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Avoided crossings between quasidegenerate rovibrational states in the Doppler-free two-
photon excitation of the 14! mode in the S, excited state of benzene are treated theoretically.
Two sets of avoided crossings in plots of spectral line frequency vs J at a given K and AK have
been reported experimentally between an initially prepared “light” state (14' in zeroth order)
and dark states, namely, one which in zeroth order is a 5'10'16" state, the other being in zeroth
order a 6211 and/or possibly a 3'16’ state, implicated earlier by Neusser ez al. The
identification of these states makes the phenomenon an excellent candidate for treatment of the
avoided crossing via a Van Vleck transformation, no other basis set states being needed for the
diagonalization in order to extract the important features. Two successive transformations are

used for handling direct coupling and coupling via virtual states. The dominant calculated
contribution to the coupling is, jointly, Coriolis plus cubic—cubic anharmonic interactions
between vibrational modes. Playing less of a role are Coriolis terms in which the inverse
moment of inertia tensor is expanded up to quadratic terms in the coordinates. There results a
5% 5 (for coupling to 5'10'16') and a 3X 3 (for coupling to 6*11' or 3'16") matrix of the
transformed Hamiltonian, each of which can also be described, if desired, to a very good
approximation by a 2 X 2 matrix. The coupling element ¥, and the difference of the rotational
constants for the light and dark states (AB) are obtained from the plots of line position vs
J(J + 1) obtained. For the 14! to 5'10'16' and for the 14" to 611" couplings the theoretical
results are in reasonable agreement with the experimental results, no adjustable parameters
being employed. For a coupling of 14! to 316’ the calculated ¥, would be much too high
compared with experiment (a factor of 10), the coupling involving the exchange of only three
instead of four vibrational quanta. A situation in which the 14' state is coupled to the 6?11’
state to yield an avoided crossing and off-resonantly coupled to the 3'16' state would be
consistent with some experimental results and not affect the reasonable agreement of the slope

difference and splitting for the avoided crossing plots.

l. INTRODUCTION

Recent advances in Doppler-free two-photon electronic
spectroscopy have led to rotationally resolved electronic
spectra of a molecule such as benzene.'™ It has been possible
to excite in this way an exact single rovibronic quantum state
and observe the results of avoided crossings with other eigen-
states, avoided crossings which reflect couplings of the var-
ious zeroth-order states.

For a moderate size molecule such as benzene, many
states may contribute to the intramolecular dynamics at
high vibrational energies.'®'* While we have used artificial
intelligence search methods to select subsets of states for
treating CH overtone spectra of benzene at higher ener-
gies,”>?! they are not needed for the present relatively low
energy study at 1570 cm ~ .

The current work is an extension of earlier work®®?! in
this laboratory, by incorporating rotational degrees of free-
dom, and was motivated by the highly interesting experi-
mental results of Riedle, Neusser, Schlag, and co-work-
ers.'” In studies of Doppler-free two-photon spectroscopy,
involving the preparation of single rovibronic states in the S,
excited state of benzene, the authors reported a fit of 90% of
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their lines to a Hamiltonian based upon the RRHO (rigid
rotor harmonic oscillator model), plus inclusion of lowest
order Coriolis corrections.>® Among the remaining absorp-
tion spectral lines there were displacements of the lines from
their expected positions, some displacements, at least, being
due to avoided crossings in plots of line position vs J at a
given K and AK. They are considered here.

In the present paper the relevant data are considered for
an initially prepared vibrational state of S, benzene, which is
dominantly 14! in zeroth order,?*> and the experimental re-
sults are analyzed theoretically. Since the excess vibrational
energy for the 14! state is only 1570 cm ~ !, the possibility of
only a few “final” dark states being implicated in causing the
spectral perturbations is a real one.” In Sec. IT A the Hamil-
tonian for the higher order vibration—-rotation interactions
relevant to the 14" state are given. Group theory and degen-
eracy in the vibrational states play an important role here in
treating the experimental data. In Sec. II B the selection of
dark states is considered. Section II C contains the contact
transformation formalism required for the present treat-
ment. In Secs. II D to II G we consider the matrix formula-
tion for the coupling of the 14' “light” state with various
zeroth-order “dark” states, each coupling having unique
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features warranting a separate discussion. In Sec. III results
are given specifically for the dominantly 14" light state, and
assignments are included of specific lines perturbed by inter-
action of the 14' zeroth-order state, separately, with the dark
zeroth-order states 5'10'16, 6*11', and 3'16', and jointly
with 6?11' and 3'16".7 In Sec. IV the dependence of the pres-
ent theoretical coupling constants of these states upon the
anharmonic force field is described. The results are given for
differences of slopes in avoided crossings when plotted vs
J(J + 1), rather than vsJ, and for the splittings at the avoid-
ed crossings. Implications are summarized in Sec. V.

In the present paper we focus on a detailed approach
which involves no adjustable parameters. We should men-
tion another approach, an analytical one, which has been
used at higher energy (3412 cm ~ ') for the 14'1? state of S,
benzene.”* The authors employed a model in which there
was assumed an equidistant spacing of zeroth-order dark
states coupled to the 14'12 light state, a single value for a
Coriolis coupling parameter and one for a cubic anharmonic
parameter. The formalism was used to treat the linewidths of
the given S, —.S; band.

if. THEORY
A. Hamiltonian

The eigenvalues of vibrating-rotating molecules have
been extensively treated theoretically. One well-known
method involves a perturbative expansion of the molecular
Hamiltonian, with terms arranged according to the number
of vibrational and rotational operators:2+2°

H=;;Am+"_2Hmn,

where A is a perturbation parameter, and m and n denote the
degree of vibrational and rotational operators, respectively.
H,, corresponds to the harmonic oscillator (HO) Hamilto-
nian, and Hy, to the rigid rotor (RR) one. The lowest order
term containing Coriolis coupling is H,,, and involves two
normal modes @, and Q,, whose representation for their
symmetric direct product contains the irreducible represen-
tation I'(R, ) of a rotation about an axis .°

The rovibrational energy of an oblate symmetric top,
such as benzene, is given using RRHO and first-order Corio-
lis terms by

E=E, +BJWJ+1)+ (C, —B,)K*—2C,

(g )e

where E,;, denotes the rotationless vibrational origin and
the sum is over the degenerate vibrational modes which pos-
sess vibrational angular momenta /,#, about a sixfold sym-
metry axis in the case of benzene. The total rotational quan-
tum number is J, K is that of the body-fixed component of
the angular momentum along the sixfold symmetry axis, and
C. is the rotational constant (equilibrium configuration) for
rotation about this axis.?! B, is the corresponding constant
for rotation about one of the other symmetry axes. For a
planar symmetric top such as benzene, C, = B, /2.

2.1

(2.2)

Although Eq. (2.2) sufficed to give the line positions in
about 90% of cases,>® explaining the remaining set of per-
turbed line positions requires a systematic investigation of
operators in a more complete vibration-rotation Hamilto-
nian. In the latter one may expand the vibrational potential
energy as a polynomial in normal coordinates, with the ki-
netic energy having only terms quadratic in their conjugate
momenta. However, curvilinear coordinates have the advan-
tage of realistically describing the atomic motions in terms of
bond stretches, angle bends, etc., with the disadvantage of a
G matrix* that is a function of the coordinates, yielding an
expansion that results in higher-order terms in the kinetic
energy operators.>® Since the quadratic force field employed
is expressed in terms of normal coordinates,** and since the
resulting formulation of Coriolis operators is simpler, it is
convenient in the present case to use normal coordinates in
our expansion. Since the anharmonic force field employed?
is expanded in curvilinear coordinates, the nonlinear trans-
formation of force constants from curvilinear to normal co-
ordinates would usually be required.*® This transformation
leaves the quadratic force field unaltered, would introduce
correction terms converting the curvilinear quadratic force
constants partly into the Cartesian cubic constants (ex-
pressed in normal coordinates), and introduces quadratic
and cubic curvilinear force constant terms in the quartic
constants expressed in Cartesian normal coordinates. How-
ever, the quadratic force field employed is a best fit to the
experimental frequencies, and hence implicitly has account-
ed for the correction terms which would otherwise have to be
applied. The anharmonic cubic Cartesian constants are then
identical with the cubic curvilinear anharmonic constants,
and are used here.

The various terms H,,,,, in Eq. (2.1) include those aris-
ing from expansion of the inverse inertia tensor u which ap-
pears in the quantum-mechanical vibration—rotation Hamil-
tonian H>®:

1
H=72‘uaB(Ja _pa)(JB —pB)
a3

1 1
+ S 2P VQ ==Y e (2.3)
k a
J, is a body-fixed component of the total angular momen-
tum operator J, with @ = x,y,z. p, is the ath component of
the vibrational angular momentum operator

P = Z g;g;k,l,a,Qk,o’kPI.a,’

koplo;

(2.4)

where one cannot have, simultaneously, k¥ = / and 0}, = 7,.
In Eq. (2.4) Q,,, is the operator for the (mass weighted)
normal mode (k,0, ), while P,,, is the operator for the mo-
mentum conjugate to Q, ., and § (% , ,, is a coefficient whose
magnitude does not exceed unity.>’ The o subscripts label
components of degenerate modes and are absent for nonde-
generate modes. The second and third terms on the right-
hand side are, respectively, kinetic and potential normal
mode energies, plus anharmonic terms in V.

In its equilibrium nuclear configuration the molecule
has a principal axis system in which the inertia tensor is

diagonal, u$)) =8, ;u?. The rigid rotor (RR) approxima-
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tion is recovered using 1'% and neglecting vibrational angu-
lar momenta and vibrational anharmonicities. The lowest
order Coriolis interaction H,, arises from the cross terms in
J and p, upon substitution of u{?) for t1,5. Asin Eq. (2.4), it
is a sum of terms each of which contains two vibrational
operators and one rotational operator.

Aside from H,, there are terms H,,,, m>3, arising from
expansion of p,5 in Eq. (2.3) in normal mode coordinates.
The H,,, terms contain m vibrational operators and one ro-
tational operator. In particular, the first two terms are

H;, = —_E Z [I(e)l(

aﬁ a,o,

-1 1
Q0 (p,Q,,,

+ Q. 0,0 ), (2.5)
H, = ——z z 1(211(32)] IQ(zgiﬁo,,
aﬁa,oabo',,
X (pa Qa,o’aQb,a,, + Qn,aaQb.abpa )Jﬁ’ (2'6)

where
QL2005 , etc., are coefficients in the expansion of 1,4:

a0,

poa = (121531 715+ 3 042270,

b0y

+3 3 02% 0, 0., + ] . 2.7

b,0y, ¢,0,
The coordinates Q are defined so that they vanish at the
equilibrium geometry. H;, and H,, are seen to reflect a vi-
brational dependence of the Coriolis term.

To proceed further we require the combination or other
bands which may anharmonically and/or Coriolis-couple,
near resonantly, to the 14! state. Identifying them is a step in
deciding which terms in the vibration—rotation Hamiltonian
are responsible for the coupling of 14' to dark states, i.e., to
states whose Franck—Condon factors for their optical excita-
tion from the ground state are very small.

B. Selection of dark states

Using only the experimental fundamental frequencies®*
v; in the S, state of benzene, it was possible to calculate
combination band origins with an accuracy of perhaps + 5
cm ~'; the combination band origin having an energy slight-
ly different from the simple sum of fundamental frequen-
cies,*® because of extra anharmonic contributions. This fig-
ure of + 5 cm ~! is based upon comparison with calculated
theoretical fundamental and combination band energies us-
ing the ab initio anharmonic force field employed.>® The
vibrational combination states within + 25 cm ~! of the ini-
tial state (using measured fundamentals of S, ) were exam-
ined as possible candidates as the interacting dark states.

The initially prepared vibrational state 14! (more pre-
cisely, an eigenstate which is dominantly 14') lies 1570
cm ™! above the lowest vibrational state of S, benzene. A
direct count of vibrational states lying within + 25cm ™' of
14! using the fundamentals for S| given by Robey and
Schlag® reveals seven states of the correct parity (unger-
ade), each having some degeneracy in zeroth order. (14'is
ungerade, such that states of gerade parity cannot nonradia-

tively couple to it.) Of these seven vibrational states, four
states (10'11'162, 4210'16', 4'16%17!, and 4'16°) differ from
14 by five, six, or seven vibrational quanta. The remaining
two, 5'10'16' and 6*11', differ by four quanta from 14' and
were proposed earlier by Neusser and co-workers®™® as the
dark states.

A recent double resonance study®® by Page et al. yields a
set of S, fundamental frequencies which, among other
changes,* differs from the set of Robey and Schlag* in the
value of v;. When this new value is employed in the direct
count, the 3'16! state, of ungerade parity, falls within + 25
cm ' of 14,

Since each successive powier in A of the vibrational-rota-
tional Hamiltonian is accompanied by an additional vibra-
tional or rotational operator [cf. Eq. (2.1)], a given opera-
tor coupling, say, 10'11'16? to 14 will occur with one power
of A higher than the analogous operator coupling 5'10'16'
and 6°11! to 14'. In the present study terms in H up to and
including A 3, the lowest order possible for the allowed cou-
pling of these states, are considered. Since the coupling terms
of order A * and higher are neglected, the four states above
differing in five or more vibrational quanta from 14! are not
considered further. For direct coupling of 14! to 3'16' only
terms up to and including A > need consideration.

In the 5'10'16' state the three excited vibrational modes
are each out of plane; modes 10 and 16 are doubly degenerate
and of e,, and e,, symmetry, respectively.’* The 6’11 vibra-
tional state has a doubly excited in-plane mode 6 of e,, sym-
metry and a singly excited out-of-plane mode 11, of a,, sym-
metry.>> In the 3'16' state mode 3 is in-plane with a,,
symmetry.>? Mode 14 is an in-plane mode of b,, symme-
try. 2

Having identified potential dark states quasidegenerate
with 14!, we consider later which terms in the vibrational-
rotational Hamiltonian may couple 14! to these dark vibra-
tional states. Some terms may shift rovibrational states in the
14! manifold from their anticipated positions in the RRHO
approximation, without coupling to rovibrational states in
the 5'10'16! and 6%11! manifolds, and are not considered
further. All calculations of the splittings and difference of
slopes in the avoided crossing curves can be made modulo
such shifts.

C. Contact transformation theory and application

In the present case, where the zeroth-order states have
been identified, the contact transformation method is par-
ticularly useful to treat the coupling and is employed
here.*'=3 It focuses on the perturbation of a cluster of states.
It was introduced by Van Vleck and applied extensively by
Nielsen and others to molecular vibrational-rotational in-
teractions.*****” By using it, no other basis states need be
considered in the present case, when the transformed Hamil-
tonian is employed in the diagonalization, and the relevant
expressions are available in the text by Amat et al.*® A recent
survey of perturbative and other methods, including the con-
tact transformation, is given by Sibert.** A projection opera-
tor formalism for the contact transformation is described by

J. Chem. Phys., Vol. 85, No. 2, 15 July 1991

Downloaded 02 Apr 2007 to 131.215.21.81. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



A. Helman and R. A. Marcus: Coriolis coupling in benzene 875

several authors,*®>! and its relation to the work of Nielsen et

al. is discussed by Jorgensen et al.*

In the contact transformation method, as applied to a
polynomial Hamiltonian {cf. Eq. (2.1)], successive unitary
transformations are introduced, the first such that the terms
in the new Hamiltonian up to and including order A (arising
from cubic anharmonicity, Coriolis interaction, etc.) com-
mute with the RRHO Hamiltonian Hy, which is of order A °.
Thereby, the matrix elements of this new Hamiltonian ob-
tained with the RRHO basis set are diagonal to order 4. A
second contact transformation is then introduced to yield a
new Hamiltonian whose terms up to and including terms in
A ? have only diagonal matrix elements in the RRHO basis
set, and so again commute with H,. At this point, in the
present case, the terms of order A? with four vibrational
operators and one rotational operator {cf. Eq. (2.1)}, aris-
ing from the transformations, are now the leading contribu-
tions to the off-diagonal elements of the transformed Hamil-
tonian. They provide the desired resonant couplings between
the rovibrational states in 14! with the identified dark states,
which differ from 14 in four vibrational quanta.’® The re-
sulting matrix is then diagonalized in the present case to
avoid the small denominators (resonant terms) problem.
There is one qualification to the above: The unitary transfor-
mation typically used in the literature, and also used here,
does not diagonalize to order A ? the terms having / quantum
numbers for doubly degenerate vibrations. Accordingly,
they will contribute later, to order 42, to the off-diagonal
terms. A similar remark applies to rotational terms contain-
ing the quantum number K.** Later, in treating quasidegen-
erate states which differ in four quanta simultaneously with
those which differ in three, care must be taken in choosing
the transformation, so as to avoid small denominators. We
first review briefly the Van Vleck transformation, using the
projection operator version, because of its transparency.

In the contact transformation method, a unitary trans-
formation H'" = U, HU] is applied, such that the off-diag-
onal matrix elements of the transformed Hamiltonian H"
are zero up to order 4, in the representation |i) which dia-
gonalizes the unperturbed Hamiltonian H,,. For this pur-
pose, one sets U, = exp{id S, } with the transformation
function S, , then satisfying Eq. (2.8)*7:

H{" =H, +i[S H,], (2.8)

H{" is the term of order A in the transformed Hamiltonian
H'V and S, is chosen so that H{"’ is diagonal in the basis set
which diagonalizes H,,. The diagonal elements of H{" equal
those of H, in this basis set [Eq. (2.8)].

These results can be written compactly in terms of a
projection operator formalism: We use P, to denote an oper-
ator which projects onto the subspace of the initial state or
states (in the present case this subspace consists only of the
|14%J,K) state and the quasidegenerate specified dark
states), and Q, is the operator which projects onto the com-
plementary subspace of the remaining eigenvectors of H.
For brevity of illustration in this section and in Appendix A,
but not in the actual calculations, the P subspace is treated
as degenerate, with eigenvalue E,. The more general treat-

ment is given in Ref. 50. The above conditions placed on H{"’
above can be written in terms of P, and Q, as

Pngl)Qo = Q0H§1)Po =0 (2.9)
and
PH{"P, =PH,P;,, Q H{"Q, =Q,H,Q,, (2.10)
all of which can be rewritten as

H =P,H,P, + Q,H,Q,. (2.11)

The solution of Eq. (2.8) and Eq. (2.11) for S, is given by™
(Appendix A)

-—-93—— H,P, + h.c.,,

£y, —H,

where h.c. denotes the Hermitian
—iPyH,Q, /(E, — H,) in this case.

In the use of Eq. (2.12) for S,, each perturbing term
H,, in the untransformed perturbation Hamiltonian
(H, = 2,H,,) is seen to require a corresponding function
S,,» with S, = 2§, . For transformation functions relat-
ing different vibration—rotation terms in the Hamiltonian
S, = S{‘;,‘;S'I?,‘,. The zeroth-order RRHO Hamiltonian H,
equals H,, 4+ H,, . Equation (2.12) then yields

i[S1pHo ] = 1[S18.Hyo ]S, + [ ST Hoy ]SS,

(2.13)
since5 SY® commutes with Hy, and S}y commutes with
H,,.>

The lowest order operator that will provide an off-diag-
onal coupling of the initial state with states which differ in
four vibrational quanta and in X is the third-order twice-
transformed operator H{®. For this reason the Hamiltonian
H‘" is subjected to a second transformation, to make the off-
diagonal matrix elements arising from perturbations to or-
der A2 vanish, and the diagonal elements of Hi* to equal
those of H{", thereby isolating H{?’ as the leading term re-
sponsible for the coupling in the transformed Hamiltonian.
However, as noted earlier, the standard Nielsen-type trans-
formation functions S, and S, employed in the calculations
allow for a matrix representation diagonal in the principal
vibrational quantum numbers v, to order 4 %, but not diag-
onal to order 4 * with respect to the /; quantum numbers in
the case of doubly degenerate vibrations, nor with respect to
the rotational quantum number K.3%*

The second contact transformation S, will be sufficient
for removing from the off-diagonal positions all terms of
order A2, except for those off-diagonal in the /; quantum
numbers, in K, or in both. For the second transformation we
have H® =U,H" U}, where U, =exp{iA’S,} and
hence,

H® = H{" +i[S,,H, ], (2.14)

where HS? is the term of order A” in H'", ie., in
exp{il S, }H exp{ — il S, }:

S, =i (2.12)

conjugate,

L;p?

H{" =H, +i[S, ,H, ] —-1[S:,[Si,He 1. (2.15)
Analogously to Egs. (2.9) and (2.10) we wish
P,HYQ, = Q,HYP, =0 (2.16)

and
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PoH:(zZ)Po = PoHél)Po’ QoHéz)Qo = Q0H§I)Q0a
2.17)
and so we have
H® =P H{PP, + Q,H{"Q,. (2.18)
The solution of Egs. (2.14) and (2.18) is similar to that of
Eq. (2.12):

S, = i& HVP, + h.c, (2.19)
a
hence one finds from Egs. (2.12) and (2.15) that
si=i[@up, L Ly,
a a a
2 (2.20)

— S HPH P | +he,

wherea=E, — H,.

The S, and S, transformation functions obtained by
Nielsen and co-workers,?>>**447 and the S, and S, func-
tions discussed above using the projection operator formal-
ism, satisfy the same equations, namely, Egs. (2.8) and
(2.14). Furthermore, S; and S, can be determined from
those equations, e.g., as in Egs. (2.12) and (2.19). However,
Nielsen’s and the projection operator forms of the S func-
tions are quite different; the former being expressed in terms
of polynomials of vibrational operators q, and p,,*® and the
latter being expressed instead in terms of P,, Q,, and H.
Nevertheless, they lead in the present case to the same final
results for the transformed Hamiltonian when H is ex-
pressed in polynomial form. Thereby, it was appropriate to
describe the overall formalism here using the projection op-
erator expressions for S functions (they are simpler),*’ even
though the transformed Hamiltonian used in the present cal-
culations was that given in Ref. 48, where Nielsen S func-
tions were used.

The term in H'® of present interest for coupling the 14
to the 5'10'16' or 6°11! manifolds is H{*’ and is given by the
term of order A ? in exp{id %S, YH"? exp{ — i1 %S, }, name-
ly, by

H® =H{" + i[S, H{"]. (2.21)
Needed for the present problem, however, is not the full
H{*, but only its diagonal component, P,H{*P,. Using
Egs. (2.10), (2.19), and (2.21) we have

P,HPP, = P, (H{" + i[S, H, ) P,. (2.22)
Since H{"’ can be expressed in terms of S,, S,, and H alone,
it follows from Eq. (2.22) that

P HPP, =P {H, +i([S,,H,] + [S,,.H, ])

—%[S‘,[S‘,H,]]}PO, (2.23)
where H, is the term of order A2 in H. Evaluation of the
commutators in Eq. (2.23), using Egs. (2.12) and (2.20),
yields™®

P H{VP,
Q Q
=P0{H3 +H1'—0H2 +H2_&H|
a a
i, Ly Ly _lupa Lpn
a a 2 a?

1 Q,

——H, —-H,POH,]PO. (2.24)
2 a?

The terms in P, H{> P, in Eq. (2.24) contain the follow-
ing matrix elements of products of untransformed operators,
with H,,, again denoting m vibrational and » rotational op-
erators: H,;; HZ™H,,, HiH,,, H; H,;; and
H,,H,,H,, omitting for notational brevity the interspersed
P,’s and Q,’s. Here, H3%?"!'° arises from quartic anharmoni-
city and H3¢™ from the cross terms of Eq. (2.3) quadratic in
vibrational angular momenta. Each factor contributes its
own order of 4, e.g., in the product H;, H,, H,,, since H;,
has a cubic anharmonicity, it is of order A, the Coriolis factor
H,, is of order A, and so the terms are of order A ®, Similarly,
HE"“H,, and Hs™H,, are each of order A °.

The symmetry requirements for nonzero cubic and
quartic force constants in H,, and H*" and for Coriolis
coupling coefficients in H,, are well known.>? The symme-
try restrictions for the terms containing the Q)% and
QG338 o, coefficients were derived individually and are giv-
en in Appendix B. This information indicates which product
operators vanish by symmetry when H;, and H,, appear
singly in the products.

Upon performing the appropriate sums over the mode
indices thousands of combinations of the vibrational opera-
tors are obtained for the various products above. Group the-
ory was used to identify which of these products, via the
relevant matrix elements, contribute to the coupling of the
light and dark states (cf. Appendix B).

An important simplification in perturbation calcula-
tions of molecular rotation-vibration interactions, present
in the formulas*® used here, arises from (1) the algebraic
simplification due to use of [q,,p; ] commutation relations,
and (2) the simplicity of the matrix elements of ¢, e.g., in
Eq. (2.24). For example, for the second reason, in a coeffi-
cient 2,2, CpokopKogel 57 of a polynomial in the next sec-
tion the operators q2 and qZ are absent in the polynomial.

D. Coupling of the 141 state to the 51101161 manifoid

The matrix elements coupling the zeroth-order 14! state
and the zeroth-order dark state 5'10'16' are considered as a
specific example of the use of group theory in applying Eq.
(2.24). For a term in a product operator P,H{® P, such as
H;,H;,H,, to contribute to this coupling, each of the three
factors must be nonzero. The expansion of the transformed
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operator, H;,H;oH,, which couples [/} and [},
where |/) and |j) are in the P, and Q, subspaces,
respectively, contains the matrix
clements®™ (2,2, Cpkopekeacl 5,110,940, /) and
(2,24 Coskap kul 54)$i14,9.0.P.J,, | /), where the indices
which are not summed over depend on the dark state | j), for
the given light state |i). In the first sum the representations
r@.)er(g,)er(Q.) and I'(Q)el(Q,)eI(Q,)
must each have an a,, irreducible component, in order that
k b and k 4, not vanish by symmetry, while I' (Q,) ® I'(Q,)
must have a I'(R,) component so that {5 - similarly does
not vanish. These restrictions severely limit the allowed val-
ues of indices b and ¢, which would be otherwise free to vary.
When the 14! and 5'10'16’ states are coupled, the indices
a,d,e, fin the first sum become permutations of 5, 10, 14, and
16. The values of b and ¢ for which the relevant matrix ele-
ments do not vanish can then be determined systematically
using group theory (cf. Appendix B). In the above sums C,,
and C,, are constants containing harmonic frequencies, mo-
ments of inertia, etc., and are seen to differ in which factors
have the common indices. A discussion of the symmetry of
terms in the first sum is given, as an illustrative example, in
Appendix B.

For this pair of states only a small fraction, but still
many, independent combinations of quadratic products of
cubic constants multiplied by Coriolis coefficients contrib-
ute to the coupling. In the case of the other product opera-
tors, only a few terms are left. Later, in Sec. I'V a breakdown
of number of combinations and their relative contributions
to the coupling matrix element of H{?’ are given. Here, rath-
er, the few general types of nonzero combinations which
arise are described. For this pair of states there is no contri-
bution to the coupling from the first term in Eq. (2.23), H,,
because of symmetry requirements for terms containing the
QG)%,0, factors. This finding is evident from the result,
seen in Appendix B, that for the identified initial and final
states the four coupled vibrational quanta involved must
have at least three of them in in-plane modes. However, for
other initial-final pairs of states H; could well contribute to
the coupling.

We also have from (i|H$*“H,,|/) the sum
2,C8 8 e Rapea (11P.9,9.94 | /), which will be nonzero for
some values of the index a. We further have®® from
({{|{HyHy, |/ the sum 2, CO0PPEG Koy
X {i]q,9,9,p.J, | /), which is similarly nonzero for some
values of the index ¢, as again shown by symmetry argu-
ments. Analogous results apply for coupling to the 6211!
final state® and to the 3'16' final state.

Now that coupling by many terms in the transformed
Hamiltonian has been eliminated to order A 2, the remaining
couplings are considered for the present small set of rovibra-
tional zeroth-order states in the initial and final manifolds.®°
In the example below, the 5'10'16' state is considered. It has
two doubly degenerate (e) modes, 10 and 16. The initial
stateis |J,K ), with the vibrational excitation 14" understood,
and the final state is |/,K + 1), with the vibrational excita-
tion specified later, there being two e- modes in the final
state, The latter can be characterized, in part, by the addi-
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tional quantum numbers /,, and /4 [these /s, which are zero
in the initial state, are not associated with the vibrational
angular momenta /,#iin Eq. (2.2), since modes 10 and 16 are
each out of plane.] In the coupling of the 14' and 5'10'16'
states, J is conserved, and since the only type of Coriolis
coupling allowed for the relevant states is (x,y) (for a z-
Coriolis coupling to 5'10'16' at least one of the modes in the
dark state would have had to be in-plane) the selection rule
for the radiationless transitionis AK = + 1. This (x,p) Cor-
iolis coupling, a consequence of the selected states and the
symmetry requirements, is supported later by experiment.’

Due to symmetry present in a C,, operation about the
principal symmetry axis the following selection rule applies
for coupling between two zeroth-order states for a symmet-
ric top®!:

—AK + Y a,Al +%Nz Av, = pN, (2.25)

for a molecule with an N-fold principal symmetry axis (here,
N =6).InEq. (2.25) pisaninteger, the sum over /is over all
modes belonging to b-type irreducible representations (b,,,
by, etc.,” - +),°! and the sum over  is over degenerate modes
that change their respective /, values by A/,, with a, equal to
one for an e, -type mode (e,,,e;,) and two for an e,-type
mode (e,,,e,, ). Foragiven AK, it provides the allowed Al’s.

In applying Eq. (2.25) to the coupling of 14! to the final
state 5'10'16' we note first that the latter state has an excited
e, -type mode Q,, (and hence a,, = 1) and an excited e, -
type mode Q,, (and hence a,, =2). For AK = + 1, the
smallest change in the /’s is obtained by setting p and the
Av;’sin Eq. (2.25) equal to zero. Equation (2.25) now gives,
for Al = 4- 1, corresponding to one vibrational quantum ex-
change per mode,

110
L

+1,
F 1 simultaneously (for AK = + 1).

li

(2.26)

Thereby, any Coriolis-induced AKX = + 1 coupling between
14! and dark states with /,, = /,, = + 1is forbidden. These
latter two states are therefore omitted from the set of basis
states.

The successive transformations provide a matrix repre-
sentation of the transformed Hamiltonian in which the ini-
tial and final states are in one 55 block along the main
diagonal. Since the implicated coupling is of order 4 * we do
not include in this matrix any terms of higher order. Within
this matrix given below there are also terms coupling the
K + 1 states to K 4 2 states, respectively. However, the
K + 2 states would be further off-resonance as seen by the
rigid rotor energy term in Hy, B, [J(J + 1) — {(K + 2)2],
having substituted K + 2 for K, differing from the rigid rotor
energy for K by about F2B,K~0.36K cm~'. Thereby,
such K 4 2 states can be omitted here in treating the proper-
ties of an avoided crossing. The remaining terms, being of
order A% A2, or A are included, the matrix elements being
those of the indicated operators:

5 July 1991
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olghK—1) |I5lg/ K—1) [145K) (1550 K+1) [I5]5:K+1)
H, + Hé” H;z) 0 0 0
H, + H{® H{® 0 0
H, + H? H{» 0 ’
H, + H{? H?
(Hermitian) H, + H®
i
where only terms of the twice-transformed Hamiltonian for ~ diagonal term, the use of AK = — 1 gives essentially the

which the matrix elements are nonzero are shown.

In this matrix the states of 5'10'16' parentage are la-
beled by quantum numbers /,; and /|, the superscripts indi-
cating their signs of + 1. The initial zeroth-order state is
indicated by |14";J,K ), for which all /; vanish, the Q,, mode
being nondegenerate and all other modes being unexcited.
The missing operators in the lower left triangle are the Her-
mitian conjugates of those listed in the upper right. The diag-
onal terms contain RRHO energies from H,, and the diag-
onal matrix elements for the two states of 5'10'16' parentage
withJ, = K — 1 have the same RRHO values, as do the two
states with J, = K + 1. There is no diagonal term linear in A
associated with parallel Coriolis energy or anharmonicity
for this pair of states 14! and 5'10'16,%7 and so there is no
H{? term in this matrix. This latter statement follows be-
cause H{» = H{" (since S, has no effect on H{"), and
H{" = H, =0, in the absence of parallel Coriolis contribu-
tion to the energy of these states and [cf. Eq. (2.11)] since
S, has no effect on diagonal elements of H, . There are diag-
onal terms of order A4 2, H{¥, some of which are dependent
on vibrational quantum numbers alone, and others that are
dependent on J and K. The former are included in AE,;, , the
difference in energy of rotationless origins in the absence of /
degeneracy, between 5'10'16' and 14, The diagonal (J,K)
dependent terms include quartic centrifugal distortion oper-
ators [such as J*(J + 1)?] and terms proportional to
J(J + 1) or K2 Both give a negligible contribution to the
energy difference of the two states and no contributions to
the off- diagonal elements.5?

Off-diagonal matrix elements are of the operators H{*’
and H{».% The third-order transformed operator H{? is
seen to couple the initial K state tothefinal K — land X + 1
states with the appropriate signs of /,, and /,, indicated. The
operator H{?, of order A %, removes the degeneracy of pairs
of levels that differ only in their / quantum numbers, and via
(g5l + LI, F 1 H? v,,v,;1 F LI, £ 1) it provides the
well-known /-type doubling.®® The magnitude of this matrix
element exceeds that of H{?’ and places one of this pair of
levels off-resonance from the |14';/,K ) state, thereby, al-
lowing the latter to interact via H{* with the remaining state
in the 5'10"16! manifold.

TheJ’s will be considered for which, prior to the diagon-
alization, the initial state 14' has a zeroth-order (RRHO)
energy that is very close to the two states in the 5'10'16’
manifold with J, = K + 1. It can be seen® that, apart from
changing the signs of the Al,’s and modifying slightly the off-

same final results. When the two J, = K + 1 dark states are
quasidegenerate with the initial state [J,K ) the two states
withJ, = K — 1 arerelatively far removed in energy and one
could introduce a partitioning approximation®® in which the
2 X 2 subspace consisting of [14';J,K ) and the nearest single
nearby state with J, = K — 1 are regarded as forming the
resonant subspace and the remaining three states as being
off-resonant. The resulting secular equation yields the eigen-
values®

E, =-;—{(E§ +E}) 4+ [(E} —E5)*+4HP'*],
(2.27)

which yields immediately the deviations of the lines from
their anticipated positions. In Eq. (2.27) |H §{*’’| denotes the
magnitude of the off-diagonal matrix elements due to the
perturbation given by the transformed operator H{?, plus
additional terms arising from the partitioning method, while
E | and E are diagonal matrix elements of the two coupled
states in this 2 X 2 matrix, thereby also containing off-reso-
nant terms arising from the partitioning. Numerical results
are given later, both with and without the partitioning ap-
proximation and indicate the usefulness of the latter.

E. Coupling of the 14 state to the 62111 manifold

For the dark states in 6°11' there are now three states
involved, the states |144J,K), |Io%J,K—1) and
|1 ¢ %J,K + 1). There is one other difference from the pre-
ceding case of the 5'10'16’ states: there is now a first-order
(parallel) Coriolis energy that appears on the main diagonal
(mode 6 is a degenerate in-plane mode, and the Coriolis
energy splits states differing in their /, quantum numbers).
Since one of the two states |/o%J,K—1), and
|1 %K + 1) is well separated by the zeroth-order term in
K2 as well as by the first-order parallel Coriolis interaction
from the remaining two states, that state is weakly coupled
and the partitioning technique can again reduce the problem
to a 2 X2 secular equation, with a solution analogous to Eq.
(2.27). The 3 X 3 matrix is given by

g 5K —1) |14%7,K ) 13K + 1)
H, + H, + H® H{ 0
H, + HY? H®

(Hermitian) H, + H, + H{?
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In this matrix RRHO energies and parallel Coriolis en-
ergies [cf. Eq. (2.2)] are along the main diagonal as, respec-
tively, Hy, and H,. For AK = — 1 the first two states form
the resonant subspace in the partitioning method.** The
third state, although coupled to the initial | 14';J,K ) by H®,
forms the off-resonant subspace, being far removed in ener-
gy.

F. Coupling of the 14" state to the 3116 manifold

In the coupling of the 14! initial state to the 3'16' mani-
fold, the relevant coupling term, containing one rotational
and three vibrational operators, is of order A 2. Thereby, the
twice-transformed Hamiltonian H'?’, which is diagonal to
order A 2 in the vibrational quantum numbers v, will fail to
model an avoided crossing because S, would contain small
denominators of the form w,, —w; — ®,,. Thereby, a
modified transformation function S¥ is applied to the un-
transformed Hamiltonian to obtain the coupling, S¥ defined
analogously to Eq. (2.19),

Q2

S: =1 —a—' Hg”PO -+ h.C., (2.28)

where Qf is the projector 2 ., |k )(k |, the sum over all
zeroth-order states except the two quasidegenerate states of
interest. The resulting 3 X 3 matrix is given by

15K —1)  N4Y LK)y 155K+ 1)
H, + H® H? H? rot
H, + H{» H?
(Hermitian) H, + H{®

In this matrix the vibrational label 3'16’ in the first and
third columns is omitted. This matrix differs principally
from the previous 3 X3 matrix in that there is no parallel
Coriolis energy along the main diagonal for the two dark
states. The latter two states, differing in their K quantum
numbers, are separated in zeroth order by their different rig-
id rotor energies contained in H,. The off-diagonal terms
H{® couple 14! to the two 3'16! states. H{? rot is a rota-
tional - doubling term that couples states via
{1;K [H® rot|l, 4+ 2;K TF-2) and, for values of K of our in-
terest, yields a coupling matrix element of magnitude 10 3
to 10 ~* cm ~ !, considerably smaller than the magnitude of
H;Z)'67
G. Coupling of the 141 state to the 6211 and 316"
manifolds

In order to treat several aspects of the fluorescence spec-
trum following excitation of states dominantly 14’ in charac-
ter,® for certain values of (J,K) (in particular K = 15,17) it
is desirable to consider the simultaneous interaction of ze-
roth-order states from both the 6°11' and 3'16' manifolds,
with 14" states. The resulting 5X 5 matrix contains as basis
states the |14';/,K ) initial state, and the four final states
included in the two 3 X 3 matrices above:

J
316’ 6%11! 141 6211! 3'16!
1K —1)  |Ig3JK—1) |/, K) HF5LK+1)  JIgNLK+1)
H, + H® H{* quintic H 0* H® rot
H, + H, + H{® HP? 0 0*

HO +H§2) H_S,” H§2)
H, + H, + H®  H{? quintic
(Hermitian) H, + H®

This matrix employs H{» obtained with the modified S¥* transformation function defined by Eq. (2.28), in order to avoid
small denominators (arising from 1/a) of the form w,, — @; — @,4. Aside from this change, the only items in this matrix that
have not been described in previous subsections are the off-diagonal terms H{?’ quintic and 0*. H{? quintic is a third-order
anharmonic coupling of pairs of states in the 3'16' and 611" manifolds. There is also a parallel Coriolis term coupling the
same states, but it is of order A * and may be neglected. 0* is a high-order rotational /-doubling term, and is similarly neglected.

lll. RESULTS FOR 14' S, STATE
A. Theoretical

A particular initial rovibronic state and a final state will
be quasidegenerate provided that the (J,K) pair satisfies Eq.
(3.3) given below. For these quasidegenerate pairs, the off-
diagonal coupling can lead to significant deviations from line
positions in the vicinity of the avoided crossings. In Fig. 4 of
the article’ of Riedle and Neusser, the avoided crossings

r
involving the 14' state arrange themselves into two sets of
resonance regions in the (J,K) rotational manifold; a region
for coupling to 5'10'16', ranging, for the best plots, from
(35, 10) to (24, 9), and a region for 6211', ranging, for the
best plots, from (35, 15) to (21, 17).%® These avoided cross-
ings are indicated in Tables I through IV, together with the
final states to which the 14’ state is coupled.®®

For the light (|14';J,K )) and dark rovibronic states to
be nearly degenerate energies, as in Eq. (3.1), where E [ is
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TABLE I. Vibrational coupling constant for H{?’ interaction between the initially prepared 14' state and the

final, dark states indicated.

V5,2 X2 Vo,5x5¢ 7V, V,, expt®
K Final state* (10*em™")  (107%*em™')  (107*em~™')  (107*cm™')
9 5'10'16' 6.3 6.2 6.2 11.2
10 5'10'16! 6.2 6.2 6.2 1.6
12 5'10'16' 6.2 6.1 6.2 (9.8)
11 611 8.9 8.8 8.9 (8.1)
13 6211 8.9 8.8 8.9 9.7)
15 611’ 9.0 9.0 8.9 12.8
16 611" 9.1 9.0 8.9 (17.1)
17 6’11’ 9.1 9.0 8.9 12.7

*AK = + 1for5'10'16}, — 1 for 6211%.
b Parentheses indicate less reliable values (see the text).
€33 in the case of 6*11',

defined by the first equality and E {* by the last,
EI(O) =E;'ib+E;'ot+E;:or
~EP+EP+EFPFF=E® (3.1)
should be close for any such suitable final state, with
AK = 4 1. The vibrational plus rotational energy is given

by the RRHO approximation,* and the Coriolis energy in
the 6°11' final state is given in Eq. (2.2) by

EPr= — (K Bl & (3.2)

In contrast the final state 5’ 10'16! has no first order Coriolis
energy. Equations (3.1) and (3.2) yield for appropriate val-
ues of J and KX, for the 14! and 6°11! states,

E® _E®=AB|JJ+1) -—%Kz]

$Bf(l + Z 1,§,)K + (E}ib - E:ib) =0,

(AK= %+ 1), (3.3)

where AB is the rotational constant of the final (dark) state
(B;) minus that of the initial (light) state. In the application
of Eq. (3.3) to obtain a coupling element from the perturba-

tion of the line position, for any given final state f
E}® — E™is constant when J and X are varied. The experi-
mental plot is of differences of line positions vs J, or, in the
present paper, vs J(J + 1), at fixed K. The constant
E® — E}® does enter into the fitting, because of the square
root, as seen later in Eqs. (3.4)—(3.6). The £} and E; ap-
pearing in Eq. (2.27) are the E (% and E {® of Eq. (3.3), but
modified by the diagonal part of H® and by the partition-
ing.

The avoided crossing plots given later are made at fixed
K. As is seen from the functional form in Eq. (2.27), the
difference in eigenvalues E, — E; is given by

E,—E =+ [(E;—E}+4H®'|*1'2  (3.4)

The use of the form Eq. (3.3) for E; — E (omitting any
functional modification caused by the H{?’ and partitioning
terms) yields at fixed X, a functional form for E F—E5

E;—E!=ABJ(J+1)—D, (3.5)

where D is independent of J and is seen to be the value of
ABJ(J + 1) at the “crossing point” of a plot of E ; — E | vs
J(J + 1). |H §?’| denotes the magnitude of the matrix ele-

TABLE II. Changes in rotational constant between the initial and final vibrational states (AB).?

AB2X2 AB,5Xx5¢ AB AB, expt®
K Final state (10~*m-") (107 %tm~') (10~*cm™") (10~ *em~")
9 5'10'16" —30 —3.0 —3.0 —-27
10 5'10'16' —3.0 —3.0 —3.0 —27
12 5'10'16" —30 —3.0 —3.0 (=2.7)
11 611" —49 —49 —50 (—4.1)
13 611" —49 —49 —50 (—4.1)
15 611" —49 —5.0 —5.0 —43
16 6211} ~50 —5.0 —50 (—4.6)
17 611" —50 —50 —50 —43

*AK = + 1for5'10'16', — 1 for 6°11".
®Parentheses indicate less reliable values (see the text).
¢33 in the case of 6°11'.
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TABLE I1. Vibrational coupling constant for H§" interaction between the initially prepared 14' state and the
3'16' state, The large disagreement between ¥, (expt) and ¥, (theor) argues against a quasidegeneracy of the

14' and 3'16’ states.

Vos2 X2 Vo,3X 3 V, ¥y, expt®

K Final state® (10~ *cm™") (10 *cm~") (10~ %cm 1) (10 *cm™")
1 3116} 143, 142, 144. (8.1)

13 3'16' 143. 143, 144. .7

15 3'16! 144. 143, 144. 12.8

16 3116 144, 143, 144. (17.1)

17 3'16! 144, 143, 144. 12.7

*AK = - lin all transitions.

b Parentheses indicate less reliable values (see the text).

ment {i{|H$?’| j) for the relevant states, and is written in
terms of the theoretically motivated expression

[GHP | Y| = Vo [J(J + 1) — K(K + 1)1, (3.6)

even though it will not be exactly of this form, because of the
partitioning contribution to (/|H$*’| ). When the parti-
tioning contribution to (i|H$*’| /) is negligible, as we shall
see it is to be in the present case, Eq. (3.6) becomes the
correct functional form.

The principal theoretical contribution to | (/|H$>*|j )|
in Egs. (3.4)—(3.6) is | {({|H{?| j}| in each of these theoreti-
cal calculations; |(i|H{®|/)| is a product of two terms,
which can be written as

[IHP| N =V [JT+ 1) — KK + D)4,

where P, in Eq. (3.7) is independent of J and K. The theo-
retical value of ¥, is obtained as a sum, as given in Tables ITI
and IV of Ref. 48, and is evaluated using the relevant molec-
ular constants.”® The latter include the harmonic frequen-
cies, cubic and quartic force constants,*® Coriolis coupling
coefficients, inertial derivatives, and the Q coefficients that
appear in the expansion of the inverse inertia tensor in Eq.
(2.7). Formulas for inertial derivatives and -coefficients
are available.”' In addition to the anharmonic force con-
stants given in Ref. 35, an incomplete listing, the additional
constants in Appendix C were employed. Coriolis coupling
coefficients were computed from the harmonic force field of
Goodman et al.,” while existing formulas” were used to

3.7

obtain inertial derivatives and Q) coefficients. Substitution of
these constants into the sum noted above*® yielded the set of
theoretical ¥, values listed in Tables I and ITI. The comput-
ed coupling constants are complex-valued quantities but
only their magnitudes appear in the energy expression, and
so only their magnitudes are reported here in Tables I and
IIL.

The principal theoretical contribution to AB is AB, the
difference in rotational constants of the relevant zeroth-or-
der states in the absence of contributions from the partition-
ing. The theoretical AB values are listed in Tables 1T and IV,
together with the theoretical AB values as defined by Eqgs.
(3.4)-(3.6).

These coupling constants ¥, and AB were computed
using the 5 5 (for 5'10'16') and 3 X 3 (for 6°11' and 3'16')
matrices given in Sec. I1. The use of the 5 X 5 matrix contain-
ing both 6°11' and 3'16' states gave coupling constants for
coupling of 14! to either one of these dark states within a few
percent of the values obtained using the relevant 3 X 3 matrix
containing that dark state. Thereby, we do not report sepa-
rate coupling constants based upon this 5X 5 matrix. The
relevance of this 5 X 5 matrix is seen when the various peaks
in the experimental fluorescence spectrum is interpreted.®

The difference in the two relevant eigenvalues of the
5X 5 matrix for the coupling to the 5'10'16' state and of the
3X 3 matrices for the coupling to the 6°11" and 3'16' states
are each fitted to Eqs. (3.4)—-(3.6) to obtain theoretical ¥V,
and AB values, defined by these equations, and are listed in

TABLE 1V. Changes in rotational constant between the initial state and the 3'16' final state (AB).*

AB2X2 AB3X3 AB AB, expt®
K Final state (10 %m™") (10~ %cm ") (10 ~*cm 1) (10~ %m ")
11 3'16' —6.6 ~6.6 — 6.5 (—4.1)
13 3'16’ —6.6 —~ 6.6 —6.5 (—41)
15 3'16' — 6.6 - 6.5 - 6.5 — 4.3
16 3'16 —6.5 —6.5 —6.5 (—4.6)
17 316! — 6.5 — 6.5 — 6.5 —43

*AK = — 1in all transitions.

® Parentheses indicate less reliable values (see the text).
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Tables I through IV. The eigenvalues of the 2 X2 matrix
resulting from the partitioning (discussed below) are also
fitted to Eqs. (3.4)—(3.6) and the resulting ¥, and AB val-
ues are also given in Tables I through IV.

B. Fit of Eqs. (3.4)~(3.6) to data and extraction of V,,AB

We consider next the extraction of experimental values
of ¥, and AB from the experimental data. The empirical
least squares fit to the experimental avoided crossings in Fig.
4 of Riedle and Neusser is given in Figs. I and 2,° but plotted
vs the present theoretically motivated J(J + 1).”* These fits
were made” using as unperturbed energies the rotational
energies of Eq. (2.2), and as such do not include terms func-
tionally of the form of quartic centrifugal distortion coeffi-
cients. The quality of the empirical fits is evident for K =9,
10, 15, and 17 (Fig. 1). This fit is less adequate for K = 11,
12, 13, and 16 (Fig. 2), partly due to the smaller number of
data points available for these values of X, and partly duetoa
possible overlap in some of the avoided crossings. Otherwise,
the agreement of experimental curves with the empirical fits
is quite good. The empirical fits of Eqgs. (3.4)—(3.6) to the
experimental data provide in Tables I through IV the experi-
mental”™ values of ¥, and AB, parameters defined by the
functional forms Egs. (3.4) to (3.6).

1V. DISCUSSION

Due to the relatively low excess vibrational energy avail-
able in the 14! initial state (1570 cm ~ '), the vibrational den-
sity of states is low, about 1 per cm ™~ '. As a result it was
possible in the present case for the light state to couple to
particular dark states (the coupling producing the avoided
crossings being very small), rather than coupling to numer-
ous dark states. Coupling to a large number of states would
have caused a broadening and even a disappearance of some
lines, rather than merely perturbation of some line positions.

For coupling to the 5'10'16' manifold, for which there
were four possible states /;p = + 1, /,, = + 1, only the

(lo = —1, I, = + 1) state is observed’® to couple via
H{? to the 14! state with the selection rule AK = + 1. (Had
AKbeen — 1,thenthe (/;,; = + 1,7/, = — 1) state would

have been coupled to the 14' state, and substantially the
same calculated ¥, and AB would have been obtained.) The
(o=+NLlL¢= —1and (/,, = — 1,1, = + 1) states
are mutually coupled via H§» as in the indicated matrix
given earlier.

For the 6211' final manifold, the observation’® of
AK = — lisconsistent withacouplingof/, = — 2 via H{?
to the initial state, according to the selection rule in Eq.
(2.25). [There are possible states /s = { + 2,0, — 2}, of
which the [, = + 2 state couples via H{? to the initial state
with AK = + 1, while the /; =0 state does not couple
(x,p)-Coriolis couple to the initial state.]

For the 3'16! final state, for which there were possible
statesl;y = { — 1, + 1},/,, = + liscoupled via H{" to the
initial state with AK = — 1. (The/,, = — 1stateis coupled
via HS" to the initial state with AK = + 1.)

The coupling |{/|H{?| j}| of the 14' and the 5'10'16’
final state had a ¥, of 6.2 10 ~*cm ~ ' and arose from some
77 symmetry-allowed terms in |(i|H{?’| j}| for these states
(not including permutations of p and q operators). This
number, although far less than the thousands of possible
terms that might be nonzero prior to application of group
theory, indicates the need for a computer to obtain even the
elements of the 2 X 2 partitioned matrix for the calculation of
V,. This ¥, 0f 6.2 10~ *cm ~ ! due to the 77 terms includes
5.8 10~ *cm ~ ! from terms originating in products of un-
transformed operators H,, H;, H,, . There were 70 indepen-
dent such symmetry-allowed products. There was no contri-
bution to ¥, arising from the products HE*"“H,, (three
terms) since in the absence of better data we have set the
relevant quartic constants to zero.”® The contribution of the
products Hy H;, (four terms) was 0.4X 10~ * cm ', The
H,, gave no contribution in this case. Table V lists the cubic
and quartic force constants entering into such products.

For coupling of the 14! state to the final state 6°11'a ¥,
of 8.9 10~ % cm~! had contributions from 92 symmetry-
allowed terms, not counting permutations of vibrational op-
erators. This ¥, of 8.9Xx10~* cm ™! arose entirely from
terms originating in products of untransformed operators
H,,H,,H,, , there being 86 independent such nonzero prod-
ucts, since there was no contribution to ¥, arising from the
products HI*"“H,, (six terms), owing to the zero values
assumed for the relevant quartic constants.”® Again, Table V
lists the cubic and quartic force constants entering into such
products.

For coupling of the 14! state to the final state 3'16" a ¥,
of 144 % 10~ *cm ~ ' had contributions from four symmetry-
allowed terms, not counting permutations of vibrational op-
erators. This ¥, of 14410~ * cm ™! arises solely from
terms originating in products of untransformed operators
H;,H,,, there being four independent such nonzero prod-
ucts. Far fewer nonzero products arise in this case because
the single contact transformation using S, introduces less
terms than that arising from application of both S, and S, .
The relevant cubic force constants are listed in Table V.

The agreement of the theoretical and experimental val-
ues of ¥, in Table I is seen to be reasonable, considering the
approximate nature of the present potential energy surface
of S, benzene. It is seen from Table I that the theoretical
value of 7, is very close to that of V. In the final column of
that table are the experimental values of ¥, obtained from
fitting the plots of the results of Neusser and co-workers to
Egs. (3.4)-(3.6).” The vibrational factors of ¥, of Table I,
upon insertion into Eq. (3.4) together with typical values for
J and X of, respectively, 30 and 10, gives a coupling of 2 to
3% 10~ %2cm ™. From Table II it is also seen that the theo-
retical value of AB and the experimental values of AB differ
only by some 15%. From Tables III and IV it is evident that,
for the relevant values of (J,K), the 3'16! state is not a reso-
nant contributor to the observed avoided crossings, the dis-
crepancy between calculated and experimental V,,’s now be-
ing a factor of about 10. Thereby, we infer, the 14! and 6%11'
states should be nearly resonant, being the principal partici-
pants in the avoided crossing, with the 3'16’ state perhaps
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FIG. 1. Least squares fit to the
avoided crossing for K = 9 with
5'10'16' (a), K=10 with
5'10'16' (b), K = 15 with 6211}
(c), K = 17 with 611" (d). Sol-
id line connects experimental
points, dashed is the fit to the
quadratic equation in Ref. 74.

FIG. 2. Least squares fit to the
avoided crossing for K= 11 with
6°11' (a), K = 12 with 5'10'16' (b),
K =13 with 6°11' (¢), K = 16 with
6°11' (d). Solid line connects experi-
mental points, dashed is the fit to the
quadratic equation in Ref. 74,
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TABLE V. Independent cubic force constants needed for coupling 14' to
various states.*

Coupling to 5'10'16' states

i=6t09:
(14,18,1),(14,19,i),(14,20,i),(16,17,),(11,16,i),(5,10,/)
i=18 to 20:
(10,16,1),(10,11,§),(5,17,i),(10,17,1),(5,16,i)
i=12,13,15:

(10,16,i)

Miscellaneous
(14,10,17),(14,5,11),(14,1,15),(14,2,15),(14,2,12),(14,2,13)
Quartic constants:
(4,10,14,16),(5,10,14,17),(5,10,15,16)

Coupling to 611" states
i=6t09:

(6)6yi)
i=6to%andj=16and 17:
(L1L))

i=6to9andj= 18 t0 20:
(514, ))

Quartic constants:
(6,10,11,14)
(6,6,11,16),(6,6,11,17)
(6,6,14,18),(6,6,14,19),(6,6,14,20)

Coupling to 3'16' states
(3,12,14),(3,16,16),(3,16,17),(10,14,16)

*Constants are k., with a,b,c indicated in parentheses, or in the
quartic case, k,,.;.

contributing via an off-resonance in the coupling of these
states.

The present interpretation in terms of a perpendicular-
type Coriolis coupling, involving (x,y) axes of rotation, is
consistent with the experimental fact, noted by Neusser and
co-workers,” that the splitting at the avoided crossing from
different K ’s varies with Jin a way characteristic of a perpen-
dicular Coriolis coupling, namely it varies as
[JU+1) — KK+ 1]

The coupling of the 14* to the 5'10'16' state finds strong
support, Schubert er al.® noted, in the appearance of the
emission band 5; 10} 16} 67. (The mode @, of e,, symmetry,
provides the vibronic activity needed in this otherwise for-
bidden electronic transition.) The coupling of the 14! state
to the 6711 state is implicated by the appearance in emission
of band systems 6311} 13 and (but see below) 6211119, the
Qs mode again providing vibronic activity and Q,, of a,
symmetry, yielding the progressions. Based on a value given
by Page et al.* a particular spectral emission peak could be
attributed to 3] 16} 67 12, corresponding to an involvement of
the 3'16' state: the possible Fermi resonance of 6211! and
3'16', suggested in Ref. 8, and coupling to 14}, are discussed
later.

While the presence in emission of the 6211! 12 system,
and a band attributed to 3] 16169 are consistent with the
present analysis, the weakness of 6311} 19 intensities, noted
in Ref. 8, remains unexplained. It is relevant that the 62 and
67 intensities normally are in the ratio of two to one,”” while
in a separate study including excitation of the 6> band,”® the
intensity ratio for the emission bands 6319 and 6219 was

about a factor of 3. Since the authors of this study found that
6 is in anharmonic resonance with the 117 state, one might
conclude that mixed or combination states of Qg and Q,,
might deviate in their Franck—Condon factors from the sim-
ple 6° state. Whether such an effect would yield a weak
61 11; 19 band intensity is presently not known. Other possi-
ble explanations are mentioned in Ref. 8, one being a possible
displacement of the 67 11; 19 band from its anticipated posi-
tion by some 70 cm ', Using the contact transformation
formalism through S, for the coupling of 1,6,11, and a
nearby 8, 11, state (omitting the terms in S, which would
yield small denominators but treating those terms via the
diagonalization of the transformed Hamiltonian), we ob-
tained a coupling matrix element of 28 cm ~!, which would
be too small to yield a shift of 70 cm ~ ! in band position.”

V. CONCLUSION

Using a transformed Hamiltonian given by Nielsen and
Amat,***® obtained from contact transformations, the cou-
pling between light and dark rovibronic states in S, benzene
was evaluated. With it the perturbations in the line positions
were calculated with terms involving a third-order perturba-
tion of the vibration-rotation interaction. The coupling to
the identified states led to a perpendicular Coriolis interac-
tion between the nondegenerate initial state and the degener-
ate modes in the final dark states, modified by anharmonic
coupling to other modes. While the evaluation of the cou-
pling strength requires an accurate knowledge of cubic an-
harmonic force constants, the currently computed coupling
strength is in reasonable agreement with observed line devia-
tions, no adjustable parameters having been employed. The
calculations also served to eliminate, by a factor of 10, a
resonant coupling solely between the 14! state and the 3'16!
manifold.
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APPENDIX A: SOLUTION OF EQ. (2.8)

The solution of Eq. (2.8), as Eq. (2.11), can be found in
Ref. 50 [cf. Eq. (7.6) and Eq. (A5) there], but a simple self-
contained solution is given here for completeness.

Upon multiplying H{"> — H, in Eq. (2.8) on the left
and right by P, 4+ Q, = 1 and using Eq. (2.10) it folows
that

H{" —H, = —P,H,Q, + h.c. (A1)

The P,H,Q, in Eq. (Al) can be written as
PoH, (Q,/2)E, — P H, (Q,/a)H,, where a=FE,—H,.
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Using Py E, = PoH, = H P, Eq. (A1) becomes
H?” b Hl = POHl (Qo/a)Ho

—H,P.H, (Q,/a) + h.c. (A2)

The right-hand side of Eq. (A2) can thus be written as a
commutator with H,:

H{" —H, = [P,H, (Q,/a)

— (Qo/2)H, Py, H, ]. (A3)

Comparison of Eq. (A3) with Eq. (2.8) shows that S, and
P.H, (Q,/3) — (Q,/a)H, P, differ at most by a quantity
which commutes with H,. However, Eq. (2.8) shows that
S, can be determined only up to a quantity which commutes
with H;. We set that quantity equal to zero, so that S, van-
ishes when the perturbation vanishes. Thereby, Eq. (2.12)
for S, follows.

Equation (2.14) for S, is the same as Eq. (2.8) for S,
apart from H{? and HS" replacing H{"’ and H, , respective-
ly. Thereby, the solution for S, is the same as Eq. (2.12)
upon making these substitutions, so yielding Eq. (2.19).

APPENDIX B: SYMMETRY PROPERTIES OF
COEFFICIENTS, AN EXAMPLE

An example is given in this Appendix of the application
of symmetry considerations to some of the terms which con-
tribute to H'?, namely, H,,, H;,H;,, and H; H,  H,, .

The higher order Coriolis operator H;, results from a
modification of H,, by motion along a normal coordinate
Q..,, which distorts the molecule, thereby providing the ad-
ditional inertial terms 2,,Q.)°°Q, . , a8 = x,y,z. Both
H;, and H,, contain Q{)*’Q, , ,** and we can readily learn
about the properties of the latter by considering H,,. We
then apply the resuits to Hj, .

The two rotational operators J,, and J; in H,, appear
only in the relevant forms J,J; 4 J3J, when a#8, and as
J2 + 32,32 — J2, oras J2. (The J% + J} arise according as
ou*/3Q,,, = + uwr/dQ,,, forthe given Q,, .) The irre-
ducible representation for the product of J’s is a,, for the
combinations in af of xx 4 yy and zz, e,, for xx — yy and
xy, and e,, for xz( = zx) and yz( = zp). The above linear
combinations transform in the same fashion as components
of the polarizability tensor.?!

Since any term in the Hamiltonian must be invariant to
all symmetry operations, a necessary condition for 01)*? in
H,, to be nonzero is that T'(Q,,, ) be one of the above irre-
ducible representations for some combination in af, for
only such a I' will contain an a,, component in the represen-
tation of the triple product. Thereby, when aff = xx + yyor
zzonly a,, modes have nonzero Q{})°%. For a8 = xx — yyor
xy it is nonzero only for e,, modes. Since®> Q)% and Q})”*
vanish for all modes in benzene, there are no terms in H,, for
the combinations xz and yz. Equating like terms in expan-
sions of the inertia tensor in terms of Cartesian components
and in terms of the pairs af used here,
QxE» = Q0> 4+ Q). In the calculations we have
JAgE = LD = QW7 =400 for the a,, case,”’
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and JQ> P = Q= = — Q) and QL) = Q)" in
the e,, case.”' In the W (Wilson)*? system of numbering
vibrational modes for benzene, Q, and Q, are each of the
irreducible representation a,,, and @, Q;, Qg and Q, the
irreducible representation e,,, so determining which terms
in Q,, contribute to 2,,Q.2%Q, , in Hj, for the above
af3. All six of these modes are in-plane.

Of the three modes @, , Q,0,» Qo,o, contained in H,,
nonzero terms occur when three of these Q’s are in-plane (z
coupling) or when two of the three modes are in-plane (x,y
coupling), as seen by the following arguments. We consider
the case where @, ,, and @, , are coupled by a Coriolis term,
J.pg in Eq. (2.3), and mode Q,, is the distortion coordi-
nate. We first note that J,p,, J,p,, J,p,, and J,p, are absent
since, as noted above, all Q{)** and Q{})** vanish. For paral-
lel (z) coupling, i.e., for J.p,, mode Q, , must be a,,, since
as noted above only a,, modes have nonzero Q!)*. Since all
a,, modes are in-plane it follows that this mode is also. The
modes 0, , and Q,, coupled via the z-Coriolis term J,p,
must clearly also both be in-plane, to yield a z component of
vibrational angular momentum. Thus all three modes are in-
plane in this z-Coriolis term. For a perpendicular (x,y) cou-
pling (J,p,, J,p,, J.p, or J,p,) there is one in-plane and
one out-of-plane mode, to yield an x(y) component (p, or
p,) of vibrational angular momentum. Since all nonzero
Q52 arise from in-plane modes of a,, or e,, symmetry
mode @, , is in-plane. Thus in the perpendicular coupling
case, two of the three modes are in-plane and the third is out
of plane.

The Coriolis operator H,, results from the modification
of H,, by distortion along two coordinates Q,, and G, ,,,
thereby providing the inertial terms 3,, Q5" ?Z,FQ'%% I o S
This term can be examined via H,,, which also contains
Qg ?:?Qb_nga,oa Qs,., terms.*® We require that each term in

H,, be a,,, and hence that

I, €0(Q...) 8T (Q,.,) @ T(J.dp),
(B1)

where I'(J,,,J) is one of the representations for the J,J,
terms mentioned earlier. Comparison with arguments given
for H,, (and hence for H;, ) shows that, just as in that case
I'(Q,,.,) must be a,, or e,,, so here I'(Q,, ) ®T(Q;,,)
must contain @, or e,,, in order that Eq. (B1) be fulfilled.
The number of symmetry-allowed possibilities which satisfy
this condition are many and may be found from a character
table.®’ In terms of the usual combinations in af8 = xx,py,
etc.,” * one has’!

)ap _ 3 e y—1lra(Mayrn ()8
QQa,aanb,qb - 78_ Z (IYY) (Qa,cra yﬂb,o:
Y

+ QTQAN?), (y=xpz).  (B2)

This equation can be used to obtain Q1®’s for af equal to
various pairs of x, y, and z. The latter *’s can then be used
to obtain the group-theoretically motivated combinations
Qg ’:"‘Q“: jby and Q&?‘ZTQ_‘, jby In all cases the resulting formulas,

just as in Eq. (B2), indicate that the nonzero Q(QL ):’B deter-

@
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mine the nonzero Q5°%%, .* Thereby, I'(Q,,, ) and

T eboy
I'(Q,,,) must individually be a,, or e,,, since from Eq.
(B2) both 2§ %" and Q(Q‘:f must be nonzero for some a, 5,

,and the Q‘"”’s are nonzero only for a,, and ¢,, modes. The
I 1g g

results given earlier for the Qs can thus be adapted to

2)aB
QQa,a,,va.a,,'

When in Qg,.):be.ab aff = xx -+ yy and zz one finds that
(Q,s,) =T(Qs0) =T, and T(Q,,)=T(Q,,)
=T,,. When aff = xx — yyand xy I'(Q,, ) and I'(Q,,,)
area,, and e,,, respectively. When a8 = xzand yz Eq. (B2)
applies unaltered by transformation to our linear group-
theoretic motivated combinations and the 034, vanish,

noting Eq. (B2) and that all Q‘QL’:Z and anf:z are zero. For

calculation of coefficients in H,, we employ the relations
given earlier for H,, and Hj,, replacing Q" by Q.
Restrictions for the four vibrational modes which arise
inH,;, Qu0.r @b,0,» Cero,r a0, analogous to those for Hy, .
We consider the case where Q.,, and @, couple via a Cor-
iolis term and where @, , and @, ,,, are the distortion coordi-
nates. The latter two coordinates must both be in-plane,
since they must individually transform as a,, or e,,, in order

to have some nonzero 254, . For perpendicular Coriolis

coupling one member of @, , and @, , must be in-plane and
one out-of-plane. Therefore, in this case three of the four
modes are in-plane. Since for parallel coupling both modes
coupled via an H,, Coriolis term are in-plane, now, there-
fore, all four modes in H,, are in-plane. In addition, for
parallel (z) coupling, modes @, and Q, must have the irre-

. . . Dz .
ducible representations a,,, recalling that QQM,QM is non-

zero only for I'(@,,. ) =T(Q,,,) = ay,.

The following example illustrates the application of ele-
mentary group theory to the term H,, H;,H,,, which con-
tributes to H{* and to the determination of which products
of the operators give a nonzero contribution.

The sum 2,2,.C, kpp K ose$ 579,949, P/, given in Sec.
II contributes to Hy, H;, H,, , and it is desired to find which
values of b and ¢ give a nonzero result for the coefficients. It
is first noted that a, d, e, fare fixed as permutations of 5, 10,
14, 16, in the case of coupling of the 14! and the 5'10'16'
states. The allowed values of these four indices a, d, e, f are
considered systematically. The term /= 5 is considered first
as an illustration. Similar reasoning would follow for the
remaining three choices of f.

For perpendicular coupling a = x,y and it is required
for § 7 to be nonzero that '(@,) ® I'(Q,) contain the irre-
ducible representation e, .*' Noting that I'(Qs) = b, it is
found that T'(Q,) = e,,. Thereby, it follows that b is re-
stricted to being 6,7,8,9 for a nonzero £ 7 . Considering & .,
next, there are three possible values of a, namely, 10, 14, and
16. Choosing a = 14 (similar reasoning would follow for the
remaining two choices) then for I'(Q,) e I'(Q,)®I'(Q.)
to have an a,, component,*® noting that
I'Q,)=T(Q,,) =b,, and, it was seen, I'(Q,) = e,,, it
follows®! that I'(Q.) = e,,. Thereby, 7 = 18,19,20. For the
given a = 14 and f= 5 we have d and e being 10 and 16.
Choosing e = 16 with T'(Qs) = e,, and T'(Q,o) = ey,

then in k_; the irreducible representation for the direct
product T(Q.)8I(Q,)eI(Q,)=e, ®e,®e, Iis
a,, + a,, + 3e,,, which contains an a,, component, ensur-
ing that k_,, is not zero by symmetry. The four values of
b(6,7,8,9), together with the three values of ¢(18,19,20),
indicates 12 independent, nonzero products k., k.65 s
from this source.

APPENDIX C: SOME RELEVANT FORCE AND OTHER
COUPLING CONSTANTS

The cubic force constants used are taken from an ab
initio force field for ground state benzene.>> We have ob-
tained from it the cubic force constants that involve only
totally symmetric (a,,) linear combinations of three vibra-
tional operators, of which there are 237 independent val-
ues.®® Out-of- plane cubic constants (involving Wilson’s
symmetry coordinates*? ¥ and/or §) were the most relevant.

A Morse oscillator model of stretching valence coordi-
nates provided estimates of the diagonal (k,,,,) and semi-
diagonal (k,,,,) quartic constants, obtained from Ref. 86.
For the remaining, quartic constants that are not zero by
symmetry we have assumed a value of zero, since there is no
data available for these constants.

Coriolis coupling constants were computed from the L
matrix®® obtained using the quadratic force field solution of
Ref. 72. The ground electronic state values obtained from a
normal mode analysis were assumed for calculating the pres-
ent set of Coriolis coefficients ¢ (7.

Inertial derivatives and higher order coefficients of the
inverse inertia tensor were computed using the values
Feu = 1.084 A and roc = 1.397 A for the excited state car-
bon-hydrogen and carbon—carbon equilibrium bond
lengths, respectively.

Evaluation of H{>’, needed for the leading terms (order
A %) for coupling of 14' to the 5'10'16' and to the 6°11'
states, depends upon knowledge of ** the basic molecular
parameters such as Coriolis coupling constants, cubic and
quartic force constants, and inertial derivatives, i.e., deriva-
tives of elements of the inertia tensor with respect to normal
coordinates, 91 ,5/9Q,, a,f = x,p,z, and for the k th normal
coordinate. Evaluation of H§"’ for the leading terms for cou-
pling of the 14! to the 3'16' state (order A ?) requires these
also, apart from the quartic force constants and the second
derivatives of the inertia tensor. Considering these various
parameters in turn, accurate data on Coriolis coupling pa-
rameters § ¢, are obtained from geometrical considerations
in conjunction with the harmonic potential. Thus the terms
in H{» and H{? containing H,, (multiplied by other terms
due to the transformation ), posed no difficulty in calculation
of quantitative higher order vibration—rotation coupling co-
efficients. Rather, it was the terms having their origin in
operators such as H,,, which involved cubic force constant
data, which could reduce the accuracy of such a calculation.
In the current absence of an excited state S; cubic force field
it was expedient to use the ground state (S, ) values for the
cubic and the few quartic anharmonic constants that ap-
peared. There is a clear need, however, for cubic and quartic
constants for the S, state of benzene.
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In the evaluation of H{? rotational matrix elements are
required, and because the spherical tensor operators
J, =J, +iJ, have simple matrix elements for rotational
eigenfunctions, it is convenient to use them, with matrix ele-
ments®®

(JKII, WK+ 1) =AJ(J+ 1) — KK+ D]
(C1)

The products of angular momentum operators p,J, and
p,J, are expressed in terms of the products p_ J_ and
p_J,, where p, =p, +ip,, with well-known matrix
elements for coupling involving two- dimensional isotropic
oscillators.?® The operators in Eqs. (2.3) and (2.4) are
transformed into these operators in the calculation of cou-
pling constants.
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