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The Hamiltonian based on curvilinear normal modes and local modes (CNLM) is discussed
using Wilson’s exact vibrational Hamiltonian as basis, the CNLM representation diagonalizing
only the normal mode block of FG matrix in curvilinear internal coordinates. Using CNLM
the kinetic and potential energy operators for benzene are given, including cubic and quartic
anharmonicity in the potential energy and cubic and quartic terms in the kinetic energy
expansion in curvilinear coordinates. Using symmetrized coordinates and cubic and higher
force constants the number and identity of the independent symmetry allowed (4,,) such
force constants are obtained. The relation to conventional anharmonic force constants is then
given and the allowed contributions of the latter are obtained. The results are applied to CH
overtone spectra and intramolecular vibrational dynamics in Part III of this series.

1. INTRODUCTION

In recent years considerable interest has developed,
both experimentally and theoretically, toward understand-
ing vibrational relaxation and intramolecular vibrational re-
distribution (IVR). It is well known that the properties, rate
and mechanism of IVR play a fundamental role in many
areas of chemical dynamics."? Insight into aspects of Rice—
Ramsperger—Kassel-Marcus RRKM or other treatments of
unimolecular reactions,>™ of multiphoton processes,” mode
selective processes,® and of overtone-induced reactions’ all
require elucidation of the IVR behavior. These investiga-
tions have been particularly intensified with the introduc-
tion and application of lasers and molecular beams to studies
of these problems.

In studies of IVR, benzene occupies an interesting posi-
tion, as a textbook example®® of a molecule of intermediate
size. It shows many of the phenomena exhibited in other
intermediate size molecules, such as Fermi resonance, vibra-
tion—rotation coupling and radiationless transitions.®**
Several theoretical investigations of IVR of benzene have
been performed with the classical trajectory technique,'*™'°
and also with a diagonalization of a model quantum mechan-
ical Hamiltonian?>?' or an empirical fitting technique.?
The results obtained differ substantially from the more re-
cent v = 3 CH overtone spectrum, the spectrum being much
narrower (a factor of 5 or s0) than typically calculated val-
ues.?! The discrepancy may be due either to the dynamical
treatment or to the potential energy function used, or to
both. A direct quantum-mechanical evaluation for C-H
overtones, using recent potential energy surface results,
should provide more information. The availability of both
quadratic force constants and cubic anharmonic force con-
stants for benzene?*** provides one base for the present
study. We also introduce some estimated quartic force con-
stants in addition to the quartic terms in the kinetic energy
expansion.

* Contribution No. 8363.
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On the other hand, as is well known, a basis-set quan-
tum-mechanical study of vibrational spectrum IVR in com-
plicated molecules is often limited by the computational
memory and time associated with the use of a large number
of zeroth states in high-dimensional systems. However, the
use of artificial intelligence (AI) searching methods offers
one possible route of performing this evaluation.® This AI
search technique is used to find the most important subsets
of states from the entire set of zeroth-order states. Once the
subset of states is found the characteristics of the vibrational
spectrum and dynamics can be analyzed using this reduced
block of the full Hamiltonian.**3*

In the present series of articles we give such a quantum-
mechanical calculation of vibrational spectra and IVR for
C-H overtones for benzene for vcy; = 1,2, and 3 using the Al
search technique. In this first paper of the series the curvilin-
ear normal modes and local modes (CNLM) coordinate
Hamiltonian to be used to treat benzene is described.

The curvilinear normal mode (CNM) and CNLM co-
ordinate systems are discussed in Sec. II and the Hamilto-
nian in CNLM coordinates is given. The kinetic couplings
for benzene, including the G matrix and its derivatives, are
given in Sec. II1. Potential energy parameters for benzene,
including quadratic, cubic, and quartic force constants, are
described in Sec. IV. Relations of cubic terms between non-
redundant internal and symmetrized coordinates are dis-
cussed in the Appendices.

Il. CURVILINEAR NORMAL MODES AND LOCAL MODES
AND HAMILTONIAN

The conventional theoretical approach for molecular vi-
brational study is based on the use of rectilinear normal co-
ordinates.®”3¢ Rectilinear coordinates, however, need not
be the best choice for systems where several degrees of free-
dom may undergo large-amplitude displacements from the
equilibrium configuration. Internal coordinates can be par-
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ticularly useful for treating problems with large-amplitude
vibrations, such as occur with higher overtones,?>-283742 A
simple polynomial expansion in (curvilinear) internal co-
ordinates is a more accurate representation of the potential
than an expansion to the same power of the polynomial in
Cartesian coordinates. A number of vibrational and rota-
tional Hamiltonians for polyatomic molecules have been de-
rived in terms of curvilinear normal modes (CNM), such as
those given in Refs. 37-42. In the present work curvilinear
normal modes and local modes (CNLM) are described and
the molecular vibrational Hamiltonian in CNLM is dis-
cussed.

We consider a molecule with M vibrational modes,
where M is equal to 3N — 6 or 3N — 5, N being the number
of atoms in the molecule. When only a subset of the modes is
treated, the in-plane modes of benzene, for example,
M<3N—6.

A. Curvilinear normal modes and local modes

The zeroth-order vibrational Hamiltonian of molecular
vibrational motion for a harmonic model can be written in
terms of displacement coordinates q and their conjugate mo-
menta p as

H,=14'G 7 '(q0)d + J4'F7q
= {p'G(qo)p + J¢'F?q, (1)

where q = {¢,,45,-..,4,,} denotes the column vector formed
from the nonredundant internal displacement coordinates of
the molecule, p denotes the vector for the momenta conju-
gateto q, G (q,) is the customary mass matrix at the equilib-
rium nuclear configuration q,, denoted later by G*, and
F® is the quadratic force constant matrix.

Curvilinear normal modes Q describe a particular
transformation of q:

or

Q=8Sgq, (3)

TABLE 1. Density of vibrational states of benzene and other molecules py;, .

where Q = {Q,,0,,...,Q,} denotes a column vector for the
CNM, and L and S are the transformation matrices. The
transformation matrix L diagonalizes both G® and F®
simultaneously, and, in general, the constant factors
of Q are chosen so that the transformed matrix W~ !(q,)
=L'G~!(qo)L is a unit matrix, and so that the trans-
formed matrix K = L'F®L is diagonal.

This use of CNM for all modes, including X—H modes,
where X = C, O, N, etc., describes well the small-amplitude
molecular vibrations at low vibrational excitations, such as
much of the v = 1 excitation of the C~H modes. However,
for the excitation of higher C-H overtones the CNM de-
scription becomes less adequate: The number of states also
increases extremely rapidly as the total vibrational energy
increases; the densities of vibrational states of benzene for
the energy ranges of C~H v = 1 to v = 4 overtones, for 21 in-
plane modes, calculated using both direct count and the
Whitten—Rabinovitch approximation,? are given in Table {,
together with the densities of states for some smaller mole-
cules. At v = 3 the vibrational states have become so closely
spaced that they become, almost, a quasicontinuum. Many
of these nearly degenerate zeroth-order states are mixed
strongly by the anharmonicity of the system, so that each
exact vibrational eigenstate would actually be a complicated
mixture of many zeroth-order normal mode states and then
the CNM no longer provides an adequate description.

For many molecules in which X—H overtone studies are
of interest (X = C, O, N, etc.), e.g., water, methane, and
benzene, the local mode (LM) description, in which the vi-
bration is largely localized to single X~H bonds, provides a
simpler picture of the XH motion.'>'*"** For studying such
molecules a reasonable procedure is to treat some of the vi-
brational modes, the C-H stretches in benzene, for example,
as LM and to treat the other modes, such as the ring modes
and C-H bending modes, as CNM. This mixed picture is
termed here a curvilinear normal modes and local modes
(CNLM) description.

CNM can be determined for a given system. In specify-
ing the CNLM one needs to determine the partitioning be-

(No. perem™")
Energy Closest vy Py Whitten—-Rabinovitch
Molecule (ecm™')  quantum number Direct count approximation
H,0 10 600 3 0.0050 0.0050
13 830 4 0.0075 0.0080
16 900 5 0.0095 0.010
C,H, 10 000 3 4.1 4.0
13 000 4 12.1 12.0
CH, 3000 1 0.48 0.43
(21 in-plane modes) 6 000 2 21.7 20.5
9 000 3 438 422
12 000 4 5460 5310
CeH, 3000 1 8.8 7.0
(30 modes) 6 000 2 1680 1490
9 000 3 1.05x 10° 0.97x 10°
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TABLE II Internal and symmetry coordinates of benzene.

7321

Definition Description
Internal coordinates
Girenfe S1yeensSe CH stretching
R BN Byl CC stretching
Qravis BueoBe CH in-plane deformation
q Gio=6""*(a,—a,+a;—a,+a;—as) B,, ring deformation
G100 e = 1272Q2a, — a, — a3 + 2a, E,, ring deformation

— Qs — @)

Q200 Qop, = ey — a3 + a5 — ) E,, ring deformation
Q220927 Yo Vs CH wagging®
s G =6""%(8,—8,+8,—8,+ 85— 8,) By ring deformation®
G290 Qa9 =3 — 8, + 8, — 84+ 86) E,, ring deformation®
Gr0s Grop =122 — 8, +28,—8,— 6, E,, ring deformation®

+ 255 - 66)

Symmetry coordinates

A, & S 67+ttt ts 4 1)

QS 67 12(5) + 5y + 85+ 54+ 55+ 56)
Ay O Sy 6B, + B, + By + B+ Bs + Bs)
B, O, S, — 2

Qs Ss 6 (=Yt Va—Vat ¥s—Ve)
EZ‘ Qs So.s ~ 4204

97 Ses — 200

Qs Sra 12720 — 28, + 5, + 85 — 25, + 55+ 5)

Q Si (=5 + 53— 55+ %)

Cio Ssa 12120 — 1)+ 2y — ty — 1+ 25 — &)

Qi Sss =t + -1+ 4)

Q12 Soe (= Ba+ By — Bs + Beo)

Qi3 S 121228, — By, — By + 2B, — Bs — Bs)
Elg Qe SlO.a 1+ ¥ — Vs — V)

Qis S 7 -2y~ 1+ Vs + Wa+ Vs — Ye)
Ay Qie Sy 6" Nt st Vet Vst V)
B, Q7 Si — 49

Qs Sia 6712 — 5 + 35— 534 5, — S5 + )
By Qi Sis 67—ty b=ty — 15+ 1)

QO Sis 6" (=B +By—Bs+ By —Bs5+By)
By Qa1 Sioa D290

O Sien — 9294

Q2 Sir, =12+ —¥s+7%)

Q24 Sis 12V =27+ 12+ V35— 2Va + Vs + Vo)
E, Qs Sisa 1B+ By — Bs — Bs)

Q26 Siap 127228, + By — By — 24 ~ Bs ++ Ss)

Q27 Siaa W=ttt 41— 1)

Q2s Sios 1271208 4 28 4 5 — 1, — 25 — 1)

Q29 Sx04 12720 — 28, — 5, + 85 + 25, + 55— 56)

Qs0 Sws §(s; + 53 — 55— 56)

*The six ¢’s and &’s are out-of-plane modes. The former is the bending of CH bond out of the plane of the
adjacent CCC linkage. The latter is the torsion of a CCCC linkage. For example, &, is the change in the
dihedral angle between the planes determined by C,C,C, and C,C,C, (Ref. 9).

tween these two types of modes. It is convenient in the pres-
ent work to partition the vibrational modes into / local
modes and M — [ curvilinear normal modes and to order the
components of Q as 0,,0,,...,2,,0,., ;,...Qx,- The exact de-
finition of CNLM is then the same as in Eq. (2) or (3), but
now the transformation matrix L (or equivalently, S) dia-
gonalizes only the normal mode blocks of the matrix G'®
and F® (as in Fig. 2).

In the present work we consider benzene using the de-
finition, notation, and numbering of the internal coordi-

nates, the CNM and the CNLM, given in Tables II and IIJ,
and in Fig. 1.

B. Hamiltonian in CNLM

The quantum mechanical Hamiltonian H of a polyato-
mic molecule can be written in Hermitian form as®
1 M+3

H=— Y D*T,D ~?D,T,D'*+ V(q),

=1

where the vector (T,T,,...) represents the direct sum of the

4)
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TABLE IIL Vibrational modes and numbering of benzene.

W numbering* Main Harmonic freq.° (cm~ ') Period Anharmonic H numbering* L-numbering®
e JR internal frequency®
Freq. Mode coordinate® @, Uncertainty (fs) x.0,(cm™") Freq. Mode Freq. Mode
1 1 A4, t 994.4 0.08 33.50 1.34 2 2 5 7
2 2 s 3191 5.0 10.45 117 1 1 1 1
3 3 Ay, B [1366.6] 1.5 24.41 3 3 i1 16
4 4 B,, 8 [707] 47.12 8 8 19 28
5 5 ¥ [990] 33.69 7 7 15 22
6 6 E,, a 608.1 0.01 54.88 18 25 9 13
7 a 26 14
7 8 s 3174 5.0 10.51 117 15 19 2 2
9 s 20 3
8 10 t 1607 6.0 20.76 1.0 16 21 6 8
11 t 22 S
9 12 B 1177.8 0.01 28.32 17 23 12 17
13 B 24 18
10 14 E, y [847.1] >0.1 39.38 11 11 16 23
15 y 12 24
1 16 A, ¥ 674.0 49.49 4 4 17 25
12 17 B,, a 1014.4 32.88 6 6 10 15
13 18 s 3166.3 10.53 5 5 3 4
14 19 B,, t 1309.4 0.30 25.47 9 9 7 10
15 20 B 1149.7 0.30 29.01 10 10 13 19
16 21 E,, é 398.8 83.64 20 29 20 29
22 ] 30 30
17 23 ¥ [967] 34.50 19 27 18 26
24 ¥ 28 27
18 25 E,, B 1038.267 0.000 02 32.13 14 17 14 20
26 B 18 21
19 27 t 1494.0 10.0 22.33 1.0 13 15 8 11
28 t 16 12
20 29 s 31813 10.49 116.7 12 13 4 5
30 K 14 6

* Wnumbering—Wilson’s numbering, H numbering—Herzberg’s numbering, L numbering—numbering used in local-normal-mode coordinates.

°The definition of internal coordinates is shown in
¢See Ref. 12, where [ - -] data obtained indirectly.

Table II.

FIG. 1. Internal coordinates of benzene.

linear momentum operators p and the total angular momen-
tum J

T=pel, (3)

and D = det D. The matrix D is the direct sum of the mass
matrix G(q) in internal coordinates and inverse of the mo-
ment of inertia matrix I, which depends upon Coriolis and
other rotational parameters:

D=GolI . (6)

In the present initial paper we consider only the vibrational
motion and omit, thereby, Coriolis effects. In this case Eq.
(4) becomes

1 M
H=— 3 8"pg "G)(apg" + V@, (T
=1

where g = det G is also a function of q. Expanding the kinet-
ic energy operator in Eq. (7), Hy, we have

J. Chem. Phys., Vol. 94, No. 11, 1 June 1991

Downloaded 02 Apr 2007 to 131.215.21.81. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Zhang, Klippenstein, and Marcus: Intramolecular dynamics. | 7323

1 1 1
Hy==—SpGp,+—8"' > G;(pp;8) + =8~
2 & 8 , 8

X 3 (2:Gy)(pg) — g~y (p:g)Gy(p;8),  (8)
] i

where (p,p;g) means that the differential operation of p; and
p; acts only on g. Following an argument analogous to Wat-
son’s discussion®® the last three terms in Eq. (8) are of a
smaller order in # relative to the first terms and are ignored
here. We will return to this point in a later paper.

In that case Eq. (7) reduces to

M
H=% z p.G;(q)p; + V(Q). (9

ij=1
The matrix G, a matrix function of ¢, may be expanded
about the equilibrium nuclear configuration, q = 0:

G(q) =G + GVq + 4GP:qq + -+, (10)
where G*? is the ith derivative of G with respect to internal
coordinates. G* is a vector for each element G; of the G
matrix and is evaluated at q = 0. It contains M > elements.
G, the second derivative of G, is a second-rank tensor for
each G; matrix element and contains M * elements:

Gyl = [———HG”(q)] (1n)
aqk q=20
aG..

G,‘f;m = [M] (12)
aqmaqn q=0,

where the indices are 1,2,...,M (the indices M + 1to M + 3
in Eq. (4) correspond to J).

When the potential energy term V(q) in Eq. (4) is ex-
panded about the equilibrium nuclear configuration q =0,
we have

V(q) = IF®:qq + 4F*iaqq + 4F¥ lqqqq + -+,  (13)

F FY, and FY containing the quadratic, cubic and quar-
tic force constants, respectively.

Illustrated by the matrix described in Fig. 2 we have a
transformation from internal coordinates q to CNLM Q and
also from p to P,

un L-L
., Coupling Local-Normal
LL Coupling
Coupling we
wl=8'6"15= Weil ,
Local-Normal 0
Coupling
0 WiN-6
Ky L-L
Coupling Local-Normal
L-L e, Coupling
Coupling k(
K=8tFos= kevr
Local-Normal 0
Coupling
0 kan-se

F1G. 2. Fand G matrices of local-normal-coordinates.

ql =ZLyQp (14)
J

E(L hl)ﬂP 2 i 1’

where the matrix C denotes (L~ "' and P, is conjugate to
Q. Here, neither the matrix L nor S is unitary, and therefore
(L—YH 7~ Ly and C+#L, since the matrix GF is, in general,
not symmetrical, although both F and G are symmetrical
matrices.

With Egs. (9), (14), and (15), the Hamiltonian be-
comes

(15)

H=1P'W(Q)P + V(Q), (16)
W(Q) =W + W.Q+IW?:QQ + -+, (17
where,
W, =Y CuCusG@lLy,, (18)
i,k
51,2[3)7/6_ Z CtaC[ﬂGt(jzan L (19)
Lj,m,n

While W is no longer the identity matrix, it contains an
(M ~ 1) — (M — ]) identity submatrix. In the expansion of
V(Q)

¥(Q) =4K?:QQ + 4K”:QQQ
+4K“QQQQ +

K@ is no longer a diagonal matrix, but contains a diagonal
block, and K® and K® have the elements,

(20)

K3, = LiaLigF @Lyy, (21)
Lhk
Ks= 3 LuLpF Lyl (22)

ifmn

Since the Morse potential function provides a useful de-
scription for local modes, the Morse potential of the ath
local mode for a</, will be used, instead of the terms
K@/, K& Q331 and K., 0% /4. We then re-
write the Hamiltonian in Eq. (9) as

H= 2 h,+H’, (23)
i=1
where the zeroth-order Hamiltonian term 4, is
2 2
_ M9 L ple @ 2.7, if i<l
n 2w; 907
i = 2 2
_ 9 L lgegr if i1,
2w, Q7 2
(24)

The H' in Eq. {23) contains, for an intermediate size mole-
cule such as benzene, many terms. Various approximations
and models have been employed for H’ in previous studies.
Clarke and Collins neglected H ' in their classical simula-
tion.'” They found that the cubic force constants could not
be used since the classical vibrational motion is unstable due
to an unbounded potential even for moderate CH over-
tones;'® Halonen?° also omitted cubic and higher force con-
stants, but included one term of the G matrix, the kinetic

coupling between CH stretch and CC stretch G |, (using the

J. Chem. Phys., Vol. 94, No. 11, 1 June 1991
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notation in Ref. 9). Sibert, Reinhardt, and Hynes?! intro-
duced two more terms of the G matrix, G fg and G }B and
omitted cubic and higher force constants.

In the present work, we consider an extensive quantum
calculation and retain many more terms in H :

H' = Hquadratic + chbic + Hquartic + (25)
The H,40aic in Eq. (25) arises from the off-diagonal ele-
ments of the matrices W'» and K® in Eqgs. (17) and (20),
since both W and K® are no longer diagonal in CNLM.
Asnoted earlier only their normal mode blocks are diagonal.
The off-diagonal parts of W@ and of K‘® represent the “sta-
tionary kinetic coupling” and the harmonic potential cou-
pling, respectively. Each of these two terms contains the L-L
(local-local) couplings and L-N (local-normal) coupling
as in Fig. 2. Explicitly, we have

Hquadratic = chz) + H:(,'Z)’ (26)
where
i M
HP =Y WP, P, (27)
m=1 n=m-+1

1 M

HP=3% Y K2Q,Q.. (28)

m=1ln=m+1
The H,,,,.. in Eq. (25) involves the first kinetic coupling
term in the kinetic energy expansion, i.e., the first derivative
of the G matrix (or W? in CNLM) H {», and the cubic

anharmonic coupling, H {*:

chbic = H;?) + Hz(ys)1 (29)
where
1
H® =— W P,.QP,, 30
k ) a;y B,y Qy B ( )
a, f, and y are summed over all CNLM’s and
Hfz}):—l— c(zsﬂ)y aQBQy: (31)
3 a.By

and the prime on the summation means that all K3}, Q32
terms for a</are excluded, since they were used to construct
the Morse potential in Eq. (24).

Similarly, H,,.; involves both the second kinetic cou-
pling, i.e., the second derivative of the G matrix (or W® in

CNLM) H (¥ and the quartic anharmonic coupling, H {*:

Hquartic = H;:4) + Hl(z4)’ (32)
where
1
H/(<4) = 7 Wt(xzﬁ),y(SPaQ‘;'Q&Pﬁ’ (33)
a,B,y,6
and
1 '
Hz(:4) = _4? ;’ K(ByGQaQBQyQS’ (34)

the prime on the summation again denoting that all
K®. 0% terms for a</ are excluded.

C. Zeroth-order eigenvectors

The zeroth-order eigenvectors used in the present work
have the form

d(nyny,..ny,) =X Xn, " Xy (35)

where Xn, is a single-mode-eigenvector for modej with quan-
tum number 7;. It is an eigenfunction of 4;, as defined in Eq.
(24), with eigenvalue €,

HiXn, = €0 Xn, (36)
For NM, the y’s are the solutions of the usual harmonic

oscillator Schrédinger equation.** For LM, the y’s and €’s

are the solutions of the equation for the Morse oscillator:**
50

Xn(§) =N, e =72 2L 2 (),

and
€, = (n+4)heo — (n+1)’heox,,

where y=fexp(—aQ), o=a(D/2u)"*/(mc), x.0
= a*h /(8muc), B= (8uD)"*/(at)=1/x,, and b
=f —2n— 1. L? is the associated Laguerre polynomials
and N, is the normalization constant [a¢(8 —2n — 1)nl/
T'(B — n)1'% a being the Morse constant in Eq. (24).

In the calculation of numerous perturbation terms we
can focus on the matrix elements obtained with the single-
mode-eigenvectors. The relevant single-mode operators are

0.0%,0%0*P,P*PQ,QP,POP,PQ*Q*P, and PQ?P,
where PQ # QPand PQ?# Q2P due to thenoncommutati-
vity of P and Q. For the harmonic oscillators, the matrix
elements for these operators are readily available.® For the

Morse oscillators, the matrix elements for Q and P are given
by44~50

(n+j|P|n) =ifi( —1)*'N,N, ,T(B—n—1)
X (1 —=8y)/(2nY), (j>0) (37
(n+jlQ|n) =(—1)Y*'a=?N,N,, ,T(B—n—j)/
B —=2n—j—Dnl]l, (>0) (38)
(n|@n) = "InB—-—PLB—-2n-1)
+ 2 (1=38,)/(B—n—)|, (3%
j=1
where
®(z) =dInT(z2)/dz (40)

The expectation values of the other operators can be found
using the identity operator, £7_,|n){n| = 1, so that, for
example, {I|Q?|m) is given by £, (! |Q |n)(n|Q |m),*" and
Eqgs. (38) and (39) are then used.

11l. KINETIC COUPLING IN BENZENE

We use the model discussed in Sec. II for the study with
the 21 in-plane modes of benzene. Thereby, the coupling
between the in-plane modes and the out-of-plane modes and
the Coriolis coupling are assumed to be relatively weak for
the present purpose. The six C-H stretching modes are treat-
ed as the LM’s and so / = 6, as in Fig. 2. The remaining 15
modes involve the ring and C-H bending motions as the
CNM’s.

J. Chem. Phys., Vol. 94, No. 11, 1 June 1991
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A. G matrix for benzene

The mass matrix G of benzene is well known, the ele-
ments of the G matrix being available both in internal co-
ordinates and symmetry coordinates.” However, what are
needed now are not only these elements themselves, but also
the derivatives of these elements with respect to the internal
coordinates. The usual expressions for these elements in li-
terature, for example in Ref. 9, do not distinguish different
s;, t; a;, B, etc. (the notation is that given in Fig. 1). Pre-
sumably the intention in Ref. 9 and in references cited there-
in was only to proceed from internal coordinates to conven-
tional (Cartesian) normal coordinates; and hence to use
only G'® instead of the full coordinate dependent G-matrix
G(q). Theelement G, ; was given, for example, as V3. /41,
where ¢, is the C-C bond length.’ The second derivative of an
element, such as 32GT, , dt,3B,, cannot be calculated from
these quantities, since it was not specified in the usual tabula-
tion which C—C bond displacement ¢ in v3u_/4t, represents.

Using Wilson’s technique® the expression of the G ma-
trix for in-plane displacements, can be derived as explicit
functions of internal coordinates. Expressions for nonzero
elements G’xhxl,(x,x’ =s,t,a,and 3;j = 1, 2,...,6) obtained in
this way for the G matrix are given in Table IV. The other
nonzero terms Gx,.x; with i/ = 2,...,6 can be obtained from the
symmetry of the molecule. For example, G, ; is obtained
from G, 5 by cycling the subscripts (123456). The exact
form of these elements are given in the explicit dependence of
the particular coordinates s, ¢, a, and 3 are specified. In
particular, G; , equals

Gx.,a. = —Hc [t(;l Sin(%&l '—ﬁl)

+1 'sin(da, +B1) ],
where t = 1, + 1& = a, + a and B = f8, + B3, 1, is the bond
length of C~C bond at equilibrium configuration, a, = 27/3
and B, =0.

When the internal coordinates for benzene are trans-
formed to CNLM, G'® becomes W®. For W© there are

fifty-two nonzero off-diagonal terms W (P, P,, which form
part of the perturbation H_,4.aic.

B. Derivatives of G matrix

The first derivatives of the G matrix with respect to in-
ternal coordinates may be obtained either analytically or nu-
merically. However, for the second derivative the former
appears to be less practical, since the number of nonzero
coefficients G, defined in Eq. (12) is extremely large. By
using a numerical method, namely by writing

1

A4,

+ Gy Cosmsesnse) — GGG + B ses@nses)

- Glf(“"qm""’qn + Anr")]’ (41)

convergent results for these second-order kinetic coupling
were easily obtained.
We have determined the numbers of primitive indepen-

dent terms (PIT) for the first and second derivatives of the G

2y _
Glj,mn -

[Gi](""qm + Am:'“’qn + An,...)
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matrix (in symmetrical, conventional normal modes or cur-
vilinear normal modes) by a symmetry study of heterogen-
ous noncommutative spaces:*?

ME® = IM(M?+3M —~2) + 2MN, —4N,,  (42)
MPO® — IM(M3 4+ 6M? — 5M +2)
+ 2N, [(M—2)*— N, +1], (43)

where the superscripts PQP and PQQP represent spaces
spanned by primitive independent basis (PIB) in the first
and second derivatives of the G matrix, respectively, and N,
is the number of doubly degenerate irreducible representa-
tions (IR) in the M vibrational modes considered. For the
in-plane modes of benzene there are 5537 and 66 941 PIT’s
for the first and second derivatives of G matrix, respectively.
However, because of symmetry, the numbers of totally sym-
metric linear combinations of PIT’s, required by symmetry
of Hamiltonian, are substantially fewer, namely, 467 and
5575 for these first and second derivatives of the G matrix,
respectively.’?

The derivatives of the G matrix with respect to CNM or
CNLM, which are present in the perturbations H {» and
H{® defined in Egs. (30) and (33), are obtained by the
transformations of Eqs. (18) and (19). The first seventy-
five largest elements of the first derivative of the G matrix for
the in-plane modes of benzene, all in unit of N, A ~ ! where
N, is Avogadro constant, are given in Table V. Here, we
consider always derivatives with respect to linear displace-
ments. In obtaining those derivatives, all of angular variables
are transformed to corresponding linear displacements. To
obtain the derivatives with respect to the curvilinear normal
modes @, listed in Table V the transformation given in Eq.
(18) is used. The W' P,Q, P, terms of H *’ can be char-
acterized by types of principal internal coordinate compo-
nents of the modes P,,Q,, and P;. In principle, there are
forty types of the first-order kinetic coupling for in-plane
modes of benzene, such as sss, Ssa, stt, etc., where s denotes a
C-H stretch, ra C-C stretch, @ a CCC angle, and fan HCC
angle. However, not all of them are important. For example,
the first seventy five largest terms of H {*’ (all expressed in
the same units) involve only Ssf3 and fBs¢ type kinetic cou-
plings, while other important terms in H {*’ are ts¢, Bsa, and
att.

Similarly, for the second-order Kkinetic couplings
w ;%,{,,5 P,Q,Q5P, for benzene there are one hundred types
of the second-order kinetic couplings. The most important
types are Bssf3 and Ssst.

IV. POTENTIAL ENERGY PARAMETERS OF BENZENE

The potential energy function of molecules can be ex-
panded about the equilibrium nuclear configuration in inter-
nal coordinates, as in Eq. (13), or in curvilinear normal co-
ordinates, CNM, or in CNLM, as in Eq. (20), or in “Morse
coordinates” (Refs. 53 and 54) (1 — e~ *9). We adopt the
expansions in internal coordinates and CNLM and plan to
explore the expansion in Morse coordinates later for the

present system.
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TABLE IV. Elements of g matrix for in-plane modes of benzene.*

Zhang, Klippenstein, and Marcus: Intramolecular dynamics. |

G, =Htn + Hc ~

G,,., =#c cos(ya, +By)

Gs.'r“ = pc cos(ja, _Bl)

Gya, = —Hc [t 'sin (J&, — By + 1 'sin(3a, + 5|
G, o, =Hct | 'sin(a, + 8y)

G, . =pcty 'sin (&, - By

G p =uc[ts sin(3@, —By) — 1 'sin(3@, + B)) |
G,p = — Yty 'sin(id +B1)

G 5 = i“c;o‘ 'sin(ja, -8

Gn,l. = ziuC

G, , =i cosa,

G, =pc cosd,

G, . = —HUcts 'sing,

G, o = —ict; 'sind,

G, .. =ty 'sina,

G,. =pciq'sing

G.p = —nc[§ 'sin(}a, +B) — 1 'sin &, ]
G, 5 =tc [3'27 'sin(J&, — /_92) - %i 5 'sin ('12]
G.p= — ety 'sind,

G, =lucty 'sing,

G, = 2 [1 2+ 1577 =1, "1 " cos &)

G,o =pcfti 15 cos @, + 1 "2 cos &, — 2t 2]

Gou. = — et 't5 'cos @,

G, = —Hets 't eos &,

G, =l [t 't cOS O+ 1 15 cos &, — 212 ]

Ga.5 = HUc [}7 - ;6_2 -5 7 ! cos(ia, +Bx) + 5 l;(; ! cos(ja, _Bl)]

G,.5 = Hc [; ;i %; . Ii; Tcos &, + 3t l;z‘ ‘cos &, — §; 7 7 'eos(i@&, —Bz)]
G,p = Weti 'ty Veos &,

Gop = —dcts '15 cos @,

Gop=pc[ —ts5 i+ 15 cosd, — 1515 cos &g + 3¢ 15 cos(@s + Bo) ]

Gop =Hud P+ [2B57 2+ 172+ 1241, o T eos &y ]

— pte [37 "2 cosh@, + B)) + 57 't5 ' cos(@, — B)

Gg,5 = Yic [; T 4yt eosd 4+ 1t 't P eos @, — 87 't cos(@, + By)

=57t Y eos(3@, — By) ]
Gy p =Muct 't; 'cos &,

Gp.p. = Mcts ‘;e‘ ' cos &,

Goop. =M [T 2+ 417 "1 eos &y + 45 g cos @, — 3 't cosi@, — B))

=315 cos(jit, + Be) |

#(1) X = x4 -+ x, where x, represents the corresponding values at the equilibrium of nuclear configuration,
(e.g., ag = 41/3, By = 0, t, = equilibrium bond length), x is the displacements, and x = s,, ¢,, a,or 8,.The
definition of s,, ¢,, a,, and [, are given in Table II and Fig. 1. u, = 1/m,; and uc = 1/mc..

(2) This table shows only nonvanished elements Gx"xj,'x,x’ = s,t,, and B, j = 1, 2,...,6. Other nonvanished

elements Gm,i =2, 3, 4, 5, 6 can be obtained by symmetry of the molecule.

A. Quadratic force constants of benzene

The use of computers to perform ab initio calculations of
intramolecular potentials, and to refine empirical force con-
stants, has facilitated the theoretical modeling of molecules
of ever increasing size. Benzene has recently been the subject
of detailed ab initio*>** and semiempirical®*-* calculations.
Pulay, Fogarasi, and Boggs® (PFB) proposed theoretical
quadratic and cubic potential parameters for the ground

state of benzene, designated here as the PFB potential. Ozka-
bak and Goodman?® (OG) obtained a harmonic force field
from experimental frequencies for Dy,, D,,, and D,, isoto-
pically labeled benzenes and degenerate mode Coriolis con-
stants, these quadratic force constants being termed here
OG potential. To obtain these quadratic constants OG made
a correction for the anharmonic contributions to these fun-
damentals and overtones, when these anharmonicities were
available. Ultimately, the OG harmonic potential should be
corrected for the effect of the remaining anharmonic contri-

J. Chem. Phys., Vol. 94, No. 11, 1 June 1991
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TABLE V. The first kinetic couplings of in-plane modes of benzene.®
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4 Operator  Type of PIT Wil 4 Operator  Type of PIT Wi # Operator  Type of PIT Wik
1 PO, Py Bsp -~ 1.310 26 PQ.P,, Bst —0.730 51 P, QP BsB —0.590
2 P.QP, BsB 1310 27 PLQ.P. Bst —0730 52 PL,0,P, tst —0.589
3 PuQ.Pi BsB —1278 28 PuQ.P, Bst ~0.730 53 PP BB —0.562
4 PQePyy BsB 1.150 29 P60, P BsB —0.704 54 P10, Py Bst 0.498
5 PigQsPyg Bsp - 1.150 30 PyQs Py Bst - 0.676 55 P,Q,P, Bst 0.498
6 PsQ.P Bst 1.097 31 P, QP Bst 0.676 56 P,Q,P; Bst —0.498
7 PO.Pp, Bst —1.097 32 P,QP Bst 0635 ST PQ.P, Bst 0.498
8 PigQu P2 Bst — 1.077 33 P 0Py Bst 0.635 58 P,0,Py tst 0.495
9 PLOP, Bst — 1077 34 Py0P Bst —0634 59  P,Q.P 15t 0.495
10 P02, Bst 1031 35 PyQ.P, Bst 063 60  P,QP, tst —0.432
11 P,0,P,, Bst — 1.031 36 Py, Qs Py, BsB —0.632 61 P,Q,P, tst —0.432
12 PyyQcPre Bsp — 1.011 37 P, ,Q.P,, BsB 0.632 62 P,,0,P,, BsB - 0.407
13 P, QP BsB 1.011 38 P yOsPys BsB 0.632 63 P,0,P; BsB 0.406
14 P,0,P, BsB 0.841 39 P,QP BsB 0632 64  PLO,Py BsB — 0.406
15 PyyQsPg BsB — 0.841 40 Py ,0,P Bst 0.619 65 P Q5P st 0.377
16 P,,Q.P.y BsB 0.837 41 P,,0:P Bst —0.619 66 P QP tst —-0.377
17 P,Q.P, BsB 0.837 42 P,,Q,P,, Pst —0.614 67 PQsPys ata —0.375
18 PyQ.Pyq BsB —0.811 43 P>, Q,P,, Bst 0.614 68 PyyQ1sP, Bat 0.373
19 PeQuPyo Pst —0.809 44 PyoQsP, Bst 0.614 69 P,,0,sP, Bat 0.373
20 P,,Q\P,, Bst 0.789 45 P,,0,P,, Bst 0.614 70 P,,QsP, tst —0.366
21 Py QP Bst 0.789 46 PLOPy st 0.612 71 P QP st 0.366
22 P2QPio PBst 0.753 47 P,Q,P, tst —0.612 72 PO Py st 0.366
23 P,OsP Pst —0.753 48 P,,Q.P, Bst —0.595 73 P,QsP, tst 0.366
24 P,,Q\P Pst —-0.737 49 P,y Q.Py Pst —0.595 74 P,yQ\ Py, BsB —0.347
25 P,Qs Py, Bst 0.730 50 P,0,Py, BsB — 0.590 75 P,,Q\P,, BsB —0.347

* These first kinetic coupling constants are based on the normal modes. All modes are numbered in L numbering (for details see Table II). Only 75 largest
W) arelisted here. All dataare in unitsof N, A ~', where /¥, is Avogadro constant. More data for the first kinetic coupling constants, also for the second,

are available upon request.

butions to the fundamentals. In our further calculation of
the Hamiltonian the OG potential is used.

B. Cubic force constants of benzene

The only available cubic force constants for benzene are
given by the PFB potential in terms of nonredundant inter-
nal coordinates. The terms F (3’q,q,q, can be characterized
by the types of internal coordinates g, etc., such as sss, str. In
general, there are twenty possible types of cubic force con-
stants for in-plane modes of benzene. The PFB potential pro-
vides the independent nontrivial cubic force constants.
Many other cubic force constants can easily be obtained by
cycling the indices of F {3’. However, those cubic force con-
stants related to a nonredundant internal coordinates are
not as simple to deduce. For practical use of these cubic force
constants certain relations among the cubic force constants
associated with saa, taa, ssa, and tta are needed.

Each of these four types of cubic force constants forms a
representation subspace. Since the total Hamiltonian is to-
tally symmetric the numbers of independent quantities in
these subspaces are equal to the numbers of 4,, irreducible
representations I" in them. From the definition of the inter-
nal coordinates used in this work, shownin Table IL, T, T,,
and I, are six, six, and three dimensional, respectively, and

l—\s =Alg +Blu +Elg +Elu’

rt=Alg +BZU +E2,g +Elu’ Fa=E2g +B1u’

where T'; denotes the representation of the subspace of the
six §'s, 5, 10 ¢, ete. The quadratic spaces, ss, #, and aa are 21,

21, and 6-dimensional, respectively. It is readily shown
that®5-%°

Fs: = 4A1g + ZBlu + BZu + 4EZg + 3Ellus
r,=44,, + B,, +2B,, +4E,, +3E,,,
Faa = 2Alg +E2g +E1u'

Using direct product and character tables of groups®>->°
we found that the four types of cubic force constant for ben-
zene, saa, taa, ssa, and tta have 4, 4, 6, and 5 independent
quantities, respectively. Other cubic force constants of these
types are related to these independent quantities. The rela-
tions between the independent quantities and other cubic
force constants are listed in Table V1. The details for obtain-
ing these relations are discussed in Appendices B and C.

In the Al search calculation in the present series, all of
the in-plane cubic force constants given by the PFB potential
for benzene are employed.

C. Estimates and values of quartic force constants

In previous theoretical calculations for benzene'>?? the
quartic couplings (sometimes even cubic couplings) were
neglected. The present calculations, details of which are giv-
en in Part III of this series, show that these quartic kinetic
and potential (where they could be estimated) and kinetic
coupling terms make significant contributions to the
Ucy = 3 overtone transition. However, at present most of
the quartic force constants of benzene are either not known
or have not been estimated. Practical calculations of quartic
force constants for some other smaller molecules®®** led to
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TABLE VI. Relations for benzene cubic terms in nonredundant internal coordinates.*

Term Independent Relation
type quantities among cubic terms
1 E‘r‘ﬁq=F-':‘ﬁ9= H=F5nﬂo=A'
2 Al = E’:ﬁo E'-O%o.. = F’dﬁua = Bl
3 Bi=Fq, Fodton = oo, = P, = Fao, = &
4 saa Cl = F“qu(}u 51208 = F‘-‘J'fmb = §(4Cl - BI)
5 Dl = F"q"'qm- F’x?%ou = i"v?%ob = F’< 206 = F’»O%ob = &(23‘ + Cl)
6 Fottioe = Pogutoe = ~ 2Fogitne = — Frgugna = — Fegu, = 2F, stwtzoe = D1
3
7 Fogution = Foquton = ~ Fogutns = — Foumn = — "Z—Dl
8 F“'ﬁo = F’zqfo == F‘w‘ffq = A2
9 A= F"l‘ﬁo F":‘fmu = F“dﬁo- =5,
10 Bz = I:’:ﬁoa F’-?‘ma = 200 = F"a‘l%uu = F'w‘ﬁo«a = C2
1 tac Cz = El‘ﬁ'ﬂa Fl;‘fmb = Ff-?%ob = ‘!(4C2 - Bz)
12 D2 = F‘l.q..,qm, Ff:?’mb = F’\‘?%ob = F'aqzzob = F'n‘fmb = §(232 + Cz)
13 Frovine = ~ Frgume, = — Fnton = Frgutro, = D2
14 - quuuqzob = - éF":Qquob = - R\qvquﬂb = F'laq.«llzob = iF"liw'lzob = Fl«ﬂw?}l)b = \/§D2
15 Fon= —Frgg =Fsq, = —Fpq, = Frq, = — Ficon =4
16 Fosaw=Frsagn= —Fougq,=F g, = —Fio, =B
17 As=F,,, Frsgoe = = Wengee = = Wiy, = Frsro, = — 2F g, = — 2F, st = G
18 By=F,, Frsomn = Fastnn = — Wosaos = Fostr, = Frusg, = — I, ssoe = D3
19 SS(Zb C3 = E‘n-‘-‘hoa Eﬁ\dluu = FSr-quo.. = Ez-'aqzoa = iFS:J»‘huu =- EF‘-‘J"I:O.‘ = S45420¢ = E3
20 D3 = F-‘nizqzo., F"nhqzu.. = - 2F’e‘«'lmu == 2Ef:&.¢zﬂa = F3
3
= By =Fisg, Fronton = = Fusg, = F ssstzon = — Frsguon = _2-(:3
22 F3 = F;;Suhoa F-'v-‘z'lzob = - F-'-’»?mn == F‘Mﬂzoh = F’d«ﬂzob = ‘/§D3
23 FSvquzob = FJ--‘«‘hnb = F"z-‘ﬂznb = F-‘:-‘nqmb = - ‘/§E3
V3
24 Fovgn = — 05 TF 3
25 Finon= ~Fingn ™= —Fruge =Frq, = —Frg, =Fipg, =44
26 A4 = F’A':‘Iw F’v'n‘?ma = - QF"_-‘:Qzua = F‘t.hﬂm, = F"—l’a‘hou = - iF"’Wmu = Eh'hqll)a = B‘
27 Bi=F . Frtine = = Wita, = Frtan, = — Winga, = Frto. = Frngw, = Ca
28 “ab C4 = Ff.':qw F’V’lq}ﬂa = - 21:‘.&‘12(» == 217’:14010‘, == 2F":'»¢zo« - 217’““120«. = Ea'nqzu« = D4
29 D4 = E.l,qm, Eu'ﬂm.. = - iE:'Wzou = F’"m?m« = E‘
30 E4 = En’:% Ev‘vab = - F':'-qmo = F”-ll-l‘hob == Fl..k.onb = ‘/§B“
31 i“"ﬂm» = E:‘!#Nb = F'a’«‘lmb = - F'«'Jzob = \/§C4
— 3
32 F'n’«ho» = E:’:th == F’:'n‘hob == El’<4zub__2‘l—-D4
33 Fl-'ﬂma == F’«"ﬂmb = \/§E“
*These cubic force constants are exactly zero:
599205 E‘wwqm; Elqw‘hcu’ H@udi00
Fisanr Fosawr Fongr Frsgnr Fosgu s Fosanr Frsgnr S5y ?
FS.s.qzo,,’ Fs.wm' F, 2519206 Fs:swm’ E;&Q:ob’ F:‘um’ F, SSadz087
Fl-!,q.»* Foigwr Fungur Frngnr Frign Franr Forgur Fl:r.q,.’ F g
Frrawr Frngwr Frnger Funawr Fungnr Fuigr Fued
F’»'-ﬂma’ ch'«qzo»’ F'.'f:ﬂzob’ FI:'«‘lzob’ F’:’Alhub E4'quob' F’«'uqmb'
bI;‘s,le = Fs,s,.x and Ft,-l)x = FI/,V’ where x = 419+ 920+ OF G205+

the following inferences: the so-called diagonal quartic force
constants, i.e., of the type F (%), for bond length displace-

ments, are much larger than others, when defined in similar
units. In the present initial study we shall confine our atten-

J. Chem. Phys., Vol. 94,

tion to the stretching quartic force constants of the type F {2
and F{}). The actual values of these force constants were
obtained approximately using a Morse potential model for

the stretching motion.

No. 11, 1 June 1991
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TABLE VII. Relation among force constants F®, F®, and F¥,

Molecule Bond F® F® F@® F@®/JFOF® Ref.
HCN H-C 3.11 —5.13 4.70 — 1.34 [61]
C=N 9.48 —21.71 29.0 —1.31 [61]

FH:-*H,0 F-H 10.08 —80.24 514.0 - 112 [62]
H O 0.275 —1.46 6.15 — 112 [62]

HNO H-N 4.36 —34.10 239.0 ~1.06 [63]
N-O 12.59 — 88.60 604.0 - 1.02 [63]

For the Morse potential the energy V(x) for thecoordi- ~ACKNOWLEDGMENTS

nate x is
V(x) =D [e= 20— _ gg=atx=x],

According to the definition of force constants it is easy to
find the relations between « and the quadratic, cubic, and
quartic force constants for this system to be

F® = _3qF® (44)
F® =702F @, (45)
where,
FOY[FOF®O] 2= _3/fT= —1.13. (46)

These approximate relations are in agreement with pre-
vious ab initio results, as seen as follows. For benzene
@cy = 1.774 A ~ !, a value obtained from the anharmonicity
of CH stretching motion,?' and acc =~1.8 A =, which is
estimated from ethane,’® and the values F i.i.-) = 6.0 and
F(» =1.22 are given by the PFB potential. > Using Eq.
(44) we have

FQ=—32alA7% F3 =-39alA™>

where i = 1,...,6. These results are close to ab initio values of
the PFB potential,?> — 34.0and — 40.7aJ A ~ 3, respective-
ly.

Equation (46) provides a relation among F®, F,
and F¥. Table VII shows that this approximate relation is
reasonably satisfied for some carefully studied small mole-
cules.®!"%* By using Eq. (46) we obtain

F® . =120 aJA~*,

Fh, =150 aJ A%,

where i = 1,...,6. There s, in Table VII, a trend that the ratio
in Eq. (46) is the same within a molecule, for two quite
different members of each pair of bonds but differs some-
what from one molecule to another, i.e., from one calcula-
tion to another. Perhaps this result refiects an internal con-
sistency within the calculations but the error of a calculation
depends on the methods used and the system treated.

V. SUMMARY

In summary, a discussion is given here for CNLM and
for the Hamiltonian in this CNLM. The G matrix and poten-
tial energy surface for benzene has been discussed. In the
further work the results in the present paper will be used to
perform an Al search calculation for benzene and calculate
(Part I11) the CH spectra for vey = 1, 2, and 3 excitations.

This research was supported by the Caltech Consortium
in Chemistry and Chemical Engineering; Founding
Members: E. I. du Pont de Nemours and Company, Inc.,
Eastman Kodak Company, and Minnesota Mining and
Manufacturing Company. It is a pleasure to acknowledge
also the support of this research by a grant from the National
Science Foundation.

APPENDIX A: RELATIONS FOR CUBIC TERMS OF
BENZENE IN NONREDUNDANT SYMMETRIZED
COORDINATES

Nonredundant internal coordinates (NRIC) are widely
used in literature.?® The definition of the NRIC used in this
work is given in Table II. However, because of the compli-
cated form of the NRIC involving the a coordinates, the
relations between these cubic force constants of benzene in
the NRIC are not obviously simple. In this appendix we
derive the expressions for these relationships using nonre-
dundant symmetrized coordinates (NRSC). In Appendix B
they are derived using redundant internal coordinates
(RIC).

In the NRSC system, the a coordinates are symme-
trized and other in-plane modes, s, t, and 5, still use internal
coordinates. There are 63, 63, 36, and 36 possible cubic force
constants in the saq, taq, ssa, and tta subspaces. However,
asis shown in Sec. IV B there are only 4, 4, 6, and 5 indepen-
dent quantities, respectively. Others can be a linear combina-
tion of the independent quantities in the corresponding sub-
space.

We can use nonredundant symmetrized rectilinear or
curvilinear coordinates to find the relationships between in-
dependent quantities and other cubic force constants. These
relationships are simpler than those in Table VI. We consid-
er the saa and faa types of cubic force constants as exam-
ples.

1. s coordinates

In Table II six relations between the six symmetric s-
type coordinates ¢°, denoted in Table II by S,
Ssar Sops Sia Ss0a, and S, using Wilson’s numbering,”'?
and the six internal coordinates s, for CH stretching are giv-
en. They form a 6 X 6 matrix. The s, (i = 1,...,6) are written
as linear combinations of the symmetrized coordinates ¢° in
Eq. (A1). The coefficients relating the six symmetrized co-
ordinates ¢° to the s; is obtained by transposing the above-
mentioned matrix.

J. Chem. Phys., Vol. 94, No. 11, 1 June 1991
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2. aa coordinates

There are six redundant & coordinates ¢, to . In the a
space there three coordinates in NRIC, ¢,5 and gy, We
introduce the coordinates,

1
V2

- 1 ,
90 = E(%oa — g0 )-
The six members of the basis set in the corresponding qua-
dratic aa-subspace can be combined into four irreducible
representations: two 4,,, one E,, and one E,,, as seen in Sec.
IV B. The six symmetrized quadratic basis elements in the
aa space are denoted by 6, to G;:

aa — —_— aa — -+ -
0,= aalg,l =919 G = 0alg,2 ={q4:

3 -
6, =05, = —"/2‘_—(42—592-5 + 49554950 ),

aa 1 /3 .
0= 6z2g,b = T\/Tg‘(ng 92 —9209% )»

(G200 + 19200 )»

+ .
g0 =

(A2)

aa l —_—
0s=03,.= —19(956 + 950 )»
V2
1 _
Os =0 s =“—‘I19(‘12"6 —g)- (A3)
V2
3. sao type

Asseen in Sec. IV B, there are four independent quanti-
ties or four 4,, linear combinations in the saza subspace,
among others of a different symmetry species. The contribu-
tion to the potential energy from the saa subspace, denoted
by V..., may be written in two equivalent ways, in NRIC
and in NRSC, respectively:

6 6 4
Vw == 3 3 Fiosf == 3 FEo0P,  (A4)
k1 W=l N ) i pe

where ®;**is the ith 4,, component in the saa subspace, and
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-2

\/ﬁ qfxlg
e
_\/ﬁ ? qZZga
1 .

\/ﬁ 2 e2gh

’ (A1)
T 0 Toru

1 1

71_; _'_2_ q:lua

! _1 \elub /
2 2

r
F$** is its associated cubic force constant. Since 6, and 6,,
defined in Eq. (A1), are already totally symmetric (4,, ),
only the 4,, component of the six s; coordinates makes a
nonzero contribution to the Hamiltonian saa terms. It can
be seen from Eq. (A1) that the coefficient for the ¢;,, com-
ponent is the same for all s;, namely 1/1/6. We have, there-
fore,

1
q).;-aa _ ——(51 + 5, + S3 + 54 + 855 + 56)ql9q19’
V6

1
P = E(sl + 54853+ 54+ 55+ 56)0095-  (AS)

Equation (5) provides two independent quantities in Eq.
(A4) which we shall denote by F3**=.64] and
F* = \J6B |, respectively. Then

l []
V=] S F

6
+ o= .
3 sonsSi919919 + Az] Fsﬂzng;,sj%o 420] +
= =

1
= -3—'[F§"""<I>I + F3ed,] + .
Shown only by dots are the contributions from ®5** and ®**
(see below). Substituting Eq. (AS) into (A6) and compar-
ing both sides we have

=41,

(A6)

sah @ (j=1--6). (A7)

Similarly, there are two other 4,, linear combinations,
®3** and &3 generated from the E,, and E,, components
in s and aa spaces, respectively. We choose the other two
independent  quantities as Sashash + 4 435 and

saniad + g 20d denote them by C'{ and D {, respectively.
The other cubic constants in this saa subspace are related to
them. This space of four states will be denoted by
{4o0,:05,64}. 4. is the a component of the E,, pair or of the
E,, pair, with a similar remark applied to the other ¢’s. It is
readily shown using group theory that the 4, linear combi-
nation generated from components of two E,, (or E,,)
states spanned by {4,,4,} and {¢.,4; }, respectively, is

=B,

F-‘ﬂwqw
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Ya, = (1/\2) ($a + 6083 (A8)

Following similar discussion above for ®{** and ®3**, using
the above expression (A8) and the coefficients given in Eq.
(A1) we have

5(g2 925 + 9309120

52(gib b + @0 q) s3(gsh 935 + 930 930)

slgsbasb + 900 ss(qzh ash + 235435

= —2F

— ’
56(qsb 935 + 920 956) 1

F

e b —a09) sslashabh —a69%)

B

2

5:(a3hqsb — G0 @0)

(@35 935 — 930 950)

siqelaid +a0) sgelash +a) 539190935 + g35)

Sqelaib +a6)

ssq15(436 + 950)

=2F _,=D]
ss@io(93b + 936 ) 1
= = —F _
%95 — 0} F-‘:qw(qz*é - 9g30) 55¢10(a35 — G30)
= — Y, = - —‘/-5-1) ‘. (A9)
5ag19(a30 — 920 ) 2

It is also follows from the combination coefficients and
irreducible representations given in (A1) and (A3) that

s(ghaib — a0 gi0) | se(gsb — 950)

= 0. (A10)

$(g2h9ib — 0 qi0)

510093 — G30)

4. tac type

The relation between six #-type internal coordinates and
symmetrized coordinates, similarly to that given in Eq.
(A1), can be obtained from Table IL. In the same way as that
for the saa subspace, we have

t(gzb 925 + 92093 )

(9595 + 90 90) 50935 936 + 920936

(g qib + 90900 (@b asb + 90 950)

= —2F _ . =0C}
(935 926 + 920 920 ) 22

6(g36 =~ 920 — 920910

(b 926 — 936 920)

Bey,

1093693 — @0 958) 2

009 @b — 9090

ngwah +a) tqe(am + a50) taqio(gsh + 930)

V3 5,

T P 19000956 + 420) - 2 2

= _, =2F _
89100926 ~ §20) 124100936 — 920) L1936 — 430)

tdo(gsb ~a30)

= —2F =D;,

1.019(a26 — 955)

tsq10(q35 — 935)

(All)

where F‘ Gy ?

_, F _ _,and F -
L2090 " (4595 + 0950’ ,8,0(g36 = 430)

are chosen as independent quantities and noted by 4 5, B 7,
C}, and D, respectively.
Other types of cubic terms also can be treated similarly.

APPENDIX B: RELATIONS FOR CUBIC TERMS OF
BENZENE {N NONREDUNDANT INTERNAL
COORDINATES

Four different types of cubic force constants, saq, ssa,
taa, and tta are discussed, respectively.

1. saa type

There are 216 force constants for the terms s, ;a; in
RIC of benzene. However, a careful examination shows that
only 13 of these are independent cubic force constants in
RIC for this subspace. These independent terms, represent-
ed by structure plots, are given in Fig. 3(a) where a bar
represents the position of s, (without loss of generality we
choose k = 1, i.e., the first position), and the two asterisks
indicate the positions of , and ;. The corresponding cubic
force constants are denoted by F{,F3,...,F'{;, respectively.
Any cubic force constant of type saa is equal to one of these
F3 ’s. For example, 5,0,0, is represented by the fifth struc-
ture in Fig. 3(a) and s,0,a, is equivalent to the seventh
structure in Fig. 3(a). Therefore F, ,, = F5 and F,, ,,
= F'% respectively. In this way the assignments of the
s,a;a; and the s,a;a; are obtained and given in Table VIIL
The assignment for other s,’s can be obtained similarly.

By using the definition of ¢, given in Table Il and Table
VIII, we obtain

F, . =}[Fi —4F3 + 4F5 — 2F} + 2F§ + 2F§ — 4F}

— 4F§ + 4F5 + 2F3, + 2F3, —4F 3, + F3;].
(B1)
Similarly, we obtained the same expression for F, 7 for
i=2, 3,...,6. The first relationship in Table VI is thereby
established.

By using the definition of ¢,,, in Table II, we obtain two
sets of equivalent cubic force constants:

* * . * *
: OCRO!
* *
CSHONCRONC!
: * * *
L *
ONORCYONO!
* *
* * * *
O ONO
FIG. 3. Independent terms in cubic force constants related to « internal
coordinates in NRIC: (a) saa type, where sis fixed as s, and the positions of
a are represented by *. For example, the sixth means the term s,a,0,. (b)

taa type, where ¢ is fixed as #, and the positions of « are represented by *.
For example, the sixth means the term #,a,a,.

(a)

(b}
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TABLE VIIL Independent terms of saa and faa types.

a, a, a; a, as a, a, a, a; a, as a,
5@, 5,a,a;

a, Fi F; F F; F3 F; a Fy Fs F Fy F; F3

a, F; F3 F; F Fy Fy a, F3 F F F3 F F3

a; F; F3; Fio Fi, F F3 a; Fq F3 F3 F; F3 Fy

a, F; F; Fi Fiy Fi, F3 ay Fy F3 F; Fi Fi, F,

as F3 Fy Fy i Fio F3 as Fy F F3 Fi Fiy F,

@ £ Fy Fy F; Fs Fy a Fs Fj Fy Fi F, Fio
La,q ha,q,

a Fi F F3 Fy F; Fy a F; Fy F3 F Fiy Fy

a, F Fj Fy F} Fi Fi ay Fj Fj F} F; F F

a, F Fy F; Fy Fig Fi a, F; F, F Fy F; Fy

a, Fg F; F; Fy Fi, Fio a, Fy Fy Fy F; Fy Fio

as F Fq Fi Fi, Fy Fy as Fio Fy F; Fy Fy Fi,

e Fy Fs Fi Fi Fq F; e Fy F; Fy Flo Fy Fj

F,, =B, =}[2F; —4F3 —4F; + 4F5 + F$ 4 F

+2F5 +2F} — 4F5 + Fio + Fi,

—4F, +2F5; ], (B2)

fori=1,4and

F o =Ci=4%[F] —2F; —2F3 4+ 2F; + 5F5 — 4F;
— 8F5 + 10F§ — 2F} + 5F3, — 4F%,
—2Fj, +F§3],

fori=2,3,5,6.
By using the definition of g,, in Table II we have

(B3)

vty =3[ F3 —Fi —2F5 + 2F3 + F5, — F3,] (B3
fori=1,4and
vty = [ F§ —2F§ —2F5 +2F3 + F;3
+2Fy —2F5 —2F5;, + F3;], (B4)

fori=2,3,5,6.
Combining Eqs. (B1)-(B4), we have the relations be-
tween cubic force constants in NRIC:

F . ={(4C,—B,), j=14
F, =1(2B,+C,), j=2356

(B5)
(B6)
as shown in Egs. 2 to 5 in Table VI.

Oth.er relations for F,, . and F,, . can be established
similarly.
2. tac type

Here, ¢ represents CC stretching as in Fig. 1 and Table
II. There 216 terms ¢, ,a; in RIC. However, a careful ex-
amination shows that only 12 of them are independent.
These are shown in Fig. 3(b). The corresponding cubic force
constants are denoted by F{,F},...,F}{,, respectively. Any
cubic force constant of type taa is equal to one of F*,. The
assignment of leaj and F, ., are given in Table VIII, and

the assignment for other 7, can be obtained similarly.

The first relationship for taa can be readily demonstrat-
ed since

F,g, =3[Fi +F§ + F5 — F} + 2F} —2F} + 2F}

—2Fy —2F5 +2F}, — F}, —-Fi 1
fori=1,2,..,6.
For proving next two relationships for taa type, we use
the method similar to that for saa type, and obtain

F,, =B,=h[5F, +2F} 4+ 5F, — 4F. — 2F}

(B7)

+ 10Fg — 8F5 —2F; —2F% —2F",
+2F}, —4F3 ], (B8)
fori=2,5and
=C,=}[F{ +4F} + F; + F, —4F: + 2F!

t420q

+2F4 —4F§ — 4F} — 4F ', + 4F",

fori=1,34,6.
Similarly, for F, 2, We have
vy =3[ F1 +2F5 + F} —2F% 4+ 2F
—2Fy —2F5 —2F}, +2F,], (B10)
fori=2,5, and
F .. =}[F{ +F} —F, +2F, —2F! —~Fi] (Bl

fori=1, 3, 4, 6. Combining Egs. (B9)—(B12) together, we
have

F,ﬂ%% = §(4C2 '—-Bz); J=25
Fp, =128+ C), j=13,46.
and F,

49159200

(B12)
(B13)

Other relations for F,

’ 10100 can be proven
similarly.

3. 8sa and #fo types

The relations of cubic terms between these types can be
demonstrated similarly. However, there six are and five in-
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dependent quantities for ssa and tfa type, respectively.
Therefore more relations, as shown in Table VI, are expected
for those types.

Many cross terms F,,, or F,

wsq (i7]) vanished, some of
them do not.

APPENDIX C: THE RELATION BETWEEN
SYMMETRIZED COORDINATES AND RIC

The relations among cubic force constants for benzene
in symmetrized coordinates and in RIC are given in Appen-
dices A and B, respectively. These two sets of relationships
are equivalent. The relation in RIC can be obtained from
those in symmetrized coordinates.

For example, from Egs. (A2) and (A3) we have

1 1

Gro0 = 02 — 7_3‘93» Grop = 0, + '\/—5“93» (ch)
Using Eqgs. (A9) and (C1) we have
_ L
5Thea " 31925 9% V@ si(qsbasb + 270930
=B — —l—C{,
3
_ 1
$h0a | 5192 950 \/5 (g2 935 + 420 920)
11
=B 4+ ——C1.
1+ ) \/3 1

F, . and F, . aredefined as B, and C, in RIC, respective-

5

ly. Thus,

Bi=L@c,+B), ci=-2,-B) (€2
3 G

Using Egs. (A9), (C1), and (C2) we can obtain Eqgs. (4)
and (5) given in Table VI:

1

Ffu'ﬁou = $19:5 930 + ‘/3 Fx.(qfé 916 + di0 930 )
1
= —(4C, — B,),
3
—F 1
S50 $19:593 + ‘/'i 520936 436 + 916 970 )
1
- ?(Cl + 2El)'
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