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focused attention on the different roles of quickly responding
solvent electronic polarization and slowly responding orientational
polarization. For this class of models, our exact results agree with
the traditional estimates concerning these different roles. The
quantum transition-state theory procedure of computing rate
constants through the control of the electron path centroid was
also examined and shown to be in accord with the traditional
estimates.

On the other hand, for the case of solvent electronic polarization
fast compared to the time scale of the transferring electron, our
exact results are in discord with those derived by Kim and Hynes
through their application of a self-consistent mean field approx-
imation.>® We have shown that this approximate procedure
applied to the spin—boson model reproduces the principal results
of refs 4 and 5 for the free energy of activation. The differences
between those results and the traditional estimates are thereby
shown to be artifacts of the self-consistent mean field approxi-
mation.

In this paper we have considered primarily the case in which
the high-frequency polarizations are effectively infinitely fast

compared to all other dynamics. In general, through active vi-
brations as well as electronic modes, there is a continuum of time
scales. If we consider K as a function of hw./K, where w,
represents an effective frequency for the spectrum of high-fre-
quency polarization modes, we have from section III,

In kct ~ —ﬂso +In [ﬂKll(ﬁK)/q(ﬁK’ﬁso)]v hwe/K @

~ —B(s, + s.) + In [BKI,(BK) /3(BK,Bso+Bs.)], hw./K — 0
$.1

A correct general theory must successfully interpolate between
these limits. Whether the more general case can be usefully
analyzed with the centroid principle or some other approach
remains for future study.
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The Schrodinger equation for strongly interacting electron-transfer systems is described, the eigenvalues depending on a
dielectric polarization function P(r) for the medium, on the internal coordinates q, and, when the electron transfer is coupled
to a dissociation, on a generalized coordinate Q. A choice of the reaction coordinate for the variation of P(r), q, and Q,
so as to reach the saddle-point, and the calculation of the free energy of activation are described. The question of suitable
data on the solvent dependence of strong-overlap systems is also considered.

Introduction

Electron-transfer reactions between weakly interacting reactants
are the customary ones treated theoretically. For such systems,
the free energy of reorganization of the solvation has been cal-
culated and used to obtain the reaction rate.! Electron transfers
are also expected to occur where there is a strong electronic orbital
overlap of the reactants. A Schrodinger equation for the latter
has been considered?3 but corresponded to a case where the
transferring electron was treated as “fast” relative to the electronic
motion of the solvent.* Of much more relevance to strong overlap
electron transfers is, instead, the case where the transferring
electron is treated as “slow”. An illuminating analysis of the
problem is given by Chandler and co-workers, using a model
Hamiltonian of the spin—boson type.’

In the present paper, dielectric-continuum-based equations are
given for the case of strong electronic interaction between the
solvent and the reactants when the transferring electron is “slow”.
This derivation is in agreement both with the analysis of Chandler
and co-workers and with the analysis in ref 6, and corrects the
development in ref 2. The dependence on any internal coordinates
g, such as ligand bond lengths, and on any generalized dissociation
coordinate Q is also included. The many-electron Schrodinger
equation is first given and then specialized to the one-electron
approximation, eq 15 below. A choice of a reaction coordinate
for the calculation of the activation free energy is then described.
The final eqs 14 and 135 are, apart from the fact that bond co-
ordinates are also considered, equivalent to those used earlier® in
a related but simpler problem (eqs 10-12 of ref 6). In that system,
an electron interacted strongly with a dielectric continuum and
weakly with a second reactant.
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In a concluding section, the question of comparing theory and
experiment for the solvent effects on strong-overlap electron-
transfer systems is considered, with a view to examining which
data might be suitable for comparison with treatments of solvent
effects for such reactions.

Theory

We first consider a system where a “slow” electron is moving
in an electrostatic potential due to two nuclei, and this system
interacts with an atom some distance away via the electronic
polarizability « of the atom. The two nuclei have charges Ze
and Z,e. The electric field, due to a charge Z,e situated at R,,
Z,e situated at R,, and to the electron of charge —e situated at
1, varies with the field point r and is denoted by D(r):

Ze VA
SN

- +
r-r| Ir-Rj [r-Ry

The leading term in the quantum mechanical energy of interaction
of the three charges with the distant atom is —aD(r,)?/2, where
r, denotes the position of the atom. Thus, the Schrodinger equation
for this electron in such a system, is, in units of & = m = 1

[-/aVi% + V(1) - /oaD ()] ¥ (r)) = E¥(r) ()

D(r) = —V,(

(1) For example: Marcus, R. A. J. Chem. Phys. 1956, 24, 966.
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(3) Kim, H. J.; Hynes, J. T. J. Phys. Chem. 1990, 94, 2736, J. Chem. Phys.
1990, 93, 5194, 5211. “Fast” and “slow” treatments are described by Jortner,
J. Mol. Phys. 1962, 5, 257. Various aspects of the electronic motion are
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(6) Marcus, R. A. J. Chem. Phys. 1965, 43, 3477,

0022-3654/92/2096-1753%03.00/0 © 1992 American Chemical Society



1754 The Journal of Physical Chemistry, Vol. 96, No. 4, 1992

where V(r,) denotes the last two Coulombic terms in parentheses
in eq 1, with r replaced by r,.

With this result in mind, we consider next the case where the
electrons of two reactants (or of one reactant in the case of an
intramolecular electron transfer) interact with each other, with
the nuclei of the reactant or reactants, and with the orientational,
vibrational, and electronic dielectric polarization of the surrounding
medium. The set of coordinates ry, ..., ry of the N electrons of
the reactant(s) is denoted collectively by r.. The free energy of
formation of nonequilibrium polarization state of the medium with
an arbitrary orientational-vibrational polarization is then given
by W,.,(r.) when the nuclear motion is treated as “slow” and the
electronic motion of the solvent as “fast”,” a point to which we
return later.

Wee(re) =
~[(1 - 1/Dy;) /87] f DX(r) dr - j‘ P-D(r) dr + 2mc [ P2 dr
3)

upon neglecting dielectric image effects. Here, D(r) is given by

g Ze % e 4
D(r) = -V, j|r—R1-|_i=l fr-rf ()

the first sum being over the nuclei j of the reactants; 1/cis 1/D,
- 1/D,, r is any point in the solvent, P(r) is a function’ of the
arbitrary orientational-vibrational dielectric polarization (and not
this polarization itself), and D,, and D are the optical and static
dielectric constants of the solvent, respectively. The integration
over dr in eq 3 is only over the volume occupied by the solvent.

The Schrédinger equation based on egs 3 and 4 is given by

N
[_I/ZEVX'2 + I/tot(re) + Wrev(re)]‘p(re) = E\I’(re) (5)

where V,,(r.) denotes the Coulombic interaction of all the electrons
in the reactants with each other and with the nuclei of the
reactants, and of the nuclei with each other. For a given P(r),
q 5 is solved for the many-electron wave function ¥(r.) and for
the eigenvalue E. Typically, in real systems, V,,(r.) can be
expected to depend on internal coordinates g; and, in the disso-
ciative case, on Q. So, therefore, will ¥(r,) and E. For brevity,
however, the ¢;s and Q are suppressed in the notation.

For the weak-overlap case, the present results are readily shown
to reduce to those obtained earlier in ref 1: When the overlap
is weak, we have

U(re) = ¢ P (r,) + ¢,/ 2 (r) (6)

where ¥,(r,) is 2 many-electron wave function having the electronic
distribution of the reactants (i = r or p denoting that the extra
electron is on the donor or acceptor, respectively) and ¢, + ¢, =
1. The overlap of ¥, and ¥, is neglected in this normalization
for the weak-overlap problem.

Introduction of eq 6 into 5, multiplication by ¥;* (j =r or p),
and integration over r, yields

E=¢G, (i=rp) )]

where
1N
Gi= fUH|-5Z V2 + V) + W) [Tidr, ()
i=1

G, is the energy (really free energy of solvation plus g;- and
Q-dependent electronic energy of the solute) when the extra
electron is on the original donor (i = r), or on the acceptor (i =
p). Thus, eqs 7 and 8 yield

G,(P) = G,(P) ®

a result deduced earlier in ref 1 by a related argument. As in
ref 1, P is then obtained by minimizing G (P), subject to the
constraint on P imposed by eq 9. The resulting P(r) is given later
in eq 16. As noted earlier, these G;’s are also, in general, a function
of the ¢’s and of any Q.

(7) Reference 6, Appendix 1.
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The interactions of a solute molecule (here, the donor—acceptor
pair) with the solvent molecules may be conveniently classified
as noncorrelative (“electrostatic”) and correlative (electron—
electron correlations). The former involve the charge, dipole
(permanent and induced), and multipole interactions. The cor-
relative interactions are, instead, those of the London dispersion
type, typically attractive, and the exchange repulsion Pauli-ex-
clusion type. Solute—solvent electron correlations of the dispersion
type have been treated in ref 31 below, assuming a dielectric
continuum for the solvent electrons.

In the present paper, we focus our attention on the effect of
the “electrostatic” solute~solvent interactions on the solute elec-
tronic wave function. It will then be supposed that once these
electronic wave functions of the different electronic states of the
solute molecule (the donor-acceptor pair) have been determined,
the correlative contribution to the solute—solvent interaction energy
could be estimated, e.g., in the case of the London-dispersion
forces, using second-order perturbation theory. For a noninter-
acting donor and acceptor pair, such correlative interactions reduce
to those for the reactants or products interacting with the solvent
molecules in a way often modeled with Lennard-Jones 6—12 or
exp-6 atom—atom potentials.

There are several frequencies describing the electronic motion
of the solute. Within a donor or acceptor molecule, the trans-
ferring electron is of a fairly high frequency, of the order of several
electronvolts. When there is also a weak donor—acceptor electronic
interaction, there is also a low-frequency component to the motion,
a measure of lowness being the ratio of the spectral frequency
corresponding to the difference between the energies of lowest
and first excited electronic state of the solute in the transition state,
as compared with the lowest excitation frequency of the electrons
of the solvent. The first difference is perhaps of the order of 0.03
eV for weak-overlap electron transfers, and of the order of ~0.5
eV for strong-overlap ones. In contrast, the lowest excitation
frequency for the electrons of solvents is usually in the 5-10-eV
range. The core electrons of the solute will have excitation energies
comparable to those of the electrons of the solvent.

The electronic wave function may be represented approximately
as an antisymmetrized combination of terms

¥ = AV, (1) Y oe(rs..1,) (10)

where A is the antisymmetrizer operator and ¥, denotes the wave
function of the transferring electron. For a given V.., we note
from eq 3 that two limiting situations, one preaveraged and the
other not preaveraged over the core electrons, would have from
a single term in eq 10 an energy difference proportional to

AE = f (\I,COI'CI(DC()I'Cz - <\I,COI'EIDCOI'BI\IIWTG>2)PI,COI'C> dr

= f (\I,COI‘CI(DCOTE - (\yCOTJDCOl'CI‘pCOI'C))zl‘I,COI'C) dr (1 l)
with

D vy = 12
forlt) = V.2 = (12)
The term in eq 3 linear in D, (r) cancels in eq 11 and so does
not contribute to this AE. The integration over the field point
rin eq 11 is only over the volume occupied by the solvent (cf.
similar remark earlier for eq 3).

Because there is little fluctuation in the charge distribution
arising from the core electrons, even in the transition-state region,
one can expect terms such as the AE given by eq 11 to be small.
In contrast, the analogous term for the transferring electron can
be quite large, particularly in weak-overlap electron transfers. In
the latter, when the electron is transferred a significant distance
in the transition state, there is a large fluctuation inside the wave
function ¥,. of that electron in the transition-state region: there
are two contributions to it arising from electronic configurations
having two very different charge distributions. Thus, for this
electron, it is important to use the D(r) for electron 1 which is
not preaveraged, as in eq 4 and in eq 14 below.

We consider next a common approximation in which the
transferring electron 1, situated at r;, moves in an averaged po-
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tential ¥(r,), the sum of the Hartree potential (due to the nuclei
and the other electrons of the reactants) and the exchange-cor-
relation potential. The problem then reduces to a one-electron
one, with the W, (r,) given by eq 3, but with r, replaced by r,
and with D now given by eq 14 instead of by eq 4

Wrev(rl) =
~[(1 - 1/Dyy) /8] { DA(r) ar - [ PD@) dr + 27c [P dr
(13)

-Ze % /
e ) pcore(r ) dr
m”‘"“(ﬂrwn+§m—kﬂ+~f P )“”

where pr.(r') denotes the electron charge density at r’ due to the
N -1 core electrons. In eq 14 the major difference in the con-
tribution of electron 1 and the core to D(r) in this approximation
is that D(r) contains an average over the positions of the core
electrons but not over that of electron 1.

The one-electron Schrodinger equation thus is

AV + V() + W (r)]¥(r) = E¥(r)  (15)

where ¥(r;) may depend on the g;’s and Q, and, hence, so may
E and ¥(r,). Equation 15, without the ¢;’s and Q, replaces eq
5.4 of ref 2, and eq 14 replaces eq 5.2 there. These alterations
correspond to the replacement referred to by Gehlen et al.’ fol-
lowing their eq 4.9.

In solving eq 15, one procedure is to first omit the electronic—
orientational-vibrational polarization of the solvent and use a
quantum chemical calculation for the N-electron problem to
determine properties such p.(r), the charge density of the core,
and ¥(r,), the effective potential (Hartree plus exchange corre-
lation). Equation 15 is then solved for some parametrized form
of P(r), the parameters chosen so that P(r) can be varied smoothly
from the function appropriate to the reactants to that appropriate
to the products, and for some parametrized form of the g; and
@ discussed later. In an initial parametrization for P(r), the
function associated with weak-overlap electron transfers given by!
eq 16 can be used

4xcP(r) = D.(r) + m[D.(r) - Dy(r)] (16)

and eq 15 then solved. In eq 16, D,(r) and D,(r) denote the D(r)
when the reacting species are the reactants and the products,
respectively. (Equation 16 is obtained by minimizing W,,(r,) in
eq 13, with D replaced by D,, subject to the weak-overlap con-
straint imposed by eq 9 that W,(r;) remains unchanged when
D, is replaced by D,,)! m is a Lagrangian parameter' which equals
0 initially and -1 at the end of the reaction. Depending on the
model chosen (e.g., two spheres, ellipsoid, or other), D,(r) and
D,(r) will take on different but readily expressed forms.

When P(r) is in the form given by eq 16, it is derivable from
a potential and the dot products of the vectors in eq 13 can then
be rewritten more simply in terms of purely scalar quantities
(products of charges and potentials): We let Di(r) denote a field
derivable from a potential &,(r)

D(r) = -V, &(1) an
&1 = {o0)/i-¥dr (18)

where p;(r') is a charge density, which may be a sum of terms
with or without one or more delta functions, and with or without
an additional continuum charge distribution. We then have

= SDED® dr= o) 30 dr = [0 a0 ar
(19)

and a standard expression for ®(r) for the » and p configurations
(e.g., ellipsoid) can now be introduced appropriately for each of
the terms in eq 3 for W, (r,).

When the eigenvalue E also depends on internal coordinates
g; with equilibrium values g and ¢p in the “diabatic” r and p states,
and when the dependence of the energy E of each of these two
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diabatic states on g, is quadratic, the g; which minimizes G,, subject
to the constraint given by eq 9, satisfies®

g, = g + m(g' - gP) (20)

In a particular case® of electron transfer accompanied by
dissociation along some displacement coordinate g, when the
potential energy U has a Morse-curve dependence on ¢ in the
diabatic state r, and an exponential repulsive-like potential energy
dependence on ¢*'0 in the diabatic state p, we have

Ulq) = D(1 - e9)%, Uy(q) = Ae™4 (21)
it is convenient to introduce a coordinate:
Q = exp(-ag) (22)

When 8 = e« and 4 = D, as in refs 9 and 10, it is seen from
eq 21 that the energy of each diabatic state r and p is a quadratic
function of Q. In parallel with eq 20, one again finds, from the
variation of G, subject to the constraint imposed by eq 9,

Q=0 +mQ-0o) (23)

with m being the same as in eqs 16 and 20. The values of @F and
QP are seen from eq 21 to be 1 and 0, respectively. Equation 21
still applies even when U, has some shallow minimum due to an
attractive term represented approximately'? by -B exp(—agq), but
now QP is no longer zero.

The eigenvalue E in eq 15 is varied by varying the parameter
m in P(r), g,, and, in the dissociation case, Q, so as to obtain the
saddle-point value of E along the reaction coordinate. An im-
provement in this E can be made by then expressing P(r) in terms
of its Fourier components ¢, and truncating the set of components.
The eigenvalue E in eq 15 is now a function of these ¢;’s, ¢;s, and
Q, and techniques analogous to those!! employed in current
calculations of potential energy surfaces for reactions can be used
to reach the saddle-point region, the P(r), ¢;, and @ in the
“transition state” previously obtained by varying m now serving
as a starting point. The resulting E, minus the £ when m = 0,
is the solvational and electronic contribution to the free energy
of formation of the transition state.

Using the functional two-state form for E obtained in ref S or
often used before, we would have

E(Pg,Q) =
l/Z[Gr(P’qu) + Gp(P»q’Q)] - [1/4(Gr - Gp)2 + }Irpzll/2 (24)

where now the dependence of the diabatic eigenvalues G, and G,
of the r and p states, respectively, on P, q, and Q is exhibitej
explicitly, and where the coupling term H,, may be chosen to best
fit the results of the initial quantum chemistry calculation. While
there is no need to impose the functional form given by eq 23,
it may serve as an approximate estimate of E for comparison with
the actual solution of eq 15 which minimizes E in the saddle-point
region.

Discussion

Various extensions of the present eq 5 are possible: (1) use of
a statistical mechanical treatment, e.g., a Monte Carlo calculation
or a mean spherical approximation, instead of dielectric continuum
one for the solvent; (2) inclusion of dynamics of the bath, in which
the different time scales of the vibrational and orientational po-
larization of the solvent are incorporated in the calculation (large
quantum effects due to the high-frequency vibrations of water
in weak-overlap electron transfers have been found, for exam-
ple);'213 (3) adding the effect of the correlative solute—solvent

(8) For example, for weak-overlap electron transfers: Marcus, R. A.
Discuss. Faraday Soc. 1960, 29, 21; J. Chem. Phys. 1965, 43, 679.

(9) Savéant, J.-M. J. Am. Chem. Soc. 1987, 109, 6788.

(10) Wentworth, W. E.; George, R.; Keith, H. J. Chem. Phys. 1969, 51,
1791.

(11) For example: Schlegl, H. B. Adv. Chem. Phys. 1987, 67, Part 1, 249.

(12) Bader, J. S.; Kuharski, R. A.; Chandler, D. J. Chem. Phys. 1990, 93,
230.



1756 The Journal of Physical Chemistry, Vol. 96, No. 4, 1992

interaction mentioned earlier. Extensions 147 and 2!%!3 have
been implemented previously for weak-overlap electron transfers.
In this way, important issues have been discussed, such as the
quadratic nature of the free energy curves for fluctuations of the
solvent polarization, quantum effects for the solvent medium, more
rigorous formulations of chemical dynamics and of transition-state
theory, and relation of simulations to more analytical treatments,
such as the mean spherical or dielectric continuum approximations.
Indeed, use of the mean spherical approximation (MSA), which
allows for the finite size of the solvent molecules and which has
shown a fair agreement with computer simulations, shows that
corrections to dielectric continuum theory (enlarging the ion size)
provides a correction in the desired direction.!® Dielectric con-
tinuum theory is expected to be increasingly valid the smaller the
size of the solvent molecules relative to that of the reactants.'®

At present, computer simulations of electron-transfer reactions
do not usually include the electronic polarizability of the solvent,
but it can be argued? that the model used in ref 12 does match
the orientational response of the solvent to an electric field. It
will be interesting to make comparisons with a solvent model which
does contain the electronic polarizability explicitly.?!

Of particular interest is, of course, the comparison of theory
and experiment for the case of strong-overlap electron-transfer
(ET) processes. For weak-overiap ET’s, it may be recalled, the
comparison often involves the testing of theoretically based re-
lationships, such as that between rate constants k of cross reactions
and of self-exchange reactions, the effect of AG® on k’s, the
“inverted effect”, the effect of the activation overpotential on
electrochemical ks, the relation between homogeneous and
electrochemical ks and between ET &’s and the spectral maxima
of charge-transfer spectra, among others. An advantage of testing
relationships between ks is that the sometimes unknown detailed
molecular-based properties approximately cancel in the ratios being
examined. There have also been comparisons of theoretical and
experimental absolute values of k’s, and comparisons of the ex-
perimental and theoretically based (usually dielectric continu-
um-based) dependence of k’s on the solvent, as well as correlations
between solvent effects on one electron-transfer reaction or
charge-transfer spectral series with those in another system (e.g.,
with the Kosower Z-function or with Gutmann’s donor or acceptor
number, among others).??

(13) Warshel, A.; Chu, Z. T. J. Chem. Phys. 1990, 93, 4003.

(14) Kuharski, R. A.; Bader, J. S.; Chandler, D.; Sprik, M.; Klein, M. L ;
Imprey, R. W. J. Chem. Phys. 1988, 89, 3248, Bader, J. S.; Chandler, D
Chem. Phys. Lett. 1989, 157, 501.

(15) King, G.; Warshel, A. J. Chem. Phys. 1990, 93, 8682.

(16) Enomoto, Y.; Kakitani, T.; Yoshimori, A.; Hatano, Y.; Saito, M
Chem. Phys. Lett. 1991, 178, 235. Yoshimori, A.; Kakitani, T. J. Chem. Phys.
1990, 93, 5140.

(17) Zbhou, Y. Q.; Friedman, H. L,; Stell, G. Chem. Phys. 1991, 152, 185,
which gives a detailed exposition of the MSA model.

(18) Cf. Jayaram, B,; Fine, R.; Sharp, K.; Honig, B. J. Phys. Chem. 1989,
93, 4320. Further results on comparison of continuum and molecular (sta-
tistical mechanical) calculations of solvation energies are given in: Jean-
Charles, A.; Nocholls, A.; Sharp, K.; Honig, B.; Tempezyk, A.; Hendrickson,
T. F.; Still, W. C. J. Am. Chem. Soc. 1991, 113, 1454.

(19) In this context, an interesting description of some experiments is given
by: Krishtalik, L. I; Alpatova, N. M.; Ovsyannikova, E. V. Electrochim. Acta
1991, 36, 435.

(20) Chandler, D. Private communication.

(21) A discussion of the effect of approximatelty including the electronic
polarizability (via mean field or via a classical oscillator) on dynamical and
static properties is given in; Sprik, M., Klein, M. L., Watanabe, K. J. Phys.
Chem. 1990, 94, 6483, and in references cited therein. Electronic polariza-
bility has been included in molecular dynamics free energy simulations by:
Straatsma, T. P.; McCammon, J. A. Chem. Phys. Lett. 1991, 177, 433.

(22) The many examples of studies of the solvent dependence of charge-
transfer spectra or of ET k's include, among others: Kolling, O. W. J. Phys.
Chem. 1991, 95, 192. Abbott, A.; Rusling, J. Ibid. 1990, 94, 8910. Blackburn,
R.L.; Hupp, J. T. Ibid. 1990, 94, 1788. Anderson, K. A.; Wherland, S. Inorg.
Chem. 1990, 29, 3822. Nelsen, S. F.; Kim, Y.; Blackstock, S. C. J. Am. Chem.
Soc. 1989, 111, 2045. McManis, G. E.; Gochev, A.; Nelson, R. M.; Weaver,
M. J. J. Phys. Chem. 1989, 93, 7733. Sutin, N.; Brunschwig, B. S.; Creutz,
C.; Winkler, J. R. Pure Appl. Chem. 1988, 60, 1817. Fung, E. Y.; Chua, A
C. M Curtis, J. C. Inorg. Chem. 1988, 27, 1294. Blackbourn, R. L.; Hupp
J.T. J Phys. Chem. 1988, 92, 2817. Hupp, J. T.; Meyer, T. J. 1bid. 1987
91,1001. Lay, D. A. J. Phys. Chem. 1986, 90, 878 Powers, M. J.; Meyer,
T. J. J. Am. Chem. Soc. 1980, 102, 1289,
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The theoretical relationships described earlier depend on the
existence of a simple functional form in the theory. In particular,
for the dielectric continuum model! and for a more general sta-
tistical mechanical one,? a quadratic dependence of the free energy
of fluctuations along the reaction coordinate has played a major
role. For strong-overlap ET’s, either some simple functional
behavior should be formulated, or, in its absence, the tests of theory
with experiments will be largely limited to the comparison of
individual &’s rather than of relationships. Such individual com-
parisons are subject to the well-known uncertainties which ac-
company the calculation of potential energy surfaces for these
many-coordinate systems, and indeed of few-coordinate systems.

The simplest functional behavior for a strong-overlap system
would be a two-state one, an approximation to eq 24: Some
generalized reaction coordinate ¢ could be introduced? and the
results of the original quantum plus statistical mechanical cal-
culations fitted by an equation of a functional form

G(q) = /(G + Gp) = [Ju(G, = Gp)* + H2'2 - (25)

where now there is only a dependence on the generalized coor-
dinate.
k n2 k 2 [}
Glg) = 5(a-4), Gyq) = (g~ )+ AG° (26)
k is the curvature of the “assumed quadratic” G, and G, curves,
and the fitted H,, is assumed mdependent of g.
The free energy barrier to reaction 1s obtained by minimizing

G with respect to g, so defining ¢ = ¢*, and then subtracting the
value of G at ¢ = ¢, the equilibrium value of ¢ for the reactants

AG* = G(g*) - G(¢) 27

It is also useful to consider the charge-transfer spectrum, since
it may be the most relevant for investigating the solvent depen-
dence of strong-overlap electron transfers. The spectral absorption
maximum of the relevant charge-transfer spectral transition is
the value of G for the upper state at ¢ = ¢* minus that for the
lower state, and so equals

= [{G(q") - GO + 4H )2 (28)
From eqs 26 and 28, we have
hvpa* = [(A + AG®)? + 4H %'/ (29)
where
A= S - o (30)

As noted earlier, the G,, G,,, and H,, appearing in eqs 25 to 28
are evaluated by fitting G(g) to the results of the quantum plus
statistical mechanical calculations.

Equation 27 for AG* can be further approximated when the
value of ¢* obtained from the minimization of G, is approximately
equal to the ¢ where the curves G.(g) and Gp(q) intersect. We
then have G,(¢*) = G,(¢* ) In that case, one finds

AG® 2
AG? =3 l + x -H, (31)
Equation 31 contains for strong-overlap ET’s the quadratic de-
pendence of the free energy of reaction customary for weak-overlap
ET’s, but under the additional assumptions just cited.

If the A appearing in these equations proves to have the same
additive property that it has for weak-overlap ET’s, i.e., if the A
for a cross reaction, A,,, is given by

Az 2 B+ Ap) (32)

where A;; and A,, are the A’s for the self-exchange reactions, and
if the H,, for the cross reaction is approximately the average of
that for the self-exchange reactions, then when |AG®°| is not too

(23) For example, for weak ET’s such a coordinate was introduced in:
Marcus, R. A, Discuss. Faraday Soc. 1960, 29, 21, and an analogous coor-
dinate was introduced in ref 13.
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large, we would have for the rate constants &
kiy & (ki kpKi)'/? (33)

upon neglecting the term quadratic in AG® in eq 31.

For weak-overlap electron transfers (H,, ~ 0), there is the
well-known result that Av,™* ~ 4AG* when AG® = 0. For
strong-overlap processes, eqs 29 and 31 lead instead to eq 34 when
AG® = 0

hvamax rp i)
N 4[l+( )]/(1——) (34)

Given suitable examples for the testing of such relationships
and, thereby, the assumptions on which they are based, a principal
role for theory then becomes one of calculating the reorganization
parameter A appearing in eqs 29 and 31, for example, by calcu-
lating G(g) with the continuum model for the solvent as discussed
earlier in this article, or, better still, by using a molecular model
such as one which is computer-simulation based or employs a
statistical mechanical approximation such as the mean spherical
one. Until now, one method which has been used?*% to ap-
proximate A for strong-overlap ET’s is to assume that it equals
the value for the corresponding weak-overlap ET, multiplied by
a factor o?

a = H,,/hv,"* (35)

a? representing in first-order perturbation theory the factor de-
scribing the reduction of charge on the donor center due to the
strong electronic interaction of the charged centers. a has been
estimated from the intensity of the charge-transfer spectrum, when
the extra electron is not too delocalized.

The focus of the present paper has been on a formulation for
treating solvent effects. A principal question is whether there is
a body of experimental data on strong-overlap ET’s with which
such calculations can be compared. The most well-known
strong-overlap ET system is the Creutz-Taube ion.2%%

5+

/A
(NHa)sRUN () NRU(NHo)s

However, its charge-transfer spectrum exhibits no solvent de-

(24) Creutz, C. Prog. Inorg. Chem. 1983, 30, 1, and references cited
therein.

(25) Cannon, R. D. Electron Transfer Reactions; Butterworths: London,
1990, and references cited therein.

(26) Cf.: Hush, N. 8. Prog. Inorg. Chem. 1967, 8, 391. Mayoh, B.; Day,
P. Inorg. Chem. 1974, 13, 2273.

(27) Creutz, C.; Taube, H. J. Am. Chem. Soc. 1969, 91, 3988; 1973, 94,
1086.
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pendence. This ion is now accepted as havmg a highly delocalized
electronic charge distribution.?® Its H,, is estimated to be very
large (about 3300 cm™). It is perhaps also worth recalling here
that a three-site model has been used recently for this very
strong-overlap ET system, as being more appropriate than a
two-site one, the third site being the pyrazine bridge.?>*® Other
examples with these very large H s are also available (~3500
cm™),242% as are many with much smaller H,;’s (e.g., 100-400
cm™! usually),? the value of H,, depending upon the metal atoms,
the bridge, and the other hgancrli The replacement of the (NH;)
in the Creutz-Taube ion with the large (bpy),Cl-, for example,
serves to reduce H,, to 400 cm™,% by diluting the molecular orbital
coefficient on the Ru and so reducmg Hy, Anexample of a system
with an H,, of 900 cm™ is the Creutz—Taube ion with the Ru-
(NH,); replaced by Fe(CN)s.

The study of the solvent dependence of the CT spectrum for
systems of H, in an intermediate range would be of interest.
Because of the bridges involved, a three-state or multistate model
may be more appropriate than the two-state one just discussed.
Nevertheless, it is possible that the results of the quantum and
statistical mechanical calculations may still be fitted to equations
such as 25 and 26.

Another class of systems involving a strong-overlap ET would
be inner-sphere ET’s where the bridging group is very small.
However, the small distance between the redox centers in this case
can imply that only a relatively small change occurs in the ge-
ometry of the charge distribution interacting with the solvent. The
resultant relatively small solvent dependence of these electronic
effects could be dominated by other solvent effects. Other
strong-overlap ET’s, such as those accompanied by bond disso-
ciation and separation of the fragments, would have additional
specific solvent effects which would tend to obscure the solvation
effects considered in eq 5. Perhaps the most suitable systems for
investigating solvent effects of the type discussed in ref 3 and here
are charge-transfer spectra and intramolecular ET’s, with a
charge-separation distance which is not too small and where the
value of H,, is intermediate in value. Such systems are expected
to be better regarded as three-site ones than as two-site, or, de-
pending on the ligands, a four-or-more-site system.
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