8236 J. Phys. Chem. 1991, 95, 8236-8243
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Bifurcations, and Applicabllity of Transition-State Theory
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A global reduced-dimensional potential energy contour plot is described for the simultaneous representation of reactions
XY = X, + XY, X;Y = X + X,Y, and X; + YX = X,Y + X, where the X’s may be different. The analysis provides
some insight into the nature of the transition states, the role of bifurcations, and the applicability of transition-state theory
(TST). Recent results of a quantum chemistry calcuiation for the X = H, Y = O system are discussed in these terms. More
generally, some topographical conditions for the inapplicability of TST are suggested. This limitation of TST arises from
a preempting of the transition state for one reaction by another and appears to be relatively rare.

1. Introduction

For visualizing chemical reaction mechanics or distortions of
molecular structure, potential energy contour plots have been very
helpful. Examples include the common textbook! plot with two
internal coordinates, used to discuss a collinear treatment of the
triatomic exchange reaction (1), as in Figure 1

R+ BC—AB+C (1)

and systems with three or more coordinates but with all coordinates
but two held constant in the diagram, as in a common pictorial
description of the Jahn~Teller distortion of an electronically de-
generate molecule such as Na, or Cu; from an equilibrium tri-
angular configuration.? The latter is shown in Figure 2, where
the symmetric stretching coordinate is held fixed.

A third example is the previous system, but now with the
remaining coordinates varied so as to minimize pointwise the
potential energy.? The plot is again similar in appearance to
Figure 2. In this figure, as well as later in Figure 3, two suitable
coordinate axes are the two asymmetric stretches of this triatomic
system. A fourth and related example is that depicted in Figure
3 for a reaction of the type X + X, — X, + X involving isotopic
scrambling, proceeding either via a direct reaction or via an actual
intermediate X;. In either case the pointwise change in the
symmetric stretching coordinate becomes extremely large, as
discussed later. A figure such as Figure 3 has been used in a
discussion of the O, reaction system.?

In the present paper we treat in this global way more com-
plicated reaction systems, having several reactions rather than just
one:

XY = X + X,Y 2)
XY = X, + XY 3)

and
X, Y + X = XY + X, 4)

In the present discussion the three X’s need not be the same. When
they differ the initial C,, symmetry is modified, as are the two
asymmetric stretching and other modes, but the principal topo-
graphical and related considerations remain the same.

In a recent electronic structure calculation for X = Hand Y
= O, the transition states for reactions 2 and 4 were located, but
not that for reaction 3.4 When the isotopically different possi-
bilities are considered, there are, in all, some 12 reaction paths
to be represented in the diagram. An aim of the present article
is to depict reactions such as (2)—(4) in such a way as to provide
an overall view of their relationships. The contour plot is then
used to explore the location of the transition states and of any
bifurcations and to consider whether conventional transition-state
theory, with statistical factors added, is even applicable to all of
the reactions in such a system.

* Contribution No. 8399,

In section 2 a description of the X; reaction system is first
recalled. A treatment of reactions 2-4 for the X,Y system is
described in section 3 and applied to the H,O system in section
4. Three-dimensional contour plots are also briefly considered
there. Topographical conditions for the applicability or inap-
plicability of transition-state theory to any particular reaction
scheme are considered in section 5. They are illustrated in section
6, using the results in section 4, and examples of multiple reaction
path systems where conventional transition-state theory are given.
It is also shown in section 6 that if there are any substituents where
the two-step and radical intermediate mechanisms, in
“synchronous” type reactions, e.g., Diels—Alder, become compe-
titive, complications in application of TS theory would arise for
one type of contour plot but not for another.

2. X; Reactions
We consider here the isotopic exchange reaction

X 4+ XOXO - XOXO® + XO) (5a)
— XX + X@) (5b)

the superscripts labeling the atoms.

Two suitable coordinates that provide a global picture in the
potential energy contour plot are the pair (S4,,54,) of degenerate
asymmetric stretching coordinates. Bond lengths for this system,
denoted by 7, 75, and ry, can be defined for the X, system, as in
Figure 4a, and orthonormal symmetry coordinates S; can be
introduced as in Figure 5.

| 1
Ss = —3("1 +ro4r), Sa=—F=Q@rn-r-r),

V3 Ve

Saz = ‘1_(’2 -r3) (6)
2

7

In a schematic plot of the potential energy contours for reactions
5a and 5b given in Figure 3, the symmetric stretching coordinate
S's is adjusted pointwise, so as to minimize the potential energy
at each value of (S,;,54,). The resulting behavior of Sg in any
third of the plot can be obtained from one of the other thirds by
rotating about the origin through 120° or 240°.

The assignment of each of the three channels in Figure 3 to
the three configurations in eqs 5a and 5b is readily deduced from
eq 6, e.g., as in Appendix A, and Sy is readily seen there to undergo

(1) E.g.: Glasstone, S.; Laidler, K. J.; Eyring, H. The Theory of Rate
Processes, McGraw-Hill: New York, 1941.

(2) E.g.: Murrell, J. N. In Quantum Theory of Chemical Reactions;
Daudel, R., Ed.; D. Reidel: Dordrecht, 1980; Vol. 1, p 161. Bersuker, I. B.
The Jahn-Teller Effect and Vibronic Interactions in Modern Chemistry;
Plenum: New York, 1984, Zwanziger, J. W.; Whetten, R. L.; Grant, E. R.
J. Phys. Chem. 1986, 90, 3298. Cocchini, F.; Upton, T.; Andreoni, W. J.
Chem. Phys. 1988, 88, 6068.

(3) Varandas, A. J. C. Chem. Phys. Lett. 1987, 138, 455. Morais, V. M.
F.; Varandas, A. J. C. J. Chem. Soc., Faraday Trans. 2 1989, 85, 1.

(4) Talbi, D.; Saxon, R. P. J. Chem. Phys. 1989, 91, 2376.
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Figure 1. Contour plot for atom abstraction reaction (1).

Figure 2. Contour plot for X; structural system. The coordinates are
the degenerate asymmetric stretches, and the symmetric stretching co-
ordinate is either held fixed or varied so as to minimize the potential
energy pointwise. There are three minima and, in the central part, a high
region (a conical intersection in ref 2).

an infinite variation as reaction 5 proceeds.

3. X;3Y Reactions

We consider next a system of principal interest here, namely,
reactions 2-4. In the nonlinear X,Y system there are six internal
coordinates, as in Figure 4b. The symmetry coordinates for a C;,
arrangement of X,Y (e.g., when it is a trigonal pyramid), depicted
in Figure 6, include the XY symmetric stretch Sg and the de-
generate pair of asymmetric XY stretches S,; and S5, all again
given by eq 6. There are also a symmetric X;Y bend SgP and
a degenerate pair of XYX bending coordinates S,,B and S,,5,
as in eq 7 and Figure 6. The six normal modes of this system

1 1
SsB=—(a,+a,+a;), Syb= —6(2011 - a; - ay),

V3

Sp = _\;—E(az ~a5) (7)

consist of two linear combinations of Sg and SgB, two of S; and
S48, and two of S, and S,,,B, the proportions depending on the
force constants and masses.

The desired two-dimensional potential energy contour plot for
the system of reactions 2-4 is one containing all paths for that
reaction. The contour plot for the case that only reaction 2 occurs
is given in Figure 7. In this schematic plot the potential energy
has been minimized pointwise with respect to S and the remaining
three coordinates. The behavior of Sg in the vicinity of the three
principal paths in Figure 7 is described in Appendix B, together
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(b)

Figure 3. A contour plot for reaction 5: (a) the saddle points are in each
exit valley: (b) there are no saddle points and so no hump in each exit
valley.

(b)

Figure 4. Internal coordinates for the X; and X;Y. The three angles «;
in (a) are redundant when, as in eq 6, the r;’s are used.

with the behavior along radii leading to the products of reaction
3.

An example where all three reactions (2)—(4), occur is given
in the next section, where we consider a particular example of
the X,Y system, H;O.

4. Dissociations of H;0 and Abstraction Reaction HO + H,
—H,0+H

In a recent quantum mechanical study, calculations were made
for the system of reactions 2-4 where X = Hand Y = O.* One
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Figure 5. Normal modes for the X; system.
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Figure 6. Symmetry coordinates for X,Y.
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Figure 7. Contour plot for reaction 2.
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Figure 8. Contour plot for reactions 2-4.

possible global two-dimensional potential energy plot, motivated
by some inferences from that quantum chemical study, is given
below.

Two dissociation paths of H;O are

H,0 — H + H,0 (8)
and
H;0 — H, + HO 9)
The abstraction reaction
H,+ HO—H + H,0 (10)

was also studied. The fact that H;0 only had a very shallow well
in the study does not affect the illustration itself but would bear
on the observability of the HyO. One could also consider, instead,
therefore, the case where YXj is a stabler entity, such as NH;
or PH,. In the following and later in section 6 the transition state
will frequently contain a saddle point, but in cases such as some
unimolecular dissociations that have no local “hump”, along their
reaction path, as probably in reaction 8 and as in Figure 3b, the
transition state is determined variationally (variational TS theory).
The lowest point for each TS is nevertheless denoted by S, which
may, or may not, be an actual saddle point.

The transition state for reactions 8 was located in ref 4, while
that for reaction 10 was located earlier,® but the one for reaction
9 was not found. Instead, a dome was located on the potential
energy surface, tending to block a normal-mode path leading from
H;0 to H, + HO. That normal-mode path was not the sought
for reaction path, since there would be a lower energy path around
the dome. It was found that, on proceeding in each of four
directions from the top of that dome, certain molecular species
were observed. A set of potential energy contours which we find
is consistent with those observations is given in Figure 8. In this
schematic plot Sg and the remaining three coordinates are allowed
to vary pointwise with (S,,,54,) s0 as to minimize the potential
energy.

In Figure 8 there are three domes D; (i = 1-3) and a shallow
bowl occupied by and denoted by HyO. Six ridges R, separate
six valleys, the i referring to the H" valley for reaction 11 and
the j to the OHY valley for reaction 12. The method used to
establish the species in each of these valleys is based on eq 6 in
the previous section.

(5) Walch, S. P.; Dunning, T. H. J. Chem. Phys. 1980, 72, 1303. Dunning,
T. H.; Kraka, E.; Eades, R. A. Faraday Discuss. Chem. Soc. 1987, 84, 427.
Schiegel, H. B.; Sosa, C. Chem. Phys. Lett. 1988, 145,329, Cf.: Kochanski,
E.; Flower, D. R. Chem. Phys. 1981, 57, 217.
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H,0 — H® + H,0 (11)
HO—H,+HMO (j=1,2,3) (12)

There are several dashed lines which join domes to domes or
a dome to its two nearby ridges. They denote the paths of steepest
ascent along the transition state to the ridge or to the apex of the
dome. They serve as the transition states for nine of the reactions.
The nine points .S are situated at the lowest points of potential
energy on the relevant parts of the transition states.

In Figure 8, the transition state for the dissociation of H;0 into
H® + H,0 is the dashed line joining D, to D;. The transition
state for the abstraction reaction H, + OH®’ — H® + H,0 is
the dashed line joining ridge R, to dome D,.¢ Similar remarks
apply to the other symmetrically related reactions (permutations
of the superscripts). Each dome D inhibits the system from
proceeding on a straight-line reaction path from the H;0O bowl
to the H, + OH® products (e.g., along the negative S, axis, for
i=1).

Not shown are lines that pass from valley to adjacent valley
through the same points .S, but at right angles to the existing
dashed line at that S, This second set of lines corresponds to the
minimum-energy paths between two valleys (e.g., H, + OH® and
H® + H,0), the “intrinsic reaction paths”. There are six such
valley-to-valley paths passing through the relevant six saddle points
S for the six permutations of i and j (i # j) in the H, + OH®
— H® + H,0 reaction.

In the case of the dissociation of H;0 into H, + OH® (or other
permutations) the minimum-energy reaction path for this disso-
ciation is not over the intervening dome 1, since as already noted
there are lower energy paths around the dome. Indeed, there is
not in Figure 8 a conventional transition state for this reaction,
a point to which we return shortly. Examining Figure 8 and the
role of the dome, it is seen that in the formation of H, + OH®
from H;0, the mechanism does not occur via a symemtric dis-
sociation along the negative S, axis, in which two H’s would
depart symmetrically from the HO along the OH axis, the Sg
continually readjusting in such a motion, and the H's simulta-
neously approaching each other to form H,. Such a motion
involves going over the dome instead of on a lower-energy path
around it. Thus, the dissociation first involves an asymmetric
motion of the departing two H’s of H,O that ultimately form H,,
much as in the dissociation of H,CO to H, + CO,” and perhaps
for a similar reason, namely to circumvent an orbitally forbidden
nature of a symmetric dissociation in this system.

We turn now to the missing transition state for the H;O — H,
+ OH reaction. The problem, if the surface in Figure 8 is
qualitatively correct, arises because of a bifurcation there, and
we consider this aspect next. A classic example of a bifurcation
is the monkey saddle, a saddle point with three routes of steepest
descent from the saddle point, instead of the two for the con-
ventional saddle point.! More typically, however, bifurcations
are not expected to coincide with the transition state itself,? except
in some system of appropriate symmetry. To have only the bi-
furcation it suffices merely that there be three low regions on the
potential energy surface, separated by three high regions. In the
case of the reactions in Figure 8 we have schematically blown up
a portion, as in Figure 9. In this figure in a 120° sector the three
low regions are the H;O bowl (one-third of it) and the H, + OH®
and H® + H,0 valleys. The three high regions separating the
three low ones are the dome D, and the ridges R,, and R;;. This
type of bifurcation can be termed a “tilted monkey seat on the
side of a hill”. It differs from a monkey saddle in that the latter

(6) The lowest point on this line is the saddle point, denoted by S. The
entire line denotes all configurations of the TS, and the point S, conventionally
called the TS, denotes the least unstable of them.

(7) Goddard, J. D.; Schaefer, H. F. J. Chem. Phys. 1979, 70, 5117 and
references therein.

" (8) Cf.: Marcus, R. A. J. Chem. Phys. 1964, 41, 610 and references
therein.

(9) E.g.: Stanton, R. E.; Mclver, J. W. J. Am. Chem. Soc. 1978, 97, 3632.
Murrell, J. N.; Laidler, K. J. Trans. Faraday Soc. 1968, 64, 371.
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H,+OH"

Figure 9. Enlargement of a sector of Figure 8.

has a zero slope at the bifurcation point.

The transition state (TS) for the HyO — H® + H,0 reaction
contains the point S, in Figure 9, while that for the H, + OH®
+ H,O reaction has a saddle point S. Thus, the “transition state”
for the H;O — H, + OH® reaction has already been preempted
by the other two reactions. Indeed, leaving the H,O bowl by
crossing the TS containing .S, the system must proceed on the side
of a hill in order to reach the preempted TS containing Sy and,
thereby, reach the Hy + OH® valley. Clearly, because of the
preempting, conventional transition-state theory will not permit
a calculation of such a rate constant. Unlike most of the reaction
systems considered in the next section, simple statistical factors
appended to the usual transition-state expression for the rate
constant would not suffice in such a calculation. Indeed, because
of the largely or partly preempted parts of the transition states,
there is probably not only the well-known energy barrier for an
orbitally forbidden reaction H;O — H, + OH but also a phase
space availability barrier. A classical trajectory calculation of
rates for this or related systems would indeed be of interest. Of
course, any breakdown of TS theory for this reaction could also
cause some breakdown for the other two reactions, H;O — H +
H,0 and H, + OH — H,0, since the TS spaces are no longer
100% allottable to these reactions. If the topography is as depicted
in Figure 8, however, such breakdowns for those two reactions
could be minor.

An analysis of a model of a potential energy surface which has
the three high regions, three low regions, a bifurcation, and two
saddle points has been discussed by Hoffman et al.,!° who treat
the surface U = (xy? - yx2 + x2 + 2y — 3)/2. A portion (one-
third) of the surface depicted in the present Figure 8 can be placed
in qualitative 1:1 correspondence with Figure 2 of that reference.
The simplicity of U there permitted a simple calculation of the
various contours and other properties.

The present picture is not expected to be qualitatively altered
from that in Figure 8 when a three-dimensional plot is made using
coordinates (Sg,54;.542), instead of the two-dimensional one in
Figure 8: The bowl in Figure 8 becomes spherical-like, the
“domes” become cylindrical-like objects rising from the (S,,,542)
plane and the ridges R; rise from their base in the (S,,,S42) plane.
The dashed lines in Figure 8 become dashed planes or dashed
curved surfaces connecting these high-energy regions D; with the
Ry’s and with each other. The bifurcations and points S continue
as before. The valleys become shell-like abjects, more or less
centered about the Sg vs S lines described in Appendix B, and
these lines alternate in their slopes as described there. Thereby,
the value of Sg giving the lowest point on the surface at any
particular value of Sy yields a somewhat foliated curve as one
circles the Sg axis at constant cylindrical radius. Nevertheless,
it should be mentioned that a more detailed investigation of the

(10) Hoffman, D. K.; Nord, R. S.; Ruedenberg, K. Theor. Chim. Acta
1986, 69, 265.
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potential energy surface may reveal topographical features dif-
ferent from those in Figure 8.

The H,O species is not, apparently, a known entity. However,
NH; is, and so a quantum chemistry investigation of the contour
plot for a reaction system such as that for NH; — NH, + H, NH,
— H, + NH, and H, + NH — H + NH, would be of interest.

5. Conditions for Inapplicability of Transition-State Theory

The limitation on transition-state theory found in the preceding
section arises from the preempting of the TS region of one reaction
by another. There are numerous cases, however, where this
preempting does not occur, and some examples are given in the
next section. It is useful to see whether this phenomenon, and
hence the inapplicability of TS theory, can be expressed in terms
of some topographical conditions. We consider for this purpose,
the following conditions for preempting to occur. (1) There are
three systems A, B, and C in which the reactions A — B, B —
C, and A — C occur. (2) There are three low regions, associated
with A, B, and C, respectively, separated by three high regions.
(3) B and C are not symmetrically related, so that it is not possible
to relate the rate constant of A — B to that of A — C by sym-
metry-related considerations.

Reactions 8-10 satisfy all three conditions, and indeed, as seen
earlier, TS theory is inapplicable for at least one of the reactions.
In the following section we explore examples where in most cases
no or only minor preempting occurs, and so TS theory is then
applicable. Condition 2 should, of course, be interpreted in terms
of the full-coordinate space rather than in just a two-dimensional
one. However, the contours in the two-dimensional space may
still provide a useful guide.

In the present paper we are concerned with the question of any
breakdown of transition-state theory due to the preempting of the
transition state, or preempting part of the transition state, of one
reaction by another. Two other sources of breakdown are not
considered here: one is due to the sluggishness, if any, of the
solvent dynamics, affecting the quasi-equilibrium approximation
for the TS. When it occurs it is treated by adding a solvent
dynamics formalism, the TS aspect often then appearing in a
boundary condition in that formalism.!! In this way the behavior
system may vary between the extreme of largely solvent dynamics
controlled to largely quasi-equilibrium TS controlled and can be
treated. A second source of breakdown, which can be relatively
minor in absolute terms but can sometimes be important in in-
vestigations of trends such as pressure effects,!? is associated with

(11) Recent reviews of some solvent dynamics effects is given in: Weaver,
M. J.; McManis, G. E. Acc. Chem. Res. 1990, 23, 294. Bagchi, B. Annu. Rev.
Phys. Chem. 1989, 40, 115. An example where a TS expression serves as a
boundary condition in the solvent dynamics differential equation and where
other coordinates are present is given for electron transfers in: Sumi, H.;
Marcus, R. A, J. Chem. Phys. 1986, 84, 4894. Nadler, W.; Marcus, R. A.
Ibid. 1987, 86, 3906.

Marcus

Figure 11. Symmetrical system showing a bifurcation of paths after
passage through a transition state (centered at S).

Figure 12. Symmetrical system showing a bifurcation before passage
through a transition state (centered at Sy and S).

recrossings of the TS, the absence of which, Wigner!? pointed out
many years ago, is needed as one condition for validity of the
quasi-equilibrium assumption of TS theory. In the present paper,
where the focus is on the potential energy contours themselves,
we neglect such kinematic effects.

6. Examples of Other Systems

There are numerous systems where alternative reaction paths
are possible and where no preempting of a TS occurs. An example
of a change in topography from that in Figures 8 and 9 which
would largely eliminate the preempting is the replacement of each
blocking dome D by a pair of domes arranged symmetrically about
each formerly blocked path, as in Figure 10. Condition 2 is now
no longer fulfilled, since in a (somewhat deformed) 120° sector
in Figure 10 there are now four high regions, Dy, D;,, R;,, and
R;,, and three low ones, valleys ¥V, and V, and one-third of a basin.
TS theory becomes applicable. The only path that was available
for reaction 9 in Figure 9 now becomes in Figure 10 a minor path

(12) E.g., in stochastic molecular dynamics calculations of the chair-boat
isomerization of cyclohexane [Kuharski, R. A.; Chandler, D.; Montgomery,
J. A; Rabii, F,; Singer, S. J. J. Phys. Chem. 1988, 92, 3261], a pressure-
dependent (viscosity-dependent) transmission coefficient in solution in the
neighborhood of 0.5 was found due to recrossings. In an Sy2 reaction Cl- +
CH;Cl — CICH; + CI” [Gertner, B. J.; Wilson, K. R.; Hynes, J. T. J. Chem.
Phys. 1989, 90, 3537] a computer simulation molecular dynamics calculation
gave a transmission coefficient of about 0.5 due to recrossings. While these
factors are not major ones, when compared with other uncertainties in TS
theory calculations, they should be taken into account when relatively small
trends are measured, such as the effect of pressure on reaction rates in solution.

(13) Wigner, E. Trans. Faraday Soc. 1938, 34, 29.
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Figure 13. Contour plot for reaction 15.

relative to the direct path which has opened up between D,, and
Dy, for that reaction.

Other examples of a bifurcating system are those given in
Figures 11 and 12, If the topography is such that each trajectory
leaving B, to the left ends up only on the basin on that side, i.e.,
that none reach, instead, B, by crossing the TS indicated by the
vertical dashed line, TS theory is applicable. In a symmetric
situation (violation of condition 3) such crossings would occur
equally, and because of purely statistical considerations TS theory
could still be employed. When the dome D in Figure 12 is high
and wide enough, it reduces the possibility of such trajectories.
There are then four high regions, R, to R; and D, and three lows,
B, to B, so that condition 2 of section 5 is not fulfilled and TS
theory again applies, regardless of whether or not condition 3 is
violated.

A system similar to Figure 12 has been described by Valtazanos
and Ruedenberg! for the reaction from cyclopropylidene to allene

C
Hzc/_\CHZ — H,C=C=CH, {13)
In their plot (Figure 12 of ref 12) the two coordinates used were
a ring-opening angle and the mean of the two dihedral angles
between each of the CH, planes and the CCC plane.
Another example involves the isomerization of the methoxy
radical!’

CH,0 — CH,0H (14)
the course of the reaction being described by
H) H H
\ EAN /
HR=C—0 —s HR—C—0 —+ H®)—C-—0 (15)
H(")/ H® HE)
T8

An antisymmetric pair of CH stretching coordinates for the three
H’s, and a symmetric CH stretch, can be introduced (eq 6) and
the potential energy plotted as a function of S, and S,,, after
minimization with respect to all other coordinates. The resulting
contour plot would resemble Figure 13. The basin B, corresponds
to H;CO, and the basins B, and B, correspond to the three
configurations of HyCOH in reaction 15, where an H® is attached
to the O, with / = 1-3. In Figure 13 there is a conventional
transition state for each of these three dissociation paths. There
are seen to be four low regions B and three highs, R, and so
condition 2 is again not fulfilled. TS theory is applicable for the
reactions indicated.
In one dissociation studied’
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Figure 14. Contour plot for reaction 17.

other reaction products such as H + HCO occurred at substan-
tially higher energy and so did not interfere in the study. The
reaction was found in a quantum calculation’ to proceed via a
bent configuration of the TS:

H /H(1)
HO HE b H®@
C=0 —»  ¢—0 —= c=0 ("
H® TS

If as one coordinate for a contour plot an angle 6, the angle
between the bisector of the HOCH® angle and the positive CO
axis, is used (f can be positive or negative) and if the HOH®
distance r is chosen as a second coordinate, a schematic plot
describing reaction 17 is that given in Figure 14. B, corresponds
to the reactant, and B, and B, correspond to the two symmetrically
related product configurations in reaction 17. (Only one is shown
in reaction 17.) Once again, conventional transition-state theory
suffices. For reaction 17 and Figure 14 condition 1 is not fulfilled.

An example where there are two sets of reactions is the dis-
sociation and the isomerization of H,CS'®

H,CS —H, + CS (18)
H,CS — HCSH (19)
the course of which can be represented as'é
()
"H‘(1) /H
HM HE) H)
C—S —»  “t—§ —= c—s (20)
H® TS
and
H() .H“’ HM
C—S —= c—§ —= c—s’ (1)
@ @ (2)
H H TS H

As global coordinates the coordinates § and r used in Figure 14
may again be employed, yielding the schematic diagram of the
potential energy contours given in Figure 15. Examining the right
half of that figure, it is seen that condition 1 is not fulfilled in
the quantum mechanical study, there being only two instead of
three reactions.

An interesting series of reactions that may occur either con-
certedly or in a nonconcerted (two-step) manner were reviewed
recently by Borden et al.!” They include the Cope rearrangement,

(14) Valtazanos; Ruedenberg, K. Theor. Chim. Acta 1986, 69, 281.
(15) Colwell, S. M.; Handy, N. C. J. Chem. Phys. 1988, 82, 1281.

(16) Tachibana, A.; Okazaki, I.; Koizumi, M.; Hori, K.; Yamaba, T. J.
Am. Chem. Soc. 1988, 107, 1190,
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Figure 15. Contour plot for reactions 20 and 21. The angle 8 is defined
in the text. In the H, + CS products’ regions the contours are seen to
become independent of 6.

the Diels-Alder reaction, the Alder ene reaction, and the 1,3-
dipolar cycloaddition, among others. We consider the Diels—Alder
reaction as more or less prototypical. There are several possible
mechanisms,!” considered below: reaction 22 which is a concerted
mechanism, reaction 23 which is a two-step mechanism proceeding
via a diradical intermediate, and reaction 24 which is concerted
mechanism having an unsymmetrical transition state.
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As coordinates we may use the 1-5 distance 7,5 and the 4-6
distance r4. The r,; distances in the TS in reaction 22 and in
B, in reaction 23 are about equal.’® Three of the possible to-
pographical contour plots are given in Figure 16A—C for reactions
22-24, respectively. Here V, By, and B, refer to the compounds
indicated in reactions 22-24, and B/’ is the symmetrically related
isomer of B, having the 1-5 bond instead of the 4-6 one.

In the case of reactions 22-24 there is only one final product,
apart from possible stereoisomers. Thus, condition 3 in section
5 is not fulfilled. Yet there can still be some uncertainty in the
applicability of TS theory when the reactants for Figure 16B,C
are unsymmetrically substituted: Three possible transition states
leading from V to B and B,’ in Figure 16B and to B, in Figure
16C are the two dashed lines containing saddle points S, and S,
and the dashed line joining R; and R,. We denote their free
energies as Gg,, Gs;, and Ggr; and consider the case that

Gsy > Grigy > Gy (25)
In this instance, the transition state for the loss of ¥in a reaction

originating from ¥V in Figure 16B,C is principally the R, R, dashed
line: The dashed line TS containing S, has, we see from eq 25,

(17) Borden, W. T.; Loncharich, R. J.; Houk, K. N. Annu. Rev. Phys.
Chem. 1988, 39, 213,

(18) Houk, K. Private communication. 1 am indebted to Ken Houk for
suggesting the coordinates in Figure 16.
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Figure 16. Contour plot for the Diels—-Alder reaction (22)-(24), given
by (A)-(C), respectively.

too high a free energy barrier to be the TS, and the TS containing
S has too low a free energy to be a bottleneck. However, a
fraction of the trajectories crossing the R;R, TS proceed along
the S, channel and are then reflected back to V. This fraction
is not calculable from TS theory, and so the error in TS theory
is small or large according as this fraction is small or large. Here,
part of the TS R|R, is preempted by these largely unreactive
trajectories which proceed into the .S, channel. In the case of
reactions 8-10, instead, part of the TS for one reaction was
preempted by another reaction. The error in each case, (22)-(24)
or (8)—(10), depends on the amount of asymmetry of the flux at
the bifurcation.

In summary, we have considered a situation where, at least as
in Figures 8 and 9, the unusual event that the transition state of
one reaction has been preempted by another has been explored,
together with some possible topographical conditions for its oc-
currence and absence. We have also considered reactions, of which
(22)-(24) are a prototype, where related problems can arise,
depending on the detailed nature of the contour plot. A variety
of examples are also given where the conditions in section 5 are
not fulfilled, and so where TS theory is applicable.

Perhaps some of the potential complexities that may occur after
obtaining detailed ab initio potential energy surfaces (pes) should
be stressed. The presence of many coordinates not explicitly shown
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might open up unsuspected pathways, pathways not easily seen
perhaps in a pes projected onto a two-coordinate subspace. Again,
alternative choices of coordinates for the describing a global picture
in the two-coordinate subspace exist, and a choice among them
needs to be made, initially on some intuitive basis perhaps. When
a more complete pes is known, the choice can be made with the
benefit of this added information. In addition to the topographical
features considered explicitly in the present figures, there may
be conical intersections,'® and the sides of some hills may be
shelves.? Some reactions may require three coordinates rather
than two for a global picture, an example being the pseudorotation
in an octahedral complex for which all exchanges of the ligands
are possible. Such contours can perhaps be visualized on screens
using three-coordinate plots.

The present article is intended to introduce the topic of global
portrayals when alternative reactions and reaction paths exist.
There remain various issues and perhaps some surprises which
may emerge when the many-coordinate potential energy surfaces
are calculated and the reaction paths and bifurcations obtained.
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Appendix A. Behavior of Symmetric Stretching Coordinate in
Figure 5 for the X, Reactions

We consider here the behavior of the symmetric stretching
mode, so adjusted, along each of the three valleys in Figure 5,
namely, along the negative S, axis and along the radius obtained
by rotating that semiaxis through an angle of 120° and then by
rotating again through another 120°.

Along the negative S, axis, S4, vanishes and so 7, and r; are
equal (eq 6). At S,; = -, it then follows from eq 6 that r, =
ry = +o, and therefore, as seen from the definitions of the r,’s
in Figure 4a, this channel corresponds to the system being present
as X'V + XD X3, Analogously, it is found that the channel in
the upper left of Figure 3 corresponds to the system being in the
form of the products of reaction 5a, while that in the upper right
corresponds to the products of reaction 5b.

The variation in Sg with position in Figure 3 can now be im-
mediately sketched along the above three directions (and calculated
everywhere else numerically from a pointwise knowledge of r,,
ry, and r, as functions of S, and S,,.) The variation of Sg along
this negative S, axis is obtained by expressing Sg in terms of S,
along this path: Along the negative S,, axis we have r, = r,, and
s0 eq 6 yields

Ss + \/ESAI = \/3"1 Sa1£0,5,,=0 (Al

At the origin S, vanishes, while r,, the bond length 1 in Figure
4a, changes relatively little from its equilibrium value in X;.
However, at S, = —», the change in r, is also small (the bond
length of XX changes only slightly along this axis), and so
eq A1l shows that Sg now equals +«. Le., S varies infinitely along
this S, axis.

It is useful to rewrite eq A1l so that it is valid along the other
two radial spokes obtained by rotating the 4, axis successively
through 120° and 240°. Because of the C; symmetry, we in-
troduce for this purpose a radial coordinate Sy defined by

(19) Xantheas, S.; Elbert, S. T.; Ruedenberg, K. Theor. Chim Acta 1991,
78, 365. Xantheas, S.; Atchity, G. J.; Elbert, S. T.; Ruedenberg, K. J. Chem.
Phys., in press. Atchity, G. J.; Xantheas, S. S.; Ruedenberg, K. /bid., in press.

(20) Ruedenberg, K. Private communication.
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Sk = (Sa; + Sa)'? (A2)
and rewrite eq Al as
Ss +V/25% = V3r(Sp) (A3)

where r is a function of Sy and equals r, on the negative S, axis,
r, on the radial spoke obtained by rotating that axis clockwise
through 120°, and r; when the clockwise rotation is 240°. One
can now see from eq 6 that since the lower bound to any 7, is only
a relatively small negative value, Sg will always become infinite
along those other two paths as the system separates into products.

Appendix B. Behavior of Symmetric Stretching Coordinate
for the X;Y Reactions along Particular Cylindrical Radii

We consider here the reaction 2, written now as
XY = XD+ XY (1=1,23) (B1)

Along the Sy, axis, for the case of i = 1 in reaction 8, we have
ry =r3; Sa; 2 0, ry — +=, and r, remains small throughout (e.g.,
eq 6 and Figure 4b). It is then seen from eq 6 that both §,; and
Sg tend to += as the reaction proceeds. There is, thereby, an
infinite variation in the continuously adjusted Sg along this path.
The relation between Sg and S,,, obtainable from eq 6, expressed
in terms of slightly varying », (=r;), is given by

Ss-1/V 284 =43, (pathfori=1)  (B2)

At large X(VY separation distances r,, 7, equals the equilibrium
XY bond length in X,Y, #,,(X,Y), the slope dS5/dS,, along the
path is, asymptotically, 1 /+/2, and the intercept Sg of this straight
line at S5, = 0 is v/3r%,(X,Y).

The remaining two trigonally equivalent paths, in which i is
2 or 3, are obtained by rotating the path in eq B2 about the Sg
axis, perpendicular to the S5,,54, plane, clockwise through 120°
for i = 2 or 240° for i = 3. An equation, obtained from eq B2,
applicable to all three radial paths, and also useful in the im-
mediate neighborhood of such radii, is

Ss =1/ 25z = V/3r(Sg) (three paths)  (B3)
where Sy is a cylindrical radius given by eq A3 and where
r(Sp) =r; (i =1, 2, 3 on the appropriate paths) (B4)

At large separations of X and X,Y the slope dS5/dSy and the
intercept Sg at S,; = 0 of the asymptotic straight line, seen from

eq B3, has the values 1/ v/2 and 7, (X;Y) given earlier for the
path for i = 1 in eq B2.
We consider next the reactions

XY = X, + XOY (i=1,2,3) (BS)

and first consider motion along the S, axis, but now for reaction
BS with i = 1. During the course of this reaction, 7, becomes very
large while r; remains small and so now S, tends to —= (eq 6)
instead of +=«, while Sg still tends to +«, The relation between
Ss and S, along the negative S,, axis is best expressed, using
€q 6, in terms of the now slightly varying ry:

Ss+ V28, =V 3r, (path fori=1) (B6)

The slope of this curve dSs/d(=Sy,) at large separation distances
now equals v/2, and the intercept of the latter line at S,; = 0
is V/3ry, i.e,, v/3r%,,(XY). Once again, for the other two paths
related by a C; symmetry about the Sg axis, the radius Sy given
by eq A2 can be introduced. Instead of eq B6 we then have

Ss + 1/ 2Sg = /37(Sg) (all three paths)  (B7)

where F(Sy) denotes | on the first path, r, on the path obtained
by clockwise rotation through 120°, and »; when the rotation is
240°, Equation B7 is again also useful in the neighborhood of
these three radii.



