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A conical intersection occurs between these states right in the FC
region which makes a dynamical treatment extraordinarily ela-
borate.” The initial excitation is to the bound state which couples,
however, strongly to the dissociative state. The diffuse structures
superimposed to the broad absorption background are, as in the
case of water, due to symmetric stretch motion, but in the potential
well of the bound state rather than on top of the barrier of the
dissociative state.®®" The involvement of two electronic states
has also consequences for the Raman spectra. In contrast to
process 1, the Raman spectrum of H,S shows activity in the
bending coordinate and it exhibits a distinct dependence on the
excitation wavelength.® Despite some similarities, the dissoci-

(79) Heumann, B.; Weide, K.; Diiren, R.; Schinke, R. To be published.
(80) Brudzynski, R. J.; Sension, R. J.; Hudson, B. Chem. Phys. Lett. 1990,
165, 487.
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ations of H,S and H,0, both excited i in the first absorption band,
behave quite differently.

Editor’s Note. This Feature Article is longer than normal as
it contains additional reviews in a field that the editors felt to be
important.
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A perturbation method for calculating the electronic coupling for electron-transfer reactions between a donor and an acceptor
separated by large or small bridges is developed. In this approach the intervening bridge is subdivided into smaller molecular
fragments, thereby enabling calculations on larger systems. This method of molecular fragments is tested for a series of
polyproline bridged systems. The results obtained for the electron-transfer matrix element are compared with those obtained
from direct diagonalization of the full bridge and with experimental results. Previously, the result for the direct diagonalization
of the bridge had been shown to agree with that obtained from diagonalization of the entire donor-bridge-acceptor system.
The vertical donor-bridge orbital energy difference is estimated with the aid of a donor-bridge charge-transfer spectrum.

Introduction

The effective electron-transfer matrix element Hp, from a donor
D to an acceptor A has been expressed in terms of individual
atom-atom matrix elements H;, Coulomb integrals H;, and
overlap integrals S;;, both in perturbative and nonperturbative
formalisms. In an early such formulation, McConnell showed
that a perturbation approximation to the relevant matrix element

is given by!
_TQ t n1
Hoa = —W‘(p—v) )

where T is the matrix element between the donor (acceptor) and
the nearest bridge atom in a sequentially connected series of
identical bridge atoms, ¢ is the bridge atom-bridge atom matrix
clement, W is the energy difference between a bridge atom orbital
energy and donor or acceptor atom energy, and 7 is the number
of bridge atoms. Extension of this result to a sequence of non-
identical interacting atoms and energy differences yields??

HH+ H,,
HDA=Hm(ﬁ ' ) A @)

i=] ED E ED E
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where E, is the Coulombic energy H,; of the ith atom, Ep, is that
of the donor (which equals that of the acceptor E, at a resonant
electron transfer), and the H; are atom—~atom matrix elements.
It has been pointed out?* that this expression could be further
extended by allowing the i to denote the ith collection of atoms,
¢.8., a molecular fragment, in the bridge.

In the extended Hickel treatment, the atom~atom matrix el-
ement in eq 2, Hy, of which Hp,, H,;4,, and H,, are examples,

is given by’
_ Hi+H,

where K is taken to be 1.75.
One method of extending the i in eq 2 from atoms to molecular
fragments, adopted by Ulstrup and co-workers® for proteins, is

(1) McConnell, H. M. J. Chem. Phys. 1961, 35, 508.

(2) Larsson, S. J. Am. Chem. Soc. 1981, 103, 4034,

(3) Newton, M. D. Chem. Rev. 1991, 91, 767.

(4) Ratner, M. A. J. Phys. Chem. 1990, 94, 4877.

(5) Hoffmann, R. J. Chem. Phys. 1963, 39, 1397; 1964, 40, 2474, 2745,
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K.; Ulstrup, J. Inorg. Chem. 1990, 29, 2808.
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to use eq 3 with the H; now denoting the value for a particular
molecular orbital of the ith fragment (e.g., its LUMO for electron
transfer or its HOMO for hole transfer), and §; now given by
the overlap integral of the MO on i and that on j In this mod-
ification of the usual extended Hiickel approach, K was chosen
to be 0.5 (from Ratner and co-workers’ calculations’) instead of
the 1.75 for atom-atom H,’s.

In the present paper, we describe a related but different method
of extending eq 2 to the case where the i’s denote molecular
fragments. For the procedure adopted here, it is shown for the
systems investigated that eq 10 obtained below is an excellent
perturbation approximation to the results obtained by a direct
diagonalization of the full bridge matrix. Previously,? the diag-
onalization of the full bridge matrix was found to yield results
for Hp, in good agreement with those obtained from the direct
diagonalization of the entire D-bridge~A system.

In a further extension, the requirement that the bridge units
be connected sequentially is dropped. Rather, a particular bridge
unit may be connected to another some distance away by different
paths of other bridge units, the connections being, in the case of
proteins, bonds along the sequence of amino acid residues or via
hydrogen bond bridges or across small gaps.

Theory

When applied to atoms, the perturbation approximation given
by eq 2 poses the problem that |H; ., /(Ep - E))} and |H,,/(Ep
- E,)| may not be less than unity, as required in a perturbation
expansion. For example, in the systems investigated below, the
atom-atom coupling elements H,,,, and H,, are typically about
4-5 eV, and Ep - E; or Ep - E, is about the same value. In
contrast, when extended to molecular fragments, as in the present
paper, the magnitudes of the coupling are typically reduced to
0.2 eV or less, while the magnitudes of Ep — E; become about 1
eV. In this case, therefore, the extension of eq 2 to fragments
makes the new equation an excellent approximation. The coupling
between these fragments is smaller because, unlike individual
atoms in a bridge, the coefficients of the relevant orbitals at each
fragment-to-fragment link are relatively small instead of being
unity. (The role of the coefficients is described later in eq 10.)

We introduce a projection operator P, which projects onto the
space of the molecular orbitals of D and A relevant for the electron
transfer, and a projection operator Q, projecting onto the space
of the relevant molecular orbitals of each of the molecular frag-
ments (the Q, space is the union of all these MO’s of the molecular
fragments). Then, the (n + 1)th-order perturbation expression
for Hp, is given by’

Hor = (golPd L0s| vPioy) @

when the paths from D to A include no return to D and no
successive visitations of A. Such omitted paths correspond to one
of many omitted terms in the perturbation series in ref 9, such
as Po( VQo/a)™ VP VP, Ineq 4, Vis the perturbation, a denotes
- Hyin the present resonant case of Ep=E As these two E’s
bemg MO energies. The statement that Ep = E, in the transition
state follows from the theory of electron-transfer reactions.! The
values of Ep and E, are influenced by the solvent and the ligands
in D and A. Hp, is the desired effective matrix element connecting
a particular molecular orbital ¢, of D to a particular molecular
orbital ¢, of A. Ineq 4, the Pol¢) and Pyl¢p) equal [¢,) and
|¢p), but the Py’s are retained to make the correspondence to the
usual perturbation operator clear.
Explicit expressions for Py and Q, are

(7) Pietro, W. J.; Marks, T. J.; Ratner, M. A. J. Am. Chem. Soc. 1985,
107, 5387,

(8) Siddarth, P.; Marcus, R. A. J. Phys. Chem. 1990, 94, 2985. Perhaps
it should have been explicitly stated in this paper that a Gaussian basis set
was used for the calculations. See also ref 21 of the present paper, footnote
33

(9) Messiah, A. Quantum Mechanics; Wiley: New York, 1562; Vol. I1.

(10) Marcus, R. A, J. Chem. Phys. 1956, 24, 966; 1965, 43, 679.
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the sum being over the relevant MO’s of D and A, and
QO = Zz|¢al)<¢a‘| (6)

where ¢, denotes the ath MO of the ith molecular fragment, and
the sum is over all orbitals « of all molecular fragments i. We
have

(balVids) = Hayg, Q)

where H, g denotes the matrix element (an extension of the Hj;
ineq 2) connectmg the ath MO of fragment / to the Sth MO ofl
fragment j.

The ath molecular orbital of fragment i can be written in terms
of the atomic orbitals y,, of that fragment

b, = ZCa,m,%, (8)

where the C, ,, are the LCAO-MO coefficients. In this case we
have for the donor-fragment, fragment-fragment, or fragment-
acceptor H,z of eq 7

a,ﬁ, ZZC a,m;Hm,nj mb; (9)

With a fairly large fragment of, say, 10 carbon, nitrogen, or
oxygen atoms and 4 valence orbitals per atom, each coefficient
Cin eq 8 is roughly 1/4/40 on the average. (In the case of an
atom-atom description, the coefficients would be 1.) With just
one or two connecting links between fragments i and j when only
a few m, and n; contribute significantly, the matrix element H,, 8
is therefore immediately reduced by a factor or at least 20 from
the atom-atom value. (E.g., a typical reduction is from ~5 to
~0.2eV.) Asa result, eq 2, generalized to molecular fragments,
becomes a useful perturbation expression for electron transfer,
even when the ungeneralized eq 2 was not. Its utility is both in
terms of physical insight and, in the case of very large systems,
making calculations for such systems more practical.

Equations 4, 6, and 8 can be written explicitly as

(C‘XMDH’"D"H M,oq) (C am,Hn,m, m,aj

DA =
Ha =% E.-E, E, - E,
(C‘u,n,Hnjkamkak) (C‘ Hn,m,cm,a,)
E - E, E -E,

(C*aunHpm\Cmy) (10)

where m; and n;, m and n, ..., m, and n, denote atomic orbitals
of the fragment iy, ..., 2; o; again denotes a molecular orbital of
the fragment #; and x and u denote the molecular orbitals of the
donor D and acceptor A. The summation is over all molecular
orbitals of the intervening fragments and over all atomic orbitals
in these fragments and in D and in A. In practice, for very large
systems, certain fragment to fragment “paths” will predominate.
The symmetry of the molecular orbitals of each fragment is fully
included in the calculation of Hp, since the symmetry is included
in the calculation of the molecular orbital coefficients C. For
fragment orbitals closest in energy to the donor orbital, typical
values of E, — E,, are about 1.0 eV, while the magnitude of the
interaction H, b, is about 0.2 eV or less. Thus the ratio H,p5/(E,
- E,) is now typically much less than unity.!!

This approach may be compared with that we used earlier.®
In the case of bridges which are not too large, it is still possible

(11) In eq 10, we have many ratios such as H, 5/ (E, E,,) In order for
the perturbation approximation to be fully sansf" ed, these ratios have to be
significantly less than 1. However, in the present calculations, we find that
even if a few of these ratios for the important orbitals are slightly greater than
unity, the perturbation expression still gives reliable results as long as the
majority of these ratios for the relevant orbitals are much less than 1. In the
present case, for the relevant fragment orbitals given in Table II for n = 2,
of the 45 such ratios between donor-fragment, fragment—-fragment, and
fragment—acceptor orbitals, only five ratios are greater than unity. (The ratios
are 1.3, 1.5, 1.6, 2.3, and 3.6.)
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Figure 1. Structure of the polyproline bridged systems, n = 1-4.
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to treat all of the bridge as a single unit and to calculate the
electron-transfer matrix element using the formalism we have
employed previously.® In that approach, the electron-transfer
matrix element is given by

(C* xmpHmomy Conga) (C* angH ymy Coass)
HA=FT T X D o B % npma ™ map (1)

a  MmpMpNpaia E x = Ea

where a’s denote the MO’s of the full bridge B, and mp, mp, ng,
and m, are the atomic orbitals of D, B, B, and A, respectively.

Results

In order to test the validity of the perturbation approximation
of eq 10, Hp, is calculated for a series of electron-transfer reactions
using both this method of molecular fragments and the full di-
agonalization of the entire bridge. The series chosen is the
polyproline bridged systems of Isied et al.,!> where the donor and
the acceptor are kept identical throughout the series and the bridge
length is systematically increased (see Figure 1). In contrast to
other naturally occurring amino acids, polyprolines are structurally
rigid due to the cyclic nature of the proline ring.

In ref 8, Hp, was calculated for this series with eq 11 using
extended Hilckel theory and a Gaussian basis set, but using only
the d orbitals for the two metal atoms, and neglecting ligands other
than the bridge. Presently, we use a Slater basis set having all
the valence orbitals for the metal atoms and including all the
ligands on the two metal atoms.’> In the calculations, [Os-
(NH,);|** is considered as the donor and [Ru(NH,)}** as the
acceptor. The bridge thus consists of the isonicotiny! group and
n prolines. In using eq 10, the isonicotinyl group and each of the
n prolines is considered as a fragment. The oxygen atom in Figure
1 adjacent to the Ru is treated as part of the terminal proline
fragment. Further, only interactions between nearest-neighbor
fragments are included, even though eq 10 allows the consideration
of interactions between any pair of molecular fragments. Also,
in using the perturbation approximation of eq 10, it is not the core
o orbitals of the fragments which contribute significantly to
electron transfer but the “redox” orbitals, namely the orbitals, both
occupied and unoccupied, which are close in energy to the energy
E, of the donor (acceptor) orbital.

We consider the electron transfer in a series of reactions

Red, + Ox;, — Ox; + Red, (12)

and let the generalized reaction coordinates, mentioned below,
at the intersection of the reactant~product free energy surfaces
(Figure 2) be denoted by (¢,%, ¢,*). The vertical energy difference
Ars, from (g,*, ¢,*) to the parabolic free energy surface of the
products of a donor-bridge charge-transfer excitation process

Red, + Ox, + B— Ox, + Ox, + B~ (13)

where B denotes the bridge, is depicted in Figure 2. This free
energy difference is also the energy difference, since the entropies
of the two nonequilibrium states are the same. It is this energy
difference (no relaxation to the minimum) for any particular
molecular orbital of the bridge that appears in the energy de-
nominator for that orbital in the expressions for Hp, in egs 10
and 11, e.g., for the LUMO of the bridge. We consider this
difference next, and in particular, when it can be evaluated from

(12) Vassilian, A.; Wishart, J. F.; van Hemelryck, B.; Schwarz, H.; Isied,
S. S. J. Am. Chem. Soc. 1990, 112, 7278.

(13) QCPE Program No. 517, Indiana University, Bloomington IN 47405.
The basis set and the valence state ionization energies for the metal atoms were
obtained from QCPE Program No. 387.
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Figure 2. Free energy surface of reactants and surrounding medium (r)
and that of products and surrounding medium (p). Arg denotes the
vertical energy difference from the intersection of these two free energy
surfaces to the free energy surface for the situation that the electron
resides in the bridge. (No relaxation to the lowest point of the latter
surface occurs, since the bridge orbital state serves only as a virtual state.)
The plot is schematic: the lowest point of the upper curve does not
correspond to the lowest free energy of Ox, + Ox, + B-, but rather to
the lowest value when the generalized coordinate is constrained to lie on
the line joining (gj.95) to (¢§,¢%), and with the nuclear configuration
around B being the same as in the Red, + Ox, + B state [vertical
transition at (g,%,¢:%)].

the donor to bridge (more precisely adjacent bridge fragment)
charge-transfer absorption maximum Avcr.

Donor-Bridge Electronic Energy Difference at TS, Ars, and
Relation to hycy. In the calculation, a quantity of particular
interest is E, — E, , where E, is the donor energy level and E,,
the energy o} the (LUMO) unoccupied molecular orbital of the
fragment adjacent to the donor. The extended Hiickel calculations
may be too approximate to obtain this quantity accurately, and
s0 we estimate it using Avcr, the absorption maximum associated
with charge transfer from the donor to the bridge. In the case
of electron transfer via the bridge, the solvent molecules and bridge
geometry are those which the neutral bridge has, since the electron
does not really reside on the bridge in the present case where the
bridge is “off-resonance”. For the present purpose we use a
simplified treatment to obtain the relation between Arg and Aver,
since the main purpose is to illustrate the perturbation-fragment
method. It can be replaced later by a more elaborate solvational
treatment. A generalized coordinate g; is introduced for each
reactant (i = 1, 2), to include both solvent and (low frequency)
vibrational contributions to the free energy fluctuations. The free
energy G of the reactants and bridge in reaction 12 is then written
as

k k
G = [-2—](41 -qi)’ + f(qz - q&)z] + G0+ G+ ET (14)

where the first two terms are associated with the fluctuations
around reactants 1 and 2, respectively, the next two are the
equilibrium solvation free energies, namely the values at g; = ¢f,
and the last term is the electronic energy of the entire system at
g; = qi. Correspondingly, for the products, we write

k k
Gr = [.2.1(,,, -~ g+ S a - qs>2] + G + GB° + EP (15)

where the symbols have the same significance as before. The
additivity approximation in eqs 14 and 15 can be replaced by a
more elaborate treatment, such as that in refs 10 or 14.

We denote the donor in reaction 12 by 1. For the system where
an electron of the donor has been transferred to the adjacent
fragment of the bridge, the free energy of the system GP is given

by
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k k
¢ = [7‘«11 -+ (e - q5)2] + GRO+ G + E* (16)

where EP denotes the electronic energy of the entire system when
q: = ¢f and ¢, = g5. No solvent orientation—vibration polarization
of the bridge occurs in this vertical transition. There is some
electronic polarization and other terms, to which we briefly return
later.

We now note that to obtain Avcr, we set ¢; = g7 and g, = ¢5
in eqs 14 and 16 for G* and G® and obtain

hver = G%(¢5,4%) - G'(41.4%)
=GO -G+ EP-E + )\ (17)

where A, = k,(¢f - ¢7)?¥/2.
Further, in the transition state TS we have!®!4

q' =g/ + m(q - qP) (18)
and G'(¢,*,¢,") = G*(¢,%,9,*), leading to
-@m+ (A + ) = GO + GBO - G° - GY° + EP - E
= AG® (19)

the right-hand side being the standard free energy of reaction AG®
and ), being k(g8 - ¢3)%/2.

The quantity Arg is the energy of the lowest unoccupied mo-
lecular orbital of the bridge fragment attached to the donor E,,
minus the donor orbital energy in the TS E,, i.e., when g, = ¢,
(i =1, 2). Itis given by

Ars = G%g*, 42°) - G, 4o") (20)
Equations 14, 16, and 19 yield

A
Ars = —T‘AG° + GPO— G{0 + Eb - ' (1)

The first term in eq 21 also appears in ref 15, p 312.
Equations 17 and 21 now yield

A
Ars = hver —TI(AG" +2) (22)

where A is A; + A, the reorganization energy for the donor to
acceptor electron transfer.

We consider next some omitted bridge effects. In the vertical
charge-transfer spectrum from the donor to the adjacent fragment
of the bridge, the electron on the bridge polarizes the electrons
of the solvent, an effect which lowers the value of hvcr. Again,
in the case of Arg, which is involved in the charge transfer from
the donor to acceptor via the superexchange mechanism, the
transferring electron in the virtual orbitals of the bridge interacts
with solvent polarization, both the electronic and the (static)
orientational, an effect which may tend to lower Ars. A detailed
analysis of these aspects for Avcr and Aqg requires a more elaborate
calculation. For the present paper we shall simply assume that
the difference Arg — hvcr is given by eq 22.

From the charge-transfer spectrum!® of [(NH,); Os(isonicotinic
acid)]?*, hver is known to be 1.75 eV. The standard free energy
of the reaction, AG® of reaction 12, is available from the exper-
imental study'? (-0.25 eV). The solvent plus vibrational reorg-
anization parameter A is estimated from the temperature de-
pendence studies of the electron transfer rate!? to be 1.5 eV. An
estimate of A, can be obtained from the literature for related
species, Ru(NH;)¢**/2*, where A has been estimated to be 0.6
eV."" It is also known that the reorganizational barrier for Os
analogs is similar to the corresponding Ru complexes.!®  Ac-
cordingly, we take A, for the species Os(NH;),**/%* to be 0.6 eV.
Equation 22 then yields a value of 1.25 eV for Ars. The energy
of the LUMO of the isonicotinyl fragment, E,, is presently

(14) Marcus, R. A. Discuss. Faraday Soc. 1960, 29, 21.

(15) Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265.

(16) Wishart, J. F., personal communication. See also: Sen, J.; Taube,
H. Acta Chem. Scand. 1979, A33, 125.

(17) Sutin, N. Prog. Inorg. Chem. 1983, 30, 441.

(18) Bernhard, P.; Sargeson, A. M. Inorg. Chem. 1988, 27, 2582.
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Figure 3. Variation of Hp, with distance, calculated using egs 10 and
11, the circles referring to eq 10 and the pluses to eq 11. The solid line

is the least-squares line for the pluses and the broken line is the least-
squares line for the circles.

TABLE I: Calculated and Experimental Hp, (cm™) Values for the
Series in Figure 1

no. of prolines ____c_a__lc
in bridge, n eq 10 eq 11 expt?
1 15.1 16.1 39
2 4.0 4,7 1.9
3 0.7 1.0 0.7
4 0.3 0.3
8, A 0.9 0.9 0.7

@ Reference 20.

calculated (by extended Hiickel theory) to be ~10.75 eV.
Therefore, the donor orbital energy at the transition state (E, of
eqs 10 and 11) is given by E, ~ Ars = -12.0eV."?

Calculated values of Hp, obtained using eqs 10 and 11 are given
in Table I and its variation with distance is plotted in Figure 3.

Discussion

From the results in Table I and in Figure 3, it is seen that there
is good agreement between the two methods. The results show
that the method of subdividing a large bridge into smaller mo-
lecular fragments indeed provides a reasonable approach to the
calculation of Hp, for such systems. Further, in this particular
instance of sequential fragments in a bridge, the results also
validate the usage of only the interaction terms between near-
est-neighbor fragments, even though this approximation need not
be invoked. (In the full diagonalization of the entire bridge,
interactions between all parts of the bridge are considered.) In-
deed, in biological systems such as proteins, where the method
of molecular fragments is expected to be most useful, considering
only nearest-neighbor interactions may not be sufficient, since two
amino acids, even though they may not be directly linked, may
still approach each other closely because of the three-dimensional
structure of the protein. The method of molecular fragments
allows any such interaction to be considered. Further, this method
provides a simple way of estimating the effect of any one particular
amino acid (or a group of amino acids) on the rate of electron
transfer by including the amino acid(s) in the calculation or not.

We next compare these calculated results with experimental
estimates? of Hp,. As noted previously,®?! an error in the matrix
elements connecting D and A to the bridge will affect the absolute
value of Hp, but will have less effect in the variation of Hp, within

(19) The extended Hiickel value for the energy of the donor orbital,
without correcting for solvational and reorganizational effects of the medium,
was —13.45 eV. In the calculations, therefore, the energy of the donor orbital
was adjusted upward by this difference, 1.45 eV, so that its new value is now
-12.0eV.

(20) Isied, S. S.; Vassilian, A.; Wishart, J. F,; Creutz, C.; Schwarz, H. A;
Sutin, N. J. Am. Chem. Soc. 1988, 110, 635.

(21) Siddarth, P.; Marcus, R. A. J. Phys. Chem. 1990, 94, 8430.
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TABLE II: Energies and Occupation of the Relevant Fragment
Orbitals® for n = 2

isonicotinyl group (proline), (proline),
-9.975,u
-10.752, u, »* -11.284, u
-12.525, occ, -12.499, occ -12.304, occ
-12.788, occ, 7 -13.000, occ ~13.036, occ
-13.444, occ, v -13.328, occ -13.495, occ
-13.593, occ, 7

2Energies are in eV. The donor (acceptor) level is -12.0 eV (cf.
text). For the approximately planar isonicotinyl group, an approximate
x,7* designation is also given. For the prolines, which are nonplanar,
an obvious symmetry of that type was not apparent to us. The -9.975
and -11.284 ¢V orbitals of (proline), are mainly carbonyl orbitals, in
contrast to all remaining orbitals in the table. (Proline), and (proline),
differ in that the latter includes the oxygen atom attached to Ru (cf.
text). u = unoccupied; occ = occupied.

a given series. In that case, the extended Hiickel method, which
is semiempirical, is more suited to the latter than to the deter-
mination of absolute values of Hp,. Further, the “experimental”
values themselves for Hp, are dependent on the various factors
which can affect the preexponential factor in the expression for
the rate constant, and on the appropriateness of the method used
to correct for the distance dependence of the Franck—Condon
factor.

The rate constant kg for electron transfer from a donor to an
accseptor can be written using the Golden Rule approximation,
as'

2
ke = S-HpaFC (23)

where Hp, is the electronic matrix element being calculated
presently and FC the Franck—Condon factor. In order to compare
the distance dependence of the experimental rate constants'? with
the calculated values of Hp, it is necessary to allow for the distance
dependence of FC.

One way to correct for the variation of FC with distance is to
study the temperature dependence of the rate constant,!>20 a
procedure used by Isied and co-workers. From the experimental
heats of activation, the variation of the electronic factor alone in
eq 23 and values of Hp, are then obtained. In this method, it
is tacitly assumed that nuclear tunneling is relatively unimportant.
(When it occurs, it could affect the preexponential factor of kgt
and thereby affect the value of |Hp,|? inferred from the latter.)
The experimental values of Hp, for the series are also given in
Tabie I for comparison with the calculated values. As found
previously,? though the absolute magnitudes are only in approx-
imate agreement, their variation with distance is comparable, and
in both cases the calculated dependence is approximately expo-
nential:

|Hpal? = exp(-BR) (24)

For the calculated values, 8 is 0.9 A™!, while the inferred ex-
perimental value is 0.7 A,

The results in Table I have been obtained using all the molecular
orbitals of the intervening fragments. However, as noted pre-
viously, it is mainly the orbitals close in energy to that of the donor
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orbital that are primarily responsible for electron mediation be-
tween the donor and the acceptor. It is therefore instructive to
ask how many such orbitals are required in order to obtain rea-
sonable estimates of both Hp, and its variation with distance. For
the present series, it is found that approximately five orbitals per
fragment gives roughly the same value of Hp, (15.3, 3.2, 0.5, and
0.2cm™! for n =1, 2, 3, and 4, respectively) and a 8 of 0.9 A1,
The energy of these orbitals is given in Table II. It is seen that
both occupied and unoccupied orbitals are needed; however, in
the present calculation, most (>80%) of the transfer in the present
series is actually hole transfer, i.e., makes use of the occupied
orbitals of the bridge.

Comparing the results in Table I with our previous calculations
of the same series,® the S-value is approximately unchanged.
(Before, it was 0.8 A™'.) In those calculations, only the d orbitals
for the metal atoms and no groups other than the bridge were
considered. The present absolute values of Hp, are, on the other
hand, significantly smaller. The difference between the results
in ref 8 and those in Table I can be attributed to the increased
number of orbitals used in Table I for the donor and acceptor
principally because of the ligands, thereby diluting the relevant
coefficients on the donor and on the acceptor atoms attached to
the bridge.

Conclusions

In the present paper, a perturbation appracoh is developed for
calculating the electronic matrix element for electron-transfer
reactions between a donor and an acceptor linked by large or small
bridges. For this purpose, the intervening bridge is subdivided
into smaller molecular fragments. The approach is tested for a
series of polyproline bridged systems and it is seen that the per-
turbation approximation for such systems is a useful one which
yields results in good agreement with those obtained from the
diagonalization of the full bridge.

It is next planned to apply this method to large systems such
as proteins, where it may now be possible with this method to treat
a larger portion of the protein than was done earlier,?! by con-
siderably reducing the dimension of the bridge matrices needed
to be diagonalized. This method should also permit the deter-
mination of important “fragment paths” in proteins, the paths now
consisting of amino acid residues, rather than the now customary
consideration of paths of individual atoms.?? The advantages of
using paths consisting of amino acid residues is that the effective
donor—-fragment, fragment-fragment, and fragment-acceptor
interaction energies are typically much less than the energy
difference between the relevant donor and bridge energy levels,
and therefore the perturbation approach remains valid for a
quantitative interpretation of the paths.
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