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ABSTRACT. In these lectures, reaction rate theory and the theory of electron
transfer (ET) reactions are outlined. The topics discussed include the relation
of the potential energy surfaces to free energy curves for ET reactions, classical
ET theory for reactions in solution and at interfaces, quantum corrections, the
inverted effect, relation to charge transfer spectra, the cross-relation, adiabatic
and nonadiabatic ET reactions, electronic matrix elements, relation to other
transfer reactions, predictions of and comparison with experiments, and
miscellaneous questions.
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1. Introduction
Electron transfer (ET) reactions play an important role in many chemical and

biological reactions.!® The simplest of all ET reactions is the “self-exchange”
reaction, as in the isotopic exchange reactions,

Fe (CN)64' + Fe* (CN)GS‘ ﬁ_l_.,. Fe (CN)63— + Fe* (CN)64_ (1)
Ce(IV) + Ce* (I 22, Ce(I) + Ce*(IV) ()

where the asterisk denotes a radioactive isotope. Since the products are
chemically equivalent to the reactants, these reactions have a zero value for
the standard free energy of reaction AG°. The study of their rates has
provided, thereby, direct information on the “intrinsic” factors which control
the rate of ET. When two different redox systems are involved, as in

Fe (CN)g*- + Ce (IV) - Fe (CN)gd~ + Ce (IIT) 3)

the ET reaction is commonly termed a “cross-reaction.” For the latter, the
standard free energy of the reaction, AG?, which measures the stability of the

roducts relative to those of the reactants in a precise thermodynamical way,
is an additional factor which influences the rate of the ET reaction.

In addition to inorganic ET reactions in solution, studies in the ET field
include a wide range of topics, including organic and biological ETs, thermal
and photoinduced ETs, charge transfer spectra, and ET reactions at metal
electrodes and at other types of interfaces, such as semiconductor-liquid,
modified electrode-liquid, polymer-liquid and liquid-liquid interfaces, colloids
and micelles. These areas and their connections are among those depicted in
Figure 1. We review some essential features of the theory underlying ET
reactions and then compare some of the theoretical predictions with the
experimental results.
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Figure 1. Examples of topics in the electron transfer field.

In general, we consider the ET reaction

(Ox), + (Red), - (Red), + (Ox), (4)

where the reactants may be moving freely in solution or may be attached to
each other so that eq 4 then becomes an intramolecular ET.

2. Theory
2.1 POTENTIAL ENERGY SURFACES AND FREE ENERGY SURFACES

In reactions 1 to 3, the ET reaction is accompanied by changes in the nuclear
configurations of the reactants and in the surrounding environment, such as
changes in metal-ligand bond lengths in the reactants and changesin the
typical orientations of the nearbty dipolar solvent molecules. In the case of
reaction 1, for example, each Fe?* ~OHs bond in aqueous solution is about 0.14
A longer than the Fe?*—OHg bond.!? This latter change imposes a barrier of
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about 8 kcal mol-! to the reaction-'® Further, solvent molecules are more
oriented around the Fe?* ion than around the Fe?* ion, since the former is
more highly charged, contributing agproximately 8 kcal mol-! to the free
energy barrier of the reaction!®. Both effects are illustrated in Figure 2. In
order for ET to occur, the reactants must approach each other and, at the same
time, typical nuclear configurations of the reactants have to evolve toward
those of the products by suitable fluctuations in the coordinates. In the present
case, these coordinates are the vibrational modes of the reactants, the
orientational coordinates of the surrounding solvent molecules, and, to some
extent, the vibrational coordinates of the polarized solvent molecules.

Electron Transfer in Solution

— / \
>—< — P ‘
A
/ - \ /
/ N\ -~ ~
Reactants Products

Figure 2. Typical nuclear configurations for reactants, products, and
surrounding solvent molecules (cf. ref 11). The longer M-OHz
bond length in the +2 state is indicated schematically by the
larger ionic radius.

To treat the mechanism of ET, it is useful to consider the many-
dimensional potential energy surface (PES) for the reactants and the
surrounding medium, Uy, and that for the products and surrounding medium,
Up. These PES are a function of many (~thousands) of the solvent’s and
reactants’ coordinates, say N. The intersection of these two PES forms an
(N —1)-dimensional surface, which, because of the Franck-Condon principle
discussed later, serves as the transition state for the reaction. A schematic
one-dimensional profile of the two PES and their intersection is given by the
solid lines in Figure 3. A somewhat more realistic but still schematic rofile is
shown by the dashed lines in Figure 3. The latter profile is more com icated,
since the dependence of U, and El on the solvational coordinates leads to many
local potential energy minima. foe dependence of U, and Upon the
vibrational coordinates, on the other hand, is quadratic to a reasonable
approximation for the energies of interest.
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Potential Energy Surfaces, Profile

NUCLEAR COORDINATES

Figure3. Profile of potential energy surfaces for reactants plus
environment, R, and for products plus environment, P. Solid
curves: highly schematic. Dashed curves: schematic but more
realistic. The typical splitting, 2H,p, at the intersection of U,
and Up is exaggerated in the Figure.

It is useful to consider first an intramolecular ET reaction, and the
fluctuations in coordinates, at a fixed separation distince R between the
electron donor and the acceptor. We subsequently include, in the case of
bimolecular reactions, or in the case of an ET reaction between a freely moving
reactant and an electrode, the role of the translational coordinates, which
permit R to vary. Thus, in the following, the N coordinates first refer to those
of a system in which the positions of the reactants, and hence R, are held fixed.

For ET reactions in which there is a weak electronic interaction between
the reactants, a reaction coordinate g can be defined globally in a rather
precise manner. The method of doing so would take us a little far afield, but is
equivalent to using Up — U, as a coordinate (cf. ref 12 or an equivalent
definition in ref 13). For any given value of g, the system resides on an (N —1)-
dimensional surface in coordinate space, and the free energy, G (q), for the
reactants and their surrounding environment can be calculated for any value
of q. The expression for G, (q) contains the value of exp [ - U, (q)/ksT],
integrated over this (N —1)-coordinate surface, and also contains a momentum
contribution and a factor h¥-1, h being Planck’s constant, as in eq B2 of
Appendix B. The last two factors, which are omitted here in the interests of
notational brevity, cancel when a free energy difference AG,” is later
considered. We thus have
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exp =G, @[kyT| = [ ... [ exp (-0, (@/k,T )dS (5)

where dS is a volume element in this (N — 1)-dimensional space for fixed
positions of the translational coordinates of the reactants.

In a linear response approximation, assumed in the theory,!3'° the
contribution of the orientations of the solvent dipoles to changes in the solvent
dielectric polarization is proportional to changes in the electric fields, and the
approximation is sometimes referred to as the “dielectric unsaturation
approximation.” In this linear response regime, Gr(q) is then a quadratic
function of g. Recent computer simulations have provided further support for
the approximation.'$ Gr(g) and Gp(q) can thus be drawn as parabolas, asin
Figure 4, even when U, (q) and Up(q) are highly anharmonic functions of
many of the coordinates. The approximation is much less drastic than
assuming that U.(q) itself is a quadratic function of all the coordinates,
collectively denoted here by q.

Free Enerqy Curves

FREE ENERGY

REACTION COORDINATE q

Figure 4. Free energy of reactants plus environment vs the reaction
coordinate g (R curve), and free energy of products plus
environment vs g (P curve). The three vertical lines on the
abscissa denote, tqrom left to right, q", ¢* and ¢*.

For electron transfer to occur, one of the conditions which must be
satisfied is the Franck-Condon principle. The latter may be described as
follows, in terms of a classical description of the nuclear motion: Because the
motion of the nuclei is typically slow compared with that of the electrons, the
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nuclei change neither their instantaneous position nor their instantaneous
momenta during an electronic transition. In the present case, this transition is
one from the electronic configuration of the reactants to that of the products,
and is the electron transfer. The only region in the N-dimensional coordinate
space where the above conditions on coordinates and momenta can be satisfied
in a thermal reaction is where U(q)=U (q), i.e.,on the (N —1)-dimensional
surface where the two surfaces U, and lf p In N-dimensional coordinate space q
intersect. (In the profile of the N-dimensional system in Figure 3, this (N —1)-
dimensional surface appears as a single point.) An electron transfer in any
other region is a vertical transition in the Figure and can only occur upon the
absorption or emission of light.

This (N —1)-dimensional intersection surface, which is reached by a
suitable thermal fluctuation of the coordinates, forms the transition state for
this ET reaction. At the intersection, the system can go from the reactants’
plus environment’s potential energy surface U, (q), with a profile denoted
there by R, to the products’ surface P, if some electronic coupling exists
between the two reactants. The extent of the coupling is indicated by the
splitting 2H, in Figure 3. When H,, is large enough, the system will remain
on the lower energy surface, i.e., go from the R surface to the P surface in the
transition state region, with a probability of about unity each time the system
crosses the intersection surface. The ET reaction is then said to be “adiabatic.”
If, on the other hand, Hy, is very small, for example when the two reactants are
far apart, the system has only a small probability of reaching the P surface
during this crossing of the TS, and the ET, if it occurs, is then said to be
“nonadiabatic.” A quantum mechanical-based expression for calculating this
probability of transition from the U, surface to the Upone at the TSis
sometimes employed, using the Landau-Zener expression,'? as described in
Appendix A. .

The calculation of the rate constant for an ET reaction thus involves
calculating the probability of reaching the transition state multiplied by the
probability of going from the R to the P surface in the transition state region.
The probability of reaching the transition state can be expressed, in transition
state theory, in terms of the free energy required to reach the transition state.
We consider first the case where the nuclear motion is treated glasswe'llly.
Quantum mechanical corrections to the following are summarized briefly
later.

2.2 CLASSICAL THEORY

We consider either a system in which the donor and acceptor are held fixed ata
separation distance R by some rigid molecular framework, or in which they are
free to move in solution, agproach each other and attain some typical
separation distance R in the transition state. At this R we consider the free
energy of fluctuations of the vibrational and solvational dipolar coordinates
along a reaction coordinate q. There is also an additional free energy termina
bimolecular reaction, the *work” term w, which is the change in free energy
when the reactants fixed at some large separation distance are brought to the
separation distance R. This w, can have both electrostatic and . .
nonelectrostatic contributions. In the interests of brevity of notation, we omit
wr and the corresponding term wy, for the products in the following
expressions, although they are normally included in the expressions in the
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literature.!!518 We first give a quick derivation of an equation for the
reorganizational free energy change needed to reach the TS, and then give a
more detailed a?proach which expresses the reorganization parameter A in
terms of molecular properties.

_ An adiabatic reaction is considered first. In this case the rate constant,
written in terms of transition state theory (cf. Appendix A), is

a7 exp ( -AG* IhgT) sf’;—T %t exp(-AEg IkBT) (6)

where Q! is the partition function of the TS, Q is that of the reactants, AGtis
the free energy of activation, and AE,} is the activation energy at 0°K. Ina
classical treatment, zero-point energies in AE  vanish and the latter becomes
AU?, the lowest value of the potential energy in the TS minus that for the
reactants, asin eq A3 in Appendix A.

Upon integrating an expression for @ in Appendix B over all coordinates
but the reaction coordinate g, a term exp[-G(q)/ sT1is obtained. In the linear
response approximation G(q) is approximately a quadratic function of q.
Combined with another term in @ arising from the momentum p conjugate to
g, one factor contributing to @ineq6isa classical harmonic oscillator
partition function, kgT/hv. Here, v is the typical frequency associated with
motion along q (cf. eq 28 given later). A remaining factorin eq 6 is denoted by
exp (-AG,*[kgT). For a unimolecular reaction, one then obtains from eq 6,
kr=vexp (—AG,-;{?BT), asin Appendix A. Here, AG,* is the free energy
associated with the reorganization (fluctuations) of the solvent di oles and of
the vibrational coordinates needed to reach the TS. For bimolecular reactions,
there are additional factors in @*and Q associated with the translational
motion of the reactants and with their more restricted translational motion in
the TS. The net result, derived in Appendix A, is included later in eq 14 for k..

The reorganizational free energy AG,* required to reach the transition
state (T'S) when the positions of the reactants are held fixed is

AG,* = Gr(q*)-Gr(q" (7)

where G, (g*) is the value of G,(g) on the intersection surface (the TS) and q"
denotes the value of g for which g}, (q) has a minimum, as in Figure 4. An
expression for AG;" can be obtained using quadratic expressions for the free
energies. We have

k

r

G (= g (a-a) (82)

¢ @= = (a-) +40° (8b)

where AGP is the standard free energy of the reaction, which also equals
Gp(qP)—Gr(q"). AG,*is obtained as follows:
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On the intersection surface the distribution of the coordinates and
momenta is the same for the U, and U, surfaces.!*!5 Thus, their entropies are
the same for the R and P electronic states at the intersection surface.
Similarly, the average of U, over the coordinates defining the intersection
surface equals the average of Up there. Thus, we have!4

Gr(g*)=Gp(q" (9)
which together with eqs 7 and 8 yields

1 AG°
=@ +¢) + —— (10)
2 kg -q")
These equations yield
. A AG'\2
AG" = —(1+—) (11)
r 4 A
where
_k r)2 (12)
A= (q" ~-q )

Using transition state theory, the net result for the rate constant k. of the
electron transfer reaction can be written asin eq 13a for a unimolecular
reaction and in 13b for a bimolecular reaction (cf. Appendix A).

k.= kv exp (—AG:/kBT) (13a)

r

k, = Kvv exp (-AG_[kgT) (13b)
where AG,* isgiven by eq 11, vis the frequency associated with the motion
along the g-coordinate, and v_is the effective volume!® which the reactants
occupy in the TS, namely 41R?%/8, where 8 is the exponent in the dependence of
the electron transfer rate on separation distance R (rate varies as exp (- 8R), B
being about IK -1, depending on the system).! The R in v is the mean
iepg.ratioP distance in the TS. Equation 13b is of the same form as that given

y Sutin.

For an adiabatic reaction the kv in eq 13 becomes v, while fora

nonadiabatic reaction, it can be shown, as in Appendix A, to be given
approximately by eq 14b:

KV = v (adiabatic) (14a)

kv = — ——F——  (nonadiabatic) (14b)



58

The A appearing in eq 12 is usually termed a reorganization energy and
is the sum of A;, an inner (i.e., vibrational) contribution, and )\% an outer (i.e.,
solvational, outside any first coordination shell) contribution.’® The A; arises
from vibrational motion of the nuclei of the reactants themselves, including
those in any first coordination shell, and typically arises from any changesin
bond lengths of each species when it is a product, as compared with when itisa
reactant (eq 26 below). For example, for ET involving transition metal
complexes, this A; would include the contribution from the metal atom-to-
ligand coordinates. The A, includes the contributions from all the rest of the
coordinates of the nuclei, which for ET reactions in solution means those of the
solvent. We consider next a simple model which provides an estimate of A.

The vibrations of each reactant are treated as normal modes of vibration.
We let g; denote the ith normal mode coordinate, ¢;"its equilibrium value for
the reactants, g that for the products, and k; the associated force constant
4n2v2, v; being the normal mode frequency for that mode.?® The contribution
from the reactants’ vibrations to the potential energy of a fluctuation
U;j"(j=r, p)is

U‘}"’= % Dk, (q‘-—q{ )2 : Jj=r.p (15)
i

The AG,” in eq 13 contains a AGsep” and a AU,;p . (Vibrational entropic terms
in this vibrational model can be shown to cancel in A", a more detailed
derivation being given in the literature,!s a result which can also be inferred
using expressions for @ and @* given in Appendix A.)

To express the "outer” contribution to G, we shall treat the solventasa
dielectric continuum and neglect dielectric image effects, which tend to be
small for the interaction of the two charges in solution.?! A more general
formulation is again available in refs 14 and 15.%7 If P(r) denotes a particular
function of the dielectric orientation polarization of the solvent at point r, then
the free energy contribution G " due to these charge-charge and charge-
solvent polarization interactiohs is given by??

1 1
Gj."l": - -8— (1— B_) I D;”.(r) dr —I | Dj(r) dr + 2nc J Pldr (16)
n
op

where 1jc = 1/Dop—1/Ds and D;(r) is the electric field associated with the
charge distribution pj.

We now have Dj(r) = -V, Jpj(r")[|r-r] dr' , j=rp (17N
G.(q,P) = U™ (q) + GV (18a)
and
G, (a,P) = U;‘b (@) + G:°‘"(P;+AG° (18b)

where q now denotes only the totality of the vibrational coordinates g; rather
than all the coordinates.
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_ Inorder to find the values P¥(r) and c{)‘in the TS, G, (q,P) is minimized
with respect to variations in P(r) and q, subject to the condition that G.(q,P)

and Gp (q,P) are equal at the transition state:

G @P) = G,(q,P) (TS) (19)
Thus,
| 5G_ =0 - (20a)
subject to
8G, - 8G, =0 (20b)

) Equation 20 and use of a Lagrangian multiplier m yields, upon
introduction of eqs 15, 16, 18 and 19,

4ncP(r) = D_(r) + m[D'_(r) - Dp(r)] (21)

and
a} = ¢+ m(q]-a?) (22)

i i

Introducing these results into eqs 15 and 16, it follows that

. AGY\2

AG" = i(u——) (23)

4 A

where
A=A F N (24)
L= — j (D,-p )2dr (25)
o 8nc r.p

b= S L (ema) 26)

i 9 i\t

If the two reactants can be treated as spherical, then A is found to be

given by!¢

l=(L+_L,__1_)(_1__}_) 27)

o 2a 2a R D D
1 2 op ]

where a, and a, are the radii of the two reactants, and R is their center-to-

center separation distance. Models in which the pair of reactants is

approximated by an ellipsoid have also been developed in the literature.
The v in eq 14a is approximately given by?6.27

23-25

v = (%}.kvill)w * = i0) (28)

using the notation in eq 24, or if there are several vibrational frequencies
contributing to A;v;2, the sum in eq 28 is over all of them, ZjAjv;2 + Aovo®. The



60

often neglected v, is associated with the “inertial motion” of the solvent.

From eqs 23 to 27, it can be seen that AG” decreases with increasing a
and ag, decreasing R, increasing D,, and decreasing Ds. These observations
can be physically interpreted as follows: (a) With increasing ionic radii a; and
a2, the ion-solvent interactions decrease so that a smaller reorganization is
needed for reaction and hence a smaller A,. (b) When the distance between the
reactants is decreased, again there is less reorganization, since the somewhat
distant solvent molecules can discriminate less between the two charge
distributions when R is small, i.e., discriminate less between the charge
distribution of the reactants and that of the products. Thereby, a smaller
reorganization is needed and therefore a smaller A, occurs. (¢c) With a greater
ogtical dielectric constant Dop, the electrostatic fields of the charges are more
shielded and therefore the energy difference of ion-solvent interactions for the
two charge distributions is less, leading to less reorganization. When D
equals Dgp, A, is zero, the solvent now being nonpolar.

2.3 ELECTROCHEMICAL ET REACTIONS

Another class of ET reactions is that of electrochemical ET reactions. For the
case of ET between an ion or a molecule and a metal electrode, a detailed .
analysis shows that in the usual region, [ |ne (E —Eg')| <}, in the notation used
below], the transferring electron goes mainly from or into the Fermi level of
the metal 15262829 Algo now the metal electrode has densely spaced electronic
states (a few are indicated schematically in Figure 5).

Electrochemical Electron Transfer
(Many electronic states in metal)

p\/n

] .

Exaggerated spacing

POTENTIAL ENERGY

NUCLEAR CONFIGURATION

Figure 5. Potential energy profiles for reactants’ system R (including
electrode and solvent environment) and for products’ system P
for reaction 32. Several of the continuum of energy levels are
depicted, with greatly exaggerated spacing.
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Proceeding as before, eq 8 can now be written as

G'(q) = -2k- (q - q')2 (29)
@@ = 3 (=) + ne(E-E,) (30)

upon following the arguments given in refs 15 and 28. Here, E is the half-cell
potential, Eq¢’ is the "standard” half-cell potential in the prevailing medium,
and n is the number of electrons of charge e transferred between reactant and
electrode. Thus n(E -Eg’), the activation overpotential, plays the same role as
AGO in eq 7.15:28.30

In the transition state we have, as before,

G'(¢* ,Eo) = G*(¢*, Eo") (31)
One ultimately obtains for the rate constant for the electrochemical
reaction
Ox 4+ M(ne) » Red (32)

the expression (cf. also Appendix A) given by eq 33a when the reactant moves
freely in solution and by eq 33b when it is bound to the electrode.

k. = xkw ewAGel/kBT (332)
el e

b = ey o SGl*eT (33b)
el

where kg, the rate constant, is the rate per unit concentration of reactant per

unit area of electrode.) In eq 33, kv has the same meaning as in eqs 14a and

14b for the adiabatic and nonadiabatic limits, v, is an effective volume, per

unit area of electrode, from which electron transfer can occur (= 8-!, where 8

was the exponent defined in Section 2.2), and AG,;" is given by

ne(Eon') ]2

lel

lel

AG , = — [1+
4

el (34)

el is given by equations similar to eqs 24 to 26, but now the sum in eq 26 is
over the normal modes of the single reactant, and in eq 25 the expressions for
D/(r) and D,(r) now take explicit account of the boundary conditions at the
mel;al-liqui«i7 interface, utilizing, for example, the customary image charge
description. When the reactant, denoted by 1, is treated as a sphere of radius
ai, Ao 1s given for the electrochemical ET by!528

(L L 2(L_.L)
L= (201 > ) no 5B (35)
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where R is now twice the distance from the center of the reactant to the
electrode, in the transition state.

When the two reactants in a bimolecular reaction are in contact in the
transition state, the R in eq 27 is approximately equal to a1 +a2. When the
reactantin the electrochemical case is in contact with the metal electrode, in
the transition state, the R in eq 35 is approximately 2a1. The A, for the
electrochemical reaction is then seen from eqs 27 and 35 to equal half the A, for
the self-exchange reaction. Further, the A; for the electrochemical reaction is
one halfthe \; for the self-exchange reaction, there being only one half the
number of vibrational normal modes undergoing changes. Thus the total A’s
then satisfy

A (36)

However, when there is an adsorbed solvent layer on the electrode which the
reactant cannot readily enter, then eq 36 is replaced by the inequality

Ael>\,, /2. Consequences of eqs 33 to 36 are given later. If the reactant were
boundl to the electrode, instead of being free to move in solution, eq 36 would
remain applicable only if the dielectric aspects were similar in the two systems
and if the R in eq 27 were equal to the R in eq 35.

2.4 PREDICTIONS FROM THEORY

2.4.1 The inverted effect. From eq 23, it can be seen that when AG? is made
increasingly negative at constant A, the free energy barrier AG* initialloy
decreases, and becomes equal to zero when -AG? =\, Upon making AG” more
negative, -AG? then exceeds A, and it is seen from eq 23 that the barrier begins
to increase. In summary, the theory predicts that with an increase in

-AGY, the rate will increase, reach a maximum, and then decrease, as in
Figure 6. The regions where |AG?| <) and |AGY> \ are known as the “normal”
and “inverted” regions,'3: 15 respectively (the regions I and Il in Figure 6).

‘The Inverted Effect

Ink
I II 11
I ETE HLE
—AG

Figure 6. Plotln k,vs -AG®. PointsI and Il are in the normal and
inverted regions, respectively, while point II, where In k. is a
maximum, occurs when -AG%=A.
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AG® can often be made increasingly negative by suitably changing the
ligands of a reactant. This decrease in AGD corresponds to lowering the free
energy surface of the products vertically in Figure 4. When this lowering is

erformed in small decrements, then at some AG®, namely, at AG%=-), the
intersection of the R and P free energy curves will occur at the minimum of the
R curve (curve II in Figure 7). The reaction is then barrierless, i.e., AG*=0,
and the rate constant is a maximum for the given A (Figure 6). A further
lowering of the P surface increases the free energy at the intersection and
results in the inverted effect on the rate constant (curve IIl in Figure 7).

FREE ENERGY

REACTION COORDINATE. q

Figure 7. Plot of the free energy G versus the reaction coordinate q, for
reactant (R) and product (P) systems, for the cases I to Il
indicated in Figure 6.

Nuclear tunneling yields higher rates than would be predicted by the
classical theory alone. The tunneling has a larger effect in the inverted region
than in the normal region, because the effective barrier is “narrower” in the
latter, as can be seen later in Figure 9. This result has the effect of distorting
somewhat the In k, vs AG® curve in Figure 7, so that the curve becomes
asymmetric when nuclear tunneling occurs. Nevertheless, the maximum in
the In &, vs -AGP curve still occurs at -AG®~A.!

As noted in Section 2.5 and as has been described in ref 92, thereisa
parallelism between a &k, vs -AG? plot and a charge transfer absorption or

emission spectral plot. On one side of the spectral maximum, the
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corx_'espondence is to the “normal” region, and on the other, to the “inverted”
region.

& The inverted behavior is sometimes also seen in the preferential
formation of an electronically excited product.3!32 Even though the
intersection of the ground electronic state free energy curve P of the products
and that of the reactants R may occur only at high energies in some cases, and
so correspond to the reaction’s being in the inverted region, an electronically
excited-state free energy cuvce P* of the goducts may intersect the R curvein
a more favorable region, as in Figure 8. Then, this electronically excited state
may form preferentially. This state can then either emit light, or form other
states which emit light, or become deactivated. In this way, the ET reaction
has resulted in a chemiluminescence.

Formation of Electronically Excited Products

FREE ENERGY

REACTION COORDINATE q

Figure 8. Illustration of the case where the free energy curve G(q) for
the reactants intersects at a low point the free energy curve
for a products system P* in which a product is electronically
excited. In contrast, for the system depicted, the free energy
barrier is higher for formation of products P in their ground
electronic states.

2.4.2 The cross-relation. By noting that X for a cross-reaction (such aseq 3) is
approximately the average of the A’s of the self-exchange reactions (in the
present case, eqs 1 and 2),!5
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A, = % (Ay* 1) (37)

the “cross-relation” for rate constants follows from eqs 13 and 23 for the case
that the « in eq 13 is roughly unity for the reactions involved:!®

_ V2
ko = ( 11 ko Kip flo ) (38a)

where K, =exp(-AG%/k,T), the equilibrium constant of the reaction, and f,, is
a known function of k,, k,, and K ,:

Infiy = (In Ky, )" 410 (ky hyylv?o?) (38b)

If, instead, the k in eq 13 were substantially less than unity for the
reactions involved, and if it were assumed that k,,=(k ,k,,)1? tl?x'en eq 38
would again be obtained, with the v? in eq 38b now replllaced by (x,,V)(ky,V). In
practice, f}, is usually close to unity.

2.4.3 Electrochemical relationships. When the «’sin eqs 13a and 33a are
approximately unity, the rate constant k,, for self-exchange in solution, and
the electrochemical rate constant k. * corresponding to the so-called exchange
current, namely at E = Eq', are related by

(kex/Aex) " = kelex/Ael (39)

upon using eq 36. Here, A, is the pre-exponential factor in kgx (namely v, v,
which is roughly equal to 10'! to 10'2M-!s-!) and A, is that in ke ** (namely
v,v and which is roughly equal to 10* to 10°cm s~1).

An important difference, however, between electrochemical ET at metal
electrodes and ET in solution is that no inverted effect should occur for the
former, since the transferrinf electron can always go into a high-energy
unoccupied level of the metal instead of into a level near the Fermi level, or if
the electron transfer is from the metal, it can always come from an occupied
level of the metal well below the Fermi level instead of from a level near the
Fermi level. In the case of a semiconductor, which has a narrow energy band
instgﬁtli of the very broad one in a metal, the inverted effect again becomes
possible.

Another relationship is the dependence of In kj on the activation
overpotential ne(E-Ey'"), given by eqs 33 and 34. It is analogous to the relation

iven in eqs 11 and 13 for the dependence of In k. on AG® for a series of
omogeneous reactions having a constant A.

2.5 QUANTUM CORRECTION AND NUCLEAR TUNNELING

In the formulation given above for the rate constant of an ET reaction, the
nuclear motion was treated classically. However, there may be some nuclear
tunneling through the barrier in Figure 3. The nuclear motion in the ET is
described quantum mechanically in such cases . When the reaction is
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nonadiabatic, the appropriate quantum mechanical expression is obtained
using low order time-dependent perturbation theory, namely the Fermi golden
rule expression.?®3% The resultisgiven by

_ 2r 2
b, = - |H_ [ (FC) (40)

r

when the reactants are held fixed in position. Here, FC is a “Franck-Condon”
factor involving the sum of products of overlap integrals of the vibrational and
solvational wavefunctions of the reactants (and solvent) with those of the
products, weighted by Boltzmann factors for the given temperature of the
system, As before, Hyp is the electronic matrix element in Figure 3.

To obtain an expression for FC, one can either attempt to treat all
coordinates, vibrational and solvational, quantum mechanic: 11y, or treat the
higher-frequency vibrations of the inner shell coordinates quantum
mechanically and treat the low-frequency modes of the system classically
using for the latter the free energy of solvent reorganization given above.33
This approach also yields, in the high-temperature limit,33-35 the expression
(cf. Appendix A)

2 1
k=2 P ——— exp[—(AG°+l)2/4AkBT] (nonadiabatic) (41)

ook (4nAkBT)

an expression which has also been derived using semiclassical theory.3¢ The
pre-exponential factor in eq 41 corresponds to the kv in eq 13a, for this case
that k< <1, as already noted in eq 14b.

Several of the quantum expressions which have been introduced for k,
are given below, for the case where the reaction is treated, in addition,
nonadiabatically. The simplest of these expressions is the one-frequency

model?®
_

k
r h

|H 2 1 exp (py — Scothy) I (Scosechy) (42)
' hy P

where S=\;/hv, v is a vibration frequency, regarded as some mean frequency
for all vibrations of the reactants and also for the solvent, the solvent being
treated as a collection of oscillators, all of this same frequency v. I isa
modified Bessel function of the first kind, p= — AG%hv, and y=hvf2k,T.

A more general quantum expression is one where all high frequency
vibrations are treated as having a single frequency v, while the remaining
motion, including that of the so%vent, is treated classically. For the case that
hvfk,T is so large that the reaction occurs mainly from the lowest vibrational
state of the reactants, we have3?

= 2 1 S 0 2 -Sgm
b= |H, = exp[—(lo+AG +mhv) /4).0kBT] e 5™ Im! (433)
(4nlokBT) m=0
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where m denotes an integer (not to be confused with the m in eq 21). For the
more general case where the initial vibrational states may be thermally
populated, instead of the system’s being only in the lowest vibrational state, eq
43a would be replaced by®

r = e ‘(’W mg_-c exp[—(10+AG°+mhv)2/4lokBTl

X exp(my—Scothy)Im(Soosechy) (43b)

where y has the same significance asin eq 42. At moderate T, eq 43b reduces
to eq 43a, while at sufficiently high T, it reduces to eq 41.

We have discussed elsewhere?? the relationship between the k, vs — AG°
(not In k, vs —AG®) curve and the plot of charge transfer absorﬁtion (ev, [va) or
emission (fy_[ve®) intensity vs frequency, (vg,e— V™) curve. The spectral plot
on one side of the maximum v™2* corresponds to the “normal” region for k,,
while that on the other side of v™* corresponds to the inverted region.®? The
spectral plot may show evidence of vibrational structure, and it is this
structure which corresponds to the different m’s in eq 43b. If Ao were small
enough, eq 43b would giSpIay a series of sharp peaks as a function of —AGY,
peaks separated by the vibrational energy spacing hv. Instead, there is not
merely one mode but others also, treatef in eq 43b only by a classical term
containing Ao, and the broadening for each such “line” is given by the Gaussian .
factor in eqs 43a and 43b. In the regime where most of the broadening is due to
fairly high frequencies (but not as high as the principal one, v in eqs 43), it
may be necessary meanwhile to replace the temperature-dependent Gaussian
factor in eqs 43 by a more general theoretically-gased one containing these
vibrations and so showing less temperature dependence.

We comment in Appendix C on the relationship between eqs 42 and 43a
when both A and T both tend to zero, and between eqs 42 and 43b when only A,
tends to zero. In eqs 43a and 43b the significance of m is that it is the number
of vibrational quanta in the products immediately after the ET minus that in
the reactants just before the ET. Equations 43a and 43b reflect the
distribution of such m’s.

When hvfk,T is large, a linear dependence of In k. on AG®° tends to occur
in the inverted region, for example as in ref 37, paralleling results on the
energy gap law for radiationless transitions.3® We comment on this linear
dependence in Appendix C. There have been a number (e.g., ref 37) of
applications of formulae related to or obtained from eq 43, for systems with
high frequency vibrations (e.g., the relevant such modes invoked have
frequencies around 1000 cm ™! to 1500 cm™!). Further, in the inverted re ion
the rate constant k,tends to become largely temperature-independent when
the participating vibrations have high frequencies, as for example in ref 39,
because the reaction then largely occurs from the lowest vibrational state of
the reactants.

When the quantum effects of the nuclear motion are significant, the k.is
higher than that calculated classically. A useful interpretation can be given in
terms of nuclear tunneling. To this end, the Franck-Condon factors are first

expressed in terms of semiclassical theory, expressions which in the nuclear
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tunneling re?'ime are the exponentials given in Figure 9. They may be
described as follows: We consider the case of tunneling along a vibrational
coordinate x from an initial vibrational state n, of the reactants to a
vibrational state ny of the products; np—n,is equivalent to the mineq43. In
Figure 9 the minimum of tll?ne vibrational curve U, is higher than that of the
Up"® curve by an amount mhv. The semiclassical value of the vibrational
state-to-state Franck-Condon factor®® is given in Figure 9, apart from a pre-
exponential factor, for two cases, one where the slopes of U,*® and Up"*® at the
intersection have the same signs, and one where they have opposite signs.
Each exponential is the semiclassical (also known as WKB) nuclear tunneling
probability per encounter of the system with the barrier. In the diagram, the
system strikes the barrier once during a period 1/v of the nuclear motion. In
Figure 9, U,"® and Up"" are denoted by U, and U).

Tunneling Factor

Normal Region

U, UP
\ X -
~—ac b E €

Inverted Region

VIBRATIONAL POTENTIAL ENERGY U

VIBRATIONAL COORDINATE x

Figure 9. Nuclear tunneling in the normal and inverted regions.
Indicated are profiles of the vibrational potential energy Uvib
vs a vibrational coordinate x. The p, (pp) is the momentum
along x when the system is on the U(Up) curve. The vertical
difference of the minima is the mhv in eqs 43.
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2.6 OTHER

ET theory has also been extended to ET’s at various other types of interfaces
(e.g., at semiconductor-liquid interfaces at modified electrodes, and at the
interface of two immiscib(ie liquids, and at other types of interfaces, involving
polymers, for example), charge transfer spectra, and to a variety of other
topics, some of which are included in Figure 1. However, in the interests of
brevity, a discussion of these topics is omitted here.

3. Comparison of Theory and Experiment

Several applications of the theory outlined in the previous section, are
summarized briefly in these notes, though they were described more fully in
the lectures themselves.

3.1 RATE CONSTANTS

An example of a comparison of measured self-exchange rate constants with
those calculated using eqs 13a and 23 to 27, is given in Table VI of ref 4. The
general agreement between theory and experiment is surprisingly good,
particularly considering that the rate constants themselves span a wide range
of values (from 10-9 to 109). '

3.2 SOLVENT EFFECT

The theory predicts a dependence of the ET rates on the solvent dielectric
properties via eq 27. Example of a plot of log k versus (1/Dop — 1/D;) for the bis
(biphenyl) chromium*/~ exchange is given in ref. 41. The plot shows the
predicted linear dependence of the logarithm of rate on (1/Dop — 1/Ds).
However, such a good correlation is not always found, and factors such as ion-
pairing, specific solvation effects and strong interaction between reactants can
cause unexpected solvent dependences. Additional tests have been made using
the solvent dependence of the absorgtion or emission maximum of charge
transfer spectra, e.g., as in the plot*? for [(bipy)2 C1 Ru" L Ru'™ Cl (bipy)2]3*,
where the ligand L is varied.

3.3 CROSS-RELATION

There have been numerous experimental tests of the cross-relation, eq 38,
some of which are shown in Table I of ref 1. The agreement between theory
and experiment in most cases is usually good, to within an order of magnitude.
Deviations from the cross-relation can result when the driving force is large or
when there is a change in mechanism for the self-exchange reactions and the
cross-reaction, or when the work terms (not shown in eqs 11 and 13b) do not
approximately cancel. In some instances, when a significant discrepancy
between the observed and the calculated rate constants exists, this discrepancy
has been taken as evidence for the operation of a special mechanism for one of
these reactions being compared.
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3.4 THE INVERTED EFFECT

The inverted re§'ion,13 depicted in Figure 6, was not observed experimentally
for many years.®® The masking of the inverted effect could have many causes.
Experiments that measure the rate of ET by quenching mechanisms may have
sometimes given misleading results because quenching by more than one route
is possible. (Other alternative routes, besides ET, for quenching are the
formation of exciplexes* and the competition with other reaction
mechanisms.) For ET reactions in solution, the behavior of the rate of ET near
the maximum rate can also be masked by diffusion-control.

In recent years, however, the inverted behavior has been experimentally
demonstrated in many cases, the first detailed such experiment being that of
Miller, Closs and Calcaterra.*s It involved intramolecular ET for a series of
compounds containing two molecular groups with different electron affinities,
separated by a rigid bridge B, D-B-A. By varying either of the end groups, a
range of AG”s was achieved. Pulse radiolysis was used to generate electrons
that were then trapped by the model compounds. The subsequent rate of
transfer of electron (corrected for any intermolecular ET), plotted as a function
of the standard free energy of the reaction, is shown in Figure 1 of ref 45 and
clearly displays the inverted region.

According to the theory, the maximum rate of ET occurs when — AGO =2).
It would require less energy to reorganize a nonpolar solvent than it would
take to reorganize a polar solvent, and so A would be smaller in the nonpolar
case. Therefore, as a further test, the authors repeated their experimentsin a
nonpolar solvent, iso-octane, and compared their results with the experiments
in MTHF. The maximum of the curve tended to be shifted to lower energﬁ' in
iso-octane as predicted by the theory. Other results which demonstrate the
inverted effect include those in refs 46-49.

3.5 RELATION BETWEEN RATE CONSTANTS AND EQUILIBRIUM
CONSTANTS

For a series of similar ET reactions (constant ), a plot of log of the rate
constant k, vs the log of the equilibrium constant K is expected to be curved,
and the slope a at any particular value of AG® is given by (from eqs 11 to 13)

o= 1(1+59?) (44)

When |AG?) < < A, an approximate linear relationship between log k and
log K results, with a=1/2. The slopes of plots of log k vs log K for some
reactions are listed in Table ITI of ref 1, and in many cases a slope close t0 0.5 is
indeed observed.

3.6 ELECTROCHEMICAL ET REACTIONS

Many comparisons of the self-exchange rates with the rates of the
corresponding reactions at an electroge have been made in order to test eq 43.
A plot of log keyx s log ke ** for some illustrative examples is given in Figure
6.10 of ref 6. The correlation is fairly good, but the electrochemical rates
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appear to level off at higher rates. Thismay be a real discrepancy or may be
an experimental problem, since at higher electrochemical rates, the reactive
contribution to the measured A.C. impedance becomes smaller. There have
been some recent attempts to make very small electrochemical devices in order
to overcome this difficulty, and work is in progress.5°

Studies of the effect of activation overpotential on the electrochemical ET
rate constant consistent with eq 34 have been described.®!-52

3.7 ADIABATIC vs NONADIABATIC ET

The question of whether or not a particular electron transfer process is
adiabatic, i.e., occurs at essentially every crossing of the TS, or nonadiabatic,
i.e., rarely occurs during a crossing of the TS, is frequently encountered. It has
been possible to answer this question in some specific situations.

This question influences, via the  in eq 33, the numerical value of Ag in
eq 39. In a study of an electrochemical ET, the electron transfer “exchange
current” and, thereby k.;¢*, was measured for the Ru(NH§) 3+ 1+ M(e) »
Ru(NHa)‘;2+ reaction for a variety of metal electrodes M.5 The nonadiabatic
expression for k. has a term proportional to the density of electronic states in
the metal at the Fermi level,262% and that density is, in turn, proportional to a
coefficient v in the temperature dependence of the electronic specific heat of
the metal. If the ET reaction at M were adiabatic, however, the k¢ ®* would be
independent of the density of states and hence of y. Exgerimentally, kel & was
found to be independent of y when the latter was varied tenfold by varying the
nature of the metal M, for the given redox system.%

Reactions which are required to occur over large distances, include those
where the donor and acceptor in solution are separated by a long rigid
saturated bridge54% or, are far apart in frozen media®$, or when they are far
apart in proteins,5%2 or in an electrochemical system®! described below. All of
these systems have a small matrix element H,, and hence are clearly
nonadiabatic. Nonadiabaticity is most clearly tested when, by varying the AG®
in such systems, the value of the maximum rate can be measured (e.g., ref 93),
namely at -AG°~1, and eq 13a then used to infer . An analogous example, but
at an electrode interface M, occurred when the activation overpotential ne(£-
E') was varied for a reaction where the redox agent was bound to a long chain
molecule. The latter was part of an ordered monolayer of long chain molecules
on the electrode surface.5! The maximum rate constant (an asymptoteina
plot) showed that kv was clearly much less than v and so the ET was clearly
nonadiabatic in this case.

For reactions in solution when the reactants are moving freely rather
than being held some fixed distance apart the problem of determining
adiabaticity vs nonadiabaticity has been more difficult. For very fast reactions
the high reaction rates which occur when -AG°~\ tend to be masked by the slow
and rate controlling diffusion of the reactants toward each other. For slower
reactions the estimation of kv from the pre-exponential factor of the
bimolecular rate constant tends to be masked by other effects, such as the
entropy associated with the work terms w, and wp (which were omitted for
brevity in eq 13b) and any AS* associated with the reorganization in eq 48
given later. This AS* vanishes for isotopic exchange reactions, but the AS
associated with the w’s remains. Some effort has been made to extract the kv
from such data, e.g., as in the MnO4~ ~MnO4?- electron exchange reaction
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where « appears to be about unity, A value of unity has been used for k in the
comparison noted in Section 3.1 of some absolute reaction rates with those
calculated theoretically using eqs 13b and 23-27.4

3.8 ELECTRONIC MATRIX ELEMENTS

Recently many experiments have probed the dependence of the electronic
matrix element H,p, appearing in eq 40, on the distance and the nature of the
medium separating the redox centers.5*%" A commonly employed technique
has been to synthesize compounds with an electron donor D at one end, and an
electron acceptor A at the other, with a covalently linked bridge B connecting
the two: Here, intramolecular ET can take place from the donor to the
acceptor. Usually a series of such compounds are synthesized where the donor
and the acceptor groups are kept constant and the bridge length is
systematically increased. The rate of ET is measured for the series. In order to
infer values of relative electronic matrix elements from these values of rate
constants,!®3 one may proceed as follows:

It was seen in Section 1 that the rate constant k, of a nonadiabatic ET
reaction (small H,p) is given by eq 41 as

ko= o \H,_|? m exp(_AG‘/kBT) (45)

for an intramolecular process. Equation 45 can be written in the form

k, = A exp (-E_[kyT) (46)

where E_ is the activation enerfgy and A the pre-exponential factor.
If the weak dependence of 1/V T on T is neglected in eq 45, for purposes of

the present lecture, we have
E = AH (47)

where AH* is the enthalpy term defined by the standard thermodynamic
relation, AH* = 3(AG*/T) [ 3(1/T), since thermodynamic relations apply to
these statistical mechanically defined kinetic quantities.

The pre-exponential factor A in eq 46 can then be written as

9 exp (AS [k )
A=TH P —— (48)
(4mik,T)

where AS* is e%ual to —3AG*[3T.
Using eq 23 for AG*, we have

AS = 5 (1+ A )AS (49)
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and
AH' = ’41[1 - (AG°/1)2] + AH—z-o [1+ (AG°/,1.)I (50)

assuming ) to be independent of temperature.

The AS%in eq 49 is zero for a self-exchange reaction. We also have AS%=0
when the reactants in reaction 4 have charges on (Ox); and (Red)2 equal to
those on (Ox)2 and (Red)y, respectively, and when, in addition, the radii of the
reactants 1 and 2 are about equal. When AS? is zero, it is seen from eq 49 that
AS*=0. It follows from eq 48 that A then provides a measure of |[H p|? for the
series, there now being no AS* there. Again, if -AG°=), itisseen from eqs 48
to 50 that AS*=0 and AH*=0, k,~A, and that AS” is again absent from eq 48,

ermitting once more an estimate of |Hp|>. |Hrp|?is also estimated more
indirectly from E, and A using eqs 47 to 50. One alternative route for
determining the H,,’s experimentally is to use charge-transfer (intervalence)
spectra, upon introcfucing an approximation for the optical transition dipole
matrix element.5467 The latter is then proportional both to |[H,p| and to the
separation distance between the donor an(f acceptor charges.

One procedure for calculating Hrp with theory is to seek the two lowest
energy many-electron wavefunctions of the D-B-A system where the electronic
charge is equally divided between D and A .35 Then the energy difference of
these two delocalized many-electron states equals the 2Hp in Figure 3. This
procedure can also be implemented more approximately using, instead, a one-
electron description in which delocalized orbitals are formed from individual
atomic orbitals localized on D and A. The energy difference between two
delocalized orbitals equally distributed over D and A again gives Hyp but now
with the added one-electron approximation.

Alternatively, perturbation theory has been used to estimate H.pby
considering properties of the bridge and then treating the interaction of the
donor and of the acceptor with the bridge using perturbation theory.®® Ina
simple case when the donor and the acceptor are each linked to one atomic
orbital of the bridge, H,pis given by®®

c,.C
Dv ~Av
H =TT, 2 - (51)
v vy

where Tp(T ) are the matrix elements for interaction between D(A) and the
adjacent atomic orbitals of the bridge, Ciy (i=D, A) is the coefficient of the
bridge orbital v at the point of contact with i, by is the energy of the bridge
orbital v, and a is the energy of the donor orbital. (The donor orbital an
acceptor orbital have equal energies in the TS because of the influence of the
environment, depicted in Figure 3.) Equation 51 may be extended to more
general cases where D and A are both large groups with a number of orbitals
connecting D(A) to B.%? Such a formalism in its one-electron or many-electron
form has been termed “superexchange” in the literature, the electron making
use of the orbitals of the bridge (both occupied and unoccupied) for electron
transfer from D to A (or hole transfer from A to D).

For either of these calculational procedures, many-electron
wavefunctions, all-electron SCF models, or semi-empirical methods may be
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used to calculate the molecular orbitals and the energies required in the
expression for Hyp. For large systems such as the biological systems to be
discussed in the next section, at the present time, semi-empirical methods
seem to offer the best alternative. Some examples of calculated values of H,p
(using the one-electron extended Hiickel theory), along with experimentally
determined values of Hp, are given in Tables I-IV of ref 70. Encouraging
agreement was found for the relative values of Hp as a function of separation
distance in each series.

3.9 EXTENSION TO BIOLOGICAL SYSTEMS

Metalloproteins have been extensively used to examine various aspects of ET
reactions.?62 One important area of research has been to determine the
electronic coupling provided by the protein medium. Both inter- and
intramolecular protein electron transfer reactions have been investigated. As
an example of the latter, a redox group such as [Ru(NH3)s] *+3 is covalently
linked attached to a histidine (His) residue of a protein. Thus, Gray and
coworkers have synthesized a series of ruthenium-modified proteins in which
the donor and the acceptor are the same, but the ruthenium group is located in
different residues of the protein, thus allowing distance and medium effects to
be probed. In Figure 2 of ref 71, a myoglobin is illustrated in which there are
four surface histidines, all of which can be singly ruthenated and the ET rate
between the ruthenium-modified His and the metal porphyrin then measured.
From the ratios of the square roots of these rates, ratios of the electronic
matrix elements for the various derivatives can be obtained when any
distance-dependent effect that may occur in FC, for example in the solvation
effect on AG® and ), is neglected. These values may be compared with ratios of
the Hp, values calculated from a su erexchange model (as in Table II of ref 72).
The order of magnitude agreement between the relative calculated and
experimental values is encouraging, and more detailed calculations including
more amino acid residues of the proteins are in progress.

The photosynthetic charge transfer system is another area where there
has been intense research in the last few years.”®’® The sequence of reactions
is as follows: a) electronic excitation of the special bacteriochlorophyll pair,
BChls; b) transfer of electron from BChlz* to a heophytin, BPh, some 9-10 R
away in 2.8 picoseconds; c) transfer of electron from BPh~to a quinone QA in
the next 200 picoseconds.

The protein environment of BChlg, BChl and BPh is largely hydrophobic
and therefore gives rise to a small Ao. The vibrational A;is presumably also
small since the bond lengths in the reactants (both in the large porphyrin rings
of the chlorophyll molecules and the metal-ligand bond lengths) do not undergo
much change in bond length upon electron gain or loss. Both aspects lead to an
overall small reorganizational term, A. The driving force of the formation of
BPh - from BChlg* also appears to be relatively small, around 0.2 eV, therefore
allowing the forward reaction to proceed extremely rapidly, while minimizing
loss of energy arising from the absorption of the sunlight. Further, the back
ET from BPh - to form ground state BChla appears to be extremely slow,
perhaps due in part to an inverted effect, resulting in an efficient charge
separation.

Another interesting question regarding these primary steps of
photosynthesis that arises is the role of a nearby bacteriochlorophyll molecule
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BChl in mediating the fast initial ET (e.g., refs 74-79). Direct ET from BChlg*
to BPh seems to be somewhat unlikely in view of the large separation between
the two pigments. Other possibilities are a mechanism involving BChl~ asan
intermediate, or a superexchange mechanism where the BChl servesasa
bridge. This topic is under active investigation and discussion.

4. Miscellaneous Questions

In these notes, we have attempted to include remarks on some of the
questions raised in or out of class, such as how is the reaction coordinate of an
electron transfer reaction is defined (refs 12 and 13), what, in detail, is the
Landau-Zener theory for curve crossings (Appendix A), what justification is
there for using the same “force constant” for the vibrations of the reactants as
for the products (ref 20), how does one proceed from using potential energy
surfaces to using free energy surfaces (Appendix A), why does AG® appear in
the nonadiabatic rate expression when the initial Golden Rule formula on
which it is based contains instead a AE? (ref 36), why is there no inverted effect
in the electrochemical ET reactions at metal electrodes (Section 2.4), is there
evidence for an exciplex formation, in the case of a fluorescence quenching ET
reaction, which sometimes masks the inverted effect (ref 44), an what is the
relation between long-range electron and triplet energy transfers (ref 94).

. ({n this section, we address several additional questions which were
raised.

1. In the nonadiabatic equation for k. is the (4nAkT)!? factor part of an
electronic factor or a nuclear factor?

The discussion of the Landau-Zener expression for “curve crossing” in
Appendix A shows that this factor appearsasa result of the k(v) there, and so
arises from the coupling of the electronic and nuclear motions. Thereby, it is to
be assigned neither to the one nor to the other, but to both.

2. When \ — 0, the nonadiabatic expression for k, becomes infinite. Does
this mean that k, itself becomes infinite?

A value of k,=» would be a physical impossibility. Rather, when the
nonadiabatic ET eXﬁression, e.g.,eq4l, becomes infinite when A =0, an
assumption in which that equation is based has failed. In particular, the
transition probability k(v) in Appendix A is required to be small for the pre-
exponential factor in eq 41 to be valid. In that Appendix k(v) is shown there to
be proportional to |[H.p|*/VA. However, x(v) can no longer be small when A
approaches zero, and so a different formalism would be required.

3. What is the relation, if any, between electron tunneling and nuclear
tunneling?

In Figures 3 and 9 potential energy curves are delpicted for the nuclear
motion and, as in Figure 9, can be used to describe nuclear tunneling. Not
depicted in either of these plots is the many-dimensional surface V(r,) for the
potential energy for the electrons as a function of the many electronic
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coordinates r, The Schridinger equation for the electronic wave function,
holding the nuclei fixed at positions q (Born-Oppenheimer approximation),
contains this V(r,), and, when solved, provides an energy U(q), which serves as
the potential energy for the nuclear motion as a function of q in Figure 3.
When the wave function is constrained to reside on the donor, this U becomes
the surface Uy, and when it is constrained to reside instead on the acceptor, U
becomes the Up one. In the Schrodinger equation for the electrons, the region
between the donor and the acceptor typically has a high potential energy V(r,)
for the electrons, so high that the electrons usually cannot penetrate that
region classically. Nevertheless, ET does occur and, if one wishes to use the
term, has occurred by electron tunneling from the donor to the acceptor.

Some measure of this electron “tunneling probability” during a typical

eriod 1/v of nuclear motion (v being a typical frequency for that motion) can
ge obtained as follows: The frequency with which an electron would oscillate
between two reactants whose nuclei were held fixed is shown below to be the
Bohr frequency, 2H,p [k, where 2H s the splitting in Figure 3 due to the
electronic interaction of the two reactants. The electron tunneling probability
during the time 1/v is then 2H,, [hv. For example, when H,;,~100 cm-!and
v~400 cm "1, a typical metal-ligand frequency, 2H,, /hv~1/ 5, and so the electron
tunneling probability during a period 1/v of the nuclear motion is ~1/2 and the
reaction is nearly “adiabatic.” In some cases, however, Hypis very small, the
electron tunneling probability during the period 1/v is also therefore very
small, and the reaction is said to be “nonafiabatic."

In the case of a donor and acceptor separated by monomeric units in some
bridge, H,p decreases exponentially with an increase in the number N of
monomeric units. Thereby, it decreases exponentially with increasing donor-
acceptor separation distance, when the chain of units is roughly linear. A
semiquantitative explanation is as follows: When there is one molecular
orbital (empty in the case of electron transfer and occupied in the case of hole
transfer) per unit, quantum mechanical perturbation theory shows that H;p
decreases by a factor V/AE per unit, where V is the unit-to-unit electronic
matrix element and AE is the energy difference between the donor orbital and
the unit’s orbital. Thus, for N units, H,, decreases by a factor (V/AE)", i.e., by
exp (- BR/2), where R =Na, a being the length of a unit, and f=2a-!In (AE[V).

For an atom-atom matrix element of ~4 to 5eV, a AE of about the same
value, and the product of the coefficients of the molecular orbitals on adjacent
orbitals being about 1{20 when there are 20 relevant atoms per unit, the Vis
about (5/20) eV (cf. ref 95). When a=5 A, B is then calculated to be about
1.3A-1, which is fairly close to a typical value”™ of ~0.7 A-1to 1 A-!, (When there
are 20 atoms contributing to a molecular orbital, each atomic coefficient is
about 1/v20.) The actual situation is more complicated in that a number of
orbitals participate rather than merely one per unit, but the same exponential
dependence on R prevails.

The connection between the above power rule, (V/AE)Y, and eq 51 has
been discussed by McConnell® for a particular case, in his treatment of triplet
:ner transfer in chain systems. A similar argument applies to electron

ransfers.
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4, What is the relation between the splitting 2Hp and the frequency of the
electronic motion?

This relation can be seen as follows. Suppose that y; denotes the
electronic wave function when the electron is localized on the donor, and 2
when it is localized on the acceptor. The adiabatic wavefunctions,
corresponding to the energies of the rounded-off curves at the intersection in
Figure 3 would be (¥) +¥2)/ V2 and (1 - ¥2)/ V2, with energies of U*- H/p and
U*+H,p,. Here U*is the energy at the intersection U,=Up. If the electron is
originaf y in the donor at time ¢=0, the electronic wavefunction y at any later
time is

1 , 1 .
= 5@+ wexp| iU -H /|4 (w,—wpexp| —i (U +H /4] (52)

¥ clearly equals y; at t=0. Ata time t=h/4H it can be seen that y=Y2exp i6,
where 8= -[(U*/Hp)-1] 1/2, i.e., that [$|? = [y2[* and so the electron then
resides on the acceptor. After a further time hf4H,,, |¥|> again equals [1]%.
Thereby, under conditions where the nuclei are fixed in position and the
system is at the intersection of U, and Up, the electron would oscillate from
donor to acceptor and back with a frequency of 2H,, [h. Since the nuclei move
rather than stay fixed, an irreversibility actually occurs, described by the
Landau-Zener expression in Appendix A or by more general treatments.

5. Are the potential energy surfaces parabolic for these and for other
reactions?

We have noted that the PES for ET reactions are only parabolic
(harmonic) along the vibrational coordinate axes. Along the solvational
coordinates’ axes they are highly anharmoniec, with various local minima. The
free energy plots, on the other hand, including both the solvational and
vibrational contributions, are approximately harmonic functions of the
reaction coordinate. Other transfer reactions are not represented well by
parabolas for reactants and parabolas for products, even for the vibrational
motion. In these reactions, a strong interaction of the reactants occurs, one
bond is broken and another is formed, and so a quite different model should be
used, one which takes account of these effects. Bne model which was developed
leads to an energy barrier, which when phrased in potential energy terms, is
given by &

0 0
AU* = A + l-!U_ + 5l-j---lncoshy (563)
4 2 2y

where y=(2AU%) In 2, AU? being the potential energy of reaction (difference
of bond energies of reactants and products), and A4 is the barrier at AU°=0.
Further, A12=#(A11+ A22), as in ET reactions.?’ In a region of |AU%/A| of about 0
to 0.5, this equation is reasonably well approximated by the quadratic
equation.8 However, in marked contrast to the latter, there 1s no inverted
effect: in eq 53, AU* tends to zero monotonically when AU°/A tends to minus
infinity, as expected on physical grounds. It is the difficulty of intersection of
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the two parabolas in Figure 8 at a conveniently small height which leads to the
inverted effect.

6. Are proton transfers expected to display an inverted effect?

If the reactants were held so far apart that their interaction would be
very weak, a parabolic picture for groton transfers would be adequate. Even in
that case, however, the inverted effect would be difficult to observe: the proton
levels are closely spaced (~3,000 cm-1 apart in OH or CH vibrations), in contrast
with the usually wide spacing of electronic energy levels (typically ~30,000
cm-1), The possibility of forming electronically excited states of the reaction

roducts, we have seen in Figure 8, opens new channels for reaction when the

ormation of the lower electronic state becomes inhibited because of the
inverted effect. In the proton transfer case, the new channels would involve,
instead, vibrationally excited states of the newly formed O—H, C—H, or N-H
proton bond.

Typically, however, proton transfers are not expected to be represented
well by the intersection of a pair of parabolas, and a strong interaction
behavior, such as that depicted in the response to question 5, would be
expected to lead to an equation similar to eq 53 rather than eq 11. On the other
hand, in photoexcited proton transfer reactions in isolated systems at
sufficiently low temperature (e.g., as in supersonic beams) a resonance might
occur between the initial protonic energy level and the final one. Resonances
provide the equivalent of a very narrow In k, vs ~AG° plot, with a sharp
maximum. An equivalent behavior, but for an electronic transition, has been
found in electric field controlled resonances in formaldehyde.3! Perhaps under
simil%r circumstances, an analogous effect can be made to occur for proton
transters.

7. Is it meaningful to speak of the splitting of the free energy curves, as well
as the PES?

The splitting 2H -, of the two PES depends mainly on the separation
distance R and so, for a fixed R, is essentially constant along the intersection
surface. Because of the relation between the free energy curves in Figure 4
and the PES in Figure 3, the splitting of the G-(q) and Gp(q) curves isin that
case essentially equal to 2H, also. In other cases, if one wished to depict a
splitting in Figure 4, that sPﬁtting would have to represent the value of Hp,
averaged over the intersection surface using a Boltzmann weighting factor.

8. Does recrossing of the intersection surface occur in the ET reaction?

Wigner has pointed out that if a *hypersurface” in phase space (i.e., a
2N -1 dimensional surface in a 2N-dimensional space wﬁich has N coordinates
and N momenta as axes) could be found such that there were no recrossing of
this hypersurface by classical trajectories of the system during the course of
the reaction, classical mechanical transition state theory would be valid.8? The
hypersurface is then the TS. The neglect of such recrossings in TS theory
causes the TS calculated rate to be an upper bound to the actual reaction rate.
For an adiabatic reaction in solution, some recrossing probably occurs
but typically relatively little, in the calculations of classical trajectories made
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thus far. The error in TS theory due to neglect of recrossings has been
estimated by a large scale numerical calculation of classical trajectories of
reactants in a particular SN2 reaction®? to be only a factor of about two. This
error represents a relatively minor effect in reaction rate theories, which
contain other approximations. One main task of such theories is to understand
chemical effects which can sometimes vary by many orders of magnitude.

For nonadiabatic reactions, the smallness of k(v) implies that most of the
crossings of the U,=Up intersection surface will indeed not result in reaction,
that is, in a transition from the U, to the U, surface. In such a case, after a
crossing of the TS, the system will typically remain on the U, surface, but will
ultimately be reflected, and then recross the TS. However, such
ineffectiveness to lead to a reaction is taken into account in the calculation of
k(v), and no further correction of TS theory due to this source of recrossing is
needed in this nonadiabatic case.

9. How does variational T'S theory relate to the T'S theory being used?

Following Wigner’s ideas®? on the imﬁlications of recrossings of the
hypersurface, the most accurate choice of the hypersurface is the one for which
there are the fewest recrossings. It can be shown that such a choice will be the
one which gives the lowest calculated reaction rate, and thereby the rate
closest to the actual rate. Selecting a TS, and varying it so as to obtain a
minimum rate constant, is the essence of variational TS theory. In the case of
ET reactions, use of the intersection surface for the TS is expected to provide
the most straightforward choice for the TS.

5. Other Topics

There are many topics in the ET field which have been studied experimentally,
and, in many cases, theoretically, including some of the topics listed in Figure
1 and not discussed here, such as solvent dynamics, with® and without®
vibrational effects, electron transfer accompanied by rupture of a chemical
bond, % electron transfer across the interface of two phases, either liquid-
liquid,?” liquid-polymer,3® or polymer-polymer interfaces,* and many others.
The field continues to expand in new directions and to offer a challenge to
experimentalists and theoreticians alike.
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Appendix A. Rate Expressions for Adiabatic and Nonadiabatic
Reactions

The classical statistical mechanical expression for the rate constant can
be written as

k,=[-[ 4, yexp(-H(q,")[kgT) dq,...day dp,...dqy [h"Q (A1)

where q, denotes the reaction coordinate (denoted by q in the text), H (q His
the sum of the potential energy at the transition state (T'S) plus the total
kinetic energy (involving all N p/s), and y is the probability of a successful
electronic transition on reaching the TS (in our case goinifrom the reactants
to the products surface there, i.e., going from U, to Up). The integral over p, is
from 0 to + = (rate in forward direction), the integrafs over the remaining p;’s
are from -« to +«, and those over g,...q, are over the full range of these
coordinates. @ is the partition function of the reactants

Q = j] exp(—H/kyT) dq,..dq,, dp,...dp, [R¥ (A2)

H being the sum of the kinetic and potential energy of the reactants and
solvent molecules.

Equation Al was obtained by using an expression for the probability
density of finding the system at g,* (per unit length along q,), multiplying b
the velocity §, along the reaction coordinate to obtain the probability flux, then
multiplyingc{)y v to obtain the reaction probability flux, and integrating over
the coordinates at fixed ¢,(=q,*) and over the momenta as indicated.

When y isunityin the range of coordinates and momenta of interest, use
of a classical mechanical equation ¢;=dH/[op;, and integration over p, and over
the remaining variables in eq Al yields the standard TS theory expression for
k, for an adiabatic reaction (y=1), treated classically:

kT ot
B Q
k= e _Q exp(—AU*/kBT)

(A3)

where AU* denotes the lowest potential energy of U, in the TS minus that of U,
anywhere, and where Q* is the partition function for the transition state:

Q' =[...[ exo[-H(q=a,} p,=0)/k,T | da,..day dp,.dpy/K'™!  (A4)

The H in eq A4 is now the sum of the potential energy of the TS, measured
relative to the lowest value on the TS, plus the kinetic energy of the TS.

Q is seen from eqs A2 and A4 to contain one coordinate and one
momentum, ¢, and p,, more than Q*. Upon integration in eq A2 over all g; and
{Ji but ¢, and p,, one obtains for Q for a unimolecular reaction a factor given

ater by eq B2 and denoted by exp [-Gr(q,)/kBT], Gr(q,) being the
“reorganizational” free energy as a function of q,. It is approximately a
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quadratic function of q,, as discussed earlier in the text (linear response
approximation). When the integral of this factor over q, is combined with the
integral over p,, one obtains a factor which is approximately equal to a
classical vibrational partition function, kgT/hv, where v is a typical frequency
associated with this motion along the reaction coordinate g;. If @ denotes the
remaining factor in @, @/(kpT/hv), we then have -

¥
kR =w %,- exp(-—AUt/kBT) (AS5)

r

The term (Q*/Q") exp (-AU*/kgT) in eq A5 can be written as the exp

(~AG/ [kBT) in the text and is associated, at the separation distance R, with
the solvational and vibrational reorganization needed to reach the TS. From
eq A5 we then obtain eq 13a of the text for a unimolecular reaction, with k=1.

For bimolecular reactions, three of the coordinates in eq Al can be chosen
to be the center of mass of the two reactants. The contribution of these
coordinates and their momenta to the integral in eq A1 just cancels their
contribution in eq A2. Three of the remaining coordinates can be chosen to be
the relative coordinates of the two reactants. To conform to the definition of a
bimolecular reaction rate constant, the integration over these relative
coordinates in @ in eq A2 is over a unit volume. Ifin eq A1 the electron
transfer rate has a y which decreases with separation distance R as exp
[- B8(R -Rp)] and which equals approximately unity at contact (R =Ry),
integration over the three coordinates in the integral in eq Al yields a factor
J4zR? exp [ - B(R —R0)] dR, which is well approximated by 41R (%8, since
8-'< <R. This term is the vs in eq 13b in the text. The momentum
contribution to Q' and to @* in eq A5 for these translational coordinates
cancels. The remaining contributions to Q* and @ are the same as those for
unimolecular reactions, and yield, as in the unimolecular case, the
reorganizational factor exp (- AG,*[kgT). Thereby, one obtains eq 13b of the
text with k=1. Under some conditions the R in the TS may not equal the
separation distance R at point of contact Ry, and AG,* and k are then
computed at the R for the TS. (The rate depends on R through « and through
AG,, and its maximum could occur at an R somewhat greater than Ro.)

For reactions at an electrode related considerations apply. Now, three of
the coordinates in Q and in Q* in eq A3 are the translational coordinates of the
reactant. In conformity with the definition of k, for such a reaction, the three
coordinates in @ are integrated over a unit volume. Two of them in Q* are
integrated over a unit area of the electroe, while the third coordinate, the
coordinate 2, which is perpendicular to the electrode surface, contributes a
factor to @* of fexp (- B2)dz, the integral being from 2=0, the point of contact
with the electrode, to z==. Thereby one obtains 8-!, which is the vein eq 33a in
the text. The remaining contributions to eq A3 are the same as above, and so
one obtains eq 33a of the text, with k=1.

We turn next to highly nonadiabatic reactions, i.e., when y<<lineqAl
in the coordinate and momentum region of interest. A one-dimensional
approximation to v is given by the Landau-Zener expression:!?

y = l_e-—n(u) (A6)
where
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2
2n IHrp] (A7)

£ v|s —s |
rop

k) =

Here, v is the velocity ¢, along the reaction coordinate at the intersection of the
two potential energy curves (at q =q1* in our case), and s, and s, are the slopes
of the potential energy curves at the intersection, dU, [3q, and <‘i‘(,.7p/aq1 in the
present case. Strict_lly speaking, eqs A6 and A7 were derived for a one-
coordinate system.!” If applied, nevertheless, to the present many-coordinate
case, these sloyes depend on the point (q,, ...q,) being crossed at q, =q1* JIf
some mean value for the slopes is used (since there is an integration in eq Al
over g, ...qy), e.g., if we assume U, to be approximately ¥k (g, —q r)? plus terms
independent of q,, and Up to be }k(q, —q,”)? plus terms independent of q,, then
|s- —sp| equals |k(q," - q,” f If we regard A as being approximately ¥k(q,"— qu)2,
as in the text, then |s,— sp|=V(2kA). If we consider the case that k(v)<<1in
the region of interest, then in eq A6 y=x(v). The velocity vin the denominator
of eq A7 then cancels the ¢, in eq Al. If the kineticenergy in Hin Al is
regarded as being 4p, %y, p‘lus terms independent of p,, integration of eq Al
then yields

2
on |H,) ¢! t
k= — exp (—AU [k.T) A8
r k& (4nlkBT)m Q B (A8)

upon once again extracting the factor kgT/hv from Q and also using the
relation V(kfu)=2n1v. Two V’s then cancel.

The term (Q*/Q’) exp (~AU*kgT) in eq A8 equals exp (-~ AG,*[kgT) for
unimolecular reactions as before, while for%imolecular reactions and electrode
reactions in which the reactant is not bound to the electrode, it equals vs exp
(-AG,*[kgT) and v, exp(—AG,*[kpT), respectively, where vs and v, were
defined above. The |H,p|in eq A8 now denotes the matrix element when the
two reactants (or the reactant and the electrode) are in contact.

In this way, in the case of very small v, eqs 13 and 33 of the text are
obtained, but with xv being given in each case by eq 14b in the text. For
intermediate values of y, one could either integrate eq Al using eq A6, or
simply interpolate approximately by using eq 14b when the right-hand side of
eq 14b is less than v and then using eq 14a otherwise.

Physical insight into eq A7 in terms of the “frequency” of the electronic
motion in the TS, obtained as 2H_/h in Section 4, namely the separation of the
adiabatic energy levels in the TSTn Figure 3 divided by h, and of an effective
freqt}egncy for the nuclear motion in the vicinity of the “crossing point” is given
in ref 90.

Appendix B. The Reorganizational Free Energy G(q)

The expression for G(%), the free energy of reorganization as a function of
X, is considered next. (g is the reaction coordinate denoted by g, in Appendix
.) We consider unimolecular reactions first. Using classical statistical
mechanics, we have
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exp[-G@/[kgT1= .. [ exp(-H(q =g, p,=0)/k,TIday..dgydp,..dpy KV~ ®1)

The kinetic energy term in H in eq Bl is of the form 3Z; jg¥ p; pj. With this
quadratic form, a standard expression®! can be used to evaluate the integral in
eq B1 over p7to pﬁ,. If the determinant of the g¥’s, for i and j not equal to 1, is

denoted by 1/g’, then we have upon integration of the p;’s
(znkBT)xN-l)/Z
exp[-G (q)/k,T] = AT [ .[expl Utg,=q)/kyT] dS (B2)

where dS denotes the N - 1-dimensional volume element Vg'dq,...dq,. Apart
from a prefactor, eq B2 is the same as eq 5 in the text, upon introducing r
subscripts.

Where the reaction being considered is bimolecular or when it involves
an ET between an ion in solution and an electrode, there are also translational
coordinates to be considered, as noted in Appendix A. The G(q) given by eq B1
or B2 is then intended to be the value when the reactants are %e d fixed at
some separation distance R, and is a function of that R. In this case, some of
the N -1 coordinates would be the translational coordinates of the reactants
and the G(q) would be defined with eq B1, but using a number of coordinates
less than the N -1 there, less by the number of translational coordinates of the
reactants, six in the bimolecular case, and three in the case of the electrode
reaction.

Appendix C. Comparison of Quantum Expressions and Remarks on In
k, vs -AG® Asymmetry

Itisinstructive to examine the limiting situation for eqs 42 and 43 when
Ao>0 and when both 7+ 0 and A,+0, and to see how the two expressions become
identical there. Atsufficiently low temperatures, reaction occurs only from
the lowest vibrational energy level (no other level is populated), a situation
which is obtained in eq 42 by letting T » 0. Equation 42 then becomes

2n 2 -Saom
b = TIH't’l e S S™Tm+)hv  (T=0) (C1)

r

where I'(m+1) is the Gamma function (= m! when m is an integer) and m=
~AG%hv, defined here for m=0.

quation 43a can be expected to approach eq C1, and eq 43b to approach
eq 42, only when the 1, in eqs 43a and 43b is made to approach zero, since eqs
C1 and 42 contain no A, contribution. When A, approaches zero, the function
(4mAokBT) 2 exp [— (Ao +AG®+ mhv )2 [4)okBT) becomes extremely small,
when regarded as a function of AG?+ mhv, except at AG®+ mhv=0. (The effect
of the A, in the denominator of the exponent dominates that in the pre-
exponential factor.) Indeed, in the limit of A,+0, this function becomes a Dirac
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delta function 8(AG®+ mhv). Thereby, eq 43a in this limit becomes

k= ?ﬁg |H,_ ZOS(AGD+mhv) e™S S™[T(m+1) (C2)
where the m!in eq 43a has been written as I'(m +1). The derivation of the
nonadiabatic expressions, eqs 42 and 43a, is based on the use of Fermi’s Golden
Rule, which in turn considers transitions from the initial state to a continuum
of final states which are quasi-degenerate with the initial state and so preserve
conservation of energy in the reaction step. In eq C2, this degeneracy can only
occur if hv were regarded as small enough that the sum over m becomes a sum
over a continuum, i.e., becomes an integral over dm. If we then use the well-
known relation that 8(AG?+ mhv) equals (1/hv) 8( [AG%hv]+ m), and the
integral over m is evaluated, it follows that eq C2 reduces to eq C1. Thus, at
low temperatures and at A, =0, egs 42 and 43a become the same expression, as
expected. A similar argument shows that, at any temperature, when A, tends
to zero, eq 43b reduces to eq 42.

In concluding this Appendix, we comment briefly on the dependence of
expressions such as eq C1 on the temperature in the inverted region.
Introducing Stirling’s formula for T(m+1) , (mfe)™ V(21 m), it is seen that ln &,
varies with m as m In (Sefm)—1In V(21m). Since a logarithmic dependence on
m is a rather weak one, the principal dependence of In k- on m, and hence on
—AG?, is seen to be a linear one, with a slope y=1In (Ae[|AG). Thus, the
dependence of In k, on —AGP in this quantum treatment is essentially linear
rather than quadratic.
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