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The role of resonance centers in obtaining large size matrices via an artificial intelligence (AI)
search is discussed. The results are used to develop for an Al search an evaluation function
which takes cognizance of isolated internal resonances in these many-state systems. The effect
of later-accepted states on resonance centers is included. This evaluation function and one
without a resonance factor are used in Part ITI of this series. A search is made there to select
zeroth-order vibrational states of benzene that are used in a diagonalization treatment of CH
overtone spectra. When there are many overlapping resonances, as in that case, a comparison
of results obtained with those two types of evaluation function is of particular interest.

I. INTRODUCTION

It is well known that the properties, rate, and mecha-
nism of intramolecular vibrational relaxation (IVR) play a
fundamental role in many areas of chemical dynamics.'?
Insight into aspects of Rice-Ramsperger—-Kassel-Marcus
(RRKM) and other treatments of unimolecular reac-
tions,>* multiphoton processes,” mode selective processes,®
and overtone-induced reactions' all involve elucidation of
the IVR behavior.

A basis-set quantum-mechanical study of vibrational
spectra and intramolecular dynamics in large or moderately
large molecules is often limited by the computational mem-
ory and time associated with the use of many zeroth-order
states in high-dimensional systems. For example, the C-H
overtone v = 3 spectrum for benzene’ involves potentially
millions of possible zeroth-order states, the density of vibra-
tional states in the corresponding energy range being around
420 states per cm ™! for the in-plane vibrations alone. In-
cluding them constitutes one of the main difficulties in stud-
ies of intramolecular dynamics. However, the use of artifi-
cial intelligence (AI) search methods®*? offers one possible
procedure for limiting the number of states to the more rel-
evant ones, and we have used it in our recent work.#'° Sever-
al papers have appeared in which Al techniques have been
used to solve various problems by Wyatt, Chu, and others,
for example, in multiphoton dynamics,'! vibrational eigen-
values,'’ computational physics,'* and organic syntheses.
These papers have shown the feasibility of a variety of AI
methods in their respective applications. Once the subset of
states is found the characteristics of vibrational spectrum
and dynamics can be treated using this reduced set of states
to diagonalize the Hamiltonian. Other efficient computa-
tional techniques for treating molecules with many states are
also being employed. '¢

In our current series of studies there is such a large num-
ber of states that internal resonances are common. Accord-
ingly, in the present work we consider a resonance effect on
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the procedure of the Al search in which the role of resonance
centers for a given coupling tier and for the shift relations for
these centers is discussed.

When there are many overlapping resonances, as in Part
III of this series, it is not certain, a priori, that an evaluation
function based on isolated resonances is an improvement
over one which is not. Results obtained with resonant and
nonresonant types of evaluation functions are given in Part
III.

1l. SEARCH TECHNIQUE

In an Alsearch method, a search algorithm and an eval-
uation function are employed. The relevant states of the sys-
tem in the zeroth-order approximation may be termed the
initial states or tier-1 states. In intramolecular dynamics
problems the occupation probability in the initial states will
become distributed in time over many final zeroth-order
states. We define a tier-2 state as a state that couples to a tier-
1 state and whose evaluation function is above a minimum
value. A tier-n state can be similarly defined via its coupling
to a tier-(# — 1) state. Thus, a tier-n state either does not
couple to a tier-(n — 2) or to a lower tier state, or the cou-
plings are so weak that the corresponding evaluation func-
tion is less than the assigned minimum. In this way, the the
zeroth-order states form paths, a tier-(n — 1) state being the
parent state of a tier-n state. An intuitive picture is given in
Ref. 8 or in the present Fig. 1.

The influence of a single state on the dynamics along the
path can be quite complicated. Sometimes, if any state in a
relevant path is deliberately excluded, the description of the
dynamics can be dramatically changed, for example, when
the paths to a significant state are so broken. In an Al search
the more important continuous paths are selected to form
the subset of important states. The Hamiltonian is then diag-
onalized with this subset of states.®°

In Al terminology, the Hamiltonian can be used to form
a special operator, the successor operator, which when ap-
plied to a chosen state, and appropriate matrix elements are
calculated, yields all states that can be directly reached in a
single step from the chosen state. The search algorithm de-
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termines the order in which possible zeroth-order states
(and paths) are considered, and an evaluation function is
used to provide an estimate of the importance of the possible
zeroth-order states. For intramolecular dynamics problems,
beam and best-first searches®'? are suitable. In a beam
search all possible paths are considered from every newly
found state whose evaluation function is above a minimum
value. A best-first search considers the most promising of all
incomplete paths first. Asin the earlier study it is practical to
use a compromise®'® whereby a beam search is performed
for the first two tiers of searching, so as to obtain a breadth
for the initial part of the search, and a best-first search is
utilized thereafter.

We consider a path shown in Fig. 1. In previous
work®'® the proposed evaluation function was motivated by
perturbation theory. The value C, of a tier-n state in a path
for one of the evaluation functions used there is given by

- lai—l,il
C, = — (H
i=2 AE; +AE,,_,
where
AE, =|a; —a,,| 2)
AEi,i— = lay —a,_ Li—1 b

and the a,; denote the energies of the basis set states, while
a;_,,; denotes the coupling element of the ith state to its
parent state, as shown in Fig. 1.

For the systems with a low density of states, the internal
resonance among states is not very important, and so Eq. (1)
was satisfactory, as in Refs. 8 and 9. However, for systems
such as benzene at moderate to high energies, the density of
states is so high that internal resonance among states is a
frequent occurrence. In this case, very small couplings may
play an important role. The evaluation function described
below is based on the behavior of isolated resonance centers.

1lIl. EVALUATION FUNCTION MODIFIED BY INTERNAL
RESONANCES

Motivated by the analysis given later in Secs. IV and V,
an evaluation function, a dimensionless quantity, which is a

Tier 2 Tier 3 Tier 4 Tier n—1 Tier n

Tier 1

FIG. 1. A single path involving n states.
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generalization of Eq. (1), is given by

C, = Wz[H |ai—1,ilf§(ai-1,[-1"115)]77(033), (3)

i=2
where W, is the weight factor of the tier-2 state in the path,
defined later in Eq. (17); fis the tier factor, which describes a
decay effect along the path chain; £ has a form such as that in
Eq. (1), or one for parallel circuits, or other variants:®

1
a; _1i-1,8;) = , 4a
S ) = R AR, ) )
£, au>=i[ L ] (4b)
P— 10— 12" 2 AE“ AE”-I y

where AE,; is the absolute value of the energy difference
between statesiandj, |E;, — E;|. Finally, 7 is a dimensionless
factor which characterizes the proximity of a tier-3 state to
being in resonance with a tier-1 state. Two alternative exam-
ples of functional forms for 7 are

a if |a;; — R\ <7

n(as;) =48 if 7<|a; — R, |<57 (5a)
1.0 if |as; — R;|> 57
and
n(as;) =1+ Adexp[ — Bla;; — R, |/7], (5b)

where @ > 8> 1, a5 is the energy of the zeroth-order tier-3
state, R, denotes the value that a,; would have for exact
resonance, i.e., R; is the resonance center for tier-3 states,
which is given later in Eqs. (11) and (13); 7 is the width of
the resonance (width at half-height) given later by Egs. (12)
and (14). In applying Eqs. (3) and (5) in Part II, we chose
some preassigned values for , 5, and for 4, B and f.

In the application of Eq. (3) to Part III, we included
only the influence of the resonances between tier-1 and tier-3
states, coupled via off-resonant tier-2 states. Higher order
resonant couplings exist, e.g., tier-1 and tier-4 states coupled
via off-resonant tier-2 and tier-3 states, but they were omit-
ted in our initial efforts to consider the effect of resonances
on the Al search. Equation (1) follows from Eq. (3) when
one sets W, = f= 5 = 1 and uses Eq. (4a) for &.

IV. RESONANCE CENTER AND ITS SHIFT AND WIDTH
A. Resonance center

To motivate the evaluation function given by Egs. (3) to
(5), we consider the effect of a resonance center on the cou-
pling between a tier-1 and a tier-3 state. In multistate sys-
tems the effect of a particular zeroth-order state on the final
eigenstates depends both on the couplings between this state
and other states and on the energy levels of these zeroth-
order states. The 3-state system provides a useful iltustration
for the role of the resonance in a 3-tier search.

We consider a 3-state system {¢, ,,,4, }, where ¢, cor-
responds the initial state (i.e., tier-1 state) and ¢, and ¢,
denote a tier-2 state and a tier-3 state, respectively. The ei-
genstates for this system ¢; can be written as %;_, c;ib,
where i = 1,2,3. ¢, denotes the eigenstate in which the com-
ponent ¢, is dominant. We write the Hamiltonian for this 3-
state system as
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ay, a4y 0
H=|a, ap» ay], (6)
0 ay ay

i.e., these tier-1 and tier-3 states are coupled only via a tier-2
state.

For illustrative purposes, the values a,, = 8800 cm ™/,
a,, =9000 cm~', and a@,;, =20 cm~' are used, values
which are typical for the v = 3 overtone of a CH stretching
mode in benzene. We next examine, through the quantity
c1,, the dependence of the eigenvector ¢, of the matrix H
and of the corresponding eigenvalue €, , upon a,;, for several
values of a,; . (¢?, reflects the ¢, contents in the ¢, -rich state
¥, .) The results show that in a very narrow range of values
of a,;, the coefficient ¢,, , and the eigenvalue of the ¢, -domi-
nant state change extremely rapidly with a,,. The more ¢?,
decreases from unity, the more ¢, can contribute to ¥, and
so be propagated along a path involving state 3. The range in
which ¢}, changes very rapidly with as;, is termed the reso-
nance range, and the value of a,; for which ¢?, is a minimum
(typically cusplike as in Figs. 2 and 3) will be termed the
resonance center and denoted by R;. If a;; is located in the
resonance range a very small value of the product of the
(#,,6,) and (¢,,¢; ) couplings, a,,a,;, will strongly influ-
ence the population ¢?, of ¢, in 1, (by definition of a reso-
nance), and propagate the influence of ¢, along the path
involving state 3. For example, if @;, occurs at the resonance
center R;, in the examples cited below, where a;, =20
cm ™', an a,, which is even as small as 0.5 cm ~ ! can reduce
population of ¢, in ¥, by as much as 40%, and when as in
the case studied ¢, is off resonant, it will correspondingly
increase the population of ¢, in ¢/, .

If a,;, the coupling between a tier-2 state and tier-3
state, is small the center of the resonance range R;, defined
above, is almost independent of a,;, as seen in Fig. 2. For this
simple case that a,; is small, the value of ;5 for which ¢3,
will be cusplike, namely R, is simply equal to the energy of

1

08

2,,=0.0, 0.5, 1.0, 1.5, 2.0 em™} |

08
T

R,

Population for ¢ in ¢;-dominant eigenvector

3
1 1 L 1 1 A
8794 8798 8798 8800 8802 8804
844 (cm'l)

FIG. 2. Resonance centers of 3-state systems for weak coupling, the nota-
tion is defined in Eq. (3), a,, = 8800, a,, =9000,4,, =20cm~".
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FIG. 3. Population analysis ¢, of the ¢-dominant eigenfunction of 3-state
systems for strong couplings. The notation is defined in Eq. (3),
a,, = 8800, a,, = 9000, a,;, =20 cm . a,; = 0.5, 24.5, 48.5, 72.5, and
96.5cm ~ !, respectively for (a)-(e). The resonance center occurs for these
cases, with a resonance center shift of 0.0, 3.0, 11.8, 25.9, and 46.5 cm ™},
respectively. The half width at half height of resonance center range for the
last four strong couplings are 7 = 6.0, 11.9, 18.0, and 24.8 cm ~ !, respective-
ly. The population is the square of the coefficient ¢,, of ¢, in the ¢, -domi-
nant eigenstate 1, .

the ¢, -dominant state in the two-state (¢, ,4,) system, de-
noted by «,,
7N

where @, is obtained from the standard two-state perturba-
tion expression

Ry =a,,

1
a, =‘i“ [(a” +ay) +(ay —ay)

4 2 172
x[l +L2] ] : (8)
(a; —ay)
If |a,,/a,, — a,,; | is small, we have
ai,
o) =a;,; ———. (9
ay —ay

For the actual system, &z, was obtained by the generalization
of Eq. (8), namely by a diagonalization of the tier-1 plus tier-
2 states.

B. Shift and width of resonance centers in a simple path

A path is called simple if along the path each parent
state couples with only one state in the next tier. Figure 1
provides an example of simple paths. If the coupling a,;,
between the state 2 and 3 in a simple path is relatively large,
the resonance center R; will be dependent on a,;, so that
there is a shift of the resonance center relative to the case
where a,; —0, as seen in the curves a to e in Fig. 3, where the
curves a—e correspond toa,; = 0.5, 24.5,48.5,72.5, and 96.5
cm ™, respectively. The resonance center for the curve a
represents &, , since a,; is so small. The shift R, — a, isseen
to be larger the larger a,;.
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We first consider the simple path, and then consider the
case where a tier-1 state is coupled to more than one tier-3
state (““tree path”). To make a rough estimate of R; — a,
for a simple path, we make use, in Appendix A, of a parti-
tioning method, which is particularly suited to a description
of a resonance where states are coupled via an off-resonant
state or states. In Eq. (A4) of Appendix A, it is noted that
exact resonance occurs when o, equals to ¢;, a; and a,
being the eigenvalues of the tier-1 and tier-3 states, as modi-
fied by the presence of the tier-2 state [cf. definition in Eq.
(A3) of Appendix A]. The value of a;; which satisfies
a, = a; is the exact position of the resonance center and is
denoted by R,;. From Eq. (A4) there we obtain (setting
E=q, in the denominators in Eq. (A4),

2
R, —aq = (10)
Gy — Oy
In a perturbation approximation one can set a; ~a,, in the
denominator of Eq. (10) and the latter equation then re-
duces to
2
R,—a,=—2 . (11)
Qy; —ay
However, in practice, Eq. (10) is used in Part III rather than
(11), since e, is available from a prediagonalization.

Equations (10) and (11) are seen in Table I to provide a
good approximation for calculating the shift of a resonance
center caused by a large coupling a,; between tier-2 states
and tier-3 states. In Table I, a comparison is given between
the computational results and those calculated from Egs.
(10) and (11) for the cases given in Fig. 4. The results in
Table I demonstrate that both Egs. (10) and (11) are in
good agreement with these computational results.

The width of the resonance range depends upon the cou-
pling elements a,, and a,,, and on other factors. The parti-
tioning method used in the Appendix A shows that the width
of the resonance range at half-height, denoted by 7, is given
approximately by

4 a,a
re— |22 (12)
V3 lan —ay,
TABLE L. Shift R; — R, of resonance center for 3-state systems.”
R, — R,, shift of resonance center
Computational Calc. by Calc. by
a,; results Eq. (10) Eq. (11)
24.5 2.92 2.97 3.00
48.5 11.7 11.6 11.8
72.5 26.1 26.0 26.3
96.5 46.4 46.1 46.6

® All numbers are in cm ™. The matrix is given by Eq. (1), with a;, = 8800,
a,, = 9000, and a,, = 20 cm~". For this case R, = 8798 cm ™.
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FIG. 4. Eigenvalues in resonance regions of 3-state systems for strong cou-
plings. The notation is defined in Eq. (3), 2,, = 8800, a,, = 9000, a,, =20
cm ™!, and a,; = 0.5,24.5, 48.5, 72.5, and 96.5 cm ™', respectively for (a)—
(e). Curve a is the solid line.

For the examples given in this paper, a,,/(a,, —a,,) is
fixed, a,, = 20 and a,, — a,; = 200, so that

Tex la23 ls

4.33

which is a good approximation to the results in Figs. 2 and 3.
It is expected, of course, that there will be substantial
“jump” in the eigenvalues at the resonance centers, as illus-
trated in Fig. 4. The nature of the state changes there, the
jump is, in effect, from one adiabatic state to another at the
avoided crossing which occurs at the resonance center.

A path accepted in the Al search procedure may con-
tain higher tier states. In our experience for a complicated
system such as benzene, tier-6 states or tier-7 states may have
to be considered. Nevertheless, we have used a factor 7 in
Eq. (3) only for resonances coupling tier-1 and tier-3 states
via off-resonant tier-2 states.

C. Shift of resonance centers in a tree path

In practical problems, a tier-2 state may couple with
several tier-3 states, as illustrated in Fig. 5. A path, in which
several states may share one common parent state, was
called a tree path. For completeness, we derive in Appendix
B an expression for the resonance center R, and for the
width for tree paths. However, in our present procedure used
in Part I1I only the simple path formulas for R; and 7 were
used.

As shown in Appendix B, the partitioning method is
applicable to this tree path case, there now being more than
one tier-3 state contributing to the matrices M_, and M,, in
Appendix A. If we take ¢, -rich eigenvalue of M, to still be
given by a,, it is shown in Appendix B that a resonance
center at the tier-3 stage for a tree path having K tier-3 states
is located, to a first-order approximation, at
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Tier 2 Tier 3

Tier 1

FIG. 5. A tree path.

2

az;s

R, =a, + —2—
az; —an

K ai,
x[1+ s 2 ,

(13)
=2 (a,, —ay )(03,3, —ay;)

where a,; is the coupling element between the tier-2 state
and the the particular tier-3 state whose value is being con-
sidered, a,; , i = 2,3,...,K are the coupling elements between
the tier-2 state and remaining K — 1 tier-3 states, ay,
i = 2,3,...,K are the positions of the latter X' — 1 tier-3 states.
The tree path reduces to a simple path when X = 1, and Eq.
(13) reduces to Eq. (11) correspondingly.

Table I1, given in Appendix B, shows the application of
Eq. (3), and the second-order approximation given by Eq.
(B18) in Appendix B, for several different tree paths. The
comparison between the results obtained using Eq. (13) and
those obtained by directly numerical calculation shows that
Eq. (13) provides a good description for shift of resonance
center for tree paths. In a way similar to that used for the
simple paths, the width of resonance center for tree paths is
found to be

A
NE]
where & is defined by Eq. (B12) (cf. Appendix B). If6 =0
or if § is negligible, Eq. (14) reduces to the simple path case,

as Eq. (12).

(14)

Tt ree

A0 (

ay —a; —06

V. EVALUATION FUNCTION

In the present work, the evaluation function given by
Eq. (3) incorporates, in addition to perturbation theory, the
following factors.
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TABLE II. Shift R, — a; of resonance center for tree path with 3 tier-3
state systems.*

Shift R, — a,
ay, a3, Eq. (B18) Eq. (B17)® Numerical
10.50 9200.00 0.55 0.55 0.56
8820.00 0.61 0.61 0.64
8810.00 0.66 0.68 0.73
8805.00 0.77 0.86 0.79
20.50 9200.00 2.12 2.12 2.21
8820.00 2.31 2.34 2.37
8810.00 2.53 2.61 2.76
8805.00 2.95 3.28 322
30.50 9200.00 4.68 4.68 4.77
8820.00 5.12 5.17 5.32
8810.00 5.59 5.78 6.00
8805.00 6.52 7.27 7.26
40.50 9200.00 8.26 8.26 8.36
8820.00 9.04 9.12 9.32
8810.00 9.86 10.19 10.40
8805.00 11.50 12.82 11.90

*Tree path structure is shown in Fig. 2. Notations of matrix elements are
defined in Eq. (Bl). In this set of examples, K =3, a,, = 8800.0,
ay, =9000.0, a,;, =20.00, a;; =9100.00, a,;, =200, a,; =10.00
cm ™!, a,, and a,; are parameters and given in the table, other elements are
zero.

> Quadratic term was used.

A. Resonance effect of beam search and definition of
w,

In general, in practical problems there may be more
than one initial tier-1 state and for each initial state there
may be many tier-2 states, or a tier-2 state may even couple
simultaneously with two or more initjal states. In these cases
the positions of the tier-1 rich states cannot be found simply
according to Eq. (9), obtained using two-state perturbation
theory. An alternative method, which we use in Part III, is to
perform a prediagonalization after the beam search for the
tier-2 states and to proceed as follows: The N initial zeroth-
order states ¢, are assigned as the first N states (tier-1 states)
in the search procedure. A set of (M — V) tier-2 states are
then collected in the beam search process, all these (M — N)
zeroth-order states being denoted by ¢;, j= N+ 1,.,.M.
The M eigenvectors obtained in the prediagonalization of
these M zeroth-order states are denoted by ¢,,

M
U= c;d; (15)
i=1
The population p; of tier-1 states in a ¢, is defined as
2 eyl (16)

ji=1
When p, is greater than a given threshold (such as 0.1),
which depends upon density of states and computer capac-
ity, the corresponding eigenvalue of ; will be considered as
a possible resonance center ;.

92”!;11) 8, 15 April 1992
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The more strongly a tier-2 state ¢
(= N+ LN +2,..,M) mixes with the initial states, the
more important the tier-2 state will be. In Eq. (3) this impor-
tance is described by a weight factor W,. For a practical Al
search, there may be several initial states, i.e., tier-1 states.
The number of tier-2 states are even more, such as more than
a hundred in the benzene system treated in Part III. It is
sometimes difficult even to assign the parent state for a par-
ticular tier-2 state, since it may couple with several initial
states. A weight factor for each of the (M — N) tier-2 states,
éi,k =N+ 1,...M denoted by W (¥ is defined using a pop-
ulation analysis procedure,

M N
Wik = 2 Z legCinls

i=1j=1

where i ranges over the M prediagonalized (tier-1 plus tier-
2) statesin Eq. (15) andj over the Ninitial zeroth-order tier-
1 states. Physically, this weight factor describes the relative
amount of the N initial states {¢,,4,,....65} mixed with a
tier-2 state ¢, after the beam search on the tier-2 level at the
starting point of a path proceeding from prediagonalized
states 9,. The weight factor W$* in Eq. (17) is written as
W, in the evaluation function given by Eq. (3).

(17)

B. The effect of later-accepted states on resonance
centers

As discussed previously, the influence of a tier-n state on
the global coupling picture depends on the proximity of that
state to a resonance center. Therefore, the evaluation func-
tion needs to contain a factor, denoted by 7, to characterize
this effect. The value of 7 is chosen to be given as in Eq. (3),
where R, is given by Eq. (10). If the interaction between the
tier-3 state and its parent state is very strong, i.e., if the ele-
ment @, is very large, the corresponding resonance center is
shifted from the value @, of the prediagonalized tier-1 rich
state (prediagonalized over tier-1 and tier-2 states). The po-
sition of this resonance center, for the values of a,, after
considering the effect from the latest accepted state, was cal-
culated using Eq. (10), which in turn was derived in Appen-
dix A for a simple path.

C. Choice of £ factor

The magnitude of the evaluation function for a tier-i
state ¢, in a path depends, among other things, upon the
mutual relationship between a,,, a,_,,_, and a,. In the
original equation, Eq. (1), and in Eq. (4a), the value of the
evaluation function is controlled by the larger of the two
quantities AE, =la; —a,| and AE;; _,
= |a; —a;_,;_,|. If the importance of ¢, were mainly de-
termined by the smaller of the two quantities AE, and
AE;; _,,thefactor £ given in Eq. (4b) would be more appro-
priate.

Combining the above discussions, we obtain the Al
search evaluation function shown in Eq. (3).

D. Application to an actual system

In this section we comment on the resonance centers
and R, that appear in Part III of this series, where the over-

Y. Zhang and R. A. Marcus: Intramolecular dynamics. il

tone spectra and intramolecular dynamics of CH stretching

of benzene are studied. In the application, tier-2 states were

obtained using the beam search technique. The number of
tier-2 states depends upon the system. For the overtone of
vey = 3 of benzene, about 200 tier-2 states were found. A

prediagonalization of the Hamiltonian using the initial

states plus these tier-2 states was performed to obtain corre-

sponding eigenvalues and eigenstates, which may be called

tier-2 eigenstates. A population analysis technique was used
to identify the tier-2 eigenstates which had major contribu-
tions from the initial states. The corresponding eigenvalues
of these particular tier-2 eigenstates were regarded as the
positions of resonance centers @, on the tier-2 level for the
system. The weight factors, denoted by W, of the tier-2
states which made an important contribution to the reso-
nance centers were obtained, as were the W,’s of other
states. The Al search procedure was continued so as to in-
spect higher tiers using the best-first search technique. When
a new tier-3 state is accepted, based on the value of the evalu-
ation function, the influence of the tier-3 state on the reso-
nance centers was also examined. The position of a reso-
nance center is shifted from «, to R, as in Egs. (11) and
(13). Using Eq. (5) one may estimate the importance of a
tier-3 state by comparing its energy with R, and change its
“value” accordingly.

The application and comparison of the present evalua-

tion functions to benzene are given in Part III of this series.

ACKNOWLEDGMENTS

This research was supported by the Caltech Consortium
in Chemistry and Chemical Engineering; Founding
Members: E. I. du Pont de Nemours and Company, Inc.,
Eastman Kodak Company, and Minnesota Mining and
Manufacturing Company. It is a pleasure to acknowledge
also the support of this research by a grant from the National
Science Foundation.

APPENDIX A: WIDTH OF TIER-3 RESONANCE RANGES

The width of resonance range is described by the width
at half-height of the resonance near the resonance center,
R;.

The partitioning method'” will be used to discuss this
width for a simple path. Equation (7) is rewritten as

ayn —E 0 a5
0 a;; — E ay;
h—e=
a a3 ay —E

(A1)

i.e., M denotes the partitioned matrix. By defining a matrix
M, by"

Maa =Maa _Mabe‘E lea’ (AZ)
where the definition of M matrices is given in Eq. (A1), we
have

Haa=<al—E b )1

B o —E (A3)
3
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where
2
o =a ay,
1 =4y — =
a,, — F
2
o —a ass
3 =43 ——————,
a,, — E
Q12053
B=—. (A4)
a,, —F

The eigenvalues E are obtained from det M,, = 0. Exact res-
onance occurs when ¢; = «,. When the resulting value of
a,; is denoted by R;, and the E in the expression for a; is
replaced by a,, Eq. (10) is obtained from Eq. (A4).

The eigenvalue E, of the ¢, -dominant eigenstate is easi-
ly found from Eq. (A3),

E, =}(a, +a;) + (e, — a1+ 432, (A5)
where
X =._ﬁ____ (A6)

a, —ay

The positive sign is chosen for E; in Eq. (AS5), since we wish
E,| totend toa, whenf tends to zero; E, being the eigenval-
ue of the ¢, -dominant state. Using the partitioning formula-
tion the coefficient c, in the ¢ subspace matrix'’

A_{aacg =0, (A7)

with coefficients in ¢, being ¢,, (the ¢, -rich state) and ¢,
(the ¢, -rich state), we have

. __ B
B+ (@, — B
At a resonance center, ¢, strongly mixes with ¢, such
that ¢?, = ¢2, = 0.5, as is seen in Figs. 3 and 4. Therefore, at

“half height” ¢? is midway between 0.5 and unity (cf. Figs. 2
and 3), and hence is given by

(A8)

J
a,, — E 0 0
0 a;, — E 0
h—e= Y 0 as5, — E
0 0 0
a Gy a3,
M., is a special form of the matrix B
bll 0 blm
0 b ce by,
B=| . = =, (B2)
Tm bIn bpnm

where the only nonzero elements are b, and b,,,, i = 1 to m.
It is not difficult to find its determinant | B | and inverse B ~/,

6071

. =% (A9)

Combining Eqgs. (A9), (A8), and (AS5) we have the equa-
tion for x

(1 —VTFax7)2 =42 (A10)
where x is defined by Eq. (A6). The roots of Eq. (A10) are
x= + (3/2).

The values of a,; corresponding to the roots of x are

+ + (2/V3)a,,a5 + a% — a3
a5z =4ay, — " ’
(122 - E
where E * is the eigenvalue corresponding to a5 . When, in
a perturbation approximation the E * in the denominator is
replaced approximately by a,,, the width at half-height for
the resonance is

(All1)

- 4
T=la§ —az3|=—

V3

which is the result given by Eq. (12).

Q1203 (A12)

@ —an

APPENDIX B: RESONANCE CENTER SHIFT FOR TREE
PATHS

We consider a tree path with X tier-3 states as shown in
Fig. 5. These tier-3 states are located at ds;, d33,,...,d3,3,,
respectively, where a,, is the energy of the particular tier-3
state whose value is being considered. The coupling elements
between the tier-2 states and these tier-3 states are a,;,
y3,5--5423,, Tespectively. To study the shift of resonance
centers we consider a,; as being a variable, and other a, 3
(j = 2,...,k) being given parameters.

The partitioning method'” will be again used to study
the shift of resonance center for tree paths. The Hamiltonian
may be written in the partitioned form,

0 a;,
0 a,,
""""""""" M, M,
0 G3, E(M M b) . (B1)
. . ba bb
a3,3, — K ay3,
a3, ay —E
I
IB|=P-C (B3)
where
m—1
P= 1] b; (B4)
=1
m—1|p. 2
C=b,,, — z |JL|, (B5)
by
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2
Bii=ti el m, (B6)
b, Cb2
B"—m}_.é— (B7)
B;'= b in by i#fi#tmj#m (B8)
i Cbﬁbjj’ » ’
Bote 20 i inm—1 (B9)
jm - Cb. b yhuyensy .
g

We again define a matrix M, M .« by Eq. (A2), but where now

M, M, M, and M,, are given by Eq. (B1). M,, con-
tains the quantity
0 0
MM—IM (0 ot 0 )(M-—l) E E
ab bb ba — 0 e 0 a23 bb (') 6
a2 G
a’ a,a
— (szl)zz( 12 122 23)' (B10)
412823 az

Applying Egs. (B3)-(B9) to M,, whose definition is given
in Eq. (B1), we find
1

Moy =— Bl11
( bb )22 022 —E—6 ( )
where

|‘723!

K
B12
Z P_E (B12)

Substituting Eqs. (B10)—-(B12) into Eq. (A2) we obtain

_ a, —E B )
= s B13
M, ( B ay —E ( )
where
e
it ey 4 (B14)
2 — & —
&
a3 =a;; ——a__%’ (B15)
22 — & —
Q,,0;5;
=— B16
B 4 —E—5 (B16)

At a resonance center, a;;, as a variable, satisfies ¢, = «;.
Using this expression and Eqs. (B14) and (B15) we have the
position of the resonance center being

a3;
R, = I —_— B17
3 =330, = q al+a22—E—-6 (B17)
or
aj 5 5
Ry =a +——— 1+ + + -
? 1 —E[ ay —E  (a,, — E)? ]
(B18)

For a perturbation process E~a,,, and §* and higher
terms in Eq. (B18) can be ignored, thus

@23 |2

Ry =ay + 2
ay; — a4y

x[l +3 o] ]
j=2 (ay —ay, )(‘13,3, —ay)

Table I shows the application of Egs. (B19) and (B18)
for several groups of different parameters. The results ob-
tained from Egs. (B19) and (B18) are in good agreement
with the directly numerical data.

If tier-3 states are located far away from «, ie.,
|ass, — @11 |»0, the summation term in Eq. (B19) can be
ignored. Thus, the tree path reduces to a single path, and Eq.
(B19) reduces to Eq. (11), as is expected.

In a similar way shown in Appendix A, the width of
resonance center for a tree path can be found being

4

V3

(B19)

0453 (B20)

Ttrec

ay —a; —96

where & is defined by Eq. (B12). If § = 0 or delta is negligi-
ble, Eq. (B20) reduces to single path case, as Eq. (12).
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