surfaces have been used in our theoretical studies of
the STM images of the graphite (0001) and Au(111) sur-
faces,* and of large adsorbates on these surfaces.’ They are
obtained for that purpose in the present paper.

To this end we employ the tight-binding (TB) method
because of its simplicity. Earlier studies of electronic states
of systems with surfaces using the TB method include that
by Goodwin of a finite simple cubic crystal and of a finite
linear chain,® its extension by Baldock to face-centered and
body-centered cubic lattices and to the hexagonal plane
lattice,” and by various authors to one-dimensional
ABAB---solids and the face-centered cubic (111) surface
with two interacting bands.® In all of these calculations
a finite number of layers in the lattice was used and the
wave functions were normalized to a Kronecker delta, the
normalization being to a “box” or using a Born—von Kar-
man periodic boundary condition.

For a complicated system where there are several dif-
ferent types of atoms in the unit cell of the bulk and several
orbitals in each atom, a slab calculation (limited number of
layers) has been extensively employed to obtain the surface

*Contribution No. 8698.

properties within the TB**® and other’*® methods. The
thickness of the slab was such as to ensure that it approx-
imates a real surface, while being small enough to make the
computation feasible. In the present paper a semi-infinite
instead of a finite slab method is employed. Examples of
more accurate methods used to treat surface properties
include the Kohn-Sham density-functional theory.!®®
Semi-infinite systems have been treated previously using
various Green function and other techniques.’

In the present paper, instead of a box type normaliza-
tion®'* for a finite system a Dirac delta function normal-
ization?° is used for several simple semi-infinite (surface)
and infinite (bulk) three dimensional systems. (More com-
plex systems can be treated systematically.?°) The single-
band face-centered-cubic (fcc) lattice with a (111) surface
is treated in Sec. II B, for use in applications to electron
transfer at Au(111) surface. [There is now a body of ex-
perimental electron transfer and STM studies at the
Au(111) surface having monolayer adsorbates.?!] Results
for the (001) surface of the simple cubic (sc) lattice are
briefly summarized for comparison. In Sec. IT C the wave
functions, energy levels, and Fermi energy surface for the
graphite (0001) surface are determined, for use elsewhere
in treating the STM images of adenine and thymine ad-
sorbed on graphite surface.’ In the present paper we obtain
a result for graphite, seen below but perhaps well known in
the literature, on the identical nature of the secular equa-
tions for the surface and bulk systems, and the close rela-
tionship of the wave functions, for the present type of TB
model. (The Hamiltonian matrices are identical only for
an appropriate choice of Bloch orbital basis for the bulk
solid. Otherwise these matrices are identical only after a

- unitary transformation.) This fact permits us to apply the

extensive previous calculations on bulk studies to the
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present surface systems. A similar remark would apply to
the other surfaces treated above.

fi. THEORY
A. Remarks on infinite bulk system

We consider first an infinite three-dimensional periodic
solid. In the case of one electronic orbital per unit cell, the
electronic wave function for the solid in the TB approxi-
mation is :

W, (r)= ; X i (r—r)), (1)

using the Bloch theorem. In Eq. (1) r;is the lattice vector,
33 la, I denotes the triad (/;L1;), k is the wave vector,
S3_,khb, a, and b; denote the primitive and reciprocal lat-
tice vectors, respectively, and satisfy a;*b;=275;;, and ¢(r
—r;) denotes an atomic wave function localized at r;. Once
an origin for the atomic array has been arbitrarily selected,
the position of any other atom in the system can be spec-
ified by the integers (/;,1,,/;). For normalization to a Dirac
delta function?® we have

(W | W) = > KR
7

e

i=1

Ii=oo 3
> kR = ] 8(ki—k), (2)
= i=1

with —3<k;<3. We have neglected overlap integrals of the
¢’s, an approximation which is a convenient but not a
necessary one.

B. Semi-infinite systems: Face-centered cubic (111)
and simple cubic (001) surfaces

1. General

For a semi-infinite solid, the periodicity in the direc-
tion along the unit cell leading from the surface to the
interior of the solid is destroyed by the presence of the
surface, and the Bloch theorem is no longer applicable for
that direction. However, utilizing the results and method
of the one-dimensional solution, the wave function for all
three directions is obtained for this semi-infinite case:
Throughout this paper the particular examples we consider
are those in which every plane parallel to the surface has
the same two-dimensional space group.

The wave functions for a semi-infinite solid can be
written in the TB approximation as the linear combina-
tions of the Bloch functions for the individual layers par-
allel to the surface,

V()= Y, ™ Tip(r—ry), (3)
il

where e denotes the coeflicient corresponding to the /;th
layer parallel to the surface, E,llze”‘ll Tip(r — r;) serves as
the Bloch wave function for the th layer, k) denotes
k1b1+k2b2, and then k" -r1=21r(klll+k212).

Introducing Eq. (3) for ¥ into the Schrédinger equa-
tion, HY=EY¥, multiplying by e~*I "*7¢*(r — rp), inte-
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FIG. 1. The geometry of the fece (111) surface. Solid circles are located
on Lth layer, open circles on (/;+41)th layer, and crosses on (;—1)th
layer. All (/;,},) coordinates are relative to a particular atom.

grating over r, using the nearest-neighbor approximation,
and neglecting overlap integrals, a system of difference
equations is obtained,

(Hy—E)+ X e " Oy, ey

hi

T "R S L .
+ 121, ey ety )Hll'cl;+1+ 121: K| (g )HII'clg—l
-hh 1h

=0, [;=1.23,..., (4)

where Hi=(¢(r)) | H|$(r,)), s=I, I'. Dirac notation has
been introduced and | ¢(r,}) denotes a ¢ ket localized at r,.
The primed, double primed, and triple primed sums are
over nearest neighbors /;/, of an atom (/,/5,/3) in the same
layer (I; = 1), or in the layer below (/3 = I5 4 1), or in the
layer above (I; = I — 1), respectively. For the surface layer
(l3=1), serving as a boundary condition, ¢, is defined to be
zero in Eq. (4).

The results obtained below for the cubic systems are
each for a single-band solid consisting of s orbitals. A sur-
face calculation for a multiband solid with more general
orbitals is somewhat more involved. There, each band / has
a coupling parameter F;, which may be complex valued. A
systematic treatment for multiple bands with complex F;
can be made as in Ref. 20(a).

2. Face-centered cubic (111) surface

We consider an fec(111) surface where ¢ denotes an s
state of an individual atom, as in Au(111), for example.
Hy is denoted by a and Hyy by B whenever / and I’ are
nearest neighbors. (The parameters a and 8 are assumed
to be the same for the surface layer and the interior layers,
thereby neglecting Tamm surface states.’) There are six
nearest atoms in the same layer, three in the layers below
and, except for the surface layer, three in the layers above,
as in Fig. 1. The primed, double primed, and triple primed
sums in Eq. (4) equal 2[cos 27k;--cos 27k, +cos 2 (k;
—k)1 (B =h), @™ 4 ™1 L 1=F/B(l;=1+ 1),and
F*/B (I} = I; — 1), respectively, where we have introduced
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an abbreviated notation F/B for the indicated sum and
where the asterisk denotes complex conjugate.
Equation (4) thus becomes

(E,—E)ey+Fepq+Fre,_1=0, (5)

where E; equals a-+2f[cos 27k;+cos 2wk, +cos 27(k;
—kz)],22 with ¢;=0 when Eq. (5) is used for the surface
layer (/;=1). The well-known solutions of Eq. (5) are®

E=Eg+2|F|cos 2mksly, c;,=(|F|/F)sin 2mksl;,
(6)

where k3 is any real number in the interval (0,3). The wave
functions ¥, (r) for a solid having an fcc(111) surface are
thus given by

W (r)=+2 X (|F|/F)5sin 2aksl,
L=1

x 3

eZm'(k111+k212)¢(r__rl) ,
Ih=— c o

where W, (r) is normalized as in Eq. (2).

These results will be used elsewhere in the treatment of
electron transfer rates across adsorbates on Au(111) sur-
faces.

3. Simple cubic (001) surface

For an sc(001) solid there are four nearest / atoms for
I’ atom in the same layer, there is one atom below
and, except for the surface layer, one atom above. The
primed, double primed, and triple primed sums in
Eq. (4) are now equal to 2(cos2wk;+cos2wk,),

211’12e21r11k1(11—1;)+k2(lz—11'7)]=1 (sincel; — I, =1, — I, = 0),
and 1 for the same reason, respectively. The solutions to
Eq. (4) again yield Egs. (6) and (7), but with F and F*
both replaced by 3, and with E; now being a+28(cos 27k,
+cos 27k,). (The parameters a and 3 were again assumed
to be the same for the surface layer and the interior layers.)

k; is again any real number in the interval 0.h).

C. Graphite (0001) surface
1. Bulk graphite

We first review briefly the TB treatment of bulk graph-
ite, and then treat the graphite (0001) surface. The prop-
erties of bulk graphite have been determined both experi-
mentally and theoretically.?*

The Bernal structure® is typically used in band struc-
ture calculations of graphite. The crystal structure of
graphite is shown in Fig. 2. The unit cell contains four
carbon atoms, a, 8, a’, and B’, with two atoms each in
adjacent planes. The in-plane distance between nearest car-
bon atoms is 1.42 A and the carbon planes are separated by
3.35 A. The unit cell and the Brillouin zone are depicted in
Figs. 3 and 4, respectively.

Band structure calculations of bulk graphite have been
extensively perfonned.24’26'37 Within the TB domain, the
calculation most widely used to interpret the physical
properties of graphite has been given by Slonczewski and

m,. Phys.
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FIG. 2. Schematic drawing of the atomic structure of graphite. The solid
lines show one layer and the dashed lines show an adjacent layer. The
a-type atoms in this second layer are o’ and are, as indicated, above or
below each « atom.

Weiss (SW).30 It is well established both experimentally24
and theoretically?*?** that the electronic properties of
graphite are effectively determined by the four interacting

4 bands consisting of only p, orbitals. Two of the 7 bands
are fully occupied, and the other two are empty. Near the
edges in the Brillouin zone, the four 7 bands lie close to
each other and to the Fermi level. In the Slonczewski-
Weiss (SW) model only the 7 bands in the neighborhood
of the zone edges, where the Fermi energy E occurs, are
calculated, instead of making a complete calculation of the
band structure.

The Bloch wave functions arising from the p, orbitals
of the four carbon atoms, a, B, a’, and ', are given for the
bulk solid by

®i(r)= ; X rip(r—1))  (j=aBa’B). (8)

The wave functions Wy (r) are then approximated by linear
combinations of these Bloch wave functions

1.42 A

ot

6.7

FIG. 3. Unit cell of graphite. In the top and lowest layer full circles
represent ¢ atoms and empty circles 8 atoms. In the middle layer they
represent o’ and B’ atoms.
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FIG. 4. The Brillouin zone of graphite.

Wy (r) = 2 ¢;(K)Pf(r), 9
J

where the sum is over j=a, B, a’, and B’.
The 4 X4 Hamiltonian matrix is then given by

H,, H, Hyy Hyp
H H, Hgy  Hpgg
He Ba BB Ba BB , (10)
Hala Halﬁ Halal HaIBI
HB’(Z HB'B Hﬁlal HBIBI

where Hyrqr == H , Hprgr = Hpg, and this H;; matrix is Her-
mitian. The one-electron Hamiltonian of the graphite lat-
tice can be written as H=H,+ H', where H, denotes the
Hamiltonian for an isolated carbon atom, H' is V— U, Uis
the potential field for an isolated atom, and V is the peri-
odic potential of the lattice.

The matrix elements in Eq. (10) are given by

H;=Ey—A;+2y;c08 2mky  (i=a,B,a',B’), (11)
Haﬁ=Hﬁ,a,=yaBF2(k“ ), Hypr=2y,q cos 7wk, (12)
H,pr=Hpor=2Y,p F5 (K )cos ks,

Hpg =2vpp F (k) )cos mks . (13)

In Egs. (11)-(13) E, is the energy of the 2p, electron for
an isolated carbon atom, y;={(p,(r)|H'|p,(x;)),
V=) | H' |pAri+23)), A=~ (p,(x) [H |p,(r)),
where i, j=a, B, &', B, and Vg, Yaa's Vop Vps's Vep'» and
Yoo are known as y; (/=0 to 5) in the literature, respec-
tively. Fz(k” ) denotes 12,3=1 exp(z'k" +AyB;), where k"
=kb;+k,b,, and where the orientations of b; and b,, and
three vectors, AyB,, are given in Figs. 4 and 5, respectively.
The value of F, is given in Ref. 38. For a point in the
vicinity of the zone edge, Fz(k" ) in the SW model can be
evaluated by an accurate first-order expansion about the
zone edge,*® although we do not use this approximation. In
the subsequent expressions the k; is omitted from the
F, (k" ) for notational brevity.
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FIG. 5. Plane graphite. 4 and B represent a and S atoms, respectively.
All (11,12) coordinates are relative to the 4, atom.

After a unitary transformation on the Hamiltonian
matrix in Eq. (10),2%* the SW Hamiltonian H,,=S~'HS
is obtained, with

s
27300
0O O 1 0
s=, _ , (14)
E R
0 0 01

where two of the matrix elements in Hgy vanish, and the
expressions for the remaining ones are given, e.g., in Refs.
24 and 30. The band structure, wave functions, Fermi sur-
face, and other properties of the bulk graphite can be de-
termined using Hgy.

2. Graphite with the (0001) surface

The difference between a surface and its bulk lies in the
periodicity in the direction away from the surface. As in
the bulk, there are four types of carbon atoms for the case
of the (0001) surface, corresponding to a, B, a’, and . In
the TB treatment, the wave function for this system can be
written as a linear combination of two-dimensional Bloch
functions for a, B, ¢, and ', respectively,

v= 3 3 e p,(r—r)

s=aﬁ I3=1 1112

+ X ¥ e pr—r), (15)

t=a'p’ h=2 Ll

where the sum over /; is over odd integers in the first term
and over even integers in the second, ¥ =FKa,+- Ba, + Ka,,
K=1,3,5,.. for y=sand =2, 4, 6,... for y=t. Layers 1,
3, 5,... contain a and 8 atoms, and 2, 4, 6,... contain «’ and
B’ atoms. a,, a,, a; are depicted in Fig. 3, and several values

J. Chem. Phys., Vol. 98, No. 9, 1 May 1993
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of 1% I% P, and E are given in Fig. 5. For notational
brevity, /; has been used to denote %, where i=1, 2, 3.

Introducing ¥ into the Schrédinger equation, HY
=EV, where H is the Hamiltonian for the present system,
multiplying on the left side with e~ ™I "rp¥(r — r),
where i=a or f3, integrating, and using the nearest neigh-
bor approximation, we obtain

S 36 e (o)) | H pueh)

S=¢IB 1112

t (o r i t
+ z z cpelk" (rlllzlg rl;ég) (pz(rp) IHlpz(rl I 10))
t=a'f b5 3 123

=Ecy, (i=a,f) (16)

upon introducing Dirac notation. The sum over /5 contains
two terms, & = I — land /5 + 1. For notational brevity, we
replace the matrix elements in Eq. (16) with the Hamil-
tonian parameters defined earlier. With some manipula-
tion* Eq. (16) becomes

S (h—E8)+ X hulcy, +ey_)=0,
s=aff 3 t=a'p 3+ 3
(17a)

Similarly, the difference equations for the a’ and B’ atoms
are found to be

i=a,fB, 55=13,5,..

S (h—ES)cy+ 3 hulcy,+cp_)=0,
s=a'p’ 3 r=eB 3 3
i=a'p,

I=2,4,6,..., (17b)

where we interchanged the dummy variables s and ¢, to
emphasize the similarity of Egs. (17a) and (17b). In Eq.
(17a) c§=0, and in Egs. (17a) and (17b) h,, and h,,
equal to HML and H,, in Egs. (11)—(13) with You in H,,
and 2 cos 7k; in H,,, replaced by zero and 1, respectively,
and where u, v=a, 5, ’, B’.

To solve Eqgs. (17a) and (17b), we first consider a
special case in which the atoms a and a’ do not interact
with S8 and B’. The difference equations for the model sys-
tems (a,a’) and (B,8') are obtained from Egs. (17a) and
(17b) by setting the relevant parameters for the interaction
of the (a,a’) and (B,B’) systems, 7,5 and ¥z, equal to
zero. The equations for the (a,a’) system then become

(¢] Oa’ Oc’ ’
(htm—E)c,;"‘+h¢m,(c,;’fH-:—c,é"‘_l)=of B=13;5,.. (18a)
and

Oa’ 0 0 ’
(ha,a,—E)c,;“ +ha,a(c,§“+1+c,;“_l)=o, 5=246,...,
(18b)

where superscript 0 denotes the model system (a,a’). In

Eq. (18a) ¢&* =
Equations (18a) and (18b) are the difference equa-
tions for the model system

a—a'—a—a' —a—a’

a semi-infinite chain consisting of two different types of
atoms « and a’, where 4, and 4, are the Coulomb and
resonance (hopping) integrals, respectively. The solutions
of Egs. (18a) and (18b), obtained in the Appendix, are

A=A, sinmkyly (y=aa’), (19a)
where ;=1,3,5,... for y=a and ;=24,6,... for y=a’,
0<k;<3 and 4, is given in Egs. (A7) and (A8). Simi-
larly, c(}f and c(,)f " are given by

o =A,sin wkyls, (y=BB"), (19b)
where [;=1,3,5,... for y=p8 and ,=2,4,6,... for y=p'.

Considering next the interaction of the (a,a’) and
(B,B’) systems, the solutions of the difference equations
(17a) and (17b) are taken to be the linear combination of
the solutions of the corresponding noninteracting systems,
namely a linear combination of the following four coeffi-
cients:

c§3=2Qs sin wk3l; , (20)
where /;=1,3,5,... for s=a, B, ,=24,6,... for s=a’, ',
0 < k§<1/2, and where we then seek a solution for the O’s.
Introduction of Eq. (20) for c§3 into Eqgs. (17a) and (17b)

leads to four linear equations, upon reconstituting the H;;
from the 4;;

2. (HIJ_ESIJ)QJ=O’ i=aaﬁ:a’:B,y (21)
J

where j is summed over the four atoms, ¢, B, a’, B, and
where the relation ¢j ,; + c§3_1 = 2Q|sin 7k5(l; + 1)
+ sin wk3(l; — 1)] = 4Q, sin 7wk3l; cos k3 has been used
(S=a939a',Bl ) .

The expressions for the matrix elements that appear in
Eq. (21) are identical to those in Eqs. (11)—(13) for the
bulk graphite, even though the original Bloch orbital basis
set differed in the two cases, one being the normal Bloch
wave functions, and the other being, in the case of a perfect
semi-infinite graphite (0001) surface, the wave functions
given in Eqgs. (15) and (20). Thus using the same values of
the parameters, the procedure of calculating the surface
properties are the same as that for calculating the bulk
properties in the SW model.

The simultaneous solutions of Eq. (21) require that
the 4 X4 determinant of the coefficients vanish, namely,

H,,—E Hgg Hoyp Hyg

H, Hpe—E  Hgy, Hgg

Ba [ B o )
Hala Halﬁ Hala'_E HalBl

HBla HBIB HBIaI HBIBI_E

in which the overlap integrals were neglected and from
which the energy levels are calculated. The H;; matrix, it
will be recalled, is Hermitian. Again, after a unitary trans-
formation of the Hamiltonian matrix using Eq. (14),2430
the solution of Eq. (22) yields the values of £ and, in the
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FIG. 6. Cross sections of the Fermi surface (a) for electrons and (b) for
holes. Each contour corresponds to a particular k5 value.

usual way therefore, of the Q% €%, Q%, and Q% in Eq.
(21). We have = jQ§-= 1, resulting from the Dirac normal-
ization, where sum is over j=a,B,a’,3’.

For the purposes of comparing with the scanning tun-
neling microscopy (STM) experimental studies of graph-
ite, we have calculated energies, wave functions, and Fermi
surface, all of which are used in the interpretation of the
STM images. The cross sections of the Fermi surface, and
the Fermi surface itself are shown in Figs. 6 and 7, respec-
tively. The SW parameters and the corresponding surface
parameters employed in the present calculations are taken
to be the same and can be found in references such as Refs.
24 and 30. In a subsequent article, the Fermi surfaces of
the bulk graphite and gold are also determined,* using the
extended Hiickel method.*?

In conclusion, in the course of solving the semi-infinite
difference equations for graphite with a (0001) surface in
which four bands are considered, the difference equations
are reduced to four linear equations, yielding a 4X4 deter-
minant and the corresponding secular equations for the
energy levels for the semi-infinite surface, and then yielding
the wave functions. The calculational procedure is other-

Ou-Yang, Kéllebring, and Marcus

: Surface properties of solids

FIG. 7. The Fermi surface of graphite.

wise the same as that for the bulk. As noted earlier, appli-
cation of the present work to STM images will be described
in a further publication.*
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APPENDIX: SOLUTIONS OF EQS. (18a) AND (18b)
. Following Ref. 11, we rewrite Egs. (18a) and (18b) as

(X—Z)ef =" 1 +e% s =357, (Al)

(X+Z)e) =% 1+ %, =246, (A2)

(X—Z )c°“’=; 2 c5%). (A3)
1762 (X—|—Zl) 3 1

In Eqs. (A1)-(A3) X and Z, are defined as X=(E—&)/
Yaa's Z1=(Qy—Qy1)/ 2V 4, Where a={(a,+ay)/2, a;
=E,—A,; (i=a,a’).

Equations (A1)—(A3) are the difference equations for
the semi-infinite one-dimensional system depicted four
lines after Eq. (18b). Similar systems have been treated in
Ref. 11. Following Ref. 11, the solutions of Egs. (A1)~
(A3) are found by setting

C(I);z= UI3, l3= 1,3,51---; C(I):',al = V13, l3=2’4’6""'
(A4)

Introducing Eq. (A4) for c?:‘ and cza' into Eqs. (A1) and
(A2) and eliminating V leads to

U*—yU?4+1=0, (A5)

where y=X2—Z2—2. Choosing y=2 cos 2mk; means that
the general solution can be written as'!

c‘,’f:p cos k3ly-g sin wkyls, 5L =1,3,5,.... (A6)
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It can be shown that introducing Eq. (A6) into Eq. (A3)
gives p=0. We therefore obtain

C(I;a—':q sin 7Tk313, l3= 1,3,5”" (A7)
and
co""—————1 %+ )
A —(X+Z1) L+1 -1
200 )
=q m CcOs 1Tk3 sm 1Tk3l3, l3=214,6-"a
(24

(A8)

where g is the normalization factor. Equations (A7) and
(A8) are the same as Eqs. (19a) and (19b) in the text if ¢
and 2gy,,’ cos mky/(E—a,) are replaced with 4, and
A, respectively. As in Ref. 20(a) the wave function can
be normalized to a Dirac delta function.
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