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focused attention on the different roles of quickly responding 
solvent electronic polarization and slowly responding orientational 
polarization. For this class of models, our exact results agree with 
the traditional estimates concerning these different roles. The 
quantum transition-state theory procedure of computing rate 
constants through the control of the electron path centroid was 
also examined and shown to be in accord with the traditional 
estimates. 

On the other hand, for the case of solvent electronic polarization 
fast compared to the time scale of the transferring electron, our 
exact results are in discord with those derived by Kim and Hynes 
through their application of a self-consistent mean field approx- 
i m a t i ~ n . ~ ”  We have shown that this approximate procedure 
applied to the spin-boson model reproduces the principal results 
of refs 4 and 5 for the free energy of activation. The differences 
between those results and the traditional estimates are thereby 
shown to be artifacts of the self-consistent mean field approxi- 
mation. 

In this paper we have considered primarily the case in which 
the high-frequency polarizations are effectively infinitely fast 

compared to all other dynamics. In general, through active vi- 
brations as well as electronic modes, there is a continuum of time 
scales. If we consider k,, as a function of hw,/K, where we 
represents an effective frequency for the spectrum of high-fre- 
quency polarization modes, we have from section 111, 

- -B(so + s,) + in [BKIl(BK)/4(BK,Bso+Bs,)l, h w , / K  - 0 
(5.1) 

A correct general theory must successfully interpolate between 
these limits. Whether the more general case can be usefully 
analyzed with the centroid principle or some other approach 
remains for future study. 
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The SchrGdinger equation for strongly interacting electron-transfer systems is described, the eigenvalues depending on a 
dielectric polarization function P(r) for the medium, on the internal coordinates q, and, when the electron transfer is coupled 
to a dissociation, on a generalized coordinate Q. A choice of the reaction coordinate for the variation of P(r), q, and Q, 
so as to reach the saddle-point, and the calculation of the free energy of activation are described. The question of suitable 
data on the solvent dependence of strong-overlap systems is also considered. 

Introduction 
Electron-transfer reactions between weakly interacting reactants 

are the customary ones treated theoretically. For such systems, 
the free energy of reorganization of the solvation has been cal- 
culated and used to obtain the reaction rate.’ Electron transfers 
are also expected to occur where there is a strong electronic orbital 
overlap of the reactants. A Schriidinger equation for the latter 
has been considered2v3 but corresponded to a case where the 
transferring electron was treated as “fast” relative to the electronic 
motion of the solvent! Of much more relevance to strong overlap 
electron transfers is, instead, the case where the transferring 
electron is treated as “slow”. An illuminating analysis of the 
problem is given by Chandler and co-workers, using a model 
Hamiltonian of the spin-boson type.5 

In the present paper, dielectric-continuum-based equations are 
given for the case of strong electronic interaction between the 
solvent and the reactants when the transferring electron is “slow”. 
This derivation is in agreement both with the analysis of Chandler 
and co-workers and with the analysis in ref 6, and corrects the 
development in ref 2. The dependence on any internal coordinates 
q, such as ligand bond lengths, and on any generalized dissociation 
coordinate Q is also included. The many-electron Schriidinger 
equation is first given and then specialized to the one-electron 
approximation, eq 15 below. A choice of a reaction coordinate 
for the calculation of the activation free energy is then described. 
The final eqs 14 and 15 are, apart from the fact that bond co- 
ordinates are also considered, equivalent to those used earlier6 in 
a related but simpler problem (eqs 10-12 of ref 6). In that system, 
an electron interacted strongly with a dielectric continuum and 
weakly with a second reactant. 
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In a concluding section, the question of comparing theory and 
experiment for the solvent effects on strong-overlap electron- 
transfer systems is considered, with a view to examining which 
data might be suitable for comparison with treatments of solvent 
effects for such reactions. 

Theory 
We first consider a system where a “slow” electron is moving 

in an electrostatic potential due to two nuclei, and this system 
interacts with an atom some distance away via the electronic 
polarizability a of the atom. The two nuclei have charges Z,e 
and &e. The electric field, due to a charge Z,e  situated at  RI,  
Z2e situated at  Rz, and to the electron of charge -e situated at  
r l r  varies with the field point r and is denoted by D(r): 

Z’e Z2e + - + -) (1) 
Ir - R’I Ir - R21 

The leading term in the quantum mechanical energy of interaction 
of the three charges with the distant atom is - ~ D ( r , ) ~ / 2 ,  where 
r, denotes the position of the atom. Thus, the Schr6dinger equation 
for this electron in such a system, is, in units of h = m = 1 

(1) For example: Marcus, R. A. J .  Chem. Phys. 1956, 24, 966. 
(2) Marcus, R. A. Faraday Symp. Chem. SOC. 1975, 10, 60. 
(3) Kim, H. J.; Hynes, J. T. J.  Phys. Chem. 1990,94,2736; J.  Chem. Phys. 

1990,93,5194,5211. “Fast” and ‘slow” treatments are described by Jortner, 
J. Mol. Phys. 1962, 5, 257. Various aspects of the electronic motion are 
discussed in ref 3 1. 

(4) Chandler, D. Private communication. 
( 5 )  Gehlen, J. N.; Chandler, D.; Kim, H. J.; Hynes, J. T. J.  Phys. Chem., 

(6) Marcus, R. A. J. Chem. Phys. 1965, 43, 3477. 
preceding paper in this issue. 
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where V(r,) denotes the last two Coulombic terms in parentheses 
in eq 1, with r replaced by r l .  

With this result in mind, we consider next the case where the 
electrons of two reactants (or of one reactant in the case of an 
intramolecular electron transfer) interact with each other, with 
the nuclei of the reactant or reactants, and with the orientational, 
vibrational, and electronic dielectric polarization of the surrounding 
medium. The set of coordinates r I ,  ..., rN of the N electrons of 
the reactant(s) is denoted collectively by re. The free energy of 
formation of nonequilibrium polarization state of the medium with 
an arbitrary orientational-vibrational polarization is then given 
by Wrcv(re) when the nuclear motion is treated as “slow” and the 
electronic motion of the solvent as “ f a ~ t ” , ~  a point to which we 
return later. 
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Wrev(re) = 
-[(l - 1/Dop)/8~]JD2(r)  dr -JP.D(r) dr + 2?rcJP2 dr 
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The interactions of a solute molecule (here, the donoracceptor 
pair) with the solvent molecules may be conveniently classified 
as noncorrelative (“electrostatic”) and correlative (electron- 
electron correlations). The former involve the charge, dipole 
(permanent and induced), and multipole interactions. The cor- 
relative interactions are, instead, those of the London dispersion 
type, typically attractive, and the exchange repulsion Pauli-ex- 
clusion type. Solutesolvent electron correlations of the dispersion 
type have been treated in ref 31 below, assuming a dielectric 
continuum for the solvent electrons. 

In the present paper, we focus our attention on the effect of 
the “electrostatic” solute-solvent interactions on the solute elec- 
tronic wave function. It will then be supposed that once these 
electronic wave functions of the different electronic states of the 
solute molecule (the donor-acceptor pair) have been determined, 
the correlative contribution to the solutesolvent interaction energy 
could be estimated, e.g., in the case of the London-dispersion 
forces, using second-order perturbation theory. For a noninter- 
acting donor and acceptor pair, such correlative interactions reduce 
to those for the reactants or products interacting with the solvent 
molecules in a way often modeled with Lennard-Jones 6-12 or 
exp-6 atom-atom potentials. 

There are several frequencies describing the electronic motion 
of the solute. Within a donor or acceptor molecule, the trans- 
ferring electron is of a fairly high frequency, of the order of several 
electronvolts. When there is also a weak donoracceptor electronic 
interaction, there is also a low-frequency component to the motion, 
a measure of lowness being the ratio of the spectral frequency 
corresponding to the difference between the energies of lowest 
and first excited electronic state of the solute in the transition state, 
as compared with the lowest excitation frequency of the electrons 
of the solvent. The first difference is perhaps of the order of 0.03 
eV for weak-overlap electron transfers, and of the order of -0.5 
eV for strong-overlap ones. In contrast, the lowest excitation 
frequency for the electrons of solvents is usually in the 5-10-eV 
range. The core electrons of the solute will have excitation energies 
comparable to those of the electrons of the solvent. 

The electronic wave function may be represented approximately 
as an antisymmetrized combination of terms 

where A is the antisymmetrizer operator and 9, denotes the wave 
function of the transferring electron. For a given *‘core, we note 
from eq 3 that two limiting situations, one preaveraged and the 
other not preaveraged over the core electrons, would have from 
a single term in eq 10 an energy difference proportional to 

* = A*te(rl) *core(r2..*rn) (10) 

(3) 
upon neglecting dielectric image effects. Here, D(r) is given by 

z,e N e 
D(r) = -Vr ( E- - c -) 

I Ir - Rjl 
(4) 

Ir - rjl 
the first sum being over the nuclei j of the reactants; 1 /c is 1 /Dop 
- l/D,, r is any point in the solvent, P(r) is a function7 of the 
arbitrary orientational-vibrational dielectric polarization (and not 
this polarization itself), and Dop and D, are the optical and static 
dielectric constants of the solvent, respectively. The integration 
over dr in eq 3 is only over the volume occupied by the solvent. 

The Schrodinger equation based on eqs 3 and 4 is given by 
N 

i=  I 
[--j/2CVi2 + J‘tot(re) + wrev(re)I*(re) = E*(re) ( 5 )  

where Vm(rc) denotes the Coulombic interaction of all the electrons 
in the reactants with each other and with the nuclei of the 
reactants, and of the nuclei with each other. For a given P(r), 
eq 5 is solved for the many-electron wave function *(re) and for 
the eigenvalue E .  Typically, in real systems, Vtot(re) can be 
expected to depend on internal coordinates qi and, in the disso- 
ciative case, on Q. So, therefore, will *(re) and E. For brevity, 
however, the q;s and Q are suppressed in the notation. 

For the weak-overlap case, the present results are readily shown 
to reduce to those obtained earlier in ref 1: When the overlap 
is weak, we have 

(6) 
where qi(re) is a many-electron wave function having the electronic 
distribution of the reactants (i = r or p denoting that the extra 
electron is on the donor or acceptor, respectively) and c, + cp = 
1. The overlap of \k, and \kp is neglected in this normalization 
for the weak-overlap problem. 

Introduction of eq 6 into 5, multiplication by \kj* (j = r or p), 
and integration over re yields 

where 

*(re) N cr1/2*r(re) + cp1/2*p(re) 

E = Gi (i = r, p) (7) 

Gi = l* i*[ - iE Vi2 + V(r,) + Wrm(re) \ki dr, (8)  
2i=1 1 

Gi is the energy (really free energy of solvation plus qi- and 
Q-dependent electronic energy of the solute) when the extra 
electron is on the original donor (i = r), or on the acceptor (i = 
p). Thus, eqs 7 and 8 yield 

a result deduced earlier in ref 1 by a related argument. As in 
ref 1, P is then obtained by minimizing G,(P), subject to the 
constraint on P imposed by eq 9. The resulting P(r) is given later 
in eq 16. As noted earlier, these G/s  are also, in general, a function 
of the qi’s and of any Q. 

(7 )  Reference 6,  Appendix 1 

with 

The term in eq 3 linear in Dcore(r) cancels in eq 11 and so does 
not contribute to this A,!?. The integration over the field point 
r in eq 11 is only over the volume occupied by the solvent (cf. 
similar remark earlier for eq 3) .  

Because there is little fluctuation in the charge distribution 
arising from the core electrons, even in the transition-state region, 
one can expect terms such as the hE given by eq 11 to be small. 
In contrast, the analogous term for the transferring electron can 
be quite large, particularly in weak-overlap electron transfers. In 
the latter, when the electron is transferred a significant distance 
in the transition state, there is a large fluctuation inside the wave 
function \kte of that electron in the transition-state region: there 
are two contributions to it arising from electronic configurations 
having two very different charge distributions. Thus, for this 
electron, it is important to use the D(r) for electron 1 which is 
not preaveraged, as in eq 4 and in eq 14 below. 

We consider next a common approximation in which the 
transferring electron 1, situated at r l ,  moves in an averaged po- 
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tential V(rl), the sum of the Hartree potential (due to the nuclei 
and the other electrons of the reactants) and the exchange-cor- 
relation potential. The problem then reduces to a one-electron 
one, with the Wrev(r,) given by eq 3, but with re replaced by rl 
and with D now given by eq 14 instead of by eq 4 

WredrI) = 
-[(l - 1/Dop)/8a]JD2(r) dr - I P . D ( r )  dr + 2 ? r c 1 P 2  dr 

(13) 

where pmre(r‘) denotes the electron charge density a t  r‘ due to the 
N - 1 core electrons. In eq 14 the major difference in the con- 
tribution of electron 1 and the core to D(r) in this approximation 
is that D(r) contains an average over the positions of the core 
electrons but not over that of electron 1. 

The one-electron Schrodinger equation thus is 

[-Y2vl2 + V r l )  + wrev(rl)l*(rI) = E*(rl) (15) 

where V(rl) may depend on the qi’s and Q, and, hence, so may 
E and 9 ( r l ) .  Equation 15, without the qi’s and Q, replaces eq 
5.4 of ref 2, and eq 14 replaces eq 5.2 there. These alterations 
correspond to the replacement referred to by Gehlen et aL5 fol- 
lowing their eq 4.9. 

In solving eq 15, one procedure is to first omit the electronic- 
orientational-vibrational polarization of the solvent and use a 
quantum chemical calculation for the N-electron problem to 
determine properties such pcore(r), the charge density of the core, 
and V(rl), the effective potential (Hartree plus exchange corre- 
lation). Equation 15 is then solved for some parametrized form 
of P(r), the parameters chosen so that P(r) can be varied smoothly 
from the function appropriate to the reactants to that appropriate 
to the products, and for some parametrized form of the qi and 
Q discussed later. In an initial parametrization for P(r), the 
function associated with weak-overlap electron transfers given by’ 
eq 16 can be used 

4rcP(r) = D,(r) + m[D,(r) - Dp(r)] (16) 

and eq 15 then solved. In eq 16, D,(r) and Dp(r) denote the D(r) 
when the reacting species are the reactants and the products, 
respectively. (Equation 16 is obtained by minimizing Wrev(r,) in 
eq 13, with D replaced by D,, subject to the weak-overlap con- 
straint imposed by eq 9 that Wrev(rl) remains unchanged when 
D, is replaced by D,.)’ m is a Lagrangian parameter’ which equals 
0 initially and -1 at  the end of the reaction. Depending on the 
model chosen (e.g., two spheres, ellipsoid, or other), D,(r) and 
Dp(r) will take on different but readily expressed forms. 

When P(r) is in the form given by eq 16, it is derivable from 
a potential and the dot products of the vectors in eq 13 can then 
be rewritten more simply in terms of purely scalar quantities 
(products of charges and potentials): We let Di(r) denote a field 
derivable from a potential ai(r) 

Di(r) = -Vrai(r) (17) 

where pi(r‘) is a charge density, which may be a sum of terms 
with or without one or more delta functions, and with or without 
an additional continuum charge distribution. We then have 

LJDi(r).Dj(r) 4?r dr = Jpi(r) aj(r)  dr = Jpj(r) a i ( r )  dr 
(19) 

and a standard expression for @(r) for the rand  p configurations 
(e.g., ellipsoid) can now be introduced appropriately for each of 
the terms in eq 3 for Wrev(rl). 

When the eigenvalue E also depends on internal coordinates 
qi with equilibrium values q{ and q i P  in the “diabatic” r and p states, 
and when the dependence of the energy E of each of these two 
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diabatic states on qi is quadratic, the qi which minimizes G,, subject 
to the constraint given by eq 9, satisfies* 

qi = q: + m(qir - q i p )  (20) 
In a particular case9 of electron transfer accompanied by 

dissociation along some displacement coordinate q, when the 
potential energy U has a Morse-curve dependence on q in the 
diabatic state r, and an exponential repulsive-like potential energy 
dependence on q9J0 in the diabatic state p, we have 

U,(q) = D(1 - e-aq)2, Up(q) = Ae-2bq (21) 

Q = e x p ( - 4  (22) 

it is convenient to introduce a coordinate: 

When fl  = a and A = D, as in refs 9 and 10, it is seen from 
eq 21 that the energy of each diabatic state r and p is a quadratic 
function of Q. In parallel with eq 20, one again finds, from the 
variation of G, subject to the constraint imposed by eq 9, 

(23) 

with m being the same as in eqs 16 and 20. The values of @ and 
QP are seen from eq 21 to be 1 and 0, respectively. Equation 21 
still applies even when Up has some shallow minimum due to an 
attractive term represented approximatelyI0 by -B exp(-q), but 
now Q P  is no longer zero. 

The eigenvalue E in eq 15 is varied by varying the parameter 
m in P(r), qi, and, in the dissociation case, Q, so as to obtain the 
saddle-point value of E along the reaction coordinate. An im- 
provement in this E can be made by then expressing P(r) in terms 
of its Fourier components ck and truncating the set of components. 
The eigenvalue E in eq 15 is now a function of these cis, qi’s, and 
Q, and techniques analogous to those” employed in current 
calculations of potential energy surfaces for reactions can be used 
to reach the saddle-point region, the P(r), qi, and Q in the 
“transition state” previously obtained by varying m now serving 
as a starting point. The resulting E,  minus the E when m = 0, 
is the solvational and electronic contribution to the free energy 
of formation of the transition state. 

Using the functional two-state form for E obtained in ref 5 or 
often used before, we would have 

Q = Q + m ( Q  - QP) 

E(P,q,Q) = 

where now the dependence of the diabatic eigenvalues G, and G 
of the r and p states, respectively, on P, q, and Q is exhibited) 
explicitly, and where the coupling term Hrp may be chosen to best 
fit the results of the initial quantum chemistry calculation. While 
there is no need to impose the functional form given by eq 23, 
it may serve as an approximate estimate of E for comparison with 
the actual solution of eq 15 which minimizes E in the saddle-point 
region. 

Discussion 
Various extensions of the present eq 5 are possible: (1) use of 

a statistical mechanical treatment, e.g., a Monte Carlo calculation 
or a mean spherical approximation, instead of dielectric continuum 
one for the solvent; (2) inclusion of dynamics of the bath, in which 
the different time scales of the vibrational and orientational po- 
larization of the solvent are incorporated in the calculation (large 
quantum effects due to the high-frequency vibrations of water 
in weak-overlap electron transfers have been found, for exam- 
ple);I2J3 (3) adding the effect of the correlative solute-solvent 

!‘z[Gr(P,q,Q) + Gp(PA*Q)I - [Y4(Gr - Gp)’ + Hr,21”2 (24) 

~ ~~ 

(8) For example, for weak-overlap electron transfers: Marcus, R. A. 

(9) Savcant, J.-M. J .  Am. Chem. SOC. 1987, 109, 6788. 
(10) Wentworth, W. E.; George, R.; Keith, H. J .  Chem. Phys. 1969, 51, 

(1 1) For example: Schlegl, H. B. Adu. Chem. Phys. 1987.67, Part 1 ,  249. 
(12) Bader, J .  S.; Kuharski, R. A,; Chandler, D. J.  Chem. Phys. 1990,93, 

Discuss. Faraday SOC. 1960, 29, 21; J .  Chem. Phys. 1965, 43, 679. 
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interaction mentioned earlier. Extensions l'"-17 and 2I2J3 have 
been implemented previously for weak-overlap electron transfers. 
In this way, important issues have been discussed, such as the 
quadratic nature of the free energy curves for fluctuations of the 
solvent polarization, quantum effects for the solvent medium, more 
rigorous formulations of chemical dynamics and of transition-state 
theory, and relation of simulations to more analytical treatments, 
such as the mean spherical or dielectric continuum approximations. 
Indeed, use of the mean spherical approximation (MSA), which 
allows for the finite size of the solvent molecules and which has 
shown a fair agreement with computer simulations, shows that 
corrections to dielectric continuum theory (enlarging the ion size) 
provides a correction in the desired direction.I8 Dielectric con- 
tinuum theory is expected to be increasingly valid the smaller the 
size of the solvent molecules relative to that of the reactants.I9 

At present, computer simulations of electron-transfer reactions 
do not usually include the electronic polarizability of the solvent, 
but it can be arguedZo that the model used in ref 12 does match 
the orientational response of the solvent to an electric field. It 
will be interesting to make comparisons with a solvent model which 
does contain the electronic polarizability explicitly.21 

Of particular interest is, of course, the comparison of theory 
and experiment for the case of strong-overlap electron-transfer 
(ET) processes. For weak-overlap ET's, it may be recalled, the 
comparison often involves the testing of theoretically based re- 
lationships, such as that between rate constants k of cross reactions 
and of self-exchange reactions, the effect of AGO on k's, the 
'inverted effect", the effect of the activation overpotential on 
electrochemical k's, the relation between homogeneous and 
electrochemical k's and between ET k's and the spectral maxima 
of charge-transfer spectra, among others. An advantage of testing 
relationships between k's is that the sometimes unknown detailed 
molecular-based properties approximately cancel in the ratios being 
examined. There have also been comparisons of theoretical and 
experimental absolute values of k's, and comparisons of the ex- 
perimental and theoretically based (usually dielectric continu- 
um-based) dependence of k's on the solvent, as well as correlations 
between solvent effects on one electron-transfer reaction or 
charge-transfer spectral series with those in another system (e.g., 
with the Kosower Z-function or with Gutmann's donor or acceptor 
number, among others).22 

Marcus 
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(17) Zhou, Y. Q.; Friedman, H. L.; Stell, G .  Chem. Phys. 1991,152,185, 
which gives a detailed exposition of the MSA model. 
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tistical mechanical) calculations of solvation energies are given in: Jean- 
Charles, A.; Nocholls, A,; Sharp, K.; Honig, B.; Tempezyk, A.; Hendrickson, 
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1991, 36, 435. 

(20) Chandler, D. Private communication. 
(21) A discussion of the effect of approximatelty including the electronic 

polarizability (via mean field or via a classical oscillator) on dynamical and 
static properties is given in: Sprik, M., Klein, M. L., Watanabe, K. J .  Phys. 
Chem. 1990,94,6483, and in references cited therein. Electronic polariza- 
bility has been included in molecular dynamics free energy simulations by: 
Straatsma, T. P.; McCammon, J. A. Chem. Phys. Left. 1991, 177, 433. 

(22) The many examples of studies of the solvent dependence of charge- 
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Chem. 1991,95, 192. Abbott, A.; Ruling, J. Ibid. 1990,94,8910. Blackbum, 
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T. J.  J. Am. Chem. SOC. 1980, 102, 1289. 

The theoretical relationships described earlier depend on the 
existence of a simple functional form in the theory. In particular, 
for the dielectric continuum model' and for a more general sta- 
tistical mechanical one? a quadratic dependence of the free energy 
of fluctuations along the reaction coordinate has played a major 
role. For strong-overlap ET's, either some simple functional 
behavior should be formulated, or, in its absence, the tests of theory 
with experiments will be largely limited to the comparison of 
individual k's rather than of relationships. Such individual com- 
parisons are subject to the well-known uncertainties which ac- 
company the calculation of potential energy surfaces for these 
many-coordinate systems, and indeed of few-coordinate systems. 

The simplest functional behavior for a strong-overlap system 
would be a two-state one, an approximation to eq 24: Some 
generalized reaction coordinate q could be introducedZ3 and the 
results of the original quantum plus statistical mechanical cal- 
culations fitted by an equation of a functional form 

where now there is only a dependence on the generalized coor- 
dinate. 

k is the curvature of the "assumed quadratic" G, and G, curves, 
and the fitted Hrp is assumed independent of q. 

The free energy barrier to reaction is obtained by minimizing 
G with respect to q, so defining q = q', and then subtracting the 
value of G at  q = q', the equilibrium value of q for the reactants 

(27) 
It is also useful to consider the chargetransfer spectrum, since 

it may be the most relevant for investigating the solvent depen- 
dence of strong-overlap electron transfers. The spectral absorption 
maximum of the relevant charge-transfer spectral transition is 
the value of G for the upper state a t  q = qr minus that for the 
lower state, and so equals 

AG' = G(q*) - G(q') 

From eqs 26 and 28, we have 

(29) h v y  = [ (A + AGO)' + 4Hr,Z]'/2 

where 

As noted earlier, the G,, G,, and H, appearing in eqs 25 to 28 
are evaluated by fitting G(q) to the results of the quantum plus 
statistical mechanical calculations. 

Equation 27 for AG' can be further approximated when the 
value of q' obtained from the minimization of G, is approximately 
equal to the q where the curves G,(q) and G,(q) intersect. We 
then have G,(q') = G,(q*). In that case, one finds 

A AGO 2 
AG' = i( 1 + h) - H , ~  

Equation 31 contains for strong-overlap ET's the quadratic de- 
pendence of the free energy of reaction customary for weak-overlap 
ET's, but under the additional assumptions just cited. 

If the A appearing in these equations proves to have the same 
additive property that it has for weak-overlap ET's, Le., if the A 
for a cross reaction, XI2, is given by 

where A l l  and X22 are the A's for the self-exchange reactions, and 
if the Hrp for the cross reaction is approximately the average of 
that for the self-exchange reactions, then when lAGoI is not too 

(23) For example, for weak ET'S such a coordinate was introduced in: 
Marcus, R. A. Discuss. Faraday SOC. 1960, 29,21, and an analogous coor- 
dinate was introduced in ref 13. 
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large, we would have for the rate constants k 
k12 = (kllk*2K12)"2 (33)  

upon neglecting the term quadratic in AGO in eq 31. 
0), there is the 

well-known result that huamax J 4AG' when AGO = 0. For 
strong-overlap processes, eqs 29 and 31 lead instead to eq 34 when 
AGO = 0: 

For weak-overlap electron transfers (Hrp 

Given suitable examples for the testing of such relationships 
and, thereby, the assumptions on which they are based, a principal 
role for theory then becomes one of calculating the reorganization 
parameter X appearing in eqs 29 and 31, for example, by calcu- 
lating G(q) with the continuum model for the solvent as discussed 
earlier in this article, or, better still, by using a molecular model 
such as one which is computer-simulation based or employs a 
statistical mechanical approximation such as the mean spherical 
one. Until now, one method which has been used24-26 to ap- 
proximate X for strong-overlap ET's is to assume that it equals 
the value for the corresponding weak-overlap ET, multiplied by 
a factor a2 

a = Hrp/huamax (35)  

a2 representing in first-order perturbation theory the factor de- 
scribing the reduction of charge on the donor center due to the 
strong electronic interaction of the charged centers. a has been 
estimated from the intensity of the chargetransfer spectrum, when 
the extra electron is not too delocalized. 

The focus of the present paper has been on a formulation for 
treating solvent effects. A principal question is whether there is 
a body of experimental data on strong-overlap ET's with which 
such calculations can be compared. The most well-known 
strong-overlap ET system is the Creutz-Taube ion.24327 

r 

However, its charge-transfer spectrum exhibits no solvent de- 

(24) Creutz, C. Prog. Inorg. Chem. 1983, 30, l, and references cited 

(25) Cannon, R. D. Electron Transfer Reactions; Buttenvorths: London, 
therein. 

1990, and references cited therein. 

P. Inorp. Chem. 1974. 13, 2273. 
(26) Cf.: Hush, N. S. Prog. Inorg. Chem. 1967,4391. Mayoh, B.; Day, 

(27 jcreutz, C.; Taube, H. J .  Am. Chem. SOC. 1969,91,3988; 1973.94, 
1086. 
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pendence. This ion is now accepted as having a highly delocalized 
electronic charge distribution.28 Its Hv is estimated to be very 
large (about 3300 cm-I). It is perhaps also worth recalling here 
that a three-site model has been used recently for this very 
strong-overlap ET system, as being more appropriate than a 
two-site one, the third site being the pyrazine bridge.29,30 Other 
examples with these very large Hrp's are also available ( -3500 
cm-1),24,25 as are many with much smaller Hrp(s (e.g., 100-400 
cm-' usually),24 the value of H depending upon the metal atoms, 
the bridge, and the other ligan& The replacement of the (NH,), 
in the Creutz-Taube ion with the large (bpy),Cl-, for example, 
serves to reduce Hv to 400 by diluting the molecular orbital 
coefficient on the Ru and so reducing HT An example of a system 
with an Hrp of 900 cm-' is the Creutz-Taube ion with the Ru- 
(NH3), replaced by Fe(CN),. 

The study of the solvent dependence of the C T  spectrum for 
systems of Hrp in an intermediate range would be of interest. 
Because of the bridges involved, a three-state or multistate model 
may be more appropriate than the two-state one just discussed. 
Nevertheless, it is possible that the results of the quantum and 
statistical mechanical calculations may still be fitted to equations 
such as 25 and 26. 

Another class of systems involving a strongoverlap ET would 
be inner-sphere ET's where the bridging group is very small. 
However, the small distance between the redox centers in this case 
can imply that only a relatively small change occurs in the ge- 
ometry of the charge distribution interacting with the solvent. The 
resultant relatively small solvent dependence of these electronic 
effects could be dominated by other solvent effects. Other 
strong-overlap ET's, such as those accompanied by bond disso- 
ciation and separation of the fragments, would have additional 
specific solvent effects which would tend to obscure the solvation 
effects considered in eq 5 .  Perhaps the most suitable systems for 
investigating solvent effects of the type discussed in ref 3 and here 
are charge-transfer spectra and intramolecular ET's, with a 
charge-separation distance which is not too small and where the 
value of Hv is intermediate in value. Such systems are expected 
to be better regarded as three-site ones than as two-site, or, de- 
pending on the ligands, a four-or-more-site system. 
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