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A transform method for treating semi-infinite solids in the tight-binding (TB) approximation 
is introduced. The difference equations for the TB orbital coefficients are converted, 
thereby, to convenient algebraic equations. For this purpose, a Dirac delta function 
normalization for the wave function is also introduced, instead of the usual box one. Single and 
coupled bands are treated, and the methods are applied elsewhere to electron transfer 
problems at interfaces. 

I. INTRODUCTION 

The dependence of long-range electron (or hole) trans- 
fer (ET) rates on the separation distance and on the inter- 
vening molecular material is the subject of much current 
experimental interest. Rigid organic structures, proteins, 
and frozen media have all been used as bridges between the 
electron donor ( D) and acceptor (A). For interpreting the 
experiments on these nonadiabatic processes, theoretical 
calculations of the electronic coupling, particularly their 
relative values, are helpful. In extended Htickel (EH) cal- 
culations made for the first two types of bridges, we found 
encouraging agreement with the experimental data for the 
relative values of the coupling. No adjustable parameters 
were used,’ the EH parameters having been obtained from 
other (nonelectron transfer) sources. 

Another set of experiments involves, instead, ET be- 
tween a solid and the D or A. Examples include ET be- 
tween a metal electrode and a D or A, separated from the 
metal by an ordered layer of long-chain adsorbed mole- 
cules. This D or A is in solution, but is either chemically 
bound to one end of the long chain’ or, in a different study, 
moves freely in the solution.3 Other examples include ET 
between semiconductors and a D or A in solution. Scan- 
ning tunneling microscopy of adsorbates or of the bare 
electrode provides yet another, the D or A now being a 
metal tip. The present paper is written with applications to 
these different problems in mind. 

The tight-binding (TB) method has been widely used 
in treating the electronic properties of solids and of their 
surfaces, e.g., see Refs. 4-15. Typically, it has been used in 
a semiempirical manner, its advantage being one of sim- 
plicity. For our purpose, it is easily combined with the EH 
treatment used in our earlier work on long-range ET in 
molecules or proteins. Both treatments are L.C.A.O. in 
nature and are, in fact, equivalent when corresponding ap- 
proximations are employed. 

Although initially developed in 1928 by Blochg and 
applied to surfaces by Goodwin’* in 1939, the extensive use 
of the TB approximation continued into more recent times, 
e.g., Refs. 4-15. In the implementation of the approxima- 
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tion to solids with surfaces, the surface layer and each 
parallel underlying layer have often been treated sepa- 
rately, utilizing any two-dimensional space group symme- 
try. The coupling of the layers is then introduced and 
yields a one-dimensional chain where each unit in the 
chain represents an entire layer, or sometimes represents a 
superlayer which is composed of several actual layers to 
satisfy a repeat property of the solid.” 

Various methods have been devised for implementing 
the TB approximation for solids with a surface. They in- 
clude “slab” methods, in which a finite number of layers of 
the solid parallel to the surface~are treated,4’5 frequently by 
direct diagonalization of the resulting Hamiltonian matrix. 
Semi-infinite methods have also been used, involving a 
transfer matrix,4’6 or a scattering-theoretic417 or other for- 
malisms.8 For the semi-infinite treatments, Green function 
techniques have usually been employed. 

We have made use of the slab method elsewhere, l6 but 
an aim of the present paper is to develop for the solid- 
adsorbate system a simple semi-infinite method which can 
be immediately combined with the EH orbital method used 
for electron (hole) transfer in molecules in earlier work in 
this series.’ For this purpose a method is formulated in this 
paper utilizing the so-called z transform. The z trans- 
form’7-20 was introduced and so named18P’9 in the early 
1950’s as a -method of treating sampled-data systems (a 
method relating the output to the input in such systems). 
It is the discrete analog of the Laplace transform, and so, 
we find, is well suited to the present problem of solving 
linear difference equations with initial conditions, for the 
coefficients in the wave function. In the present case these 
conditions are the boundary conditions at the surface. An 
advantage of the transform method is that it provides a 
systematic and simple way of reducing the problem of solv- 
ing the difference equations to one of algebra, even for the 
case where there are a number of interacting bands with 
complex-valued coefficients. 

The z-transform method has been applied in the elec- 
trical engineering and allied fields.17-20 While it does not 
appear to have been used for the TB problem heretofore, 
the method was early recognized’8 as being equivalent to 
the generating function method employed21 for solving lin- 
ear difference equations. A generating function method 
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has, indeed, been used by Hoffmann12 in 195 l-52 for solv- 
ing recursive equations for TB secular determinants. Upon 
obtaining the eigenvalues, he then calculated the coeffi- 
cients of the atomic orbitals in the eigenfunctions. Instead, 
we use what appears to be, upon comparing with the pre- 
sentation in Ref. 12, a simpler approach: We apply the z 
transform (or generating function) directly to the differ- 
ence equations for the coefficients themselves. (Other, 
more minor, differences from the work in Ref. 12, are in 
the method used for inversion-we use the residue 
theorem-and in the normalization, the Hoffman normal- 
ization being to a “box” of sites in the crystal.) 

Several forms of normalization of TB wave functions 
have been employed in the literature. For example, in the 
case of the bulk solids, some studies employ no explicit 
normalization,‘3 while others use normalization to a box 
consisting of a finite number of atoms iV.i4 The latter is 
also used in the slab/diagonalization treatment of the sur- 
face properties. The Born-von Karman periodic boundary 
condition, I5 using a finite number of atoms, has also been 
used. In our case, since the orbitals of a semi-infinite sys- 
tem are being calculated, we have introduced a Dirac delta 
function normalization. While this normalization has been 
widely used in gas phase collision problems, and has been 
referred to in a bulk normalization,‘4b I am unaware of its 
having been applied to surface TB problems. Nevertheless, 
its use in the present surface problem permits us to utilize 
in a simple way the z-transform method. Of course, the 
final results for any observable would be the same, in the 
limit of N+ CO, regardless of which method is used. 

The organization of the paper is as follows: The layer 
description for treatment of surfaces22 and the present nor- 
malization are both discussed.in Sec. II. The z-transform or 
generating function method is given in Sec. III. It is ap- 
plied to single band systems with complex coefficients in 
Sec. IV, to bound surface states in Sec. V, and to multiband 
systems with complex coefficients in Sec. VI. The “count- 
ing” of states for the delta function normalization is dis- 
cussed in Sec. VII. 

II. LAYER DESCRIPTION AND DELTA FUNCTION 
NORMALIZATION 

A. Normalization for an infinite system 

For introduction in the Schrijdinger equation 

HY=EY (2.1) 
the TB wave function for a one-band one-dimensional in- 
finite chain is written as 

N 
Y= 2 c&Q’, (iv-+w), (2.2) 

)2=--N 
where @,Z is a wave function localized on the nth site. In 
the case of coupling only between adjacent sites, we have, 
on multiplying Eq. (2.1) by a:, introducing Eq. (2.2), 
and integrating, 

~*c,+~+(a-E)c,+pc,~l=O (-co <n-c co), 
(2.3) 

where 

a=fL=(@HIHIRJ, (2.4) 

P=Hn+~,tt= (R~+I IHI W- (2.5) 

Introduction of next-nearest couplings or of higher or- 
der couplings leads thereby to a higher order difference 
equation. If, as a solution to Eq; (2.3), the term y” is 
introduced for c,, one obtains 

P”r”+ (a-E)y+B=O. (2.6) 

In order that all c, be bounded and nonzero as yt+ 00, we 
require that y lie on the unit circle in the complex plane. 
Thereby, y equals exp (ia), where Cp is real. To simplify 
the subsequent notation, we write, in anticipation, 

y=e - i6eitl 
, (2.7) 

where 8 can be positive or negative, and where -6 is the 
phase of p, 

p= IPIe-“‘. (2.8) 

When the orbitals Q>, in Eq. (2.2) are real, 6 is zero. Equa- 
tions (2.6)~(2.8) yield 

E-a=2p~cos 8. (2.9) 

Since E and a are real, 8 is also real, and so there is 
consistency, i.e., there is a solution of Eq. (2.6) on the unit 
circle. 

The solutions (2.2) are thus 

ycc i eince-aQn. 
--oD 

(2.10) 

We see from Eqs. (2.9) and (2.10) that 0 lies in the inter- 
val ( -~,a>, no independent solutions being generated 
when 0 lies outside this range. Sometimes, instead of 0, 
another dimensionless quantity k( = 8/2r) appears in such 
Bloch sums, where k lies in a unit interval.23 We shall use 
the latter form in applications. Also, a new 8, equal to the 
old one minus S, could be introduced into Eq. (2. lo), so 
that 8 instead of 8-S would appear there. However, the 
argument in the cosine in Eq. (2.9). would then be changed 
t0 e+s. 

The normalization of Y we shall use is based on the 
relation24 

5 cp”X=S(x). (2.11) 
--m , 

Actually the right-hand side consists of an infinite sum of 
delta functions (cf. the Appendix), but only the one indi- 
cated in Eq. (2.11) lies in the interval ( --71;n-) being con- 
sidered. 

We consider two Y’s of different energies E and E’, 
and hence, by Eq. (2.9)) different 8’s. We have, from Eqs. 
(2.10) and (2.11), using the 2IIk instead of the 8 notation, 

s 
m ip%y dxzc2 i e2?rin(k--k’)=C2s(k_kr). 

--co -co 
(2.12) 
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Thus c= 1. [The S in Eq. (2.10) is the same for \I, and for 
Y’, since it depends on fi and not on E.] If overlap integrals 
had not been neglected, we would have obtained, instead of 
Eq. (2.12), 

the first layer has the same translational symmetry for the 
unit cells as the underlying layers, and focus our attention 
on such commensurate systems. 

s 
m v*\y dX=C*[1+2~S~cos(2?rk-~)]s(k--k’), 
--m 

(2.13) 
C. Semi-infinite system and normalization 

where 6 is S+&, 6 being the phase of the overlap integral 
S = sQz+ I@‘n dx = 1 S 1 exp( y) . The constant c is then 
modified from its previous value accordingly. 

8. Layers 

A two-dimensional wave function is treated analo- 
gously, the detailed expressions depending on the topology 
of the lattice. We use a description based on one widely 
used, e.g., Ref. 22. In a two-dimensional lattice parallel to 
the surface plane, the unit cells extend from - CO to + CO 
in the two dimensions, while in a direction inward from the 
surface plane (along some unit cell axis, for example), they 
extend from 1 to a. The components kl and k, of wave 
vector kll in the (two-dimensional). layer are good quan- 
tum numbers, because of the translational symmetry. The 
position of a surface unit cell in the two-dimensional lattice 
(i.e., in a layer) is denoted by the vector r, while a vector 
from the surface plane to the mth atomic layer is denoted 
by tmL . The position of an atom of type p in the mth 
atomic layer in a surface unit cell is denoted by the vector 
t$$ . (When the surface and other layers are identical, tP,n 
is independent of m.) Thereby, the position of this mpth 
atom in the crystal is denoted by r + t$ + t,r . The orbit- 
als Q?Omp 

kll 
of the mth layer, for a given atomic orbital a of the 

atoms p, are Bloch sums 

We consider next a semi-infinite system consisting of a 
one-dimensional chain. Each unit in the chain consists of a 
superlayer or layer orbital described in the previous sec- 
tion. We consider the case where there is only one layer in 
each superlayer, but the argument is easily extended. The 
multiband analysis in Sec. VI serves as such an extension. 

Into the Schrodinger equation [Eq. (2.1)] we intro- 
duce the TB wave function for a semi-infinite solid 

Y= i CR@‘, (iv- co 1, (2.17) 
1 

where Q,, is the wave function for the orbital for the nth 
layer [given by Eq. (2.14) with m=n in the case of one 
layer in a superlayer]. Because of the translational symme- 
try, Qn is a running wave with kl and k2 as good “quantum 
numbers.” The case of coupling only between adjacent lay- 
ers is considered, but as noted earlier, can be generalized. 
We multiply Eq. (2.1) by @L*, where Qk differs from Q1n 
only in having ki and ki as the values of the quantum 
numbers, instead of k, and k2 Upon using Eq. (2.17), 
integrating over all space, and neglecting overlap integrals, 
we then have 

Q,~P(~,) =c C &I (%-r-9,,, -*ml --A,) 
r 

X@,,(r,-r-tP -t&, 4 (2.14) 

where A,is some two-dimensional vector analog of the 
phase S which appeared in Eq. (2.8) and is absent when 
real atomic orbitals are used, and re denotes the coordi- 
nates of the electron. The sum over r in Eq. (2.14) is over 
all unit cells in the mth layer. 

A group of successive atomic layers can, from a label- 
ing point of view, be grouped together to form the minimal 
periodic unit, a “superlayer,” and given a principal label n. 
Thereby, each layer or superlayer n is associated with a 
number of bands, each defined by its amp kll label.” The 
normalization of the three-dimensional wave function \I’ is 
expressed in terms of the three components, kl, k2, and k, 
of the wave vector, labeled by k 

P*G+ I + (a--WC,+&-1=0, 

p*c3+ (a---E)c*+Blcl=O, 

P7c*+ (a, -J%=o, 

where 

(2.18a) 

(2.18b) 

(2.18~) 

(~:,I~I%)=~n,=aS(kll -ki ), (2.19a) 

(~~+,IHl~~)=~~+,,,=~S(k,, -ki ), (2.19b) 

HI1=alS(k,, -ki ), H21=b’1S(kll -ki ), (2.19~) 

and the notation S(kll -~ ki ), defined in Eq. (2.16), is 
used. The CL, /3, CX,, and pi are defined by the second equal- 
ities in Eqs. (2.19). The /? and /3i are sometimes complex 
valued.25 

(Y’IY)=S(k,-k;)S(k,-k;)S(k,-k;). (2.15) 

We shall introduce a notation 

S(k,, -ki )=S(k,-k;)S(k,-k;). (2.16) 

A single-band system is considered next and then ex- 
tended to multiband systems in Sec. VI. Throughout we 
use a surface unit cell large enough (when necessary) that 

The surface layer itself may be the adsorbate layer and 
so have a Coulombic matrix element, LYE, and an exchange 
matrix element connecting to the first layer of the under- 
lying solid, pi, which differ from those of the bulk solid, 01 
and 0. Even in the case where there is no adsorbate, the (II 
of the surface layer, CJZ~, may differ somewhat from that of 
the inner layers, and provide, thereby, the basis for a 
Tamm type of bound surface state.” 

To consider the normalization in a general way at first, 
we introduce the equations for the coefficients when the 
energy is E’, denote the coefficients by primes, and take the 
complex conjugate of the resulting equations, 

XT 1 +(a-E’)c;*+~*c~“l=O, (2.20a) 
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~c~*+(cL--E’)C~*+~TC~~=O, (2.2Ob) 

fi*C;“+(al-E>Ci*=O. (2.2Oc) 

Multiplying Eq. (2.18a) by CL*, Eq. (2.20a) by c,, sub- 
tracting, and summing over n from 1 to iV, we have 

N 
cN+~(~C;v)*-C~+@f,,+ 7 ‘&%E’--El =o. 

(2.21) 

We recall next that the wave function (2.17) for this semi- 
infinite system yields 

WlW=( y lim cc?cN S(kll -ki ), ) (2.22) 
N-m 

since (@A I@,) contributes S( kll 
tion. 

- ki ) to the normaliza- 

When E lies within a band, the solution of Eqs. 
(2.18a)-(2.18c) for a single-band system is a standing 
wave 

c,=Ae-i(“-2)Ssin[(n-l)8+77], (0<0<7r), 
(2.23) 

as will be seen later, where -6 is the phase of the fi defined 
by Eq. (2.8), but now j3 denotes a layer-layer interaction. 
The amplitude A and the phase 77 in Eq. (2.23) are both 
functions of 8, and the dependence of c, on 8 is seen later 
to be such that c, is unchanged when 8 is replaced by -0. 
The energy depends on cos 8, as in Eq. (4.6) below. 
Thereby, 8 now lies in the interval (O,a>, since no new 
solution occurs when 8 is negative. Also, this 8 is now the 
0 for the one-dimensional chain of layers below. Thereby, 
19 now lies in the interval (O,rr), since no new solution 
occurs when 0 is negative. Also, this 8 is now the 0 for the 
one-dimensional chain of layers. 

We thus have from Eqs. (2.21) and (2.23), after mi- 
nor manipulation, 

N 
C c&f=AA’* sin N-1 [(e-e’) + (rl--77’)/ 
1 I i 2) 

e+e’ 
(N-i) ] sin - 

( 1 2 +sin(N-f) [ (e+ey 

+ (r1+71’)/w-i) 1 

Xsin(7)) /(El-E). 
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value at x=0, the relation between E and 0 being given by 
Eq. (4.6) below. A common representation of S(x), 
lim sin iVx/?rx as N- CO, is also used. 

To solve the series of equations, Eqs. (2.20), and ob- 
tain the results used above, one method would be to set 
c, = y” and solve for y. However, y merely prescribes how 
each successive c, in a series is related to the preceding one, 
but does not in itself prescribe the starting point of a series 
or how many series are needed, as a linear combination, to 
satisfy the boundary conditions (2.2Ob) and (2.20~). For 
example, it will be seen in Sec. V that the solution (2.23) 
for c, is actually a linear combination of the six terms 
exp( j&n?), exp[&ti(n-1)8], and exp[&(n+l)f3]. The 
transform method, applied in Sec. IV, provides a conve- 
nient and more systematic method for solving Eqs. (2.20)) 
as well as for solving the more complicated equations that 
exist in multiband systems, in the same way that the La- 
place transform does,for analogous linear differential equa- 
tions. 

Equation (2.21) is, incidentally, a discrete analog of 
the expression sometimes used to show normalization to a 
Dirac delta function for collision systems: In a three- 
dimensional collision problem (with or without additional 
internal coordinates of the colliding species), it will be 
recalled, one again obtains a difference of two Schriidinger 
expressions Y’*HY - YHY’” and integrates, leaving an in- 
tegral over the radial motion r( 0 < Y < R ) , where ultimately 
R -. CO. Cancellation and integration over Y in the interval 
(0,R) yields the continuous analog of Eq. (2.21) and, 
thereby, a Dirac delta function. In fact, this continuous 
analog prompted the present argument leading to Eq. 
(2.21). 

Ill. z TRANSFORMATION 

The z-transform method, as noted earlier, has been 
used for difference equations arising in another area.17-*’ 
The transform F(z) is defined by 

F(z)= 2 c,$-"Gc,, (3.1) 
n=l 

The highly oscillating function of (N-i) (8+ e’), which 
would give rise to a S ( 8+ 6’)) makes no contribution, since 
we do not have f3= - 8’ in the interval (OJI). We may 
ignore that term and so obtain, on introducing the notation 
c3=2?rk3, with (O<k,< l/2), 

lim &&,?=( IA12/41PI )S(k,-kj), 
N-m 1 

(2.25) 

upon again using the relation S(x) = (dy/dx),S(~~), where 
y=E-E’, x = k3 - k;, and the 0 subscript denotes the 

where the operator G is defined by the second equality in 
Eq. (3.1). The Laurent series (3.1) converges for I zj 
greater than some value. The inversion formula is given by 

1 
cn=g c P 

F(z)z”-* dz, 

where C is a contour large enough that the integrand is 
analytic outside it. The application of the operator G to 
c,+~ and c,+* yields 

Gc,+~=zF(z) -zcl , (3.3) 

Gc,+~=~F(z) -22~~ -zc2 . (3.4) 

We apply this transform to Eqs. (2.18) in Sets. IV and 
V, and to equations for more complicated systems in Sec. 
VI. If, instead of l/z in Eq. (3.1), one had used z, the 
resulting F( l/z) would have been the usual generating 
function. 
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IV. SINGLE BAND WITH COMPLEX COEFFICIENTS ~=IP112/IP12, y=(al-a)/M. (4.9) 

When Eqs. (3.1) and (3.3)-(3.4) are applied to Eqs. 
(2.18a) and (2.18b), we find 

-&cl +B*zc* 

V. BOUND SURFACE STATES 

F(Z)=c*+~*ZZ+(a-E)z+B' (4.1) 

Introduction of the boundary condition (2.18~) then yields 

F(z) =clLPl+ (al--E) W*MT)z 
p*2+ (a-E)z+p Cl ’ (4.2) 

and, from Eq. (3.2) we then have 

We turn next to the question of bound surface states 
for a one-band system. The c,‘s for a surface state tend, by 
definition, to zero when n + 00. We require, thereby, that 
any poles in the integrand in Eq. (4.3) lie within, rather 
than on or outside, the unit circle in the complex z plane. 
To this end, we can set in Eq. (4.4) 

1 
c,=clSnl-~ P 

P1+ (al --El (B*/P?)z 
c p*2+ (a-E)z+B 2”-2dz* 

(4.3) 

zl,z2= he --Be--B 
, (5.1) 

where the real part of 0 is positive, and where we have 
introduced the -6, as before, to simplify the subsequent 
notation. Equation (4.4) then yields 

An examination of the integral for iz= 1 shows that it 
makes no contribution to c, (a simple proof involves a 
transformation to w= l/~),*~ and so Eq. (4.3) yields cl 
=cr, as it should. For n#l, however, only that integral 
contributes to c,. The poles in the integrand in Eq. (4.3) 
for n#l satisfy 

j3*2+ (a-E)z+P=O, (4.4) 

whose solutions are denoted below by zr and z,. 
To have solutions for c, which do not vanish or be- 

come infinite as n-t 00, we require, as is seen from Eq. 
(4.3) and Cauchy’s residue theorem, that Izr I and Iz2 I be 
unity, i.e., that these two poles lie on the unit circle in the 
complex plane. Thereby, the roots zl and z2 can be written 
as 

z1,z2=e-‘6e+re, (4.5) 

using a form which simplifies the subsequent notation, and 
8 again denotes 2?rk3. The -S in Eq. (4.5) is the phase of 
fi, as in Eq. (2.8). One then sees from Eqs. (4.4) and (4.5) 
that 8 satisfies 

E-a=&2]flIcosh 8, (5.2) 

so that 8 is seen to be purely real, since E and a are real. 
The sign in Eq. (5.2) is positive or negative according as 
the sign in Eq. (5.1) is positive or negative, respectively. 
Since cash 8 > I cos 8 I, the surface state thus lies at an en- 
ergy E below or above the band (4.6), according as the 
negative or positive sign in Eq. (5.1) is used. 

We consider first the E < Eband case, that is, the nega- 
tive sign in Eqs. (5.1) and (5.2). We now introduce the 
condition that there be no pole at z= -exp( -is+@, so 
as to avoid the c,‘s growing with n instead of decreasing. 
This goal can be accomplished by choosing E in the nu- 
merator of Eq. (4.3), so that the numerator has [z 
+exp( -iS + e)] as a factor, thus cancelling the corre- 
sponding factor in the denominator. Thus we require that 

E-a=2/fllcos 8. (4.6) 
Since E and a are real, this 8 is indeed real, and so there is 
again internal consistency. 

Equation (4.3) then yields, for IZ > 1, 

w-i(n-2)6 
c~=-plp+he [( lPll*- IP12bin(n-2)e 

+(ai-a) ]Plsin(n-1)8-- IpI* sin no], rt> 1. 

(4.7) 

&+(al--E)(P*//3T)zcc (z+e-“e’). (5.3) 

Using Eq. (5.2) with the negative sign, it follows that 

&+(ar--a+2IPIcosh e)(P*/PT)za (z+e-“ee), 
(5.4) 

and so 

w 

(2 cash e) +y =ee, (5.5) 

where w and y are defined by Eq. (4.10). 

This expression for c, takes on a very simple form only 
when ISi I = Ifil and al=a. 

Using Eqs. (A3)-(A5), the Y given by Eqs. (2.17) 
and (4.7) satisfies the delta function normalization to the 
energy, S(E-E’), with cl given by 

o sin 8 *I* 
c1= qq-- ( 1 

[~*+4(1 --w)~* c~~2 e++ 

+~Y(~-~)cos ep*, (4.8) 

where w and y are now defined by 

Equation (5.5) provides the condition for a bound sur- 
face state below the energy band. This equation imposes a 
condition on 8, and hence, via Eq. (5.2), on the energy E 
for the existence of a surface state. When (/3r ) = Ifi], it is 
seen from Eq. (5.5) that 

exp e=(a-ad/lBI, (lPll = ISI >, (5.6) 

a result found earlier using a finite size crystal.” Since 
8 > 0, Eq. (5.6) shows that the surface state then exists at 
an energy below the band [the negative sign in Eq. (5.2)] 
only when al is more negative than a. 

We consider next the case of a surface state with an 
energy above the band [the positive sign in Eq. (5.2)]. The 
poles are now given by Eq. (5.1) with the positive sign and 
one finds that Eq. (5.5) is replaced by 
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(5.7) 
apply them to Eqs. (6.1)-( 6.2). The result, in matrix no- 
tation, is 

[z2G*+z(A-EI) +B]F Accordingly, in the case of I/?,I/IB/=l, Eq. (5.7) 
takes on a simpler form 

exp8=(q-aVlPI, (lB~l=lPl>. (5.8) 

Since 8 is positive, the surface state at an energy E above 
the band then occurs only when ai is less negative than a. 

VI. MULTICOUPLED BANDS WITH COMPLEX 
COEFFICIENTS 

We consider next M coupled bands. They can arise 
when each atom in a layer has a number of orbitals, or 
when each unit in the chain of layers is the superlayer 
discussed earlier, or both. The wave function for this sys- 
tem can be written as 

Y = g i Cin@pin (6.1) 
i=l n=l 

where Cp, denotes the wave function for the ith zeroth 
order band in layer n. The difference equations are now 

P%i,a+l+ (aii--E)cin+PiFi,n-1 

+ C (~~j,n+l+ai~j~+Pi~j,n-1)=0 (n> 1) 
j#i 

(6.2a) 

and 

P?c~L+ (a&-E)cil+ & (I’:FC,2+aiIcjl) ~0, 
I 

where 

(6.2~) 

(~>6Iwl(r>j,,-,>=pi~(kll -ki > (n>2>, (6.3a) 

(cDLIHI~j,n+l)=~~(kll -k,j 1 (n> I), (6.3b) 

(@~nlHl+jn>=aij(kll -ki > (n> 11, (6.3~) 

(+~~lHI@jl>=a$(kll -ki )y 
(@jl IHI $2) =y+Wq -4; 1. 

(6.3d) 

(6.3e) 

We note” from Eq. (6.3) that rij=pji and yjj=fi$ Matrix 
elements such as flij are sometimes complex valued.25 

We introduce Mz transforms F,(z) 

Fi(Z) = 2 Ci$l--n, (i=l to M) (6.4) 

and inversion formulas 

1 
cin=G Fgv2 dz, (i=l to M) (6.5) 
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= [~G*+z(A-EI) +B-B,]cl+zG*c2 

and for the boundary condition (6.2~) 

(6.6) 

GTc2+(Al--El)q=O, (6.7) 

where F, cl, and c2 denote column vectors whose compo- 
nents are Fi, Gil, and ci2 (i= 1 to M), respectively. A, A,, B, 
and Bl denote MXM matrices, with elements aij, a$ fiij, 
and &, while the elements of G* and GT are given by 

(G*)ii=PE, (G*)ij=fl+qi (.i#j), (6.8a) 

(Gf)ii=/3;?, (GT)ij=Y!y=fljr (j#i). (6.8b) 

Equations (6.6)~( 6.7) yield 

F=Iq- [z2G*+z(A-EI) +B] -’ 

x [B,+zG*GT-‘(A,-EI)]c, , (6.9) 

where I is the unit matrix. Equations (6.5), (6.6), and 
(6.9) represent the extension of Eqs. (3. l), (3.2), and 
(4.2) to the coupled multi-band case. 

In applying Eq. (6.9) it is necessary to find the poles 
on the unit circle. They occur at 

detIz2G*+z(a-EI)+BI =0 

which is a polynomial in z of degree 2M. 

(6.10) s 

The poles on the unit circle can be found by introduc- 
ing the transformation2* 

w=i(z- l)/(z+ 1) (6.11) 

which transforms the unit circle, z=exp( i6) into the real 
axis, since w equals tan (e/2), and the interval ( -r 
< 8 <v) corresponds to ( - CO < w < CO ). Since standard 

programs are available for locating the poles on the real 
axis, one can find the roots in Eq. (6.10) on the unit circle. 
With the transformation (6.11), Eq. (6.10) becomes a 
polynomial in w of degree 2iki. In this way, a solution for 
the multiband TB approximation with complex coefficients 
has been obtained. 

VII. COUNTING OF STATES 

One reason for using a box type normalization, I am 
told, is to assist in the counting of the electronic states in 
treating various phenomena. We consider this counting us- 
ing the present continuous normalization, for applications 
of current interest. The systems so treated involve interfa- 
cial electron transfer with weak electronic interaction be- 
tween a metal Ml and the second reactant M2, weak typ- 
ically because of an adsorbed insulating layer on M,. The 
subsystem M, plus the adsorbate will be treated as a single 
entity. 

The forward rate of electron transfer in the weak in- 
teraction case, from a particular occupied electronic state n 
of M, to a particular unoccupied electronic state of M,, is 
proportional to the square of an electronic matrix element 
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of some operator H. If @i*) and a:’ denote electronic 
states of MI and M2, respectively, and if f (Ei”) denotes 
the Fermi Dirac distribution function, then the rate of elec- 
tron transfer from MI as a whole to a particular unoccu- 
pied state m of M,, R (M, -+ rn@) ), has the proportionality 

R(M1-+mc2)) cc 2 I (Q~‘IHI+~“> I’f(EL’)) (7.1) 
n 

when a box type normalization (+i” I QL!)) = S,,, is used. 
If, instead, the normalization in Eq. (2.15) is used, this 
sum over n is replaced by an integral over k(l) 

R(M1-+mc2)) CC 
s 

dk(‘) I{@~’ 1 HI <pk(‘)) j2f(Ek”‘). 

(7.2) 

If M2 is also a metal or semiconductor, the net forward ET 
rate from MI to M,, R(M1 -M2) is obtained by multiply- 
ing Eq. (7.2) by the probability that the state mc2) is un- 
occupied, 1 -f(EE’), and summing over mc2). Or if, in- 
stead, the normalization in Eq. (2.15) is used, this sum is 
replaced by an integral over kC2) 

R(Ml-tMd 

a: dk”’ dkc2) I (@‘k(2) IHI c&(l)) (2f 

~(Ek(‘))[l-f(E~(~))]. (7.3) 

Analogous remarks apply to the reverse process. The 
Fermi energy of the bulk solid itself is found, after solving 
for the band structure E(k), by sampling k points in the 
Brillouin zone, ordering them with respect to energy, and 
successively filling them until the fraction occupied equals 
(the number of electrons per unit cell)/(twice the number 
of atomic orbitals per unit cell). 

Applications of these expressions are made elsewhere. 
In these applications, it is necessary to have some estimate 
of the energy difference between the Fermi level of the 
metal and an orbital energy of the adsorbate itself, for 
example, the lowest unoccupied or highest occupied elec- 
tronic state of the adsorbed layer. Even much more accu- 
rate calculations cannot be expected to capture this differ- 
ence adequately for layers involving large adsorbate 
molecules. As one way for obtaining it we first recall that 
in the case of electron or hole transfer in molecules or 
proteins it was sometimes possible to find the energy of a 
donor or acceptor orbital relative to that of a bridge orbital 
by using the charge transfer spectrum29 of the donor/ 
bridge subsystem or acceptor/bridge subsystem. In the 
present case, obtaining such solid/adsorbate charge trans- 
fer spectra will be more difficult, but could perhaps be 
explored using thin films, or other interfacial methods. Al- 
ternatively, work functions and ionization potentials could 
be utilized as an expedient. Finally, we note that in typical 
applications, it will be assumed that the edge-to-edge dis- 
tance between the adsorbed layer and the second reactant 
(an ion close to or chemically attached to the adsorbed 
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layer or in STM, a nearby metal tip) is small enough that 
the long-range asymptotic form of the wave function may 
play no major role. 

VIII. CONCLUDING REMARKS 

A method of obtaining orbital solutions in the tight- 
binding approximation for semi-infinite solids is described. 
A transform method and delta function normalization are 
used. The results are applied elsewhere to various electron 
transfer problems at interfaces. A comparison with other 
semi-infinite methods which could be adapted to these 
problems will be of interest. 
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APPENDIX: DELTA FUNCTION REPRESENTATION 
AND CONSEQUENCES 

The result (2.11) 2V4 can be obtained using the exponen- 
tial Fourier series for a periodic function f( 0) with period 
2a 

f(e)= 2 einef,,, f,,=& JI e-inef(0)d61, 
-co r 

(AlI 
where the f, are the Fourier coefficients. When f (0) is 
chosen to be the infinite periodic sum 

f(e)= i S(@--2m). 
VI=---m 

C-42) 

f, in the second equality in Eq. (Al) becomes 1/27r. The 
first equality then yields Eq. (2.11) . 

From Eq. (2.11) are obtained the following expres- 
sions, used in the normalization (4.8) of the c, coefficients 
(4.7). 

n!2 sin(n-m)esin(n-m)0’ 

+ [s(e--0’) -s(e+e’>] -Smo sin 8 sin 8’ 

(m=0,1,2), (A3) 

2 [sin nf3 sin(n-m)B’+sin no’ sin(n-m)8] 
n=2 

=T cos me[s(e-et) -s(e+e’) 1 

+Sm2 sin 8 sin 8’ (m= 1,2), (A4) 

nz2 [sin(n-l)esin(n-2)8’+sin(n-1)8 sW+2Wl 

=r cos e[s(e-e’) -s(e+e’)l. (A5) 
In each case, the 6( 8+ f3’) is then omitted, because 8 and 
8’ are both confined to the (0,~) interval. 
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