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A transform method for treating semi-infinite solids in the tight-binding (TB) approximation
is introduced. The difference equations for the TB orbital coeflicients are converted,

thereby, to convenient algebraic equations. For this purpose, a Dirac delta function
normalization for the wave function is also introduced, instead of the usual box one. Single and
coupled bands are treated, and the methods are applied elsewhere to electron transfer

problems at interfaces.

I. INTRODUCTION

The dependence of long-range electron (or hole) trans-
fer (ET) rates on the separation distance and on the inter-
vening molecular material is the subject of much current
experimental interest. Rigid organic structures, proteins,
and frozen media have all been used as bridges between the
electron donor (D) and acceptor (4). For interpreting the
experiments on these nonadiabatic processes, theoretical
calculations of the electronic coupling, particularly their
relative values, are helpful. In extended Hiickel (EH) cal-
culations made for the first two types of bridges, we found
encouraging agreement with the experimental data for the
relative values of the coupling. No adjustable parameters
were used,! the EH parameters having been obtained from
other (nonelectron transfer) sources.

Another set of experiments involves, instead, ET be-
tween a solid and the D or 4. Examples include ET be-
tween a metal electrode and a D or A, separated from the
metal by an ordered layer of long-chain adsorbed mole-
cules. This D or A4 is in solution, but is either chemically
bound to one end of the long chain? or, in a different study,
moves freely in the solution.> Other examples include ET
between semiconductors and a D or A4 in solution. Scan-
ning tunneling microscopy of adsorbates or of the bare
electrode provides yet another, the D or 4 now being a
metal tip. The present paper is written with applications to
these different problems in mind.

The tight-binding (TB) method has been widely used
in treating the electronic properties of solids and of their
surfaces, e.g., see Refs. 4-15. Typically, it has been used in
a semiempirical manner, its advantage being one of sim-
plicity. For our purpose, it is easily combined with the EH
treatment used in our earlier work on long-range ET in
molecules or proteins. Both treatments are L.C.A.O. in
nature and are, in fact, equivalent when corresponding ap-
proximations are employed.

Although initially developed in 1928 by Bloch® and
applied to surfaces by Goodwin'® in 1939, the extensive use
of the TB approximation continued into more recent times,
e.g., Refs. 4-15. In the implementation of the approxima-
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tion to solids with surfaces, the surface layer and each
parallel underlying layer have often been treated sepa-
rately, utilizing any two-dimensional space group symme-
try. The coupling of the layers is then introduced and
yields a one-dimensional chain where each unit in the
chain represents an entire layer, or sometimes represents a
superlayer which is composed of several actual layers to
satisfy a repeat property of the solid.!!

Various methods have been devised for implementing
the TB approximation for solids with a surface. They in-
clude “slab” methods, in which a finite number of layers of
the solid parallel to the surface are treated,*’ frequently by
direct diagonalization of the resulting Hamiltonian matrix.
Semi-infinite methods have also been used, involving a
transfer matrix,*® or a scattering-theoretic*’ or other for-
malisms.? For the semi-infinite treatments, Green function
techniques have usually been employed.

We have made use of the slab method else:where,16 but
an aim of the present paper is to develop for the solid-
adsorbate system a simple semi-infinite method which can
be immediately combined with the EH orbital method used
for electron (hole) transfer in molecules in earlier work in
this series.! For this purpose a method is formulated in this
paper utilizing the so-called z transform. The z trans-
form!"?° was introduced and so named!®!® in the early
1950’s as a method of treating sampled-data systems (a
method relating the output to the input in such systems).
It is the discrete analog of the Laplace transform, and so,
we find, is well suited to the present problem of solving
linear difference equations with initial conditions, for the
coefficients in the wave function. In the present case these
conditions are the boundary conditions at the surface. An-
advantage of the transform method is that it provides a
systematic and simple way of reducing the problem of solv-
ing the difference equations to one of algebra, even for the
case where there are a number of interacting bands with
complex-valued coefficients.

The z-transform method has been applied in the elec-
trical engineering and allied fields."”?° While it does not
appear to have been used for the TB problem heretofore,
the method was early recognized'® as being equivalent to

.the generating function method employed?! for solving lin-

ear difference equations. A generating function method
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has, indeed, been used by Hoffmann'? in 1951-52 for solv-
ing recursive equations for TB secular determinants. Upon
obtaining the eigenvalues, he then calculated the coeffi-
cients of the atomic orbitals in the eigenfunctions. Instead,
we use what appears to be, upon comparing with the pre-
sentation in Ref. 12, a simpler approach: We apply the z
transform (or generating function) directly to the differ-
ence equations for the coefficients themselves. (Other,
more minor, differences from the work in Ref. 12, are in
the method used for inversion—we use the residue
theorem—and in the normalization, the Hoffman normal-
ization being to a “box” of sites in the crystal.)

Several forms of normalization of TB wave functions
have been employed in the literature. For example, in the
case of the bulk solids, some studies employ no explicit
normalization,'® while others use normalization to a box
consisting of a finite number of atoms N.'* The latter is
also used in the slab/diagonalization treatment of the sur-
face properties. The Born—von Karman periodic boundary
condition,’® using a finite number of atoms, has also been
used. In our case, since the orbitals of a semi-infinite sys-
tem are being calculated, we have introduced a Dirac delta
function normalization. While this normalization has been
widely used in gas phase collision problems, and has been
referred to in a bulk normalization,'*® I am unaware of its
having been applied to surface TB problems. Nevertheless,
its use in the present surface problem permits us to utilize
in a simple way the z-transform method. Of course, the
final results for any observable would be the same, in the
limit of N — o0, regardless of which method is used.

The organization of the paper is as follows: The layer
description for treatment of surfaces?? and the present nor-
malization are both discussed.in Sec. II. The z-transform or
generating function method is given in Sec. IIL. It is ap-
plied to single band systems with complex coefficients in
Sec. IV, to bound surface states in Sec. V, and to multiband
systems with complex coefficients in Sec. VI. The “count-
ing” of states for the delta function normalization is dis-
cussed in Sec. VIL

il. LAYER DESCRIPTION AND DELTA FUNCTION
NORMALIZATION

A. Normalization for an infinite system
For introduction in the Schrddinger equation
HY=EY (2.1)

the TB wave function for a one-band one-dimensional in-
finite chain is written as
N

V= E @y
n=—N

(N> ), (2.2)
where ®,, is a wave function localized on the nth site. In
the case of coupling only between adjacent sites, we have,
on multiplying Eq. (2.1) by ®¥, introducing Eq. (2.2),
and integrating,

B¥cpp1+(a—E)c,+Be,_1=0 (—w <n<w),
(2.3)

where
a=H,,=(D,|H|®,), (2.4)
ﬁ=Hn+1,n=<q)n+1|H|q)n>- (2-5)

Introduction of next-nearest couplings or of higher or-
der couplings leads thereby to a higher order difference
equation. If, as a solution to Eq. (2.3), the term ¢" is
introduced for c,, one obtains

B*P-+ (a— E)y+B=0.

In order that all ¢, be bounded and nonzero as n— «, we
require that y lie on the unit circle in the complex plane.
Thereby, ¥ equals exp(/®), where P is real. To simplify
the subsequent notation, we write, in anticipation,

(2.6)

y=e" e, (2.7)

where 0 can be positive or negative, and where —§ is the
phase of 3,

Bz |ﬁ| e—iS.

When the orbitals @, in Eq. (2.2) are real, § is zero. Equa-
tions (2.6)-(2.8) yield

E—a=2|B]|cos 6.

(2.8)

(2.9)

Since E and «a are real, 6 is also real, and so there is
consistency, i.e., there is a solution of Eq. (2.6) on the unit
circle.

The solutions (2.2) are thus

Y=c ), ™09, .
We see from Egs. (2.9) and (2.10) that 8 lies in the inter-
val (—m,7), no independent solutions being generated
when 6 lies outside this range. Sometimes, instead of 9,
another dimensionless quantity k(=6/2) appears in such
Bloch sums, where k lies in a unit interval.?® We shall use
the latter form in applications. Also, a new 6, equal to the
old one minus 8, could be introduced into Eq. (2.10), so
that 6 instead of 868 would appear there. However, the
argument in the cosine in Eq. (2.9) would then be changed
to 0+6.

The normalization of ¥ we shall use is based on the
relation®* ‘

(2.10)

<«

z e27rinx=6 (x).

— 0

(2.11)

Actually the right-hand side consists of an infinite sum of
delta functions (cf. the Appendix), but only the one indi-
cated in Eq. (2.11) lies in the interval ( —r,7) being con-
sidered. '

We consider two ¥’s of different energies E and E’,
and hence, by Eq. (2.9), different 6’s. We have, from Egs.
(2.10) and (2.11), using the 211k instead of the & notation,

o0

f T oW dx=c? Y, =i _ 25k k).
o o (2.12)
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Thus ¢=1. [The & in Eq. (2.10) is the same for ¥ and for
¥, since it depends on 3 and not on E.] If overlap integrals
had not been neglected, we would have obtained, instead of
Eq. (2.12),

WY dx=c?[1+2|S|cos(2mk—£) 18(k—k'),
T (2.13)

where ¢ is §+£, £ being the phase of the overlap integral
S = [®*, ®,dx =| S|exp(i§). The constant ¢ is then
modified from its previous value accordingly.

— 0"

B. Layers

A two-dimensional wave function is treated analo-
gously, the detailed expressions depending on the topology
of the lattice. We use a description based on one widely
used, e.g., Ref. 22. In a two-dimensional lattice parallel to
the surface plane, the unit cells extend from — o to +
in the two dimensions, while in a direction inward from the
surface plane (along some unit cell axis, for example), they
extend from 1 to . The components k; and %, of wave
vector kj in the (two-dimensional) layer are good quan-
tum numbers, because of the translational symmetry. The
position of a surface unit cell in the two-dimensional lattice
(i.e., in a layer) is denoted by the vector r, while a vector
from the surface plane to the mth atomic layer is denoted
by t,, . The position of an atom of type p in the mth
atomic layer in a surface unit cell is denoted by the vector
thy - (When the surface and other layers are identical, t},
is independent of m.) Thereby, the position of this mpth
atom in the crystal is denoted by r+th, +t,, . The orbit-
als @™ of the mth layer, for a given atomic orbital a of the

atoms p, are Bloch sums

@ﬁ;rp(re) =c Y, el Tty ~tm —80)
> (

(2.14)

where A,is some two-dimensional vector analog of the
phase § which appeared in Eq. (2.8) and is absent when
real atomic orbitals are used, and r, denotes the coordi-
nates of the electron. The sum over r in Eq. (2.14) is over
all unit cells in the mth layer.

A group of successive atomic layers can, from a label-
ing point of view, be grouped together to form the minimal
periodic unit, a “superlayer,” and given a principal label 7.
Thereby, each layer or superlayer n is associated with a
number of bands, each defined by its amp k; l‘abel.11 The
normalization of the three-dimensional wave function ¥ is
expressed in terms of the three compdnents, ki, ky, and k3,
of the wave vector, labeled by &

X<I>a(re—r—t‘,7n” _tml. 7)‘,

(W' | W) =8k — k) Bk — k) (ks —K3).  (2.15)
We shall introduce a notation
3(k) —kl’l Y=8(k;—k{)8(ky—k3). (2.16)

A single-band system is considered next and then ex-
tended to multiband systems in Sec. VI. Throughout we
use a surface unit cell large enough (when necessary) that
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the first layer has the same translational symmetry for the
unit cells as the underlying layers, and focus our attention
on such commensurate systems.

C. Semi-infinite system and normalization

We consider next a semi-infinite system consisting of a
one-dimensional chain. Each unit in the chain consists of a
superlayer or layer orbital described in the previous sec-
tion. We consider the case where there is only one layer in
each superlayer, but the argument is easily extended. The
multiband analysis in Sec. VI serves as such an extension.

Into the Schrédinger equation [Eq. (2.1)] we intro-
duce the TB wave function for a semi-infinite solid

N
V=2 c,®, (N-w), (2.17)
1 ‘

where @, is the wave function for the orbital for the nth
layer [given by Eq. (2.14) with m=n in the case of one
layer in a superlayer]. Because of the translational symme-
try, ®,, is a running wave with k; and k; as good “quantum
numbers.” The case of coupling only between adjacent lay-
ers is considered, but as noted earlier, can be generalized.
We multiply Eq. (2.1) by ®,*, where ®, differs from @,
only in having k{ and kj as the values of the quantum
numbers, instead of k; and k,. Upon using Eq. (2.17),
integrating over all space, and neglecting overlap integrals,
we then have

B¥cy 1+ (a—E)e,+Be,_1=0, (2.18a)

B¥c3+ (a—E)er+B1c1 =0, (2.18b)

Bfer+ (a1 —E)e; =0, (2.18¢)
where

(@, |H|®,) =H,p=ad(ky —kj ), (2.19a)

(@) 1| H| 0,y =Hyyr =B85y ki), (2.19b)

Hy=a,8(k) —k{ ), Hy=p8(ky —kj), (2.19)

and the notation 6(k“ — kl’l ), defined in Eq. (2.16), is
used. The a, B, a4, and fB; are defined by the second equal-
ities in Eqs. (2.19). The 8 and 3, are sometimes complex
valued.?®

The surface layer itself may be the adsorbate layer and
so have a Coulombic matrix element, ;, and an exchange
matrix element connecting to the first layer of the under-
lying solid, f3;, which differ from those of the bulk solid, o
and 3. Even in the case where there is no adsorbate, the a
of the surface layer, a, may differ somewhat from that of
the inner layers, and provide, thereby, the basis for a
Tamm type of bound surface state.'©

To consider the normalization in a general way at first,
we introduce the equations for the coefficients when the
energy is E’, denote the coefficients by primes, and take the
complex conjugate of the resulting equations,

Bk |+ (a—E")e ¥+ B¥e;* (=0, (2.20a)
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Bes* 4+ (a—E') ¥+ BFci*= (2.20b)

Biey*+ (a—E)ci*= (2.20¢)

Multiplying Eq. (2.18a) by c;,*, Eq. (2.20a) by ¢,, sub-
tracting, and summing over n from 1 to N, we have

N
CN+1(BCN)*_CN+1BCN+ Zch (E'—E)=0.
(2.21)

We recall next that the wave function (2.17) for this semi-
infinite system yields

(W' |0y = (hm > cN)S(k" —k ), (2.22)

Now
since (®,|®,) contributes 5(k; — kj ) to the normaliza-
tion.

When E lies within a band, the solution of Egs.
(2.18a)—(2.18¢c) for a single-band system is a standing
wave

cp=Ae= "D gin[ (n—1)0+9], (0<O<m),

(2.23)

as will be seen later, where — & is the phase of the B defined
by Eq. (2.8), but now S denotes a layer—layer interaction.
The amplitude A4 and the phase 7 in Eq. (2.23) are both
functions of 8, and the dependence of ¢, on 0 is seen later
to be such that ¢, is unchanged when 8 is replaced by —6.
The energy depends on cos 8, as in Eq. (4.6) below.
Thereby, 0 now lies in the interval (0,7), since no new
solution occurs when 8 is negative. Also, this 6 is now the
6 for the one-dimensional chain of layers below. Thereby,
6@ now lies in the interval (0,7), since no new solution
occurs when 6 is negative. Also, this 8 is now the 8 for the
one-dimensional chain of layers.

We thus have from Eqgs. (2.21) and (2.23), after mi-
nor manipulation,

N
2 eycit=Ad'
1

1
sin(N—E) [(6—6)+(n—7")/

’

6+ . .
(N—)]sm( ] )+SIn(N—5)[(9+9’)

+(n+7")/(N—D1

. (00
><sm( 3 )

The highly oscillating function of (N —%) (6+6’), which
would give rise to a §(6+60"), makes no contribution, since
we do not have 6= —0’ in the interval (0,I1). We may
ignore that term and so obtain, on introducing the notation
0=21ks, with (0<k3<1/2),

/ (E'—E). (2.24)

N
lim 2 cyci¥=(]4|%4|B|)8(ks—k3), (2.25)
Noow 1

upon again using the relation §(x) = (dy/dx)8(y), where
y=E—E', x = ky — k3, and the O subscript denotes the

5607

value at x=0, the relation between E and 0 being given by
Eq. (4.6) below. A common representation of 8(x),
lim sin Nx/mx as N— oo, is also used.

To solve the series of equations, Eqs. (2.20), and ob-

tain the results used above, one method would be to set

=" and solve for 7. However, y merely prescribes how
each successive ¢, in a series is related to the preceding one,
but does not in itself prescribe the starting point of a series
or how many series are needed, as a linear combination, to
satisfy the boundary conditions (2.20b) and (2.20c). For
example, it will be seen in Sec. V that the solution (2.23)
for ¢, is actually a linear combination of the six terms
exp(xin0), exp[+i(n—1)0], and exp[+i(n+1)6]. The
transform method, applied in Sec. IV, provides a conve-
nient and more systematic method for solving Egs. (2.20),
as well as for solving the more complicated equations that
exist in multiband systems, in the same way that the La-
place transform does for analogous linear differential equa-
tions.

Equat1on (2.21) is, incidentally, a discrete analog of
the expression sometimes used to show normalization to a
Dirac delta function for collision systems: In a three-
dimensional collision problem (with or without additional
internal coordinates of the colliding species), it will be
recalled, one again obtains a difference of two Schrédinger
expressions W'*HY — WHY'* and integrates, leaving an in-
tegral over the radial motion #(0 <7< R), where ultimately
R— . Cancellation and integration over r in the interval
(O,R) yields the continuous analog of Eq. (2.21) and,
thereby, a Dirac delta function. In fact, this continuous
analog prompted the present argument leading to Eq.
(2.21).

lll. z TRANSFORMATION

The z-transform method, as noted earlier, has been
used for difference equations arising in another area.!’-%°
The transform F(z) is defined by

o«

F(z)= 2, ¢z~ "=Ge,, (3.1)

n=1
where the operator G is defined by the second equality in
Eq. (3.1). The Laurent series (3.1) converges for |z|
greater than some value. The inversion formula is given by

(3.2)

n

§ F(2)z" 2 dz,
2

where C is a contour large enough that the integrand is
analytic outside it. The application of the operator G to
Cpy1 and ¢, , yields

(3.3)

Gcn+2=zzF(z) —z%c;—zc, . " (3.4)

We apply this transform to Egs. (2.18) in Secs. IV and
V, and to equations for more complicated systems in Sec.
VI. If, instead of 1/z in Eq. (3. 1), one had used z, the
resulting F(1/z) would have been the usual generating
function.

Ge,=2zF(z) —zcy,
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IV. SINGLE BAND WITH COMPLEX COEFFICIENTS

When Eqs (3.1) and (3.3)-(3. 4) are applied to Egs.
(2.18a) and (2.18b), we find

—Bici+B*¥zc, o
B*z*+(a—E)z+B’

Introduction of the boundary condition (2.18c) then yields
Bi+(ay—E) (B*/BY)z

F(z)=c;+ (4.1)

F(Z)=cl; B*ZZ+(a—E)Z+B (51 (42)
and, from Eq. (3.2) we then have
1 Bi+ (a1 —E)(B*/B})z _
=1 —31y; 3€c FZr(a—EziB 2 =
(4.3)

An examination of the integral for n=1 shows that it
makes no contribution to ¢, (a simple proof involves a
transformation to w=1/z),%° and so Eq. (4.3) yields ¢
=c), as it should. For n+1, however, only that integral
contributes to c,. The poles in the integrand in Eq. (4.3)
for n=~1 satisfy

B*22+ (a—E)z+B=0,

whose solutions are denoted below by z; and z,.

To have solutions for ¢, which do not vanish or be-
come infinite as »— o, wWe require, as is seen from Eq.
(4.3) and Cauchy’s residue theorem, that |z;| and |z,| be
unity, i.e., that these two poles lie on the unit circle in the
complex plane. Thereby, the roots z; and z, can be written
as

(4.4)

21,2, = Be* ", (4.5)

using a form which simplifies the subsequent notation, and
6 again denotes 27k;. The —§& in Eq. (4.5) is the phase of
B, as in Eq. (2.8). One then sees from Egs. (4.4) and (4.5)
that 0 satisfies

E—a=2|B|cos 6. (4.6)

Since £ and a are real, this 6 is indeed real, and so there is
again internal consistency.
Equation (4.3) then yields, for n> 1,

cle—i(n—l)ﬁ

|B|BY sin 6
+(a1—a) |B|sin(n—1)0—

[(1B:]>— |B|®)sin(n—2)6

cp=—

|B{2sin nf], n>1.
(4.7)

This expression for ¢, takes on a very 31mp1e form only
when |B;|=|B| and a;=c.

Using Egs. (A3)-(AS5), the ¥ given by Eqs (2 17)
and (4.7) satisfies the delta function normalization to the
energy, 8(E—E’), with ¢, given by

o sin 6\ /2 .
(&Y 2 _ 2.2
cl—( 18] ) [e —!—4(1 w)w* cos 9+y2

+2y(w—2)cos 8] 12 (4.8)

where @ and ¥ are now defined by

R. A. Marcus: Tight-binding approximation for solids

o=|81¥|B|% v=(a1—a)/|B|. (4.9)

V. BOUND SURFACE STATES

We turn next to the question of bound surface states
for a one-band system. The ¢,’s for a surface state tend, by
definition, to zero when n— oo. We require, thereby, that
any poles in the integrand in Eq. (4.3) lie within, rather
than on or outside, the unit circle in the complex z plane.
To this end, we can set in Eq. (4.4)
~i8g—0

Z1,2p==¢€ (5-1)

where the real part of 8 is positive, and where we have
introduced the —8, as before, to simplify the subsequent
notation. Equation (4.4) then yields

E—a=+2|B|cosh 6, (5.2)

so that 0 is seen to be purely real, since E and « are real.
The sign in Eq. (5.2) is positive or negative according as
the sign in Eq. (5.1) is positive or negative, respectively.
Since cosh 8> |cos 6/, the surface state thus lies at an en-
ergy E below or above the band (4.6), according as the
negative or positive sign in Eq. (5.1) is used.

We consider first the £ < Ey, 4 case, that is, the nega-
tive sign in Egs. (5.1) and (5.2). We now introduce the
condition that there be no pole at z=—exp(—i5-+89), 0
as to avoid the ¢,’s growing with # instead of decreasing.
This goal can be accomplished by choosing E in the nu-
merator of Eq. (4.3), so that the numerator has [z
+exp(—i8+0)] as a factor, thus cancelling the corre-
sponding factor in the denominator. Thus we require that

B+ (o —E)(B*/BF)z o (z-+e72f).
Using Eq. (5.2) with the negative sign, it follows that

Bi+ (a;—a+2]B|cosh 8) (B*/BF)z = (z-+e=Bef),
(5.4)

(5.3)

and so

0]

@ e
(2 cosh 9)+y*—e ’ (5.5)

where @ and ¥ are defined by Eq. (4.10).

Equation (5.5) provides the condition for a bound sur-
face state below the energy band. This equation imposes a
condition on 6, and hence, via Eq. (5.2), on the energy E
for the existence of a surface state. When |B;|=|8], it is
seen from Eq. (5.5) that

exp 0=(a—ay)/|B|, (|Bi]=1B])s

a result found earlier using a finite size crystal.!® Since
6> 0, Eq. (5.6) shows that the surface state then exists at
an energy below the band [the negative sign in Eq. (5.2)]
only when ¢, is more negative than a.

We consider next the case of a surface state with an
energy above the band [the positive sign in Eq. (5.2)]. The
poles are now given by Eq. (5.1) with the positive sign and
one finds that Eq. (5.5) is replaced by

(5.6)
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@
(2 cosh 8) —y

Accordingly, in the case of |B;|/|B]=1, Eq. (5.7)
takes on a simpler form
exp 0=(a;—a)/|B|, (|Bi|=|B]).

Since @ is positive, the surface state at an energy E above
the band then occurs only when «; is less negative than a.

—é. . (57

(5.8)

VI. MULTICOUPLED BANDS WITH COMPLEX
COEFFICIENTS

We consider next M coupled bands. They can arise
when each atom in a layer has a number of orbitals, or
when each unit in the chain of layers is the superlayer
discussed earlier, or both. The wave function for this sys-
tem can be written as

M
V= E Z cinq)in

i=1 n=1

(6.1)

where ®;, denotes the wave function for the ith zeroth
order band in layer n. The difference equations are now

BEcini1+ (@i—E)cipn+Bicin_1

- z (7izcj',n+1 Q€ ﬁijcj,n—l)—o (rn>1) ]
JFEE
(6.2a)

and

Bﬁcr3+(aii—E)C,2+Bu i+ Z (’};k_/cj3+aljcjz+ﬁljcjl) 0,

(6.2b)
BiFca+(ah—Edea+ 2 (vifep+ajen) =0, (6.2¢)
where ~
(@, |H|®ju ) =B 5k —kj ) (n>2),  (6.3a)
D} H| D) =158y =k ) (n>1),  (6.3b)
Q| H| @)y =0, 8(ky) —kj ) (n>1), (6.3c)
| H| @) =B 5(k) —K| ),
;| H| @) =ik —kj ), (6.3d)
(@ | H|@p) =7}6( —Kj ) (6.3¢)

We note?’ from Eq. (6.3) that y;; ;=B and yh 7 =pB. i Matrlx
elements such as f3;; are sometimes complex valued.?®
We introduce Mz transforms F;(z)

F2)= X ¢z (i=1to M) (6.4)
1
and inversion formulas
-2
cumgmy § FEdn =110 M) (6:5)
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apply them to Egs. (6.1)—(6.2). The result, in matrix no-
tation, is

[z2G*+2z(A—EI) +B]F

=[22G*+z(A—EI) + B—B]¢; +2zG*c, (6.6)
and for the boundary condition (6.2c)
Gfe,+ (A —ET)e; =0, (6.7)

where F, ¢, and ¢, denote column vectors whose compo-
nents are F,, ¢;, and ¢, (i=11t0o M), respectively. A, A,, B,
and Bl denote M XM matrices, with elements a;; o a},, Bi; p
and B, » while the elements of G* and G¥ are given by

(G*);=B, (G*)y=v§=B% (j#), (6.8a)
(GHu=Bi*, (GHy=vif=BF ().  (6.8b)
Equations (6.6)-(6.7) yield
F=Ic,— [2°G*+z(A—EI) +B] !

X [B,+2zG*G¥ (A —ET) ¢y, (6.9)

where I is the unit matrix. Equations (6.5), (6.6), and
(6.9) represent the extension of Egs. (3.1), (3.2), and
(4.2) to the coupled multi-band case.

In applying Eq. (6.9) it is necessary to find the poles
on the unit circle. They occur at

det|z’G*+z(a—EI) +B| =

which is a polynomial in z of degree 2M.
The poles on the unit circle can be found by introduc-
ing the transformation®®

w=i(z—1)/(z+1) (6.11)

which transforms the unit circle, z=exp(i@) into the real
axis, since w equals tan (6/2), and the interval (—
<8 <) corresponds t0 (— oo <w< o). Since standard
programs are available for locating the poles on the real
axis, one can find the roots in Eq. (6.10) on the unit circle.
With the transformation (6.11), Eq. (6.10) becomes a
polynomial in w of degree 2M. In this way, a solution for
the multiband TB approximation with complex coefficients
has been obtained.

(6.10) -

VIl. COUNTING OF STATES

One reason for using a box type normalization, I am
told, is to assist in the counting of the electronic states in
treating various phenomena. We consider this counting us-
ing the present continuous normalization, for applications
of current interest. The systems so treated involve interfa-
cial electron transfer with weak electronic interaction be-
tween a metal M, and the second reactant M,, weak typ-
ically because of an adsorbed insulating layer on M. The
subsystem M plus the adsorbate will be treated as a single
entity.

The forward rate of electron transfer in the weak in-
teraction case, from a particular occupied electronic state n
of M, to a particular unoccupied electronic state of M,, is
proportional to the square of an electronic matrix element
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of some operator H. If Cb(l) and <I>(2) denote electronic
states of M| and M,, respectively, and if f (E“)) denotes
the Fermi Dirac distribution function, then the rate of elec-
tron transfer from M as a whole to a particular unoccu-
pied state m of M,, R(M, —m'?)), has the proportionality

R(M-m®P)« 2, [(@P|H|®P)Y2FED)  (1.1)

when a box type normalization (CD(“ |<I>(1)) = 8, is used.
If, instead, the normalization in Eq. (2.15) is used, this
sum over # is replaced by an integral over kD

R(M1—+m(2)) o« J.dk(l)l«p’(nZ)'Hiq)k(l)) lzf(Ek(l))_
(7.2)

If M, is also a metal or semiconductor, the net forward ET
rate from M, to M,, R(M—M,) is obtained by multlply-
ing Eq. (7.2) by the probability that the state m ) is un-
occupied, 1—f (E), and summing over m@. Or if, in-
stead, the normalization in Eq. (2.15) is used, th1s sum is
replaced by an integral over £

R(Ml"’Mz)

ocf dkh dk(Z) | (cpk(Z) |H|q>k(l)> ‘Zf

X (B [1—f(B)]. (7.3)
Analogous remarks apply to the reverse process. The
" Fermi energy of the bulk solid itself is found, after solving
for the band structure E(k), by sampling & points in the
Brillouin zone, ordering them with respect to energy, and
successively filling them until the fraction occupied equals
(the number of electrons per unit cell)/(twice the number
of atomic orbitals per unit cell).

Applications of these expressions are made elsewhere
In these applications, it is necessary to have some estimate
of the energy difference between the Fermi level of the
metal and an orbital energy of the adsorbate itself, for
example, the lowest unoccupied or highest occupied elec-
tronic state of the adsorbed layer. Even much more accu-
rate calculations cannot be expected to capture this differ-
ence adequately for layers involving large adsorbate
molecules. As one way for obtaining it we first recall that
in the case of electron or hole transfer in molecules or
proteins it was sometimes possible to find the energy of a
donor or acceptor orbital relative to that of a bridge orbital
by using the charge transfer spectrum® of the donor/
bridge subsystem or acceptor/bridge subsystem. In the
present case, obtaining such solid/adsorbate charge trans-
fer spectra will be more difficult, but could perhaps be
explored using thin films, or other interfacial methods. Al-
ternatively, work functions and ionization potentials could
be utilized as an expedient. Finally, we note that in typical
applications, it will be assumed that the edge-to-edge dis-
tance between the adsorbed layer and the second reactant
(an ion close to or chemically attached to the adsorbed

layer or in STM, a nearby metal tip) is small enough that
the long-range asymptotic form of the wave function may
play no major role.

Vill. CONCLUDING REMARKS

A method of obtaining orbital solutions in the tight-
binding approximation for semi-infinite solids is described.
A transform method and delta function normalization are
used. The results are applied elsewhere to various electron
transfer problems at interfaces. A comparison with other
semi-infinite methods which could be adapted to these
problems will be of interest.
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APPENDIX: DELTA FUNCTION REPRESENTATION
AND CONSEQUENCES

The result (2.11)?* can be obtained using the exponen-
tial Fourier series for a periodic function f(8) with period
27

<«

FO)= 2 fy, fu=go

—w -

f” =0 £(9)db,
- (A1)

where the f, are the Fourier coefficients. When f(0) is
chosen to be the infinite periodic sum

Z 8(6—2mm).
me== <=0
[, in the second equality in Eq. (A1) becomes 1/27. The
first equality then yields Eq. (2.11).
From Eq. (2.11) are obtained the following expres-
sions, used in the normalization (4.8) of the ¢, coefficients
(4.7).

z sin(n—m)0@sin(n—m)6’

n=2

f@)= - (A2)

7 [8(0—0') —8(046") 18,50 5in O sin 6

(m=0’1:2)s (A3)
z {sin #6 sin(n—m) 0O’ +sin O’ sin(n—m)0]
n=2
=Trcosm9[§(9—6’)——8(0+9’)]
+8,28in Osin 6 (m=1,2), (A4)

o«

Z [sin(n—1)8 sin(n—2)0"+sin(n—1)6’ sin(n—2)06]

=ar cos O[6(0—0")—8(0+6")1. (AS)

In each case, the §(6+406") is then omitted, because 6 and
@' are both confined to the (0,7) interval.
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