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A conical intersection occurs between these states right in the FC 
region which makes a dynamical treatment extraordinarily ela- 
borate.79 The initial excitation is to the bound state which couples, 
however, strongly to the dissociative state. The diffuse structures 
superimposed to the broad absorption background are, as in the 
case of water, due to symmetric stretch motion, but in the potential 
well of the bound state rather than on top of the barrier of the 
dissociative ~ t a t e . ~ ~ * ' ~  The involvement of two electronic states 
has also consequences for the Raman spectra. In contrast to 
process 1, the Raman spectrum of H2S shows activity in the 
bending coordinate and it exhibits a distinct dependence on the 
excitation wavelengthaS0 Despite some similarities, the dissoci- 
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(79) Heumann, B.; Weide, K.; Daren, R.; Schinke, R. To be published. 
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ations of H2S and H20 ,  both excited in the first absorption band, 
behave quite differently. 
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A perturbation method for calculating the electronic coupling for electron-transfer reactions between a donor and an acceptor 
separated by large or small bridges is developed. In this approach the intervening bridge is subdivided into smaller molecular 
fragments, thereby enabling calculations on larger systems. This method of molecular fragments is tested for a series of 
polyproline bridged systems. The results obtained for the electron-transfer matrix element are compared with those obtained 
from direct diagonalization of the full bridge and with experimental results. Previously, the result for the direct diagonalization 
of the bridge had been shown to agree with that obtained from diagonalization of the entire donor-bridgeacceptor system. 
The vertical donor-bridge orbital energy difference is estimated with the aid of a donor-bridge charge-transfer spectrum. 

Introduction 
The effective electron-transfer matrix element HDA from a donor 

D to an acceptor A has been expressed in terms of individual 
atom-atom matrix elements Hij, Coulomb integrals Hii, and 
overlap integrals S,, both in perturbative and nonperturbative 
formalisms. In an early such formulation, McConnell showed 
that a perturbation approximation to the relevant matrix element 
is given by1 

where Tis the matrix element between the donor (acceptor) and 
the nearest bridge atom in a sequentially connected series of 
identical bridge atoms, t is the bridge atom-bridge atom matrix 
element, W is the energy difference between a bridge atom orbital 
energy and donor or acceptor atom energy, and n is the number 
of bridge atoms. Extension of this result to a sequence of non- 
identical interacting atoms and energy differences yields2,' 

'Contribution No. 8490. 

where Ei is the Coulombic energy Hii of the ith atom, ED is that 
of the donor (which equals that of the acceptor EA a t  a resonant 
electron transfer), and the Hi, are atom-atom matrix elements. 
It has been pointed out24 that this expression could be further 
extended by allowing the i to denote the ith collection of atoms, 
e.g., a molecular fragment, in the bridge. 

In the extended Hiickel treatment, the atom-atom matrix el- 
ement in eq 2, Hij, of which HD1, Hi,i+l, and HnA are examples, 
is given by5 

(3) 

where K is taken to be 1.75. 
One method of extending the i in eq 2 from atoms to molecular 

fragments, adopted by Ulstrup and co-workers6 for proteins, is 

( I )  McConnell, H. M. J. Chem. Phys. 1961.35, 508. 
(2) Larsson, S. J .  Am. Chem. SOC. 1981, 103, 4034. 
(3) Newton, M. D. Chem. Reu. 1991, 91, 767. 
(4) Ratner, M. A. J .  Phys. Chem. 1990, 91,4877. 
( 5 )  Hoffmann, R. J .  Chem. Phys. 1963, 39, 1397; 1964, 40, 2474,2745. 
(6) Christensen, H .  E. M.; Conrad, L. S.; Mikkelsen, K. V.; Nielsen, M. 

K.; Ulstrup, J. Inorg. Chem. 1990. 29, 2808. 
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to use eq 3 with the Hii now denoting the value for a particular 
molecular orbital of the ith fragment (e.g., its LUMO for electron 
transfer or its HOMO for hole transfer), and S ,  now given by 
the overlap integral of the M O  on i and that on j .  In this mod- 
ification of the usual extended HUckel approach, K was chosen 
to be 0.5 (from Ratner and co-workers’ calculations7) instead of 
the 1.75 for atom-atom Hiis .  

In the present paper, we describe a related but different method 
of extending eq 2 to the case where the i’s denote molecular 
fragments. For the procedure adopted here, it is shown for the 
systems investigated that eq 10 obtained below is an excellent 
perturbation approximation to the results obtained by a direct 
diagonalization of the full bridge matrix. Previously,8 the diag- 
onalization of the full bridge matrix was found to yield results 
for HDA in good agreement with those obtained from the direct 
diagonalization of the entire D-bridge-A system. 

In a further extension, the requirement that the bridge units 
be connected sequentially is dropped. Rather, a particular bridge 
unit may be connected to another some distance away by different 
paths of other bridge units, the connections being, in the case of 
proteins, bonds along the sequence of amino acid residues or via 
hydrogen bond bridges or across small gaps. 
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When applied to atoms, the perturbation approximation given 
by eq 2 poses the problem that IHj,j+l/(ED - Ei)I and IH,A/(ED 
- En)I may not be less than unity, as required in a perturbation 
expansion. For example, in the systems investigated below, the 
atomatom coupling elements and HnA are typically about 
4-5 eV, and ED - Ei or ED - En is about the same value. In 
contrast, when extended to molecular fragments, as in the present 
paper, the magnitudes of the coupling are typically reduced to 
0.2 eV or less, while the magnitudes of ED - Ei become about 1 
eV. In this case, therefore, the extension of eq 2 to fragments 
makes the new equation an excellent approximation. The coupling 
between these fragments is smaller because, unlike individual 
atoms in a bridge, the coefficients of the relevant orbitals at  each 
fragment-to-fragment link are relatively small instead of being 
unity. (The role of the coefficients is described later in eq 10.) 

We introduce a projection operator Po which projects onto the 
space of the molecular orbitals of D and A relevant for the electron 
transfer, and a projection operator Qo projecting onto the space 
of the relevant molecular orbitals of each of the molecular frag- 
ments (the Qo space is the union of all these M O s  of the molecular 
fragments). Then, the (n + 1)th-order perturbation expression 
for HDA is given by9 

Siddarth and Marcus 

(4) 

when the paths from D to A include no return to D and no 
successive visitations of A. Such omitted paths correspond to one 
of many omitted terms in the perturbation series in ref 9, such 
as Po( VQo/a)wlVPoVPo. In eq 4, Vis the perturbation, a denotes 
ED - Ho in the present resonant case of ED = EA, these two E‘s 
being MO energies. The statement that ED = EA In the transition 
state follows from the theory of electron-transfer reactions.I0 The 
values of ED and EA are influenced by the solvent and the ligands 
in D and A. HDA is the desired effective matrix element connecting 
a particular molecular orbital 4D of D to a particular molecular 
orbital + A  of A. In eq 4, the and Pol&,) equal I + A )  and 
14D), but the Po’s are retained to make the correspondence to the 
usual perturbation operator clear. 

Explicit expressions for Po and Qo are 

(7 )  Pietro, W. J.; Marks, T. J.; Ratner, M. A. J .  Am. Chem. SOC. 1985. 
107, 5387. 

(8) Siddarth, P.; Marcus, R. A. J .  Phys. Chem. 1990, 94, 2985. Perhaps 
it should have been explicitly stated in this paper that a Gaussian basis set 
was used for the calculations. See also ref 21 of the present paper, footnote 
33. 

(9) Messiah, A. Quunrum Mechunics; Wiley: New York. 1962; Vol. 11. 
(IO) Marcus, R. A. J .  Chem. Phys. 1956, 24, 966; 1965, 43,679. 

the sum being over the relevant M O s  of D and A, and 

Qo = EZWal) ( + a l l  
i a  

where denotes the ath MO of the ith molecular fragment, and 
the sum is over all orbitals a of all molecular fragments i. We 
have 

(+a jWJ!9] )  = Hala] (7) 

where HaIb1 denotes the matrix element (an extension of the Hi.  
in eq 2) connecting the a th  MO of fragment i to the 8th M O  of 
fragment j .  

The a th  molecular orbital of fragment i can be written in terms 
of the atomic orbitals #,,,( of that fragment 

where the Cui,, are the LCAO-MO coefficients. In this case we 
have for the donor-fragment, fragment-fragment, or fragment- 
acceptor Hal@, of eq 7 

(9) 

With a fairly large fragment of, say, 10 carbon, nitrogen, or 
oxygen atoms and 4 valence orbitals per atom, each coefficient 
C in eq 8 is roughly 1/v‘40 on the average. (In the case of an 
atom-atom description, the coefficients would be 1.) With just 
one or two connecting links between fragments i a n d j  when only 
a few mi and nj contribute significantly, the matrix element Hadl 
is therefore immediately reduced by a factor or at least 20 from 
the atom-atom value. (E.g., a typical reduction is from - 5  to 
-0.2 eV.) As a result, eq 2, generalized to molecular fragments, 
becomes a useful perturbation expression for electron transfer, 
even when the ungeneralized eq 2 was not. Its utility is both in 
terms of physical insight and, in the case of very large systems, 
making calculations for such systems more practical. 

Equations 4, 6, and 8 can be written explicitly as 

where mi and ni, mj and nil ..., m, and n, denote atomic orbitals 
of the fragment i j ,  ..., z; ai again denotes a molecular orbital of 
the fragment i; and x and p denote the molecular orbitals of the 
donor D and acceptor A. The summation is over all molecular 
orbitals of the intervening fragments and over all atomic orbitals 
in these fragments and in D and in A. In practice, for very large 
systems, certain fragment to fragment “paths” will predominate. 
The symmetry of the molecular orbitals of each fragment is fully 
included in the calculation of HDA since the symmetry is included 
in the calculation of the molecular orbital coefficients C. For 
fragment orbitals closest in energy to the donor orbital, typical 
values of E, - E ,  are about 1 .O eV, while the magnitude of the 
interaction Hal!9J is about 0.2 eV or less. Thus the ratio Ha81/(Ex 
- Eat) is now typically much less than unity.Il 

This approach may be compared with that we used earlier.8 
In the case of bridges which are not too large, it is still possible 

( I  I )  In eq 10, we have many ratios such as Hae, / (Ex - Ea,). In order for 
the perturbation approximation to be fully satisded, these ratios have to be 
significantly less than 1 .  However, in the present calculations, we find that 
even if a few of these ratios for the important orbitals are slightly greater than 
unity, the perturbation expression still gives reliable results as long as the 
majority of these ratios for the relevant orbitals are much less than 1 .  In the 
present case, for the relevant fragment orbitals given in Table I1 for n = 2, 
of the 45 such ratios between donor-fragment, fragment-fragment, and 
fragmentacceptor orbitals, only five ratios are greater than unity. (The ratios 
are 1 . 3 ,  1.5, 1.6, 2.3, and 3.6.) 
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Figure 1. Structure of the polyproline bridged systems, n = 1-4. 

to treat all of the bridge as a single unit and to calculate the 
electron-transfer matrix element using the formalism we have 
employed previously.* In that approach, the electron-transfer 
matrix element is given by 

where a's denote the MO's of the full bridge B, and mD, mg, nB, 
and mA are the atomic orbitals of D, B, B, and A, respectively. 

Results 
In order to test the validity of the perturbation approximation 

of eq 10, HDA is calculated for a series of electron-transfer reactions 
using both this method of molecular fragments and the full di- 
agonalization of the entire bridge. The series chosen is the 
polyproline bridged systems of Isied et ah,', where the donor and 
the acceptor are kept identical throughout the series and the bridge 
length is systematically increased (see Figure 1). In contrast to 
other naturally occurring amino acids, plyprolines are structurally 
rigid due to the cyclic nature of the proline ring. 

In ref 8, H D A  was calculated for this series with eq 11 using 
extended Hiickel theory and a Gaussian basis set, but using only 
the d orbitals for the two metal atoms, and neglecting ligands other 
than the bridge. Presently, we use a Slater basis set having all 
the valence orbitals for the metal atoms and including all the 
ligands on the two metal atoms.I3 In the calculations, [Os- 
(NH3)sJ2' is considered as the donor and [ R u ( N H ~ ) ~ ] ~ +  as the 
acceptor. The bridge thus consists of the isonicotinyl group and 
n prolines. In using eq 10, the isonicotinyl group and each of the 
n prolines is considered as a fragment. The oxygen atom in Figure 
1 adjacent to the Ru is treated as part of the terminal proline 
fragment. Further, only interactions between nearest-neighbor 
fragments are included, even though eq 10 allows the consideration 
of interactions between any pair of molecular fragments. Also, 
in using the perturbation approximation of eq 10, it is not the core 
u orbitals of the fragments which contribute significantly to 
electron transfer but the "redox" orbitals, namely the orbitals, both 
occupied and unoccupied, which are close in energy to the energy 
E, of the donor (acceptor) orbital. 

We consider the electron transfer in a series of reactions 
Red, + Ox, - Oxl + Red, (12) 

and let the generalized reaction coordinates, mentioned below, 
at  the intersection of the reactant-product free energy surfaces 
(Figure 2) be denoted by (q,*, q2*). The vertical energy difference 
An, from (q,*, q 2 * )  to the parabolic free energy surface of the 
products of a donor-bridge charge-transfer excitation process 

(13) 
where B denotes the bridge, is depicted in Figure 2. This free 
energy difference is also the energy difference, since the entropies 
of the two nonequilibrium states are the same. It is this energy 
difference (no relaxation to the minimum) for any particular 
molecular orbital of the bridge that appears in the energy de- 
nominator for that orbital in the expressions for HDA in eqs 10 
and 11, e.g., for the LUMO of the bridge. We consider this 
difference next, and in particular, when it can be evaluated from 

Red, + Ox, + B - Ox, + Ox, + B- 

(12) Vassilian, A,; Wishart, J.  F.; van Hemelryck, B.; Schwarz, H.; Isied, 
S. S. J .  Am. Chem. Soc. 1990, 112, 7278. 

(13) QCPE Program No. 517, Indiana University, Bloomington IN 47405. 
The basis set and the valence state ionization energies for the metal atoms were 
obtained from QCPE Program No. 387. 
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free 1 

coordinate 
Figure 2. Free energy surface of reactants and surrounding medium (r) 
and that of products and surrounding medium (p). Am denotes the 
vertical energy difference from the intersection of these two free energy 
surfaces to the free energy surface for the situation that the electron 
resides in the bridge. (No relaxation to the lowest point of the latter 
surface occurs, since the bridge orbital state serves only as a virtual state.) 
The plot is schematic: the lowest point of the upper curve does not 
correspond to the lowest free energy of Ox, + Ox, + B-, but rather to 
the lowest value when the generalized coordinate is constrained to lie on 
the line joining (q;,q\) to (qy,qq), and with the nuclear configuration 
around B being the same as in the Red, + Ox2 + B state [vertical 
transition at (q1' .q2*) ] .  

the donor to bridge (more precisely adjacent bridge fragment) 
charge-transfer absorption maximum huCT. 

Donor-Bridge Electronic Energy Difference at TS, Am, and 
Relation to bum. In the calculation, a quantity of particular 
interest is E - E,, where Ex is the donor energy level and E,, 
the energy of the (LUMO) unoccupied molecular orbital of the 
fragment adjacent to the donor. The extended Hiickel calculations 
may be too approximate to obtain this quantity accurately, and 
so we estimate it using hum, the absorption maximum associated 
with charge transfer from the donor to the bridge. In the case 
of electron transfer via the bridge, the solvent molecules and bridge 
geometry are those which the neutral bridge has, since the electron 
does not really reside on the bridge in the present case where the 
bridge is *off-resonance". For the present purpose we use a 
simplified treatment to obtain the relation between Am and hum, 
since the main purpose is to illustrate the perturbation-fragment 
method. It can be replaced later by a more elaborate solvationai 
treatment. A generalized coordinate qi is introduced for each 
reactant ( i  = 1, 2), to include both solvent and (low frequency) 
vibrational contributions to the free energy fluctuations. The free 
energy U of the reactants and bridge in reaction 12 is then written 
as 

where the first two terms are associated with the fluctuations 
around reactants 1 and 2, respectively, the next two are the 
equilibrium solvation free energies, namely the values at qi = qj, 
and the last term is the electronic energy of the entire system at 
qi = 41. Correspondingly, for the products, we write 

where the symbols have the same significance as before. The 
additivity approximation in eqs 14 and 15 can be replaced by a 
more elaborate treatment, such as that in refs 10 or 14. 

We denote the donor in reaction 12 by 1. For the system where 
an electron of the donor has been transferred to the adjacent 
fragment of the bridge, the free energy of the system Gb is given 
by 
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where Eb denotes the electronic energy of the entire system when 
q, = qf and q2 = 4;. No solvent orientationltibration polarization 
of the bridge occurs in this vertical transition. There is some 
electronic polarization and other terms, to which we briefly return 
later. 

We now note that to obtain hvcT, we set q1 = q! and q2 = q; 
in eqs 14 and 16 for G' and Gb and obtain 

hvCT = Gb(q\&$) - G'(q!,q$) 

= GFo - CYo + Eb - F + A1 (17) 
where XI = kl(qf - q92/2.  

Further, in the transition state TS we ha~e 'O9~~ 

qi' = 4; + m(qf - qP) (18) 
and Gr(q1*,q2*) = GP(ql*,q2'), leading to 
-(2m + l)(Xl + A,) = GPO + GPO - CYo - Gi.O + EP - E' 

= A @  (19) 
the right-hand side being the standard free energy of reaction AG" 
and X2 being k2(q4 - q;)2/2. 

The quantity Am is the energy of the lowest unoccupied mo- 
lecular orbital of the bridge fragment attached to the donor E, 
minus the donor orbital energy in the TS E,, Le., when qi = qid 
( i  = 1, 2). It is given by 

(20) 
Equations 14, 16, and 19 yield 

ATS = Gb(qi', qz') - G'(qi*r 42') 

(21) 
XI  ATs = --AGO + CYo - CY0 + Eb - E' x 

The first term in eq 21 also appears in ref 15, p 312. 
Equations 17 and 21 now yield 

XI 
x (22) 

where A is XI + X2, the reorganization energy for the donor to 
acceptor electron transfer. 

We consider next some omitted bridge effects. In the vertical 
charge-transfer spectrum from the donor to the adjacent fragment 
of the bridge, the electron on the bridge polarizes the electrons 
of the solvent, an effect which lowers the value of hvcT. Again, 
in the case of Am, which is involved in the charge transfer from 
the donor to acceptor via the superexchange mechanism, the 
transferring electron in the virtual orbitals of the bridge interacts 
with solvent polarization, both the electronic and the (static) 
orientational, an effect which may tend to lower Am. A detailed 
analysis of these aspects for hv, and A, requires a more elaborate 
calculation. For the present paper we shall simply assume that 
the difference Am - hvCT is given by eq 22. 

From the chargetransfer spectrumI6 of [(NHJ, Os(isanicotinic 
acid) J2+, hv, is known to be 1.75 eV. The standard free energy 
of the reaction, AGO of reaction 12, is available from the exper- 
imental study12 (-0.25 eV). The solvent plus vibrational reorg- 
anization parameter X is estimated from the temperature de- 
pendence studies of the electron transfer ratel2 to be 1.5 eV.  An 
estimate of XI can be obtained from the literature for related 
species, R u ( N H ~ ) ~ ~ + / ~ + ,  where XI has been estimated to be 0.6 
eV." It is also known that the reorganizational barrier for Os 
analogs is similar to the corresponding Ru complexes.Is Ac- 
cordingly, we take XI  for the species to be 0.6 eV. 
Equation 22 then yields a value of 1.25 eV for ATS. The energy 
of the LUMO of the isonicotinyl fragment, E,,, is presently 

Am = hVCT --(AGO x) 

~ 

(14) Marcus, R.  A. Discuss. Faraday Soc. 1960, 29, 21. 
(15) Marcus, R.  A.; Sutin, N .  Biochim. Biophys. Acra 1985, 811, 265. 
(16) Wishart, J.  F., personal communication. See also: Sen, J . ,  Taube, 

(17) Sutin, N. Prog. Inorg. Chem. 1983, 30, 441. 
(18) Bernhard, P.; Sargeson, A. M. Inorg. Chem. 1988, 27, 2582. 

H. Acra Chem. Scand. 1979, A33, 125. 

10 15 20 25 

Figure 3. Variation of H D A  with distance, calculated using eqs 10 and 
1 1 ,  the circles referring to eq IO and the pluses to eq 1 I .  The solid line 
is the least-squares line for the pluses and the broken line is the least- 
squares line for the circles. 

TABLE I: Calculated and Experimental HDA (cm-I) Values for the 
Series in Figure 1 

calc no. of prolines 
in bridge, n eq 10 eq 11 expt' 

1 15.1 16.1 3.9 
2 4.0 4.7 1.9 
3 0.1 1 .o 0.7 
4 0.3 0.3 
6,  A-' 0.9 0.9 0.7 

Reference 20. 

calculated (by extended Hilckel theory) to be -10.75 eV. 
Therefore, the donor orbital energy at  the transition state (E, of 
eqs 10 and 11) is given by E,, - Am = -12.0 eV.I9 

Calculated values of H D A  obtained using eqs 10 and 11 are given 
in Table I and its variation with distance is plotted in Figure 3. 

Discussion 
From the results in Table I and in Figure 3, it is seen that there 

is good agreement between the two methods. The results show 
that the method of subdividing a large bridge into smaller mo- 
lecular fragments indeed provides a reasonable approach to the 
calculation of H D A  for such systems. Further, in this particular 
instance of sequential fragments in a bridge, the results also 
validate the usage of only the interaction terms between near- 
est-neighbor fragments, even though this approximation need not 
be invoked. (In the full diagonalization of the entire bridge, 
interactions between all parts of the bridge are considered.) In- 
deed, in biological systems such as proteins, where the method 
of molecular fragments is expected to be most useful, considering 
only nearest-neighbor interactions may not be sufficient, since two 
amino acids, even though they may not be directly linked, may 
still approach each other closely because of the three-dimensional 
structure of the protein. The method of molecular fragments 
allows any such interaction to be considered. Further, this method 
provides a simple way of estimating the effect of any one particular 
amino acid (or a group of amino acids) on the rate of electron 
transfer by including the amino acid@) in the calculation or not. 

We next compare these calculated results with experimental 
estimatesm of H D A .  As noted previously,8v21 an error in the matrix 
elements connecting D and A to the bridge will affect the absolute 
value of H D A  but will have less effect in the variation of H D A  within 

(19) The extended Huckel value for the energy of the donor orbital, 
without correcting for solvational and reorganizational effects of the medium, 
was -13.45 eV. In the calculations, therefore, the energy of the donor orbital 
was adjusted upward by this difference, 1.45 eV, so that its new value is now 
-12.0 eV. 

(20) Isid, S. S.; Vassilian, A.; Wishart, J .  F.; Creutz, C.; Schwarz, H. A.; 
Sutin, N.  J .  Am. Chem. SOC. 1988, 110, 635. 

(21) Siddarth, P.; Marcus, R.  A. J .  Phys. Chem. 1990, 94, 8430. 
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TABLE 11: Energies and Occupation of the Relevant Fragment 
Orbitals# for n = 2 
_ _ _ _ _ _ ~  ~ 

isonicotinyl group (proline) I (proline)2 
-9.975, u 

-10.752, U,  T* -1 1.284, u 
-12.525, WC, T -12.499, occ -12.304, occ 
-12.788, occ, T -13.000, occ -1 3.036, occ 
-13.444, occ, T -13.328, WC -13.495, occ 
-13.593, OCC, T 

‘Energies are in eV. The donor (acceptor) level is -12.0 eV (cf. 
text). For the approximately planar isonicotinyl group, an approximate 
*,T* designation is also given. For the prolines, which are nonplanar, 
an obvious symmetry of that type was not apparent to us. The -9.975 
and -1 1.284 eV orbitals of (proline), are mainly carbonyl orbitals, in 
contrast to all remaining orbitals in the table. (Proline), and (proline), 
differ in that the latter includes the oxygen atom attached to Ru (cf. 
text). u = unoccupied; occ = occupied. 

a given series. In that case, the extended Hiickel method, which 
is semiempirical, is more suited to the latter than to the deter- 
mination of absolute values of HDA. Further, the ‘experimental” 
values themselves for HDA are dependent on the various factors 
which can affect the preexponential factor in the expression for 
the rate constant, and on the appropriateness of the method used 
to correct for the distance dependence of the Franck-Condon 
factor. 

The rate constant kET for electron transfer from a donor to an 
acceptor can be written using the Golden Rule approximation, 
a d S  

where HDA is the electronic matrix element being calculated 
presently and FC the Franck-Condon factor. In order to compare 
the distance dependence of the experimental rate constantsI2 with 
the calculated values of HDA it is necessary to allow for the distance 
dependence of FC. 

One way to correct for the variation of FC with distance is to 
study the temperature dependence of the rate c o n ~ t a n t , ~ ~ , ~ ~  a 
procedure used by Isied and co-workers. From the experimental 
heats of activation, the variation of the electronic factor alone in 
eq 23 and values of HD, are then obtained. In this method, it 
is tacitly assumed that nuclear tunneling is relatively unimportant. 
(When it occurs, it could affect the preexponential factor of kET 
and thereby affect the value of (HDAI2 inferred from the latter.) 
The experimental values of H D A  for the series are also given in 
Table I for comparison with the calculated values. As found 
previously,* though the absolute magnitudes are only in approx- 
imate agreement, their variation with distance is comparable, and 
in both cases the calculated dependence is approximately expo- 
nential: 

For the calculated values, /3 is 0.9 A-1, while the inferred ex- 
perimental value is 0.7 A-I. 

The results in Table I have been obtained using all the molecular 
orbitals of the intervening fragments. However, as noted pre- 
viously, it is mainly the orbitals close in energy to that of the donor 
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orbital that are primarily responsible for electron mediation be- 
tween the donor and the acceptor. It is therefore instructive to 
ask how many such orbitals are required in order to obtain rea- 
sonable estimates of both HDA and its variation with distance. For 
the present series, it is found that approximately five orbitals per 
fragment gives roughly the same value of HDA (15.3, 3.2,0.5, and 
0.2 cm-I for n = 1, 2, 3, and 4, respectively) and a @ of 0.9 A-l. 
The energy of these orbitals is given in Table 11. It is seen that 
both occupied and unoccupied orbitals are needed; however, in 
the present calculation, most (>80%) of the transfer in the present 
series is actually hole transfer, Le., makes use of the occupied 
orbitals of the bridge. 

Comparing the results in Table I with our previous calculations 
of the same series,* the &value is approximately unchanged. 
(Before, it was 0.8 A-1,) In those calculations, only the d orbitals 
for the metal atoms and no groups other than the bridge were 
considered. The present absolute values of H D A  are, on the other 
hand, significantly smaller. The difference between the results 
in ref 8 and those in Table I can be attributed to the increased 
number of orbitals used in Table I for the donor and acceptor 
principally because of the ligands, thereby diluting the relevant 
coefficients on the donor and on the acceptor atoms attached to 
the bridge. 

Conclusions 
In the present paper, a perturbation appracoh is developed for 

calculating the electronic matrix element for electron-transfer 
reactions between a donor and an acceptor linked by large or small 
bridges. For this purpose, the intervening bridge is subdivided 
into smaller molecular fragments. The approach is tested for a 
series of polyproline bridged systems and it is seen that the per- 
turbation approximation for such systems is a useful one which 
yields results in good agreement with those obtained from the 
diagonalization of the full bridge. 

It is next planned to apply this method to large systems such 
as proteins, where it may now be possible with this method to treat 
a larger portion of the protein than was done earlier,’I by con- 
siderably reducing the dimension of the bridge matrices needed 
to be diagonalized. This method should also permit the deter- 
mination of important ‘fragment paths” in proteins, the paths now 
consisting of amino acid residues, rather than the now customary 
consideration of paths of individual atoms.22 The advantages of 
using paths consisting of amino acid residues is that the effective 
donor-fragment, fragment-fragment, and fragment-acceptor 
interaction energies are typically much less than the energy 
difference between the relevant donor and bridge energy levels, 
and therefore the perturbation approach remains valid for a 
quantitative interpretation of the paths. 
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