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Global Potential Energy Contour Plots for Chemical Reactions. Multiple Reaction Paths, 
Bifurcations, and Appikabiiity of Transition-State Theory 

R. A. Marcus 
Noyes Laboratory of Chemical Physics, California Institute of Technology,' Pasadena, California 91 125 
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A global reduced-dimensional potential energy contour plot is described for the simultaneous representation of reactions 
X3Y + X2 + XY, X3Y * X + X2Y, and X2 + YX + X2Y + X, where the X's may be different. The analysis provides 
some insight into the nature of the transition states, the role of bifurcations, and the applicability of transition-state theory 
(TST). Recent results of a quantum chemistry calculation for the X = H, Y = 0 system are discussed in these terms. More 
generally, some topographical conditions for the inapplicability of TST are suggested. This limitation of TST arises from 
a preempting of the transition state for one reaction by another and appears to be relatively rare, 

1. Introduction 
For visualizing chemical reaction mechanics or distortions of 

molecular structure, potential energy contour plots have been very 
helpful. Examples include the common textbook' plot with two 
internal coordinates, used to discuss a collinear treatment of the 
triatomic exchange reaction ( I ) ,  as in Figure 1 

R + BC -. AB + C (1) 

and systems with three or more coordinates but with all coordinates 
but two held constant in the diagram, as in a common pictorial 
description of the Jahn-Teller distortion of an electronically de- 
generate molecule such as Na, or Cu3 from an equilibrium tri- 
angular configuration.2 The latter is shown in Figure 2, where 
the symmetric stretching coordinate is held fixed. 

A third example is the previous system, but now with the 
remaining coordinates varied so as to minimize pointwise the 
potential energyS3 The plot is again similar in appearance to 
Figure 2. In this figure, as well as later in Figure 3, two suitable 
coordinate axes are the two asymmetric stretches of this triatomic 
system. A fourth and related example is that depicted in Figure 
3 for a reaction of the type X + X2 - X2 + X involving isotopic 
scrambling, proceeding either via a direct reaction or via an actual 
intermediate X3. In either case the pointwise change in the 
symmetric stretching coordinate becomes extremely large, as 
discussed later. A figure such as Figure 3 has been used in a 
discussion of the O3 reaction ~ y s t e m . ~  

In the present paper we treat in this global way more com- 
plicated reaction systems, having several reactions rather than just 
one: 

(2) 
(3) 

(4) 
In the present discussion the three X s  need not be the same. When 
they differ the initial C3, symmetry is modified, as are the two 
asymmetric stretching and other modes, but the principal topo- 
graphical and related considerations remain the same. 

In a recent electronic structure calculation for X = H and Y 
= 0, the transition states for reactions 2 and 4 were located, but 
not that for reaction 3.4 When the isotopically different possi- 
bilities are considered, there are, in all, some 12 reaction paths 
to be represented in the diagram. An aim of the present article 
is to depict reactions such as (2)-(4) in such a way as to provide 
an overall view of their relationships. The contour plot is then 
used to explore the location of the transition states and of any 
bifurcations and to consider whether conventional transition-state 
theory, with statistical factors added, is even applicable to all of 
the reactions in such a system. 

X3Y - x + X2Y 
X3Y - x2 + XY 

X2Y + x - XY + x2 
and 
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In section 2 a description of the X3 reaction system is first 
recalled. A treatment of reactions 2-4 for the X3Y system is 
described in section 3 and applied to the H 3 0  system in section 
4. Three-dimensional contour plots are also briefly considered 
there. Topographical conditions for the applicability or inap- 
plicability of transition-state theory to any particular reaction 
scheme are considered in section 5. They are illustrated in section 
6, using the results in section 4, and examples of multiple reaction 
path systems where conventional transition-state theory are given. 
It is also shown in section 6 that if there are any substituents where 
the two-step and radical intermediate mechanisms, in 
"synchronous" type reactions, e.g., Diels-Alder, become compe- 
titive, complications in application of TS theory would arise for 
one type of contour plot but not for another. 

2. X3 Reactions 
We consider here the isotopic exchange reaction 

( 5 4  X(I) + X(Z)X(J) -+ XO)X(2) + X(3) 

the superscripts labeling the atoms. 
Two suitable coordinates that provide a global picture in the 

potential energy contour plot are the pair (SAlJA2) of degenerate 
asymmetric stretching coordinates. Bond lengths for this system, 
denoted by rl, r2, and r3, can be defined for the X, system, as in 
Figure 4a, and orthonormal symmetry coordinates S,  can be 
introduced as in Figure 5. 

1 1 
Ss = -(rl  + r2 + r3), SA' =-(2rl - r2 - r3), .\/J & 

In a schematic plot of the potential energy contours for reactions 
Sa and 5b given'in Figure 3, the symmetric stretching coordinate 
S, is adjusted pointwise, so as to minimize the potential energy 
a t  each value of (SA1,SAI). The resulting behavior of Ss in any 
third of the plot can be obtained from one of the other thirds by 
rotating about the origin through 120° or 240O. 

The assignment of each of the three channels in Figure 3 to 
the three configurations in eqs Sa and 5b is readily deduced from 
eq 6, e.g., as in Appendix A, and S, is readily seen there to undergo 

(1 )  E&: Glasstone, S.; Laidler, K. J.; Eyring, H. The Theory of Rate 
Processes; McGraw-Hill: New York, 1941. 

(2) E.&: Murrell, J. N .  In Quantum Theory of Chemical Reacrions; 
Daudel, R., Ed.; D. Reidel: Dordrecht, 1980; Vol. 1, p 161. Bersuker, I .  B. 
The Jahn-Teller Effect and Vibronic Interactions in Modern Chemistry; 
Plenum: New York, 1984. Zwanziger, J. W.; Whetten, R. L.; Grant, E. R. 
J .  Phys. Chem. 1986, 90, 3298. Cocchini, F.; Upton, T.; Andreoni, W. J.  
Chem. Phys. 19%8, 88,6068. 

(3) Varandas, A. J. C. Chem. Phys. Lett. 1987,138,455. Morais, V. M. 
F.; Varandas, A. J. C. J .  Chem. Soc., Faraday Trans. 2 1989.85, 1. 

(4) Talbi, D.; Saxon, R. P. J. Chem. Phys. 1989, 91, 2376. 
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Figure 1. Contour plot for atom abstraction reaction (1). 

\ \  I \ / I  
SA2 

Figure 2. Contour plot for X3 structural system. The coordinates are 
the degenerate asymmetric stretches, and the symmetric stretching co- 
ordinate is either held fixed or varied so as to minimize the potential 
energy pointwise. There are three minima and, in the central part, a high 
region (a conical intersection in ref 2). 

an infinite variation as reaction 5 proceeds. 

3. X3Y Reactions 
We consider next a system of principal interest here, namely, 

reactions 2-4. In the nonlinear X3Y system there are six internal 
coordinates, as in Figure 4b. The symmetry coordinates for a C,, 
arrangement of X3Y (e.g., when it is a trigonal pyramid), depicted 
in Figure 6, include the XY symmetric stretch Ss and the de- 
generate pair of asymmetric XY stretches SA, and SA*, all again 
given by eq 6. There are also a symmetric X3Y bend SsB and 
a degenerate pair of XYX bending coordinates SAIB and SAzB, 
as in eq 7 and Figure 6. The six normal modes of this system 

consist of two linear combinations of Ss and SsB, two of SA, and 
SAIB, and two of SA, and SAzB, the proportions depending on the 
force constants and masses. 

The desired two-dimensional potential energy contour plot for 
the system of reactions 2-4 is one containing all paths for that 
reaction. The contour plot for the case that only reaction 2 occurs 
is given in Figure 7. In this schematic plot the potential energy 
has been minimized pointwise with respect to Ss and the remaining 
three coordinates. The behavior of Ss in the vicinity of the three 
principal paths in Figure 7 is described in Appendix B, together 

Figure 3. A contour plot for reaction 5 :  (a) the saddle points are in each 
exit valley: (b) there are no saddle points and so no hump in each exit 
valley. 

(a) 

( b) 

" 

Figure 4. Internal coordinates for the X3 and X3Y. The three angles a, 
in (a) are redundant when, as in eq 6, the r;s are used. 

with the behavior along radii leading to the products of reaction 
3. 

An example where all three reactions (2)-(4), occur is given 
in the next section, where we consider a particular example of 
the X3Y system, H30. 
4. Dissociations of H30 and Abstraction Reaction HO + H2 

In a recent quantum mechanical study, calculations were made 
for the system of reactions 2-4 where X = H and Y = Oe4 One 

+ HzO + H 
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Figure 5. Normal modes for the X3 system. 

SA? 

Figure 6. Symmetry coordinates for X,Y. 
X"+X,Y 

x3 

Figure 7. Contour plot for reaction 2. 

A* 

I+X,Y 

I H"+H,O 

' H,+OH"I 

Figure 8. Contour plot for reactions 2-4. 

possible global two-dimensional potential energy plot, motivated 
by some inferences from that quantum chemical study, is given 
below. 

Two dissociation paths of H30 are 
H 3 0  - H + H 2 0  

H 3 0  - H2 + HO 

H2 + HO - H + H2O 

(8) 

(9) 

and 

The abstraction reaction 

(10) 

was also studied. The fact that H30 only had a very shallow well 
in the study does not affect the illustration itself but would bear 
on the observability of the H30. One could also consider, instead, 
therefore, the case where YX3 is a stabler entity, such as NH3 
or PH3. In the following and later in section 6 the transition state 
will frequently contain a saddle point, but in cases such as some 
unimolecular dissociations that have no local 'hump", along their 
reaction path, as probably in reaction 8 and as in Figure 3b, the 
transition state is determined variationally (variational TS theory). 
The lowest point for each TS is nevertheless denoted by S, which 
may, or may not, be an actual saddle point. 

The transition state for reactions 8 was located in ref 4, while 
that for reaction 10 was located earlier,s but the one for reaction 
9 was not found. Instead, a dome was located on the potential 
energy surface, tending to block a normal-mode path leading from 
H30 to H2 + HO. That normal-mode path was not the sought 
for reaction path, since there would be a lower energy path around 
the dome. It was found that, on proceeding in each of four 
directions from the top of that dome, certain molecular species 
were observed. A set of potential energy contours which we find 
is consistent with those observations is given in Figure 8. In this 
schematic plot S, and the remaining three coordinates are allowed 
to vary pointwise with (SA,,SA2) so as to minimize the potential 
energy. 

In Figure 8 there are three domes 0, ( i  = 1-3) and a shallow 
bowl occupied by and denoted by H 3 0 .  Six ridges R,, separate 
six valleys, the i referring to the valley for reaction 11 and 
t h e j  to the OHu) valley for reaction 12. The method used to 
establish the species in each of these valleys is based on eq 6 in 
the previous section. 

( 5 )  Walch, S. P.; Dunning, T. H. J.  Chem. Phys. 1980.72, 1303. Dunning, 
T. H.; Kraka, E.; Eades, R. A. Faraday Discuss. Chem. Soc. 1987,84,427. 
Schlegel, H. B.; Sosa, C .  Chem. Phys. krr. 1988,115,329. Cf.: Kochanski, 
E.; Flower, D. R. Chrm. Phys. 1981,57, 217. 
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H 3 0  - H(') + H 2 0  (11) 

H 3 0  - H2 + HmO (j = 1 , 2 , 3 )  ( 1 2 )  

There are several dashed lines which join domes to domes or 
a dome to its two nearby ridges. They denote the paths of steepest 
ascent along the transition state to the ridge or to the apex of the 
dome. They serve as the transition states for nine of the reactions. 
The nine points S are situated at the lowest points of potential 
energy on the relevant parts of the transition states. 

In Figure 8, the transition state for the dissociation of H 3 0  into 
H(2) + H 2 0  is the dashed line joining Dl to D3. The transition 
state for the abstraction reaction H, + OH(') -. Hc2) + H 2 0  is 
the dashed line joining ridge R2, to dome Dl.6 Similar remarks 
apply to the other symmetrically related reactions (permutations 
of the superscripts). Each dome D inhibits the system from 
proceeding on a straight-line reaction path from the H 3 0  bowl 
to the Hz + OH(') products (e.g., along the negative SAI axis, for 
i = 1). 

Not shown are lines that pass from valley to adjacent valley 
through the same points S, but at right angles to the existing 
dashed line at that S. This second set of lines corresponds to the 
minimum-energy paths between two valleys (e.g., H2 + OH(') and 
H(2) + H20), the 'intrinsic reaction paths". There are six such 
valley-to-valley paths passing through the relevant six saddle points 
S for the six permutations of i and j ( i  # j )  in the H2 + OH(') - H a  + H 2 0  reaction. 

In the case of the dissociation of H 3 0  into H2 + OH(') (or other 
permutations) the minimum-energy reaction path for this disso- 
ciation is not over the intervening dome 1 ,  since as already noted 
there are lower energy paths around the dome. Indeed, there is 
not in Figure 8 a conventional transition state for this reaction, 
a point to which we return shortly. Examining Figure 8 and the 
role of the dome, it is seen that in the formation of H2 + OH(') 
from H30,  the mechanism does not occur via a symemtric dis- 
sociation along the negative SAl axis, in which two H s  would 
depart symmetrically from the HO along the OH axis, the Ss 
continually readjusting in such a motion, and the H's simulta- 
neously approaching each other to form H2. Such a motion 
involves going over the dome instead of on a lower-energy path 
around it. Thus, the dissociation first involves an asymmetric 
motion of the departing two H's of H 3 0  that ultimately form H2, 
much as in the dissociation of HzCO to H2 + CO,' and perhaps 
for a similar reason, namely to circumvent an orbitally forbidden 
nature of a symmetric dissociation in this system. 

We turn now to the missing transition state for the H 3 0  - H2 + OH reaction. The problem, if the surface in Figure 8 is 
qualitatively correct, arises because of a bifurcation there, and 
we consider this aspect next. A classic example of a bifurcation 
is the monkey saddle, a saddle point with three routes of steepest 
descent from the saddle point, instead of the two for the con- 
ventional saddle point.8 More typically, however, bifurcations 
are not expected to coincide with the transition state itself: except 
in some system of appropriate symmetry. To have only the bi- 
furcation it suffices merely that there be three low regions on the 
potential energy surface, separated by three high regions. In the 
case of the reactions in Figure 8 we have schematically blown up 
a portion, as in Figure 9. In this figure in a 120° sector the three 
low regions are the H 3 0  bowl (onethird of it) and the H2 + OH(') 
and H(2) + H20 valleys. The three high regions separating the 
three low ones are the dome DI and the ridges RZl and R31. This 
type of bifurcation can be termed a 'tilted monkey seat on the 
side of a hill". It differs from a monkey saddle in that the latter 

(6) The lowest point on this line is the saddle point, denoted by S. The 
entire line denotes all configurations of the 'Is, and the point S, conventionally 
called the TS, denotes the least unstable of them. 

(7) Goddard. J. D.; Schaefer. H. F. J .  Chem. Phys. 1979, 70, 51  17 and 
references therein. 

(8) Cf.: Marcus, R. A. J .  Chem. Phys. 1964, 4I, 610 and references 
therein. 

(9) E.&: Stanton, R. E.; Mclver, J. W. J.  Am. Chem. Soc. 1975,97,3632. 
Murrell. J. N.; Laidler, K. J. Trans. Furaduy Soc. 1968, 64, 371. 
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1 I H,+OH"I \ \ \ 
Figure 9. Enlargement of a sector of Figure 8. 

has a zero slope at the bifurcation point. 
The transition state (TS) for the H30 - H(2) + H 2 0  reaction 

contains the point S, in Figure 9, while that for the H2 + OH(') 
+ H 2 0  reaction has a saddle point S,. Thus, the "transition state" 
for the H 3 0  - H2 + OH(') reaction has already been preempted 
by the other two reactions. Indeed, leaving the H30 bowl by 
crossing the TS containing Sa the system must proceed on the side 
of a hill in order to reach the preempted TS containing Sb and, 
thereby, reach the H2 + OH(') valley. Clearly, because of the 
preempting, conventional transition-state theory will not permit 
a calculation of such a rate constant. Unlike most of the reaction 
systems considered in the next section, simple statistical factors 
appended to the usual transition-state expression for the rate 
constant would not suffice in such a calculation. Indeed, because 
of the largely or partly preempted parts of the transition states, 
there is probably not only the well-known energy barrier for an 
orbitally forbidden reaction H30 - H2 + OH but also a phase 
space availability barrier. A classical trajectory calculation of 
rates for this or related systems would indeed be of interest. Of 
course, any breakdown of TS theory for this reaction could also 
cause some breakdown for the other two reactions, H 3 0  - H + 
H 2 0  and H2 + OH - H20,  since the TS spaces are no longer 
1008 allottable to these reactions. If the topography is as depicted 
in Figure 8, however, such breakdowns for those two reactions 
could be minor. 

An analysis of a model of a potential energy surface which has 
the three high regions, three low regions, a bifurcation, and two 
saddle points has been discussed by Hoffman et a1.,I0 who treat 
the surface U = (xy2 - yx2 + x2 + 2y - 3 ) / 2 .  A portion (one- 
third) of the surface depicted in the present Figure 8 can be placed 
in qualitative 1 : 1 correspondence with Figure 2 of that reference. 
The simplicity of U there permitted a simple calculation of the 
various contours and other properties. 

The present picture is not expected to be qualitatively altered 
from that in Figure 8 when a three-dimensional plot is made using 
coordinates (&,SA1sA2), instead of the two-dimensional one in 
Figure 8: The bowl in Figure 8 becomes spherical-like, the 
udomes" become cylindrical-like objects rising from the (SA,,SA2) 
plane and the ridges R{.rise from their base in the (SAISA2) plane. 
The dashed lines in igure 8 become dashed planes or dashed 
curved surfaces connecting these high-energy regions D, with the 
Ry's and with each other. The bifurcations and points S continue 
as before. The valleys become shell-like objects, more or less 
centered about the Ss vs SR lines described in Appendix B, and 
these lines alternate in their slopes as described there. Thereby, 
the value of Ss giving the lowest point on the surface at any 
particular value of S, yields a somewhat foliated curve as one 
circles the SS axis at constant cylindrical radius. Nevertheless, 
it should be mentioned that a more detailed investigation of the 

(IO) Hoffman, D. K.; Nord, R. S.; Ruedenberg, K. Theor. Chim. Acru 
1986, 69. 265. 
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Ridge 21 

Figure 10. Doubling of the domes in Figure 9. 

potential energy surface may reveal topographical features dif- 
ferent from those in Figure 8. 

The H 3 0  species is not, apparently, a known entity. However, 
NH3 is, and so a quantum chemistry investigation of the contour 
plot for a reaction system such as that for NH3 - NH2 + H, NH3 - H2 + NH, and H2 + N H  - H + NH2 would be of interest. 

5. Conditions for Inapplicability of Transition-State Theory 
The limitation on transition-state theory found in the preceding 

section arises from the preempting of the TS region of one reaction 
by another. There are numerous cases, however, where this 
preempting does not occur, and some examples are given in the 
next section. It is useful to see whether this phenomenon, and 
hence the inapplicability of TS theory, can be expressed in terms 
of some topographical conditions. We consider for this purpose, 
the following conditions for preempting to occur. (1) There are 
three systems A, B, and C in which the reactions A - B, B - 
C, and A - C occur. (2) There are three low regions, associated 
with A, B, and C, respectively, separated by three high regions. 
(3) B and C are not symmetrically related, so that it is not p i b l e  
to relate the rate constant of A - B to that of A - C by sym- 
metry-related considerations. 

Reactions 8-10 satisfy all three conditions, and indeed, as seen 
earlier, TS theory is inapplicable for at least one of the reactions. 
In the following section we explore examples where in most cases 
no or only minor preempting occurs, and so TS theory is then 
applicable. Condition 2 should, of course, be interpreted in terms 
of the full-coordinate space rather than in just a two-dimensional 
one. However, the contours in the two-dimensional space may 
still provide a useful guide. 

In the present paper we are concerned with the question of any 
breakdown of transition-state theory due to the preempting of the 
transition state, or preempting part of the transition state, of one 
reaction by another. Two other sources of breakdown are not 
considered here: one is due to the sluggishness, if any, of the 
solvent dynamics, affecting the quasi-equilibrium approximation 
for the TS. When it occurs it is treated by adding a solvent 
dynamics formalism, the TS aspect often then appearing in a 
boundary condition in that formalism." In this way the behavior 
system may vary between the extreme of largely solvent dynamics 
controlled to largely quasi-equilibrium TS controlled and can be 
treated. A second source of breakdown, which can be relatively 
minor in absolute terms but can sometimes be important in in- 
vestigations of trends such as pressure effects,I2 is associated with 

(1 1) Recent reviews of some solvent dynamics effects is given in: Weaver, 
M. J.; McManis, G. E. Ace. Chem. Res. 1990,23,294. Bagchi, B. Annu. Rar. 
fhys .  Chem. 1989.40, 1 1  5. An example where a Ts expression scrvcs as a 
boundary condition in the solvent dynamics differential equation and where 
other coordinates are present is given for electron transfers in: Sumi, H.; 
Marcus, R. A. J .  Chem. Phys. 1986,84,4894. Nadler, W.; Marcus, R. A. 
Ibid. 1987,86, 3906. 

Figure 11. Symmetrical system showing a bifurcation of paths after 
passage through a transition state (centered at Sb). 

Figure 12. Symmetrical system showing a bifurcation before passage 
through a transition state (centered at S, and SJ. 

recrossings of the TS, the absence of which, Wigner13 pointed out 
many years ago, is needed as one condition for validity of the 
quasi-equilibrium assumption of TS theory. In the present paper, 
where the focus is on the potential energy contours themselves, 
we neglect such kinematic effects. 

6. Examples of Other Systems 
There are numerous systems where alternative reaction paths 

are possible and where no preempting of a TS occurs. An example 
of a change in topography from that in Figures 8 and 9 which 
would largely eliminate the preempting is the replacement of each 
blocking dome D by a pair of domes arranged symmetrically about 
each formerly blocked path, as in Figure 10. Condition 2 is now 
no longer fulfilled, since in a (somewhat deformed) 120° sector 
in Figure 10 there are now four high regions, Dlb, DSa, RI2 ,  and 
R2, and three low ones, valleys VI and V, and onethird of a basin. 
TS theory becomes applicable. The only path that was available 
for reaction 9 in Figure 9 now becomes in Figure 10 a minor path 

(12) E.&, in stochastic molecular dynamics calculations of the chair-boat 
isomerization of cyclohexane [Kuharski, R. A,; Chandler, D.; Montgomery, 
J. A.; Rabii, F.; Singer, S. J.  J .  fhys.  Chem. 1988, 92, 32611, a pressure- 
dependent (viscosity-dependent) transmission coefficient in solution in the 
neighborhood of 0.5 was found due to recrossings. In an SN2 reaction CI- + 
CH3CI - CICH3 + Cl- [Gertner, B. J.; Wilson, K. R.; Hynes, J. T. J .  Chem. 
fhys.  1989, 90, 35371 a computer simulation molecular dynamics calculation 
gave a transmission coefficient of about 0.5 due to recrossing. While these 
factors are not major ones, when compared with other uncertainties in TS 
theory calculations, they should be taken into account when relatively small 
trends are measured, such as the effect of pressure on reaction rates in solution. 

(13) Wigner, E. Trans. Faraday Soc. 1938, 34, 29. 
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Figure 13. Contour plot for reaction 15. 

relative to the direct path which has opened up between D1, and 
Dlb for that reaction. 

Other examples of a bifurcating system are those given in 
Figures 1 1 and 12. If the topography is such that each trajectory 
leaving B1 to the left ends up only on the basin on that side, Le., 
that none reach, instead, B3 by crossing the TS indicated by the 
vertical dashed line, TS theory is applicable. In a symmetric 
situation (violation of condition 3) such crossings would occur 
equally, and because of purely statistical considerations TS theory 
could still be employed. When the dome D in Figure 12 is high 
and wide enough, it reduces the possibility of such trajectories. 
There are then four high regions, Rl to R3 and D, and three lows, 
BI to B3, so that condition 2 of section 5 is not fulfilled and TS 
theory again applies, regardless of whether or not condition 3 is 
violated, 

A system similar to Figure 12 has been described by Valtazanos 
and R~edenberg’~ for the reaction from cyclopropylidene to allene .. 

H2C-CH2 f\ - H2C=C=CH2 (13) 

In their plot (Figure 12 of ref 12) the two coordinates used were 
a ring-opening angle and the mean of the two dihedral angles 
between each of the CH2 planes and the CCC plane. 

Another example involves the isomerization of the methoxy 
radicalts 

the course of the reaction being described by 
CH30 + CHZOH (14) 

H(1) H(1) 
/ ,. , .  H(1) 

(15) 
\ 
4 

HW-C-0 -C HPI-C-0 -C HW-C-0 
4 

H@) 
4 H(3) 

TS 
H@) 

An antisymmetric pair of CH stretching coordinates for the three 
H’s, and a symmetric CH stretch, can be introduced (eq 6) and 
the potential energy plotted as a function of SAl and S A 2 9  after 
minimization with respect to all other coordinates. The resulting 
contour plot would resemble Figure 13. The basin B4 corresponds 
to H3C0, and the basins Bl and B3 correspond to the three 
configurations of H2COH in reaction 15, where an HO is attached 
to the 0, with i = 1-3. In Figure 13 there is a conventional 
transition state for each of these three dissociation paths. There 
are seen to be four low regions B and three highs, R, and so 
condition 2 is again not fulfilled. TS theory is applicable for the 
reactions indicated. 

In one dissociation studied7 
H2CO -C CO + H2 (16) 

Figure 14. Contour plot for reaction 17. 

other reaction products such as H + HCO occurred at substan- 
tially higher energy and so did not interfere in the study. The 
reaction was found in a quantum calculation7 to proceed via a 
bent configuration of the TS: 

H(1) ,H(’) 
4’ b 

H(f)  H(i) ; H(2) 
9.. ; 

H(2) TS 
>=o - ’C-0 - C E O  (17) 

If as one coordinate for a contour plot an angle 8, the angle 
between the bisector of the H(1)CH(2) angle and the positive CO 
axis, is used (8 can be positive or negative) and if the H(2)H(1) 
distance r is chosen as a second coordinate, a schematic plot 
describing reaction 17 is that given in Figure 14. B3 corresponds 
to the reactant, and B, and B2 correspond to the two symmetrically 
related product configurations in reaction 17. (Only one is shown 
in reaction 17.) Once again, conventional transition-state theory 
suffices. For reaction 17 and Figure 14 condition 1 is not fulfilled. 

An example where there are two sets of reactions is the dis- 
sociation and the isomerization of H2CSt6 

H2CS + H2 + CS (18) 

HZCS - HCSH (19) 

the course of which can be represented ast6 

,I-!(l) ,H(l) 

HP)  2 , 
H(1) H’2!, ‘,, 

TS H@) 
\c-s - “C-S -c c-s (20) / 

and 

H(1) H(1) 
e .  

H(1) 

/ (21) /c-s \c-s - ,&‘s - 
H(2) H(2) / H(2) 

TS 

As global coordinates the coordinates 8 and r used in Figure 14 
may again be employed, yielding the schematic diagram of the 
potential energy contours given in Figure 15. Examining the right 
half of that figure, it is seen that condition 1 is not fulfilled in 
the quantum mechanical study, there being only two instead of 
three reactions. 

An interesting series of reactions that may occur either con- 
certedly or in a nonconcerted (two-step) manner were reviewed 
recently by Borden et They include the Cope rearrangement, 

(14) Valtazanos; Ruedenberg. K. Theor. Chim. A m  1986, 69. 281. 
(15) Colwcll, S. M.; Handy, N. C. J.  Chem. fhys.  1985, 82, 1281. 

(16) Tachibana, A.; Okazaki, I.; Koizumi, M.; Hori, K.; Yamaba, T. J.  
Am. Chem. Soc. 1985, 107, 1190. 



8242 The Journal of Physical Chemistry. Vol. 95, No. 21, 1991 Marcus 

I 
r 

Figure 15. Contour plot for reactions 20 and 21. The angle 8 is defined 
in the text. In the H2 + CS products’ regions the contours are seen to 
become independent of 8. 

the Diels-Alder reaction, the Alder ene reaction, and the 1,3- 
dipolar cycloaddition, among others. We consider the Diels-Alder 
reaction as more or less prototypical. There are several possible 
mechanisms,” considered below: reaction 22 which is a concerted 
mechanism, reaction 23 which is a two-step mechanism proceeding 
via a diradical intermediate, and reaction 24 which is concerted 
mechanism having an unsymmetrical transition state. 

TS 

As coordinates we may use the 1-5 distance rI5  and the 4-6 
distance r& The r23 distances in the TS in reaction 22 and in 
BI in reaction 23 are about equal.’* Three of the possible to- 
pographical contour plots are given in Figure 16A-C for reactions 
22-24, respectively. Here V, B, ,  and B2 refer to the compounds 
indicated in reactions 22-24, and B1’ is the symmetrically related 
isomer of BI having the 1-5 bond instead of the 4-6 one. 

In the case of reactions 22-24 there is only one final product, 
apart from possible stereoisomers. Thus, condition 3 in section 
5 is not fulfilled. Yet there can still be some uncertainty in the 
applicability of TS theory when the reactants for Figure 16B,C 
are unsymmetrically substituted: Three possible transition states 
leading from V to B and BI’ in Figure 16B and to B2 in Figure 
16C are the two dashed lines containing saddle points SI and S2 
and the dashed line joining RI and R2. We denote their free 
energies as Gsl, Gs2, and GRIR~ and consider the case that 

(25) 
In this instance, the transition state for the loss of Vin a reaction 

originating from Vin Figure 16B.C is principally the R1R2 dashed 
line: The dashed line TS containing S2 has, we see from eq 25, 

cS2 ’ GRIR2 ’ GSI 

(17) Borden, W. T.; Loncharich. R. J.; Houk, K. N. Annu. Reu. Phys. 

(18) Houk, K. Private communication. I am indebted to Ken Houk for 
Chem. 198&39, 213: 

suggesting the coordinates in Figure 16. 

I 

‘46 

I 
48 

‘15 

Figure 16. Contour plot for 
by (A)-(C), respectively. 

the Diels-Alder reaction given 

too high a free energy barrier to be the TS, and the TS containing 
SI has too low a free energy to be a bottleneck. However, a 
fraction of the trajectories crossing the RlR2 TS proceed along 
the S2 channel and are then reflected back to V. This fraction 
is not calculable from TS theory, and so the error in TS theory 
is small or large according as this fraction is small or large. Here, 
part of the TS RIA2 is preempted by these largely unreactive 
trajectories which proceed into the S2 channel. In the case of 
reactions 8-10, instead, part of the TS for one reaction was 
preempted by another reaction. The error in each case, (22)-(24) 
or (8)-( lo), depends on the amount of asymmetry of the flux at 
the bifurcation. 

In summary, we have considered a situation where, at least as 
in Figures 8 and 9, the unusual event that the transition state of 
one reaction has been preempted by another has been explored, 
together with some possible topographical conditions for its oc- 
currence and absence. We have also considered reactions, of which 
(22)-(24) are a prototype, where related problems can arise, 
depending on the detailed nature of the contour plot. A variety 
of examples are also given where the conditions in section 5 are 
not fulfilled, and so where TS theory is applicable. 

Perhaps some of the potential complexities that may occur after 
obtaining detailed ab initio potential energy surfaces (pes) should 
be stressed. The presence of many coordinates not explicitly shown 
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might open up unsuspected pathways, pathways not easily seen 
perhaps in a pes projected onto a twecoordinate subspace. Again, 
alternative choices of coordinates for the describing a global picture 
in the two-coordinate subspace exist, and a choice among them 
needs to be made, initially on some intuitive basis perhaps. When 
a more complete pes is known, the choice can be made with the 
benefit of this added information. In addition to the topographical 
features considered explicitly in the present figures, there may 
be conical  intersection^,'^ and the sides of some hills may be 
shelves.20 Some reactions may require three coordinates rather 
than two for a global picture, an example being the pseudorotation 
in an octahedral complex for which all exchanges of the ligands 
are possible. Such contours can perhaps be visualized on screens 
using three-coordinate plots. 

The present article is intended to introduce the topic of global 
portrayals when alternative reactions and reaction paths exist. 
There remain various issues and perhaps some surprises which 
may emerge when the many-coordinate potential energy surfaces 
are calculated and the reaction paths and bifurcations obtained. 
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Appendix A. Behavior of Symmetric Stretching Coordinate in 
Figure 5 for the X3 Reactions 

We consider here the behavior of the symmetric stretching 
mode, so adjusted, along each of the three valleys in Figure 5, 
namely, along the negative SA, axis and along the radius obtained 
by rotating that semiaxis through an angle of 120' and then by 
rotating again through another 120O. 

Along the negative SAl axis, SA2 vanishes and so r2 and r3 are 
equal (eq 6). At SA, = -a, it then follows from eq 6 that r2 = r3 =. +a, and therefore, as seen from the definitions of the rl's 
in Figure 4a, this channel corresponds to the system being present 
as MI) + M2)M3). Analogously, it is found that the channel in 
the upper left of Figure 3 corresponds to the system being in the 
form of the products of reaction Sa, while that in the upper right 
corresponds to the products of reaction 5b. 

The variation in Ss with position in Figure 3 can now be im- 
mediately sketched along the above three directions (and calculated 
everywhere else numerically from a pointwise knowledge of r , ,  
r2, and 1 3  as functions of SA, and SAP) The variation of Ss along 
this negative SA, axis is obtained by expressing Ss in terms of SA, 
along this path: Along the negative SA, axis we have r2 = 1 3 ,  and 
so eq 6 yields 

(AI)  
At the origin SA, vanishes, while r l ,  the bond length 1 in Figure 
4a, changes relatively little from its equilibrium value in X,. 
However, at  SA1 = --, the change in rl is also small (the bond 
length of Xc2)M3) changes only slightly along this axis), and so 
eq AI shows that Ss now equals +a. Le., Ss varies infinitely along 
this SA, axis. 

It is useful to rewrite eq A1 so that it is valid along the other 
two radial spokes obtained by rotating the SA, axis successively 
through 120' and 240'. Because of the C3 symmetry, we in- 
troduce for this purpose a radial coordinate SR defined by 

SS + f i 5 A I  = f i r ,  SA, I 0, SA2 = o 

(19) Xantheas, S.; Elbert, S. T.; Ruedenberg. K. Theor. Chim Actu 1991, 
78,365. Xantheas, S.; Atchity, G. J.; Elbert, S. T.; Ruedenberg, K. J .  Chem. 
Phys., in p m .  Atchity, G. J.; Xantheas, S. S.; Ruedenberg, K. Ibid.. in press. 

(20) Ruedenberg, K. Private communication. 
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S R  = (SA1 + SA2)'I2 

and rewrite eq A1 as 

sS + f i S R  = fir(sR) (A3) 
where r is a function of S R  and equals rl on the negative SA, axis, 
r2 on the radial spoke obtained by rotating that axis clockwise 
through 120°, and 1 3  when the clockwise rotation is 240O. One 
can now see from eq 6 that since the lower bound to any r, is only 
a relatively small negative value, Ss will always become infinite 
along those other two paths as the system separates into products. 

Appendix B. Behavior of Symmetric Stretching Coordinate 
for the X3Y Reactions along Particular Cylindrical Radii 

We consider here the reaction 2, written now as 

X3Y - X(') + X,Y ( i  = 1, 2, 3) (B1) 
Along the S A 2  axis, for the case of i = 1 in reaction 8, we have 
rz = 13,  SA, I 0, rl --* +a, and r2 remains small throughout (e.g., 
eq 6 and Figure 4b). It is then seen from eq 6 that both SA, and 
Ss tend to +- as the reaction proceeds. There is, thereby, an 
infinite variation in the continuously adjusted SS along this path. 
The relation between Ss and SA,, obtainable from eq 6, expressed 
in terms of slightly varying rz (=r3),  is given by 

(B2) 
At large X(')Y separation distances rl, r2 equals the equilibrium 
XY bond length in X2Y, Fxy1X2Y), the slope dSs/dSAl along the 
path is, asymptotically, 1 /d2, and the intercept SS of this straight 
line a t  SA, = 0 is d3Fxy(X2Y). 

The remaining two trigonally equivalent paths, in which i is 
2 or 3, are obtained by rotating the path in eq B2 about the Ss 
axis, perpendicular to the SA,,SA, plane, clockwise through 120° 
for i = 2 or 240° for i = 3. An equation, obtained from eq B2, 
applicable to all three radial paths, and also useful in the im- 
mediate neighborhood of such radii, is 

Ss = l/fiSR = f i r ( S R )  (three paths) (B3) 

Ss - I/&SAl = f i r 2  (path for i = 1) 

where SR is a cylindrical radius given by eq A3 and where 
r (SR)  = ri (i = 1, 2, 3 on the appropriate paths) (B4) 

At large separations of X(I) and X2Y the slope dSs/dSR and the 
intercept Ss at SA1 = 0 of the asymptotic straight line, seen from 
eq B3, has the values 1 / 4 5  and Pxy(X2Y) given earlier for the 
path for i = 1 in eq B2. 

We consider next the reactions 

X3Y - X2 + W ) Y  ( i  = 1, 2, 3) (BS) 
and first consider motion along the SA, axis, but now for reaction 
B5 with i = 1. During the course of this reaction, r2 becomes very 
large while rl  remains small and so now S A 1  tends to -- (eq 6) 
instead of +-, while Ss still tends to +-. The relation between 
SS and SA, along the negative SA, axis is best expressed, using 
eq 6, in terms of the now slightly varying r,:  

Ss + fiSA, = f i r ,  (path for i = 1) (B6) 
The slope of this curve dSs/d(-SA,) at  large separation distances 
now equals d 2 ,  and the intercept of the latter line at  SA, = 0 
is d 3 r l ,  Le., d3Pxy(XY). Once again, for the other two paths 
related by a C, symmetry about the Ss axis, the radius SR given 
by eq A2 can be introduced. Instead of eq B6 we then have 

& -t 6 s ~  = fiF(s~) (all three paths) (B7) 
where F(SR) denotes rl on the first path, 1 2  on the path obtained 
by clockwise rotation through 120°, and 1 3  when the rotation is 
240'. Equation B7 is again also useful in the neighborhood of 
these three radii. 


