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Avoided crossings between quasidegenerate rovibrational states in the Doppler-free two- 
photon excitation of the 14’ mode in the S, excited state of benzene are treated theoretically. 
Two sets of avoided crossings in plots of spectral line frequency vs J at a given K and AK have 
been reported experimentally between an initially prepared “light” state ( 14’ in zeroth order) 
and dark states, namely, one which in zeroth order is a 5’10’ 16’ state, the other being in zeroth 
order a 6’11’ and/or possibly a 3’ 16’ state, implicated earlier by Neusser et al. The 
identification of these states makes the phenomenon an excellent candidate for treatment of the 
avoided crossing via a Van Vleck transformation, no other basis set states being needed for the 
diagonalization in order to extract the important features. Two successive transformations are 
used for handling direct coupling and coupling via virtual states. The dominant calculated 
contribution to the coupling is, jointly, Coriolis plus cubic-cubic anharmonic interactions 
between vibrational modes. Playing less of a role are Coriolis terms in which the inverse 
moment of inertia tensor is expanded up to quadratic terms in the coordinates. There results a 
5X5 (forcouplingto5’10116’)anda3X3 (forcouplingto6*11’or3’16’) matrixofthe 
transformed Hamiltonian, each of which can also be described, if desired, to a very good 
approximation by a 2 X 2 matrix. The coupling element V, and the difference of the rotational 
constants for the light and dark states (A& are obtained from the plots of line position vs 
J(J -I- 1) obtained. For the 14’ to 5’10’16’ and for the 14’ to 6*11’ couplings the theoretical 
results are in reasonable agreement with the experimental results, no adjustable parameters 
being employed. For a coupling of 14’ to 3’ 16l the calculated V, would be much too high 
compared with experiment (a factor of lo), the coupling involving the exchange of only three 
instead of four vibrational quanta. A situation in which the 14’ state is coupled to the 6*11’ 
state to yield an avoided crossing and off-resonantly coupled to the 3’ 16’ state would be 
consistent with some experimental results and not affect the reasonable agreement of the slope 
difference and splitting for the avoided crossing plots. 

I. INTRODUCTION 

Recent advances in Doppler-free two-photon electronic 
spectroscopy have led to rotationally resolved electronic 
spectra of a molecule such as benzene.lw9 It has been possible 
to excite in this way an exact single rovibronic quantum state 
and observe the results of avoided crossings with other eigen- 
states, avoided crossings which reflect couplings of the var- 
ious zeroth-order states. 

For a moderate size molecule such as benzene, many 
states may contribute to the intramolecular dynamics at 
high vibrational energies.‘@” While we have used artificial 
intelligence search methods to select subsets of states for 
treating CH overtone spectra of benzene at higher ener- 
gies, 20,21 they are not needed for the present relatively low 
energy study at 1570 cm - ‘. 

The current work is an extension of earlier work20*2’ in 
this laboratory, by incorporating rotational degrees of free- 
dom, and was motivated by the highly interesting experi- 
mental results of Riedle, Neusser, Schlag, and co-work- 
ers. 1-9 In studies of Doppler-free two-photon spectroscopy, 
involving the preparation of single rovibronic states in the S, 
excited state of benzene, the authors reported a fit of 90% of 

their lines to a Hamiltonian based upon the RRHO (rigid 
rotor harmonic oscillator model), plus inclusion of lowest 
order Coriolis corrections.5*6 Among the remaining absorp- 
tion spectral lines there were displacements of the lines from 
their expected positions, some displacements, at least, being 
due to avoided crossings in plots of line position vs J at a 
given K and AK. They are considered here. 

In the present paper the relevant data are considered for 
an initially prepared vibrational state of S, benzene, which is 
dominantly 14l in zeroth order,22 and the experimental re- 
sults are analyzed theoretically. Since the excess vibrational 
energy for the 14’ state is only 1570 cm - ‘, the possibility of 
only a few “final” dark states being implicated in causing the 
spectral perturbations is a real one.’ In Sec. II A the Hamil- 
tonian for the higher order vibration-rotation interactions 
relevant to the 14’ state are given. Group theory and degen- 
eracy in the vibrational states play an important role here in 
treating the experimental data. In Sec. II B the selection of 
dark states is considered. Section II C contains the contact 
transformation formalism required for the present treat- 
ment. In Sets. II D to II G we consider the matrix formula- 
tion for the coupling of the 14’ “light” state with various 
zeroth-order “dark” states, each coupling having unique 
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features warranting a separate discussion. In Sec. III results 
are given specifically for the dominantly 14’ light state, and 
assignments are included of specific lines perturbed by inter- 
action of the 14’ zeroth-order state, separately, with the dark 
zeroth-order states 5’10’16’, 62111, and 3’16’, and jointly 
with 621 1’ and 3r 16i.’ In Sec. IV the dependence of the pres- 
ent theoretical coupling constants of these states upon the 
anharmonic force field is described. The results are given for 
differences of slopes in avoided crossings when plotted vs 
J( J + 1 ), rather than vs J, and for the splittings at the avoid- 
ed crossings. Implications are summarized in Sec. V. 

In the present paper we focus on a detailed approach 
which involves no adjustable parameters. We should men- 
tion another approach, an analytical one, which has been 
used at higher energy ( 3412 cm - ’ ) for the 14’ l2 state of S, 
benzene.23 The authors employed a model in which there 
was assumed an equidistant spacing of zeroth-order dark 
states coupled to the 14’1* light state, a single value for a 
Coriolis coupling parameter and one for a cubic anharmonic 
parameter. The formalism was used to treat the linewidths of 
the given So -+S, band. 

II. THEORY 
A. Hamiltonlan 

The eigenvalues of vibrating-rotating molecules have 
been extensively treated theoretically. One well-known 
method involves a perturbative expansion of the molecular 
Hamiltonian, with terms arranged according to the number 
of vibrational and rotational operators:2”29 

Although Eq. (2.2) sufficed to give the line positions in 
about 90% of cases,5’6 explaining the remaining set of per- 
turbed line positions requires a systematic investigation of 
operators in a more complete vibration-rotation Hamilto- 
nian. In the latter one may expand the vibrational potential 
energy as a polynomial in normal coordinates, with the ki- 
netic energy having only terms quadratic in their conjugate 
momenta. However, curvilinear coordinates have the advan- 
tage of realistically describing the atomic motions in terms of 
bond stretches, angle bends, etc., with the disadvantage of a 
G matrix32 that is a function of the coordinates, yielding an 
expansion that results in higher-order terms in the kinetic 
energy operators. 33 Since the quadratic force field employed 
is expressed in terms of normal coordinates,34 and since the 
resulting formulation of Coriolis operators is simpler, it is 
convenient in the present case to use normal coordinates in 
our expansion. Since the anharmonic force field employed3’ 
is expanded in curvilinear coordinates, the nonlinear trans- 
formation of force constants from curvilinear to normal co- 
ordinates would usually be required.33 This transformation 
leaves the quadratic force field unaltered, would introduce 
correction terms converting the curvilinear quadratic force 
constants partly into the Cartesian cubic constants (ex- 
pressed in normal coordinates), and introduces quadratic 
and cubic curvilinear force constant terms in the quartic 
constants expressed in Cartesian normal coordinates. How- 
ever, the quadratic force field employed is a best fit to the 
experimental frequencies, and hence implicitly has account- 
ed for the correction terms which would otherwise have to be 
applied. The anharmonic cubic Cartesian constants are then 
identical with the cubic curvilinear anharmonic constants, 
and are used here. 

H=CCRm+n-2H,n, (2.1) 
m n 

where R is a perturbation parameter, and m and n denote the 
degree of vibrational and rotational operators, respectively. 
H,, corresponds to the harmonic oscillator (HO) Hamilto- 
nian, and &, to the rigid rotor (RR) one. The lowest order 
term containing Coriolis coupling is H,, , and involves two 
normal modes Qk and Q,, whose representation for their 
symmetric direct product contains the irreducible represen- 
tation l? (R, ) of a rotation about an axis a30 

The various terms H,, in Eq. (2.1) include those aris- 
ing from expansion of the inverse inertia tensor p which ap- 
pears in the quantum-mechanical vibration-rotation Hamil- 
tonian H36 : 

+$T P: + v(Q) -ifi* &qz,. (2.3) 
a 

The rovibrational energy of an oblate symmetric top, 
such as benzene, is given using RRHO and first-order Corio- 
lis terms by 

J, is a body-fixed component of the total angular momen- 
tum operator J, with a = x,y,z. pa is the ath component of 
the vibrational angular momentum operator 

E =Evib +B,J(J+ 1) + (C,--B,)K2-2C, P, = C Z ~~~,~.o,Qtw~P,,~,~ 
ko,,lo, 

(2.4) 

x 7 li1i 
( > 

K9 (2.2) 

where Etib denotes the rotationless vibrational origin and 
the sum is over the degenerate vibrational modes which pos- 
sess vibrational angular momenta lifi, about a sixfold sym- 
metry axis in the case of benzene. The total rotational quan- 
tum number is J, K is that of the body-fixed component of 
the angular momentum along the sixfold symmetry axis, and 
C, is the rotational constant (equilibrium configuration) for 
rotation about this axis. 31 B, is the corresponding constant 

where one cannot have, simultaneously, k = I and ok = 0,. 
In Eq. (2.4) Qk,ol, is the operator for the (mass weighted) 
normal mode (k,a, >, while PLq, is the operator for the mo- 
mentum conjugate to Q,,,,, and 5 $k,l,o, is a coefficient whose 
magnitude does not exceed unity.37 The cr subscripts label 
components of degenerate modes and are absent for nonde- 
generate modes. The second and third terms on the right- 
hand side are, respectively, kinetic and potential normal 
mode energies, plus anharmonic terms in K 

for rotation about one of the other symmetry axes. For a 
planar symmetric top such as benzene, C, = B,/2. 

In its equilibrium nuclear configuration the molecule 
has a principal axis system in which the inertia tensor is 
diagonal, ,u$$ = 6,,D~u,, . (‘) The rigid rotor (RR) approxima- 
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tion is recovered using pip,’ and neglecting vibrational angu- 
lar momenta and vibrational anharmonicities. The lowest 
order Coriolis interaction H,’ arises from the cross terms in 
J and p, upon substitution of,uLz for,ua8. As in Eq. (2.4), it 
is a sum of terms each of which contains two vibrational 
operators and one rotational operator. 

tively couple to it.) Of these seven vibrational states, four 
states ( 10’11’162,4210’16’,4’16217’,and4’165) differfrom 
14’ by five, six, or seven vibrational quanta. The remaining 
two, 5’ 10’ 16’ and 6’11’, differ by four quanta from 14’ and 
were proposed earlier by Neusser and co-workers5-9 as the 
dark states. 

Aside from H,, there are terms H,, , m>3, arising from 
expansion of pu,, in Eq. (2.3) in normal mode coordinates. 
The H,, terms contain m vibrational operators and one ro- 
tational operator. In particular, the first two terms are 

H,’ = - + C C [IZpa)l$‘-J - ‘@:$‘(paQa.o, 
a# QPa 

+ Qa.oOpa ) Jo, (2.5) 

H,, = - +c c [1zlg] - ‘fi$$&, 
a.B ~.O,bPlJ 

x (~aQ,,,Qtw~ + Qa,,Qb.,~a ) JP (2.6) 

A recent double resonance study39 by Page et al. yields a 
set of S, fundamental frequencies which, among other 
changes, a differs from the set of Robey and Schlag34 in the 
value of Y., . When this new galue is employed in the direct 
count, the 3’16’ state, of ungerade parity, falls within f. 25 
cm - ’ of 14’. \ 

Since each successive powLer in R of the vibrational-rota- 

where 
fl(‘)a~,n$~$~O,, etc., are coefficients in the expansion of,uap: a.oa 

pas = [Ih','Ig] - ' 1s + 2 fi;,?;'Qb.,,b 
ha, 

+ & czc %!b:$cQtwbQc,, + * * - 1 . (2.7) 

tional Hamiltonian is accompanied by an additional vibra- 
tional or rotational operator [cf. Eq. (2.1) 1, a given opera- 
tor coupling, say, 10’ 11’ 16’ to 14’ will occur with one power 
of il higher than the analogous operator coupling 5’ 10’ 16’ 
and 6’11’ to 14’. In the present study terms in H up to and 
including fl 3, the lowest order possible for the allowed cou- 
pling of these states, are considered. Since the coupling terms 
of order il 4 and higher are neglected, the four states above 
differing in five or more vibrational quanta from 14’ are not 
considered further. For direct coupling of 14’ to 3’16’ only 
terms up to and including i12 need consideration. 

The coordinates Q are defined so that they vanish at the 
equilibrium geometry. H,’ and H,, are seen to reflect a vi- 
brational dependence of the Coriolis term. 

To proceed further we require the combination or other 
bands which may anharmonically and/or Coriolis-couple, 
near resonantly, to the 14’ state. Identifying them is a step in 
deciding which terms in the vibration-rotation Hamiltonian 
are responsible for the coupling of 14’ to dark states, i.e., to 
states whose Franck-Condon factors for their optical excita- 
tion from the ground state are very small. 

In the 5’ 10’ 16’ state the three excited vibrational modes 
are each out of plane; modes 10 and 16 are doubly degenerate 
and of elg and e,, symmetry, respectively.32 The 62 11’ vibra- 
tional state has a doubly excited in-plane mode 6 of e2* sym- 
metry and a singly excited out-of-plane mode 11, of uZu sym- 
metry. In the 3’16’ state mode 3 is in-plane with azg 
symmetry. 32 Mode 14 is an in-p lane mode of b,, symme- 
try.3* 

B. Selection of dark states 

Using only the experimental fundamental frequencies34 
vj in the S, state of benzene, it was possible to calculate 
combination band origins with an accuracy of perhaps + 5 
cm-‘; the combination band origin having an energy slight- 
ly different from the simple sum of fundamental frequen- 
cies,38 because of extra anharmonic contributions. This fig- 
ure of & 5 cm - ’ is based upon comparison with calculated 
theoretical fundamental and combination band energies us- 
ing the ab in& anharmonic force field employed.35 The 
vibrational combination states within + 25 cm - ’ of the ini- 
tial state (using measured fundamentals of S’ ) were exam- 
ined as possible candidates as the interacting dark states. 

Having identified potential dark states quasidegenerate 
with 14’, we consider later which terms in the vibrational- 
rotational Hamiltonian may couple 14’ to these dark vibra- 
tional states. Some terms may shift rovibrational states in the 
14’ manifold from their anticipated positions in the RRHO 
approximation, without coupling to rovibrational states in 
the 5’ 10’ 16’ and 621 1’ manifolds, and are not considered 
further. All calculations of the splittings and difference of 
slopes in the avoided crossing curves can be made modulo 
such shifts. 

C. Contact transformation theory and application 

The initially prepared vibrational state 14’ (more pre- 
cisely, an eigenstate which is dominantly 14’) lies 1570 
cm-’ above the lowest vibrational state of S, benzene. A 
direct count of vibrational states lying within f 25 cm- ’ of 
14’ using the fundamentals for S, given by Robey and 
Schlag34 reveals seven states of the correct parity (unger- 
ade), each having some degeneracy in zeroth order. ( 14’ is 
ungerade, such that states of gerade parity cannot nonradia- 

In the present case, where the zeroth-order states have 
been identified, the contact transformation method is par- 
ticularly useful to treat the coupling and is employed 
here.4’43 It focuses on the perturbation of a cluster of states. 
It was introduced by Van Vleck and applied extensively by 
Nielsen and others to molecular vibrational-rotational in- 
teractions.42*-7 By using it, no other basis states need be 
considered in the present case, when the transformed Hamil- 
tonian is employed in the diagonalization, and the relevant 
expressions are available in the text by Amat et aL4* A recent 
survey of perturbative and other methods, including the con- 
tact transformation, is given by Sibert.49 A projection opera- 
tor formalism for the contact transformation is described by 
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several authors,50’s’ and its relation to the work of Nielsen et 
al. is discussed by Jorgensen et aL5’ 

In the contact transformation method, as applied to a 
polynomial Hamiltonian [cf. Eq. (2.1) 1, successive unitary 
transformations are introduced, the first such that the terms 
in the new Hamiltonian up to and including order il (arising 
from cubic anharmonicity, Coriolis interaction, etc. ) com- 
mute with the RRHO Hamiltonian Ha, which is of order2 ‘. 
Thereby, the matrix elements of this new Hamiltonian ob- 
tained with the RRHO basis set are diagonal to order /2. A 
second contact transformation is then introduced to yield a 
new Hamiltonian whose terms up to and including terms in 
/2 * have only diagonal matrix elements in the RRHO basis 
set, and so again commute with Ho. At this point, in the 
present case, the terms of order /E 3 with four vibrational 
operators and one rotational operator [cf. Eq. (2.1) 1, aris- 
ing from the transformations, are now the leading contribu- 
tions to the off-diagonal elements of the transformed Hamil- 
tonian. They provide the desired resonant couplings between 
the rovibrational states in 14’ with the identified dark states, 
which differ from 14’ in four vibrational quanta.53 The re- 
sulting matrix is then diagonalized in the present case to 
avoid the small denominators (resonant terms) problem. 
There is one qualification to the above: The unitary transfor- 
mation typically used in the literature, and also used here, 
does not diagonalize to order ,12 the terms having [quantum 
numbers for doubly degenerate vibrations. Accordingly, 
they will contribute later, to order il 2, to the off-diagonal 
terms. A similar remark applies to rotational terms contain- 
ing the quantum number K. 54 Later, in treating quasidegen- 
erate states which differ in four quanta simultaneously with 
those which differ in three, care must be taken in choosing 
the transformation, so as to avoid small denominators. We 
first review briefly the Van Vleck transformation, using the 
projection operator version, because of its transparency. 

In the contact transformation method, a unitary trans- 
formation H”’ = U, HU: is applied, such that the off-diag- 
onal matrix elements of the transformed Hamiltonian H”’ 
are zero up to order /2, in the representation Ii) which dia- 
gonalizes the unperturbed Hamiltonian Ho. For this pur- 
pose, one sets U, = exp{iil S,} with the transformation 
function S, , then satisfying Eq. (2.8j4’: 

HI” = HI -I- i[S,,H,], (2.8) 

Hi” is the term of order ;1 in the transformed Hamiltonian 
H’ ” and S, is chosen so that Hi” is diagonal in the basis set 
which diagonalizes He. The diagonal elements of HI” equal 
those of H, in this basis set [ Eq. (2.8) 1. 

These results can be written compactly in terms of a 
projection operator formalism: We use P, to denote an oper- 
ator which projects onto the subspace of the initial state or 
states (in the present case this subspace consists only of the 
] 14’;J,K) state and the quasidegenerate specified dark 
states), and Q. is the operator which projects onto the com- 
plementary subspace of the remaining eigenvectors of Ho. 
For brevity of illustration in this section and in Appendix A, 
but not in the actual calculations, the PO subspace is treated 
as degenerate, with eigenvalue Eo. The more general treat- 

ment is given in Ref. 50. The above conditions placed on HI” 
above can be written in terms of PO and Q. as 

PoH;‘)Qo = QoH~“P, = 0 (2.9) 
and 
P H”‘P = P H P 01 0 0 , 0, QoHI”Qo =QoH,Qot (2.10) 
all of which can be rewritten as 

HI” = PoH,P, + QoHiQo. (2.11) 
The solution of Eq. (2.8) and Eq. (2.11) for S’ is given by” 
(Appendix A) 

S, =i Qo 
Eo - Ho 

H, PO + h.c., (2.12) 

where h.c. denotes the Hermitian conjugate, 
- iP,H, Qe /(E, - Ho ) in this case. 

In the use of Eq. (2.12) for S, , each perturbing term 
HI,, in the untransformed perturbation Hamiltonian 
(H’ = Z, HI;, ) is seen to require a corresponding function 
Slip, with S, = Z,,S,;,. For transformation functions relat- 
ing different vibration-rotation terms in the Hamiltonian 
S,;, = S$$i. The zeroth-order RRHO Hamiltonian Ho 
equals H,, + Ho,. Equation (2.12) then yields 

i[S,.,,H,] = i[S$, H,,]S;Oi + i[f$‘$,Ho2]S$, 
(2.13) 

since Sri! commutes with Ho2 and Sf$ commutes with 
H,, .5s 

The lowest order operator that will provide an off-diag- 
onal coupling of the initial state with states which differ in 
four vibrational quanta and in K is the third-order twice- 
transformed operator H, . (2) For this reason the Hamiltonian 
H”’ is subjected to a second transformation, to make the off- 
diagonal matrix elements arising from perturbations to or- 
der R 2 vanish, and the diagonal elements of H:2’ to equal 
those of Hi”, thereby isolating Hi2’ as the leading term re- 
sponsible for the coupling in the transformed Hamiltonian. 
However, as noted earlier, the standard Nielsen-type trans- 
formation functions S, and S, employed in the calculations 
allow for a matrix representation diagonal in the principal 
vibrational quantum numbers ui to order ;1 2, but not diag- 
onal to order ;Z 2 with respect to the Ii quantum numbers in 
the case of doubly degenerate vibrations, nor with respect to 
the rotational quantum number K.53*54 

The second contact transformation S, will be sufficient 
for removing from the off-diagonal positions all terms of 
order il 2, except for those off-diagonal in the Zi quantum 
numbers, in K, or in both. For the second transformation we 
have Hc2’ = U,H”’ Uz, where U, = exp{iil ‘S,) and 
hence, 

Hi2’ = Hi” + i[S,,H,], (2.14) 
where Hi” is the term of order /z * in H(l), i.e., in 
exp{i/2 S, )H exp{ - i/z S, 1: 

Hi”=H, +i[S,,H,] -$[S,,[S,,H,]]. (2.15) 
Analogously to Eqs. (2.9) and (2.10) we wish 

PoH;2’Qo = QoH:Z’P 0 = 0 (2.16) 
and 
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P H’*‘P, = P,H$“P 0 2 0, QoW’Qo = QoH:“Qo, 
(2.17) 

PO Hi2’P 0 

and so we have 
Hc2’ = P 2 H”‘P, + QoH”‘Q 0 2 2 0’ (2.18) 

The solution of Eqs. (2.14) and (2.18) is similar to that of 
Eq. (2.12): 

S =i+H$“P +hc 2 0 * *, (2.19) 
a 

f H , ?%H, % I-$, 
a a 

-+--Hlpo~, 

hence one finds from Eqs. (2.12) and (2.15) that -$H, *H,P,H, 
a2 I 

PO. 

S, =i sH,P, +sH, Q,H,Po 
a a a 

+H,P,H,P, 1 + h.c., (2.20) 

wherea=Eo-H,,. 
The S, and S, transformation functions obtained by 

Nielsen and co-workers,23-24*44*47 and the S, and S2 func- 
tions discussed above using the projection operator formal- 
ism, satisfy the same equations, namely, Eqs. (2.8) and 
(2.14). Furthermore, S, and S, can be determined from 
those equations, e.g., as in Eqs. (2.12) and (2.19). However, 
Nielsen’s and the projection operator forms of the S func- 
tions are quite different; the former being expressed in terms 
of polynomials of vibrational operators qi and pi,56 and the 
latter being expressed instead in terms of PO, Qo, and H. 
Nevertheless, they lead in the present case to the same final 
results for the transformed Hamiltonian when H is ex- 
pressed in polynomial form. Thereby, it was appropriate to 
describe the overall formalism here using the projection op- 
erator expressions for S functions (they are simpler) ,57 even 
though the transformed Hamiltonian used in the present cal- 
culations was that given in Ref. 48, where Nielsen S func- 
tions were used. 

The term in Hc2’ of present interest for coupling the 14’ 
to the 5’ 10’ 16’ or 62 11’ manifolds is Hi2) and is given by the 
term of order /z 3 in exp{i;l ‘S, }H’ ’ ) exp{ - i/z 2S2 }, name- 
ly, by 

Hi2) = Hi” + i[S,,Hi”]. (2.21) 

Needed for the present problem, however, is not the full 
Hi2’, but only its diagonal component, P,H:‘)P,. Using 
Eqs. (2.10), (2.19), and (2.21) we have 

PoHi2’Po = P,(H$*) + i[S,,H, ] )P,. (2.22) 

Since Hi” can be expressed in terms of S, , S, , and H alone, 
it follows from Eq. (2.22) that 

PoHi2)Po =P,{H, +i([S,,H,] + [S,,H,]) 

-f[%[%H,l]~Po~ (2.23) 

where H, is the term of order il 2 in H. Evaluation of the 
commutators in Eq. (2.23), using Eqs. (2.12) and (2.20), 
yield?’ 

SH, +H, %& 
a a 

(2.24) 

The terms in PoH$2’Po in Eq. (2.24) contain the follow- 
ing matrix elements of products of untransformed operators, 
with H,, again denoting m  vibrational and n rotational op- 
erators: H,, ; HrticH2, , HFW,, , H,, H 31; and 
H,, H,, H,, omitting for notational brevity the interspersed 
PO’s and Qis. Here, Hrtic arises from quartic anharmoni- 
city and Hy from the cross terms of Eq. (2.3) quadratic in 
vibrational angular momenta. Each factor contributes its 
own order of /2, e.g., in the product H,,H,,H,, , since H,, 
has a cubic anharmonicity, it is of order R, the Coriolis factor 
H,, is of order 2, and so the terms are of order 2 3. Similarly, 
HgrtiCH2, and HYBH,, are each of order il 3. 

The symmetry requirements for nonzero cubic and 
quartic force constants in H,, and HP and for Coriolis 
coupling coefficients in H,, are well known.32 The symme- 
try restrictions for the terms containing the fl~O~~~ and 
flnc2kv3 e,,OO,e,+, coefficients were derived individually and are giv- 
en in Appendix B. This information indicates which product 
operators vanish by symmetry when H,, and H,, appear 
singly in the products. 

Upon performing the appropriate sums over the mode 
indices thousands of combinations of the vibrational opera- 
tors are obtained for the various products above. Group the- 
ory was used to identify which of these products, via the 
relevant matrix elements, contribute to the coupling of the 
light and dark states (cf. Appendix B) . 

An important simplification in perturbation calcula- 
tions of molecular rotation-vibration interactions, present 
in the formulas4’ used here, arises from ( 1) the algebraic 
simplification due to use of [ qi ,pj ] commutation relations, 
and (2) the simplicity of the matrix elements of qf, e.g., in 
Eq. (2.24). For example, for the second reason, in a coeffi- 
cient CbL G&x LX bf co) of a polynomial in the next sec- 
tion the operators qi and qf are absent in the polynomial. 

D. Coupling of the 14’ state to the S101161 manifold 

The matrix elements coupling the zeroth-order 14’ state 
and the zeroth-order dark state 5’ 10’ 16’ are considered as a 
specific example of the use of group theory in applying Eq. 
(2.24). For a term in a product operator P,H$“P, such as 
H,oH30Hzl to contribute to this coupling, each of the three 
factors must be nonzero. The expansion of the transformed 
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operator, H,, H,, H,, which couples Ii) and 1 j), 
where Ii) and 1 j) are in the PO and Q. subspaces, 
respectively, contains the matrix 
elemen&* (~b~CcCbckobckcde~~~f(ilqaqa!qePfJalj) and 
( %,& Cad k,, LA t&l (il qb q, q, p, J, ) j) , where the indices 
which are not summed over depend on the dark state ( j), for 
the given light state Ii). In the first sum the representations 
RQ,) @r(Qb) er(Q,) and RQ,) er(Qd) er(Q,) 
must each have an a’, irreducible component, in order that 
kobc and k,, not vanish by symmetry, while r ( Qb ) Q  l? (Q,) 
must have a r (R, ) component so that g & similarly does 
not vanish. These restrictions severely limit the allowed val- 
ues of indices b and c, which would be otherwise free to vary. 
When the 14’ and 5’ 10’16’ states are coupled, the indices 
a,d,e, f in the first sum become permutations of 5, 10, 14, and 
16. The values of b and c for which the relevant matrix ele- 
ments do not vanish can then be determined systematically 
using group theory (cf. Appendix B) . In the above sums C,, 
and C,, are constants containing harmonic frequencies, mo- 
ments of inertia, etc., and are seen to differ in which factors 
have the common indices. A discussion of the symmetry of 
terms in the first sum is given, as an illustrative example, in 
Appendix B. 

For this pair of states only a small fraction, but still 
many, independent combinations of quadratic products of 
cubic constants multiplied by Coriolis coefficients contrib- 
ute to the coupling. In the case of the other product opera- 
tors, only a few terms are left. Later, in Sec. IV a breakdown 
of number of combinations and their relative contributions 
to the coupling matrix element of Hi2’ are given. Here, rath- 
er, the few general types of nonzero combinations which 
arise are described. For this pair of states there is no contri- 
bution to the coupling from the first term in Eq. (2.23), H,, 
because of symmetry requirements for terms containing the 
~(2w-J otiO,ohob factors. This finding is evident from the result, 
seen in Appendix B, that for the identified initial and final 
states the four coupled vibrational quanta involved must 
have at least three of them in in-plane modes. However, for 
other initial-final pairs of states H, could well contribute to 
the coupling. 

We also have from ( ilHrfiCH2 1 1 j) the sum 
8,C,S~,,knbcd(ilpeqbq,q~J,(j), which will be nonzero for 
some values of the index a. We further have5’ from 
(WJOH,, I8 the sum B C Q2(‘)ap(;ekabc 
X (il q0 qb qd peJ, I j) , which is similarly ioizeio for ‘some 
values of the index c, as again shown by symmetry argu- 
ments. Analogous results apply for coupling to the 62 11’ 
final states9 and to the 3’ 16’ final state. 

NOW that coupling by many terms in the transformed 
Hamiltonian has been eliminated to order R 2, the remaining 
couplings are considered for the present small set of rovibra- 
tional zeroth-order states in the initial and final manifolds.60 
In the example below, the 5’ 10’ 16’ state is considered. It has 
two doubly degenerate (e) modes, 10 and 16. The initial 
stateis IJ,K ), with the vibrational excitation 14’ understood, 
and the final state is JJ,K f l), with the vibrational excita- 
tion specified later, there being two e- modes in the final 
state. The latter can be characterized, in part, by the addi- 

tional quantum numbers I,, and I,, [these Is, which are zero 
in the initial state, are not associated with the vibrational 
angular momenta Zjfi in Eq. (2.2)) since modes 10 and 16 are 
each out of plane.] In the coupling of the 14’ and 5’10’16’ 
states, J is conserved, and since the only type of Coriolis 
coupling allowed for the relevant states is (x,y) (for a z- 
Coriolis coupling to 5’ 10’ 16’ at least one of the modes in the 
dark state would have had to be in-plane) the selection rule 
for the radiationless transition is AK = f 1. This (x,~) Cor- 
iolis coupling, a consequence of the selected states and the 
symmetry requirements, is supported later by experiment.7 

Due to symmetry present in a C, operation about the 
principal symmetry axis the following selection rule applies 
for coupling between two zeroth-order states for a symmet- 
ric top61 : 

-AK+~a,Al, ++Nz Aui =pN, (2.25) 
f I 

for a molecule with an N-fold principal symmetry axis (here, 
N = 6). In Eq. ( 2.25) p is an integer, the sum over i is over all 
modes belonging to b-type irreducible representations (b,, , 
b,, etc., * * . ) ,6’ and the sum over t is over degenerate modes 
that change their respective I, values by Al,, with a, equal to 
one for an e, -type mode (elg,elU ) and two for an e,-type 
mode (e,, ,e,, 1. For a given AK, it provides the allowed Al ‘s. 

In applying Eq. (2.25) to the coupling of 14’ to the final 
state 5’ 10’ 16’ we note first that the latter state has an excited 
e, -type mode Q’, (and hence a’, = 1) and an excited e2- 
type mode Q’6 (and hence ~1,~ = 2). For AK = +_ 1, the 
smallest change in the Z’s is obtained by setting p and the 
Avi’s in Eq. (2.25) equal to zero. Equation (2.25) now gives, 
for Al = _t 1, corresponding to one vibrational quantum ex- 
change per mode, 

40 = t 1, 
I,, = f 1 simultaneously (for AK = t 1). (2.26) 

Thereby, any Coriolis-induced AK = + 1 coupling between 
14’ and dark states with l,. = I,, = f 1 is forbidden. These 
latter two states are therefore omitted from the set of basis 
states. 

The successive transformations provide a matrix repre- 
sentation of the transformed Hamiltonian in which the ini- 
tial and final states are in one 5X5 block along the main 
diagonal. Since the implicated coupling is of order R 3 we do 
not include in this matrix any terms of higher order. Within 
this matrix given below there are also terms coupling the 
K f 1 states to K f 2 states, respectively. However, the 
K f 2 states would be further off-resonance as seen by the 
rigidrotorenergyterminH,,B,[J(J+ 1) -1(K*2)2], 
having substituted K + 2 for K, differing from the rigid rotor 
energy for K by about f 2BeKz0.36K cm- ‘. Thereby, 
such K + 2 states can be omitted here in treating the proper- 
ties of an avoided crossing. The remaining terms, being of 
order /z ‘, /z 2, or il 3 are included, the matrix elements being 
those of the indicated operators: 
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878 A. Helman and FL A. Marcus: Coriolis coupling in benzene * 

IZ,Z&;J,K- 1) (Z,T,Z,;J,K-- 1) 114l;J,K) IZloZ;;J,K+ 1) IZ;Z,;J,K+ 1) 
Hi, + H:” Hi2’ 0 0 0 

H, + Hi” Hi2’ 0 0 
H, + Hi*’ Hi2’ 0 ’ 

H, +H:2’ Hi2’ 
(Hermitian) 

where only terms of the twice-transformed Hamiltonian for 
which the matrix elements are nonzero are shown. 

In this matrix the states of 5110’16’ parentage are la- 
beled by quantum numbers I,, and I,, , the superscripts indi- 
cating their signs of f 1. The initial zeroth-order state is 
indicated by /14’;J,K ), for which all Z, vanish, the Q,,, mode 
being nondegenerate and all other modes being unexcited. 
The missing operators in the lower left triangle are the Her- 
mitian conjugates of those listed in the upper right. The diag- 
onal terms contain RRHO energies from &, and the diag- 
onal matrix elements for the two states of 5’ 10’16’ parentage 
with J, = K - 1 have the same RRHO values, as do the two 
states with J, = K + 1. There is no diagonal term linear in il 
associated with parallel Coriolis energy or anharmonicity 
for this pair of states 14’ and 5’ 10’ 16’,37 and so there is no 
H!*’ term in this matrix. This latter statement follows be- 
cause Hi” = Hi” (since S, has no effect on Hi”), and 
Hi*’ = H’ = 0, in the absence of parallel Coriolis contribu- 
tion to the energy of these states and [cf. Eq. (2.11) ] since 
S’ has no effect on diagonal elements of H’ . There are diag- 
onal terms of order/z *, Hi*‘, some of which are dependent 
on vibrational quantum numbers alone, and others that are 
dependent on Jand K. The former are included in AE,,,, the 
difference in energy of rotationless origins in the absence of Z 
degeneracy, between 5’10’16’ and 14’. The diagonal (J,K) 
dependent terms include quartic centrifugal distortion oper- 
ators [such as J*( J + 1 )*] and terms proportional to 
J(J + 1) or K *. Both give a negligible contribution to the 
energy difference of the two states and no contributions to 
the off- diagonal elements.62 

Off-diagonal matrix elements are of the operators Hi” 
and H$2’.6o The third-order transformed operator Hi” is 
seen to couple the initial K state to the final K - 1 and K + 1 
states with the appropriate signs of I,, and I,, indicated. The 
operator Hi*‘, of order R ‘, removes the degeneracy of pairs 
of levels that differ only in their Z quantum numbers, and via 
(v,,u,;Z, -&- l,Z, 7 ~IH:~‘[u,,u,;Z, T l,Z, + 1) it provides the 
well-known Z-type doubling.63 The magnitude of this matrix 
element exceeds that of Hi” and places one of this pair of 
levels off-resonance from the ( 14’;J,K ) state, thereby, al- 
lowing the latter to interact via Hi” with the remaining state 
in the 5’ 10’ 16’ manifold. 

The J’s will be considered for which, prior to the diagon- 
alization, the initial state 14’ has a zeroth-order (RRHO) 
energy that is very close to the two states in the 5’10’ 16l 
manifold with J, = K + 1. It can be seenw that, apart from 
changing the signs of the Ali’s and modifying slightly the off- 

H, + Hi*’ 

diagonal term, the use of AK = - 1 gives essentially the 
same final results. When the two J, = K + 1 dark states are 
quasidegenerate with the initial state I J,K ) the two states 
with J, = K - 1 are relatively far removed in energy and one 
could introduce a partitioning approximation65 in which the 
2 x2 subspace consisting of I 14’;J,K ) and the nearest single 
nearby state with J, = K - 1 are regarded as forming the 
resonant subspace and the remaining three states as being 
off-resonant. The resulting secular equation yields the eigen- 
valueP 

El,, =+{(E; +E;)I. [(E; -E;)2+4~H:2”(2]“2), 

(2.27) 

which yields immediately the deviations of the lines from 
their anticipated positions. In Eq. (2.27) IH i2” ( denotes the 
magnitude of the off-diagonal matrix elements due to the 
perturbation given by the transformed operator Hi*‘, plus 
additional terms arising from the partitioning method, while 
E ; and E ; are diagonal matrix elements of the two coupled 
states in this 2 X 2 matrix, thereby also containing off-reso- 
nant terms arising from the partitioning. Numerical results 
are given later, both with and without the partitioning ap- 
proximation and indicate the usefulness of the latter. 

E. Coupling of the 141 state to the 6*111 manifold 

For the dark states in 6’11’ there are now three states 
involved, the states )14’;J,K ), IZ;*;J,K - 1) and 
II 2 ‘;J,K + 1). There is one other difference from the pre- 
ceding case of the 5’ 10’ 16’ states: there is now a first-order 
(parallel) Coriolis energy that appears on the main diagonal 
(mode 6 is a degenerate in-plane mode, and the Coriolis 
energy splits states differing in their Z6 quantum numbers). 
Since one of the two states lZ;*;J,K - l), and 
IZ,+ *;J,K + 1) is well separated by the zeroth-order term in 
K * as well as by the first-order parallel Coriolis interaction 
from the remaining two states, that state is weakly coupled 
and the partitioning technique can again reduce the problem 
to a 2 x 2 secular equation, with a solution analogous to Eq. 
(2.27). The 3 X 3 matrix is given by 

)I, ‘;J,K - 1) ) 14’;J,K ) lZ:‘;J,K+ 1) 
Ho + H, + I-I:*’ Hi*’ 0 

Ho + Hi2’ ,3*’ ' 

(Hermitian) Ho + I-I, + H:” 
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In this matrix RRHO energies and parallel Coriolis en- 
ergies [cf. Eq. (2.2) ] are along the main diagonal as, respec- 
tively, I-&, and H, . For AK = - 1 the first two states form 
the resonant subspace in the partitioning method.64 The 
third state, although coupled to the initial I 14’;J,K ) by Hi*‘, 
forms the off-resonant subspace, being far removed in ener- 
gy* 

F. Coupling of the 14’ state to the 31161 manifold 

In the coupling of the 14’ initial state to the 3’ 16’ mani- 
fold, the relevant coupling term, containing one rotational 
and three vibrational operators, is of order il ‘. Thereby, the 
twice-transformed Hamiltonian H’*‘, which is diagonal to 
order R * in the vibrational quantum numbers u,, will fail to 
model an avoided crossing because S, would contain small 
denominators of the form w14 - w3 - o16. Thereby, a 
modified transformation function S: is applied to the un- 
transformed Hamiltonian to obtain the coupling, ST defined 
analogously to Eq. (2.19), 

s+iQo’ H;“P, + hc * -, 
a 

(2.28) 

where Qz is the projector 2, +k, Ik ) (k I, the sum over all 
zeroth-order states except the two quasidegenerate states of 
interest. The resulting 3 X 3 matrix is given by 

)Z&‘;J,K- 1) /14’;J,K) IZ,‘;J,K+ 1) 
H, + Hi*’ H’*’ 

2 H”’ rot 2 

H, + Hi*’ Hi*’ * 

(Hermitian) H, + Hy’ 
In this matrix the vibrational label 3’16’ in the first and 

third columns is omitted. This matrix differs principally 
from the previous 3 x 3 matrix in that there is no parallel 
Coriolis energy along the main diagonal for the two dark 
states. The latter two states, differing in their K quantum 
numbers, are separated in zeroth order by their different rig- 
id rotor energies contained in H,. The off-diagonal terms 
Hi*’ couple 14’ to the two 3’16’ states. Hi*’ rot is a rota- 
tional I- doubling term that couples states via 
(Z,;K IH:” rot I I, f 2;K T 2) and, for values of K of our in- 
terest, yields a coupling matrix element of magnitude 10 - 3 
to 10 - 4 cm - ‘, considerably smaller than the magnitude of 
H’2’ 67 

G.*Coupling of the 141 state to the 6*111 and 3’16’ 
manifolds 

In order to treat several aspects of the fluorescence spec- 
trum following excitation of states dominantly 14’ in charac- 
ter,8 for certain values of (J,K) (in particular K = 15,17) it 
is desirable to consider the simultaneous interaction of ze- 
roth-order states from both the 6*11’ and 3’ 16’ manifolds, 
with 14’ states. The resulting 5 X 5 matrix contains as basis 
states the ( 14’;J,K ) initial state, and the four final states 
included in the two 3 X 3 matrices above: 

3’16’ 6*11’ 14’ 6*11’ 3’16’ 
lZ;‘;J,K- 1) IZ,*;J,K - 1) IJX > lZ,‘-*;J,K + 1) Il,‘;J,K+ 1) 

H, + Hi*’ Hi*’ quintic H’2’ 

I& + H, + H;” Hf2’ 
0* Hi*’ rot 
0 o* . 

H, + H:” Hi*’ ,3’*’ 
2 

Ho + H, + I-i:*’ Hi*’ quintic 
(Hermitian) H, + Hi*’ 

This matrix employs H :*’ obtained with the modified ST transformation function defined by Eq. (2.28)) in order to avoid 
small denominators (arising from l/a) ofthe form w14 - w3 - w’~. Aside from this change, the only items in this matrix that 
have not been described in previous subsections are the off-diagonal terms Hi2’ quintic and O*. Hi*’ quintic is a third-order 
anharmonic coupling of pairs of states in the 3’ 16’ and 6*11’ manifolds. There is also a parallel Coriolis term coupling the 
same states, but it is of orderil 4 and may be neglected. 0* is a high-order rotational Z-doubling term, and is similarly neglected. 

c 
III. RESULTS FOR 14’ S, STATE involving the 14’ state arrange themselves into two sets of 
A. Theoretical resonance regions in the (J,K) rotational manifold; a region 

for coupling to 5’ 10’ 16’, ranging, for the best plots, from 
A particular initial rovibronic state and a final state will (35, 10) to (24, 9), and a region for 6’1 l’, ranging, for the 

be quasidegenerate provided that the (J,K) pair satisfies Eq. best plots, from (35, 15) to (21, 17).68 These avoided cross- 
( 3.3) given below. For these quasidegenerate pairs, the off- ings are indicated in Tables I through IV, together with the 
diagonal coupling can lead to significant deviations from line final states to which the 14’ state is coupled.68 
positions in the vicinity of the avoided crossings. In Fig. 4 of For the light ( ( 14’;J,K ) ) and dark rovibronic states to 
the article5 of Riedle and Neusser, the avoided crossings be nearly degenerate energies, as in Eq. (3-l), where E j”’ is 
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TABLE I. Vibrational coupling constant for Hi” interaction between the initially prepared 14’ state and the 
final, dark states indicated. 

&,2X2 v,,5x5c xl V,, exptb 
K Final state’ ( 10e4 cm-‘) ( 10-4cm-‘) (lo-’ cm-‘) ( 10v4 cm-‘) 

9 5’10’16’ 
10 5’10’16’ 
12 5’10’16’ 
11 6211’ 
13 6211’ 
15 6’11’ 
16 6*11’ 
17 6211’ 

6.3 6.2 6.2 11.2 
6.2 6.2 6.2 11.6 
6.2 6.1 6.2 (9.8) 
8.9 8.8 8.9 (8.1) 
8.9 8.8 8.9 (9.7 1 
9.0 9.0 8.9 12.8 
9.1 9.0 8.9 ( :17-l) 
9.1 9.0 8.9 12.7 

‘AK= + 1 for 5’10’16’, - 1 for 6*11’. 
b Parentheses indicate less reliable values (see the text). 
‘3~3inthecaseof6~11’. 

defined by the first equality and Ey”’ by the last, 
Ej”’ = Eyb + Ef”’ + ,y 

=E;‘b + Ef”’ + ET = Ey’ (3.1) 
should be close for any such suitable final state, with 
AK = + 1. The vibrational plus rotational energy is given 
by the RRHO approximation,69 and the Coriolis energy in 
the 6’11’ final state is given in Eq. (2.2) by 

E,“‘= - (K f l)Bl,<~:!,,. (3.2) 
In contrast the final state 5llO’ 16’ has no first order Coriolis 
energy. Equations (3.1) and (3.2) yield for appropriate val- 
ues of Jand K, for the 14’ and 621 1’ states, 

Ey’-EEj”=AB 
[ 
J(J+ 1) -+K2 

I 

q=BJl *zCi&)K+ (E;‘b-Erib)zO, 
I 

(AK= * 11, (3.3) 
where AB is the rotational constant of the final (dark) state 
(B,.) minus that of the initial (light) state. In the application 
of Eq. (3.3 ) to obtain a coupling element from the perturba- 

tion of the line position, for any given final state A 
E;‘b - E y is constant when Jand K are varied. The experi- 
mental plot is of differences of line positions vs J, or, in the 
present paper, vs J( J + 1 ), at fixed K. The constant 
E;‘b - E rib does enter into the fitting, because of the square 
root, as seen later in Eqs. (3.4)-(3.6). The El and E ; ap- 
pearing in Eq. (2.27) are the Ey’ and E I”’ of Eq. (3.3), but 
modified by the diagonal part of Hi2’ and by the partition- 
ing. 

The avoided crossing plots given later are made at fixed 
K. As is seen from the functional form in Eq. (2.27), the 
difference in eigenvalues Ef - Ei is given by 

E/-Ej= + [(Ej-EE])Z+41H:2)‘12]1’2. (3.4) 

The use of the form Eq. (3.3) for E; - E; (omitting any 
functional modification caused by the Hi2’ and partitioning 
terms) yields at fixed K, a functional form for Ej - E I: 

E;-E;=ABJ(J+l)-D, (3.5) 

where D is independent of J and is seen to be the value of 
ABJ( J + 1) at the “crossing point” of a plot of E,C - E ,! vs 
J( J + 1) . IH i2)’ 1 denotes the magnitude of the matrix ele- 

TABLE II. Changes in rotational constant between the initial and final vibrational states (AK).” 

AB,2 x 2 AB.5 x 5’ A3 AB, exptb 
K Final state (lo-‘cm-‘) (lo-%m-‘) (lo-%rn-‘) (IO-%m-‘) 

9 5’10’16’ 
10 5’10’16’ 
12 5’10’16’ 
11 6211’ 
13 6211’ 
15 6211’ 
16 6’11’ 
17 6’11’ 

- 3.0 
- 3.0 
- 3.0 
- 4.9 
- 4.9 
- 4.9 
- 5.0 
- 5.0 

- 3.0 
- 3.0 
- 3.0 
- 4.9 
- 4.9 
- 5.0 
- 5.0 
- 5.0 

- 3.0 
- 3.0 
- 3.0 
- 5.0 
- 5.0 
- 5.0 
- 5.0 
- 5.0 

- 2.7 
- 2.7 

( - 2.7) 
(-4.1) 
(-4.1) 

- 4.3 
( - 4.6) 

- 4.3 

“AK= + lfor5’10’16’, - 1 for6’11’. 
“Parentheses indicate less reliable values (see the text). 
‘3~3inthecaseof6~11’. 
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TABLE III. Vibrational coupling constant for Hi’) interaction between the initially prepared 14’ state and the 
3’16’ state, The large disagreement between V, (expt) and V, (theor) argues against a quasidegeneracy of the 
14’ and 3’ 16’ states. 

v,,2x2 v,,3x3 -6 V, , exptb 
K Final state’ (lo-‘cm-‘) (lo-km-‘) (lo-*cm-‘) (IO-km-‘) 

11 3’16’ 143. 142. 144. (8.1) 
13 3’16’ 143. 143. 144. (9.7) 
15 3'16' 144. 143. 144. 12.8 
16 3’16’ 144. 143. 144. (17.1) 
17 3’16’ 144. 143. 144. 12.7 

‘AK = - 1 in all transitions. 
b Parentheses indicate less reliable values (see the text). 

ment (ilH:“‘lj) for the relevant states, and is written in 
terms of the theoretically motivated expression 
I(ilH;‘)‘(j)l = V,[J(J+ 1) -K(Kf 1)]“2, (3.6) 
even though it will not be exactly of this form, because of the 
partitioning contribution to (ilHi2”lf). When the parti- 
tioning contribution to (ilH:“‘lj) is negligible, as we shall 
see it is to be in the present case, Eq. (3.6) becomes the 
correct functional form. 

The principal theoretical contribution to ( (ilH$“‘l j ) ( 
in Eqs. (3.4)-( 3.6) is I (ilH:“l j)) in each of these theoreti- 
cal calculations; I (ilHi2’ I j) ) is a product of two terms, 
which can be written as 

I(ilH:2)(j)I =Fo[J(J+ 1) -K(K+ 1)]“2, (3.7) 

where PO in Eq. (3.7) is independent of J and K. The theo- 
retical value of To is obtained as a sum, as given in Tables III 
and IV of Ref. 48, and is evaluated using the relevant molec- 
ular constants.” The latter include the harmonic frequen- 
cies, cubic and quartic force constants,35 Coriolis coupling 
coefficients, inertial derivatives, and the n coefficients that 
appear in the expansion of the inverse inertia tensor in Eq. 
(2.7). Formulas for inertial derivatives and a-coefficients 
are available.” In addition to the anharmonic force con- 
stants given in Ref. 35, an incomplete listing, the additional 
constants in Appendix C were employed. Coriolis coupling 
coefficients were computed from the harmonic force field of 
Goodman et a1.,72 while existing formulas71 were used to 

obtain inertial derivatives and a coefficients. Substitution of 
these constants into the sum noted above48 yielded the set of 
theoretical To values listed in Tables I and III. The comput- 
ed coupling constants are complex-valued quantities but 
only their magnitudes appear in the energy expression, and 
so only their magnitudes are reported here in Tables I and 
III. 

The principal theoretical contribution to AB is AZ, the 
difference in rotational constants of the relevant zeroth-or- 
der states in the absence of contributions from the partition- 
ing. The theoretical A’iT values are listed in Tables II and IV, 
together with the theoretical AB values as defined by Eqs. 
(3.4)-(3.6). 

These coupling constants V, and AB were computed 
usingthe5x5 (for5’10’161) and3X3 (for6211’and3’16’) 
matrices given in Sec. II. The use of the 5 x 5 matrix contain- 
ing both 621 1’ and 3’ 16’ states gave coupling constants for 
coupling of 14’ to either one of these dark states within a few 
percent of the values obtained using the relevant 3 x 3 matrix 
containing that dark state. Thereby, we do not report sepa- 
rate coupling constants based upon this 5 X 5 matrix. The 
relevance of this 5 X 5 matrix is seen when the various peaks 
in the experimental fluorescence spectrum is interpreted.’ 

The difference in the two relevant eigenvalues of the 
5 X 5 matrix for the coupling to the 5’10’16’ state and of the 
3 X 3 matrices for the coupling to the 621 1’ and 3’ 16’ states 
are each fitted to Eqs. (3.4)-( 3.6) to obtain theoretical V, 
and AB values, defined by these equations, and are listed in 

TABLE IV. Changes in rotational constant between the initial state and the 3’16’ final state (AB).” 

AB,2x2 AB,3x3 AZ AB, exptb 
K Final state (lo-km-‘) ( 10-4cm“) (lo-%rn-‘) (lo-“cm-‘) 

11 3'16' - 6.6 - 6.6 - 6.5 ( -4.1) 
13 3'16' - 6.6 - 6.6 - 6.5 ( - 4.1) 
15 3’16’ - 6.6 - 6.5 - 6.5 - 4.3 
16 3’16’ - 6.5 - 6.5 - 6.5 ( - 4.6) 
17 3’16’ - 6.5 - 6.5 - 6.5 - 4.3 

‘AK = - 1 in all transitions. 
‘Parentheses indicate less reliable values (see the text). 
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Tables I through IV. The eigenvalues of the 2x2 matrix 
resulting from the partitioning (discussed below) are also 
fitted to Eqs. (3.4)-( 3.6) and the resulting V, and AB val- 
ues are also given in Tables I through IV. 

B. Fit of Eqs. (3.4)-(3.6) to data and extraction of V&B 
We consider next the extraction of experimental values 

of V, and AB from the experimental data. The empirical 
least squares fit to the experimental avoided crossings in Fig. 
4 of Riedle and Neusser is given in Figs. 1 and 2,’ but plotted 
vs the present theoretically motivated J( J + 1) .‘3 These fits 
were made74 using as unperturbed energies the rotational 
energies of Eq. (2.2)) and as such do not include terms func- 
tionally of the form of quartic centrifugal distortion coeffi- 
cients. The quality of the empirical fits is evident for K = 9, 
10, 15, and 17 (Fig. 1). This fit is less adequate for K = 11, 
12, 13, and 16 (Fig. 2), partly due to the smaller number of 
data points available for these values of K, and partly due to a 
possible overlap in some of the avoided crossings. Otherwise, 
the agreement of experimental curves with the empirical fits 
is quite good. The empirical fits of Eqs. (3.4)-(3.6) to the 
experimental data provide in Tables I through IV the experi- 
menta174 values of V, and AB, parameters defined by the 
functional forms Eqs. (3.4) to (3.6). 

The coupling I(ilH$“‘lj)l of the 14’ and the 5’10’16’ 
final state had a 7, of 6.2 X 10 - 4 cm - ’ and arose from some 
77 symmetry-allowed terms in ] (i]H~*‘] j) I for these states 
(not including permutations of p and q operators). This 
number, although far less than the thousands of possible 
terms that might be nonzero prior to application of group 
theory, indicates the need for a computer to obtain even the 
elements of the 2 X 2 partitioned matrix for the calculation of 
FO. This 7, of 6.2 X 10 - 4 cm - ’ due to the 77 terms includes 
5.8 X 10 - 4 cm - ’ from terms originating in products of un- 
transformed operators H,H,,H,, . There were 70 indepen- 
dent such symmetry-allowed products. There was no contri- 
bution to F0 arising from the products HrfiCH2’ (three 
terms) since in the absence of better data we have set the 
relevant quartic constants to zero.76 The contribution of the 
products H,,H3, (four terms) was 0.4 X low4 cm- ‘. The 
H,, gave no contribution in this case. Table V lists the cubic 
and quartic force constants entering into such products. 

IV. DISCUSSION 

Due to the relatively low excess vibrational energy avail- 
able in the 14’ initial state ( 1570 cm - ’ ), the vibrational den- 
sity of states is low, about 1 per cm - ‘. As a result it was 
possible in the present case for the light state to couple to 
particular dark states (the coupling producing the avoided 
crossings being very small), rather than coupling to numer- 
ous dark states. Coupling to a large number of states would 
have caused a broadening and even a disappearance of some 
lines, rather than merely perturbation of some line positions. 

For coupling of the 14’ state to the final state 621 1’ a 7, 
of 8.9 x 10 - 4 cm-’ had contributions from 92 symmetry- 
allowed terms, not counting permutations of vibrational op- 
erators. This F0 of 8.9 X 10 - 4 cm - ’ arose entirely from 
terms originating in products of untransformed operators 
H,,H,, H,, , there being 86 independent such nonzero prod- 
ucts, since there was no contribution to F0 arising from the 
products HrUanicH2’ (six terms), owing to the zero values 
assumed for the relevant quartic constants.76 Again, Table V 
lists the cubic and quartic force constants entering into such 
products. 

For coupling to the 5’ 10’ 16’ manifold, for which there 
were four possible states Z10 = f 1, I,, = -& 1, only the 
(I,, = - 1, I,, = + 1) state is observed75 to couple via 
Hi” to the 14* state with the selection rule AK = + 1. (Had 
AK been - 1, then the (I,, = + 1, I,, = - 1) state would 
have been coupled to the 14’ state, and substantially the 
same calculated V, and AB would have been obtained. ) The 
(I,, = + 1, I,, = - 1) and (I,, = - 1, I,, = + 1) states 
are mutually coupled via Hi2’ as in the indicated matrix 
given earlier. 

For coupling of the 14’ state to the final state 3’16’ a F0 
of 144 X 10 - 4 cm - ’ had contributions from four symmetry- 
allowed terms, not counting permutations of vibrational op- 
erators. This v0 of 144 X 10 - 4 cm - ’ arises solely from 
terms originating in products of untransformed operators 
H30H2,, there being four independent such nonzero prod- 
ucts. Far fewer nonzero products arise in this case because 
the single contact transformation using S, introduces less 
terms than that arising from application of both S, and S, . 
The relevant cubic force constants are listed in Table V. 

For the 621 1’ final manifold, the observation75 of 
AK = - 1 is consistent with acoupling of Z6 = - 2 via Hi” 
to the initial state, according to the selection rule in Eq. 
(2.25). [There are possible states Z6 = { + 2,0, - 2}, of 
which the Z6 = + 2 state couples via Hi*’ to the initial state 
with AK = + 1, while the Z6 = 0 state does not couple 
(x,y)-Coriolis couple to the initial state.] 

For the 3’16’ final state, for which there were possible 
statesI,, ={- l,+ l},Z,, = + 1iscoupledviaH:“tothe 
initial state with AK = - 1. (The I,, = - 1 state is coupled 
via Hl” to the initial state with AK = + 1.) 

The agreement of the theoretical and experimental val- 
ues of I’,, in Table I is seen to be reasonable, considering the 
approximate nature of the present potential energy surface 
of S, benzene. It is seen from Table I that the theoretical 
value of 7, is very close to that of V, . In the final column of 
that table are the experimental values of V, obtained from 
fitting the plots of the results of Neusser and co-workers to 
Eqs. (3.4)-(3.6) .’ The vibrational factors of V, of Table I, 
upon insertion into Eq. (3.4) together with typical values for 
Jand K of, respectively, 30 and 10, gives a coupling of 2 to 
3 x 10 - ’ cm - ‘. From Table II it is also seen that the theo- 
retical value of hB and the experimental values of AB differ 
only by some 15%. From Tables III and IV it is evident that, 
for the relevant values of (J,K), the 3’ 16’ state is not a reso- 
nant contributor to the observed avoided crossings, the dis- 
crepancy between calculated and experimental V,‘s now be- 
ing a factor of about 10. Thereby, we infer, the 14’ and 62 11’ 
states should be nearly resonant, being the principal partici- 
pants in the avoided crossing, with the 3’ 16’ state perhaps 
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TABLE V. Independent cubic force constants needed for coupling 14’ to 
various states.’ 

Coupling to 5’ 10’ 16’ states 
i=6to9: 
(14,18,i),(14,19,i),(14,2O,i),(16,17,i),(ll,l6,i),(5,lO,i) 
i= 18to20: 
(10,16,i),(10,11,i),(5,17,i),(10,17,i),(5,16,i) 
i= 12,13,15: 
(10,16,i) 
Miscellaneous 
(14,10,17),(14,5,11),(14,1,15),(14,2,15),(14,2,12),(14,2,13) 
Quartic constants: 
(4,10,14,16),(5,10,14,17),(5,10,15,16) 

Coupling to 6’ 11’ states 
i=6to9: 
(f&6,0 
i=6to9andj= 16and 17: 
(61 LA 
i=6to9andj=18to20: 
(i,lM 
Quartic constants: 
(6,10,11,14) 
(6,6,11,16),(6,6,11,17) 
(6,6,14,18),(6,6,14,19),(6,6,14,20) 
Coupling to 3’16’ states 
(3,12,14),(3,16,16),(3,16,17),(10,14,16) 

“Constants are kGk, with a,b,c indicated in parentheses, or in the 
quartic case, k,,,. 

contributing via an off-resonance in the coupling of these 
states. 

The present interpretation in terms of a perpendicular- 
type Coriolis coupling, involving (x,v) axes of rotation, is 
consistent with the experimental fact, noted by Neusser and 
co-workers,’ that the splitting at the avoided crossing from 
different K ‘s varies with Jin a way characteristic of a perpen- 
dicular Coriolis coupling, namely it varies as 
[J(J+ 1) -$K(K& 1)]“2. 

Thecoupling of the 14* to the 5110’16’ state finds strong 
support, Schubert et al.’ noted, in the appearance of the 
emission band 5: 10; 16: 6:. (The mode Q6, of e2g symmetry, 
provides the vibronic activity needed in this otherwise for- 
bidden electronic transition.) The coupling of the 14’ state 
to the 62 11’ state is implicated by the appearance in emission 
of band systems 6: 11 t 1 t and (but see below ) 6: 11; l”, , the 
Q6 mode again providing vibronic activity and Q, , of a,* 
symmetry, yielding the progressions. Based on a value given 
by Page et aI. a particular spectral emission peak could be 
attributed to 3 i 16: 6’: 1:) corresponding to an involvement of 
the 3’ 16’ state: the possible Fermi resonance of 6’11’ and 
3’ 16’, suggested in Ref. 8, and coupling to 14’, are discussed 
later. 

While the presence in emission of the 6: 11 t 1: system, 
and a band attributed to 3f 1616: are consistent with the 
present analysis, the weakness of 6: 11 i 1: intensities, noted 
in Ref. 8, remains unexplained. It is relevant that the 6: and 
6: intensities normally are in the ratio of two to one,” while 
in a separate study including excitation of the 62 band,” the 
intensity ratio for the emission bands 6: 1’: and 6: 1: was 

about a factor of 3. Since the authors of this study found that 
6* is in anharmonic resonance with the 1 l2 state, one might 
conclude that mixed or combination states of Q6 and Q,, 
might deviate in their Franck-Condon factors from the sim- 
ple 62 state. Whether such an effect would yield a weak 
6: 11; 1: band intensity is presently not known. Other possi- 
ble explanations are mentioned in Ref. 8, one being a possible 
displacement of the 6: 11: 1’: band from its anticipated posi- 
tion by some 70 cm - ‘. Using the contact transformation 
formalism through S, for the coupling of 1,6,11, and a 
nearby 8,11, state (omitting the terms in S, which would 
yield small denominators but treating those terms via the 
diagonalization of the transformed Hamiltonian), we ob- 
tained a coupling matrix element of 28 cm - I, which would 
be too small to yield a shift of 70 cm - ’ in band position.79 

V. CONCLUSION 

Using a transformed Hamiltonian given by Nielsen and 
Amat, obtained from contact transformations, the cou- 
pling between light and dark rovibronic states in S, benzene 
was evaluated. With it the perturbations in the line positions 
were calculated with terms involving a third-order perturba- 
tion of the vibration-rotation interaction. The coupling to 
the identified states led to a perpendicular Coriolis interac- 
tion between the nondegenerate initial state and the degener- 
ate modes in the final dark states, modified by anharmonic 
coupling to other modes. While the evaluation of the cou- 
pling strength requires an accurate knowledge of cubic an- 
harmonic force constants, the currently computed coupling 
strength is in reasonable agreement with observed line devia- 
tions, no adjustable parameters having been employed. The 
calculations also served to eliminate, by a factor of 10, a 
resonant coupling solely between the 14’ state and the 3’16’ 
manifold. 
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APPENDIX A: SOLUTION OF EQ. (2.8) 

The solution of Eq. (2.8)) as Eq. (2.11), can be found in 
Ref. 50 [cf.Eq. (7.6) andEq. (A5) there],butasimpleself- 
contained solution is given here for completeness. 

Upon multiplying Hi” -Hi in Eq. (2.8) on the left 
and right by P, + Q. = 1 and using Eq. (2.10) it follows 
that 

Hi” - H, = - PoH,Qo + h.c. (Al) 
The P,H, Q,, in Eq. (Al ) can be written as 
POW (QohWo - PoH, (Qo/a)H,, where a = E. - Ho. 
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Using POE0 = PoH,, = H,P, Eq. (Al) becomes 
Hi’) - H, = P,H, (Qo/a)H, 

- IX,P,H, (Qo/a) + h.c. (442) 
The right-hand side of Eq. (A2) can thus be written as a 
commutator with I-&’ : 

Hi’) - H’ = [ P,H, (Qo/a) 

- (Qo/a)H,Po,H,]. (A3) 
Comparison of Eq. (A3) with Eq. (2.8) shows that S, and 
P,H, (Qo/a) - (Q,,/a)H’P, differ at most by a quantity 
which commutes with Ho. However, Eq. (2.8) shows that 
S, can be determined only up to a quantity which commutes 
with He. We set that quantity equal to zero, so that S, van- 
ishes when the perturbation vanishes. Thereby, Eq. (2.12) 
for S, follows. 

Equation (2.14) for S, is the same as Eq. (2.8) for S, , 
apart from Hi*’ and Hi’) replacing HI” and H, , respective- 
ly. Thereby, the solution for S, is the same as Eq. (2.12) 
upon making these substitutions, so yielding Eq. (2.19). 

APPENDIX B: SYMMETRY PROPERTIES OF fIi 
COEFFICIENTS, AN EXAMPLE 

An example is given in this Appendix of the application 
of symmetry considerations to some of the terms which con- 
tribute to Hi2’, namely, H,, , H,,H,, , and H,,H,,H,, . 

The higher order Coriolis operator H,, results from a 
modification of H,’ by motion along a normal coordinate 
Q “,~~ which distorts the molecule, thereby providing the ad- 
ditional inertial terms 2,,n~~aDQ0,00, c@ = x,y,z. Both 
H,, and H,, contain fi:,y;“e,,,:“” and we can readily learn 
about the properties of the latter by considering H,,. We 
then apply the results to H,, . 

The two rotational operators J, and J, in H,, appear 
only in the relevant forms J, J, + J, J, when a #P, and as 
Jf. + Jt , Jz - J:, or as Ji . (The Jz + J: arise according as 
%xx/JQq, = + a~~~/dQ~,~~ for the given Q,,,. ) The irre- 
ducible representation for the product of J’s is alg for the 
combinations in a/3 of xx + yy and zz, ezg for xx - yy and 
xy, and elg for xz( = zx) and yz( = zy). The above linear 
combinations transform in the same fashion as components 
of the polarizability tensor.” 

Since any term in the Hamiltonian must be invariant to 
all symmetry operations, a necessary condition for fI~,~~P in 
H,, to be nonzero is that I (Q,,, ) be one of the above irre- 
ducible representations for some combination in afl, for 
only such a I will contain an alg component in the represen- 
tation of the triple product. Thereby, when afl= xx + yy or 
zz only a,* modes have nonzero @$@. For c@ = xx - yy or 
xy it is nonzero only for ezg modes. Since” ~~,~~’ and s2A.2: 
vanish for all modes in benzene, there are no terms in H’, for 
the combinations xz and yz. Equating like terms in expan- 
sions of the inertia tensor in terms of Cartesian components 
and in terms of the pairs a;0 used here, 
ngy * yy = n;,‘J;x * n,, ( “YY. In the calculations we have 
pa (‘)xX +YY = n(l)= = flC')YY = $Q”‘” for the a,g a (I * CaSe 71 

? 

and $fib,‘,)““-YJ’ = nL,*,)- = - f)L,‘,)J’J’ and n~,~xY = Qi,:‘Yx in 
the e2g case.” In the W (Wilson)32 system of numbering 
vibrational modes for benzene, Q’ and Q, are each of the 
irreducible representation atg, and Q,, Q7, Qa and Q, the 
irreducible representation ezg, so determining which terms 
in Qo,oo contribute to &&16,‘~~DQ~,, in H,, for the above 
ap. All six of these modes are in-plane. 

Of the three modes Q,,,, Qb,Ob, Qc,Gt contained in H,, , 
nonzero terms occur when three of these Q ‘s are in-plane (z 
coupling) or when two of the three modes are in-plane (x,y 
coupling), as seen by the following arguments. We consider 
the case where Qb,Ob and Qccc are coupled by a Coriolis term, 
J, p, in Eq. (2.3), and mode Qa,00 is the distortion coordi- 
nate. We first note that J,p,, J,p,, J,p,, and J,p, are absent 
since, as noted above, all fIi,‘iy and fiL.2: vanish. For paral- 
lel (z) coupling, i.e., for J, p,, mode Q,,, must be a,, , since 
as noted above only alg modes have nonzero fiL,zOZ. Since all 
alg modes are in-plane it follows that this mode is also. The 
modes Qb,cb and Qc,cc coupled via the z-Coriolis term J,p, 
must clearly also both be in-plane, to yield a z component of 
vibrational angular momentum. Thus all three modes are in- 
plane in this z-Coriolis term. For a perpendicular (x,y) cou- 
pling (J,p,, Jypy , J,py or Jypx ) there is one in-plane and 
one out-of-plane mode, to yield an x(y) component (p, or 
py ) of vibrational angular momentum. Since all nonzero 
fi2(“ap arise from in-plane modes of alg or e2g symmetry 
mz;eQ,, * ’ , y is m-plane. Thus in the perpendicular coupling 
case, two of the three modes are in-plane and the third is out 
of plane. 

The Coriolis operator H,, results from the modification 
of H,, by distortion along two coordinates Q.,cO and Qb,Ob, 
thereby providing the inertial terms 2, Kl$‘z&,Vh QO,ue Qb,, . 
This term can be examined via H,,, which also contains 
~~~o~?Qb.,,Qo,oa Qb,ob terms. a’ We require that each term in 
H2, be ala9 and hence that 

r,,$‘YQ,,,,) 8 UQ,,,,,) 8 r(J,,J,), 
(Bl) 

where I( J, ,J, ) is one of the representations for the J, J, 
terms mentioned earlier. Comparison with arguments given 
for HI2 (and hence for H,, ) shows that, just as in that case 
r( Q,., 1 must be ala or e2g, so here r(Q,,, 1 Q r(Q,,,) 
must contain alg or ezg, in order that Eq. (B 1) be fulfilled. 
The number of symmetry-allowed possibilities which satisfy 
this condition are many and may be found from a character 
table.” In terms of the usual combinations in afl = xx,yy, 
etc., .** one has” 

f3L’2’“/3 
Q “.Oe’ Q+, = $ F (I;),) - ‘(n~,‘gT-$‘~~~ 

+ ~~,‘g’sz~,~“y% (y = x,y,z). (B2) 

This equation can be used to obtain fi’*“s for ap equal to 
various pairs of x, y, and z. The latter fic2”s can then be used 
to obtain the group-theoretically motivated combinations 
%,;z$: and SZQ,.,,Qb.,,' (2’xX - YY In all cases the resulting formulas, 
just as inbEq. (B2), indicate that the nonzero $I$‘,“” deter- * Y 
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mine the nonzero nglVzfob,Ob .83 Thereby, I( Q,,,) and 
l?( Qb,Ub) must individually be alg or eZg, since from Eq. 
(B2) both fi2, ~ (“ay and O$~~?D must be nonzero for some a, 0, 

’ * y,andthea (“‘s are nonzero only for alg and eZg modes. The 
results given earlier for the fi(‘)‘s can thus be adapted to 
nc2,aa 

&,.Qa,* 
when in Qi20$2b., Crp = xx + yy and zz one finds that 

r( &,vo 1 = UQ,., 1 = ra,, and r( Qq, 1 = r( Qtz,o, 1 
= reZg. When afi = xx - yy and xy I (Q,,, ) and I( Qb,Ob ) 

are alg and e,, , respectively. When a;8 = xz and yz Eq. (B2) 
applies unaltered by transformation to our linear group- 
theoretic motivated combinations and the “~~~~~o~~~ vanish, 
noting Eq. (B2) and that all fig,” and flbO’r are zero. For 
calculation of coefficients in H4; ‘Iwe emplo; the relations 
given earlier for H,, and H,, , replacing fi(‘) by flc2). 

then in kcde the irreducible representation for the direct 
product I’(Q,)eI’(Q,)@l?(Q,) =e,,ee,,ee,, is 
alg + a2g + 3ezg9 which contains an alg component, ensur- 
ing that kc,, is not zero by symmetry. The four values of 
b(6,7,8,9), together with the three values of c( 18,19,20), 
indicates 12 independent, nonzero products kabc kc& & 
from this source. 

APPENDIX C: SOME RELEVANT FORCE AND OTHER 
COUPLING CONSTANTS 

Restrictions for the four vibrational modes which arise 
in H,, , Q,,,, Qb,cbb, Q,,,, Q,,, analogous to those for H3, . 
We consider the case where QcPO< and Qd,Od couple via a Cor- 
iolis term and where QO,UG and Qb,Ub are the distortion coordi- 
nates. The latter two coordinates must both be in-plane, 
since they must individually transform as a,, or e2g, in order 
to have some nonzero flg$$o&, . For perpendicular Coriolis 
coupling one member of Q,,, and Q+d must be in-plane and 
one out-of-plane. Therefore, in this case three of the four 
modes are in-plane. Since for parallel coupling both modes 
coupled via an H,, Coriolis term are in-plane, now, there- 
fore, all four modes in H,, are in-plane. In addition, for 
parallel (z) coupling, modes Q, and Qb must have the irre- 
ducible representations alg, recalling that fl~O~O~obOb is non- 

’ zero only for I(Q,,,) = I’(Qb,Ob) = alg. 

The cubic force constants used are taken from an ab 
initio force field for ground state benzene.35 We have ob- 
tained from it the cubic force constants that involve only 
totally symmetric ( alg ) linear combinations of three vibra- 
tional operators, of which there are 237 independent val- 
ues.85 Out-of- plane cubic constants (involving Wilson’s 
symmetry coordinates32 yand/or S) were the most relevant. 

A Morse oscillator model of stretching valence coordi- 
nates provided estimates of the diagonal (k,,,, ) and semi- 
diagonal (k,,,,) quartic constants, obtained from Ref. 86. 
For the remaining, quartic constants that are not zero by 
symmetry we have assumed a value of zero, since there is no 
data available for these constants. 

Coriolis coupling constants were computed from the L 
matrix29 obtained using the quadratic force field solution of 
Ref. 72. The ground electronic state values obtained from a 
normal mode analysis were assumed for calculating the pres- 
ent set of Coriolis coefficients p 2’. 

The following example illustrates the application of ele- 
mentary group theory to the term H,, H,, H,, , which con- 
tributes to Hi2’ and to the determination of which products 
of the operators give a nonzero contribution. 

Inertial derivatives and higher order coefficients of the 
inverse inertia tensor were computed using the values 
r cn = 1.084 A and rcc = 1.397 A for the excited state car- 
bon-hydrogen and carbon<arbon equilibrium bond 
lengths, respectively. 

The sum 8,Z, C,, k,, kc& &qa qdqepfJa given in Sec. 
II contributes to H,, H,, H,, , and it is desired to find which 
values of b and c give a nonzero result for the coefficients. It 
is first noted that a, d, e, f are fixed as permutations of 5, 10, 
14, 16, in the case of coupling of the 14’ and the 5’10’16’ 
states. The allowed values of these four indices a, d, e, f are 
considered systematically. The term f = 5 is considered first 
as an illustration. Similar reasoning would follow for the 
remaining three choices ofJL: 

For perpendicular coupling a = x,y and it is required 
for c & to be nonzero that I ( Qb ) @ I’ ( Q,) contain the irre- 
ducible representation elg .*’ Noting that I( Q, > = b,, it is 
found that l? ( Qb ) = ezg. Thereby, it follows that b is re- 
stricted to being 6,7,8,9 for a nonzero c $. Considering kabe 
next, there are three possible values of a, namely, 10, 14, and 
16. Choosing a = 14 (similar reasoning would follow for the 
remaining two choices) then for I’( Q, ) 8 l? ( Qb ) 8 I (Q, ) 
to have an a’g component,84 noting that 
r(Q,) = I’(Q’4) = b,, and, it was seen, r(Qb) =ezg, it 
follows” that r( Q, ) = e,, . Thereby, r = 18,19,20. For the 
given a = 14 and f = 5 we have d and e being 10 and 16. 
Choosing e = 16 with I’(Q,6) = e2U and I’(Q,,,) = elg, 

Evaluation of Hi2’, needed for the leading terms (order 
/z 3, for coupling of 14’ to the 5’10’16’ and to the 6211’ 
states, depends upon knowledge of 48 the basic molecular 
parameters such as Coriolis coupling constants, cubic and 
quartic force constants, and inertial derivatives, i.e., deriva- 
tives of elements of the inertia tensor with respect to normal 
coordinates, JIaD/aQk, a$ = x,y,z, and for the k th normal 
coordinate. Evaluation of Hi” for the leading terms for cou- 
pling of the 14’ to the 3’16’ state (order il 2, requires these 
also, apart from the quartic force constants and the second 
derivatives of the inertia tensor. Considering these various 
parameters in turn, accurate data on Coriolis coupling pa- 
rameters c z/ are obtained from geometrical considerations 
in conjunction with the harmonic potential. Thus the terms 
in Hi2’ and Hi” containing H,, (multiplied by other terms 
due to the transformation), posed no difficulty in calculation 
of quantitative higher order vibration-rotation coupling co- 
efficients. Rather, it was the terms having their origin in 
operators such as H,, , which involved cubic force constant 
data, which could reduce the accuracy of such a calculation. 
In the current absence of an excited states, cubic force field 
it was expedient to use the ground state (S, ) values for the 
cubic and the few quartic anharmonic constants that ap- 
peared. There is a clear need, however, for cubic and quartic 
constants for the S, state of benzene. 
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In the evaluation of Hi2’ rotational matrix elements are 
required, and because the spherical tensor operators 
J * E J, -t- iJy have simple matrix elements for rotational 
eigenfunctions, it is convenient to use them, with matrix ele- 
ments*’ 

(J,KlJ, IJ,K* 1) =fi[J(J+ 1) -K(K+ 1)]“2. 
(Cl) 

The products of angular momentum operators p,J, and 
p,, J, are expressed in terms of the products p + J _ and 
P-J+, where p * = p, & ip, , with well-known matrix 
elements for coupling involving two- dimensional isotropic 
oscillators.29 The operators in Eqs. (2.3) and (2.4) are 
transformed into these operators in the calculation of cou- 
pling constants. 
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