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Microcanonical rates and products rovibrational quantum state distributions of
several unimolecular dissociations, and canonical rates of some bimolecular
associations, are discussed from the viewpoint of variational Rice—Ramsperger—
Kassel-Marcus (RRKM) theory. The results are compared with the experimental
data and with the very useful benchmark theory, phase space theory. A two-
transition-state description is discussed for the threshold regions for the products
vibrational excitations.

1. Introduction

In a unimolecular dissociation, and in the reverse process of free radical
recombination, there is often no local maximum in the potential energy curve. In this
case, and in others, a variational method for determining the position of the
transition state has been used. In a recent series of studies variational RRKM theory
has been applied to several microcanonical unimolecular dissociations, e.g.
Klippenstein et al. (1988) and Klippenstein & Marcus (1989, 1990) and other
references cited later. Both the rate constants for dissociation and, with an added
dynamical assumption (Marcus 1988), the rovibrational quantum state distributions
of the reaction products have been so treated. The canonical rates of bimolecular
association processes have similarly been studied.

In the present paper these applications to a number of systems are summarized,
and compared with the experimental data and with the phase space theory (psT) of
Pechukas & Light (1965) and Pechukas et al. (1966). psT, with its simplified (loose ')
transition state, provides a very useful benchmark theory for comparison with more
detailed theories and with the experimental data. The relation to other detailed
theories such as that of Quack & Troe (1974, 1977) is discussed elsewhere (see, for
example, Wardlaw & Marcus 1987). A two-transition-state formulation is also
described and applied, in which the second transition state region consists of the
orbital angular-momentum-dependent loose transition state of PsT.

2. Transition state theory and variational RRKM

I first noted some time ago, in passing, a variational form of RRKM theory for
reaction rates (Marcus 1966 a). However, a computational way of implementing it for
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Figure 1. Example of crossing or recrossing of a hypersurtace (e.g. at R,, at R, and at R;). Of the
three hypersurfaces the one at R, has the least recrossing (none indicated), while those at R, and
at R, show examples of a recrossing. For example, the points at a and at b count as forward motion
in summing over phase space at R, and at R, respectively, but are wasted : they do not contribute
successfully to the forward and reverse rates.

unimolecular dissociations was described only recently by Wardlaw & Marcus (1984,
1985, 1986, 1987) and Klippenstein & Marcus (1983a, b, 1990). The treatment is, in
part, quantum mechanical, but it is useful to recall first a basis for a variational
classical mechanical transition state theory. The latter is based on an early
important, if for some time neglected, paper by Wigner (1933). Wigner pointed out
that if a (2N— 1)-dimensional surface in a 2N-dimensional phase space could be
found, separating the reactants region from the products region of phase space, such
that no classical mechanical trajectories recrossed it, and if there was an equilibrium
distribution in phase space for the reactants, transition state theory (TST) would be
valid, within a classical mechanical framework: in a classical mechanical form of
transition state theory it is tacitly assumed that all parts of the (2V— 1)-dimensional
dividing surface (a ‘hypersurface’), which constitutes the transition state, contribute
to the rate constant. If, instead, some of this (2N — 1)-dimensional phase space 1s
‘wasted’, as reflected in some recrossing of it by trajectories, rather than their
leading directly from reactants to products, the observed rate should be less than
that predicted by TsT. In this way Wigner established a theoretical basis for TST,
which was, within its classical limitations, more fundamental than the more
customary derivations present in texts.

It follows from such an argument that the best choice for the (2V— 1)-dimensional
dividing surface is the one with the fewest recrossings (ct. figure 1), i.e. the one with
the minimum flux across it. A variational TsT was proposed by Wigner (1937),
Horiuti (1938) and Keck (1960, 1967). Finding such a dividing surface among the
infinite number of possibilities, however, does present a formidable problem. In
practice, some approximate choice is usually made for the ‘reaction coordinate’ R,
and the latter then defines a family of parallel (2N — 1)-dimensional dividing surfaces,
the best one of which is determined variationally. Recent descriptions of a
variational transition state theory have been given by Quack & Troe (1974, 1977),
Hase (1972, 1983) and Garrett & Truhlar (1979), among others.

In the case of unimolecular dissociations Wigner’s classical description of the
motion is typically not adequate, since the vibrations in the transition state
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are usually highly quantized, although the remaining degrees of freedom of the
transition state can often be treated classically. Such a combined quantal-classical
approach was used in our recent applications of variational RRKM theory to
unimolecular dissociations (§3). The reaction coordinate is taken to be some
separation distance, e.g. the centre-to-centre distance K ot the separating fragments,
or, as in Klippenstein (1990), a bond length, and the reactive flux across it 1s
calculated, and then the R is found where that Hlux 1s a minimum. When the R-
motion is treated classically the flux across any given R for any given total energy
E and total angular momentum ./, is proportional to the number of rovibrational
quantum states N,(R) with energy equal to or less than E (Marcus 19660).
Minimization of N, (R) then yields the value of B, R*, in the transition state.

3. Conserved and transitional modes in the transition state

In recent calculations of N, ,(R) the degrees of freedom of the dissociating molecule
were classified by Wardlaw & Marcus (1984) as being of two types, the ‘conserved’
and the ‘transitional’ modes. The former are, typically, vibrations of the parent
molecule which remain as vibrations in the separated fragments. The transitional
modes are the remaining degrees of freedom, and include motions which were
originally rocking vibrations of the two incipient fragments in the parent molecule
(they become rotations of separated fragments) and include, also, the overall
rotations. There are frequently eight transitional modes in the case of two
polyatomic fragments, and they are typically highly coupled to each other and are
constrained by the requirement of conservation ot total angular momentum

quantum number /.
The number of states N ,(R) is then given by a convolution,

E

Ng,E) = j N,(E —¢€)p,(e)de. (3.1)

0

where N, (E —¢) is the number of states of the conserved modes with an energy less
than or equal to £ —¢, and is calculated by a direct count, and p,(€) is the density ot
states of the transitional modes and is treated classically by obtaining the amount
of phase space available for the given ¢ and J. In practice, the right-hand side of (3.1)
is evaluated by a Monte Carlo method.

Originally, the expressions tor p,(e) were obtained by Wardlaw & Marcus (1984,
1986) in terms of action-angle variables, but later 1t was found possible by
Klippenstein & Marcus (1988a,b) to express p ,(e) in terms of conventional
coordinates, while still satisfying the conditions of constant J (and .constant
component M of J) and having in (3.1) no extra integration variables than betore.

Transition states range from ‘tight’ to ‘loose’ in nature. In the ‘loose’ transition
state the separating fragments rotate freely, while in the “tight’ transition state they
behave instead as they do in the parent molecule, namely undergo rocking
vibrations. For the above classical treatment of p,(€) to be valid, the frequencies of
‘transitional modes’ should be small, which will occur when the transition state 1s
closer to ‘loose’ than to ‘tight’. This situation has been the case in the systems we
have studied thus far. (For example, a calculation of quantum corrections for the
transitional modes for the C,H, — 2CH, reaction using a path integral method by
Klippenstein & Marcus (1987) showed the corrections to be small for that reaction.)
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In RRKM theory the rate constant kg, for a dissociation at the given energy & and
J is given by an expression (see, for example, Marcus 1952, 1965, 1970 ; Robinson &
Holbrook 1972; Forst 1973)

kg; = Ny (BY)/ hpg,, (3.2)

where p,, is the density of states of the parent molecule at the given E and J; R,
the now variationally-determined position of the transition state, depends on £ and
J and so is referred to as R}, below. The observed unimolecular rate constant is
obtained by summing (3.2) over any existing distribution ot ./ and .

We first compare, in the summary below, the results with those of psT. In ST the
transition state is ‘loose’, i.e., the separated fragments rotate freely in the transition
state, and so their orbital angular momentum quantum number [ is a constant of the
motion near the pst R* region. The R! in psT depends on [/, and not explicitly on )
or J, and will accordingly be denoted by Rj instead of Rj,,. For any given J there is
in psT a distribution of R}s, since there is a distribution of Is. Rj is typically rather
large, occurring where the centrifugal force for the given / balances the long range
(assumed radial) attractive force. Typically, the psT values of the reaction rate are
larger than the variational RRKM values, because of the omission of psT of any steric
restrictions in the transition state.

4. Rotational-vibrational quantum state distribution of separated
fragments

(Calculations have also been made of the rovibrational quantum state distribution
of the reaction products of unimolecular dissociations. In pST 1t 1s assumed that for
any given E and J all degrees of freedom are equilibrated by the time the system
reaches the transition state at each R = R}. Because of the assumed occurrence of
freely rotating fragments in the transition state of psT, it follows that in pST the ro-
vibrational quantum state distribution of the separated fragments is the same as
that in the PST transition state. However, for RRKM theory some dynamical
assumption or assumptions are needed, over and above Its statistical assumptions
used to calculate the rate constant k. ,, to calculate a rovibrational quantum state
distribution for the products. We consider here only reactions for which the potential
energy V in the exit channel of the dissociating species rises monotonically to 1ts
value at R = o0, rather than having some local maximum. In the latter case there
would be still further dynamical forces influencing the quantum state distribution of
the reaction products.

To calculate the products quantum state distributions using RRKM theory,
dynamical assumptions were introduced (Marcus 1988) about the behaviour of the
conserved vibrations and of the transitional modes after the system leaves the
transition state. Because of their relatively high frequencies the conserved vibrations
were assumed to behave adiabatically for Rs in the vicinity of and exceeding R*. That
is, their quantum numbers were assumed to be constants of the motion in this region.
In this adiabatic treatment the R* can differ for each state i of the conserved modes
and is denoted below by R%, ;. It occurs at the minimum of the reactive flux in state
i the reactive flux at R being proportional to Ng; ,(R), the total number of states,
for the given state ¢, with a given ./ and with a total energy equal to or less than K.
In spite of this assumed adiabaticity, there may be some subsequent recrossing of the
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hypersurface R = Rj,; ;,, as seen later when a two-transition state behaviour is
treated with equations (4.3) and (4.4). I first describe, however, the one-transition
state case, and later extend it to (4.3) and (4.4).

The dynamical assumption made tor the transitional modes was quite different
from the adiabatic one for conserved modes. Namely, in the region between Rj,; ; and
the ST R*s a continuous equilibration rather than adiabaticity was assumed for the
transitional modes (Marcus 1988). The energy level spacings of the transitional
modes, e.g. of the hindered rotations, are on the average much smaller than those of
the conserved vibrations: although the spacing of successive rotational states is
E;,—E, , = jh*/I for a freely rotating diatomic fragment, and so increases with j, the
degeneracy of those states 1s 2541 (& 24). Thus, for hindered rotations in the
transition state, where the m-degeneracy can be removed, the mean energy spacing
of states is approximately 3%%/1(29) = #*/21, which 1s typically small. This small
spacing implies, semiclassically, small mechanical frequencies of the associated
motion for the transitional modes, and so those modes are less apt to behave
adiabatically. Consistent with this aspect it 1s assumed that any redistribution
among the states of the transitional modes can occur readily in the region between
R%; ; and the psT R*s, and, therefore that, as in psT, they remain equilibrated in the
PST I+ region. This ‘non-adiabatic’ assumption for the transitional modes contrasts
with the adiabatic role assumed for all modes by Quack & Troe (1974, 1977) in their
statistical adiabatic channel model.

One difference in the products rotational quantum state distribution in the present
model from that in psST, seen from the above two dynamical assumptions, is that the
rotational state quantum distribution of the fragments is now given by a conditional
probability distribution. Given an RRKM-calculated distribution of vibrational
states at Ry, ,, the subsequent rotational state distribution for each vibrational state
is the equilibrated rotational distribution at the relevant psT R*s for the given state
¢ of the conserved modes, as in (4.3) and (4.4) below. As part of this conditional
probability, the distribution of rotational states at £ = o0 depends on whether some
of the rotational channels that were open at Rj,, ; are closed at the psT Ris for the
given K, J and ¢. The existence of such states is revealed by a comparison of the psT
value of Ng, ;, Ni5,, with the value at R}, ;,, Vi, ;. When the former is smaller than
the latter, the total flux at the psTs R*s is also smaller, so that there has been some
reflection before those pST R*s were reached, i.e. some recrossing of the R, ,
transition state occurred. One source of such recrossings is the existence of closed
rotational channels at the psT R*s, channels that were open at Rj;; ;. The formulation
in Klippenstein & Marcus (19885, 1990) allows for such recrossings.

Accordingly, in the vicinity of the threshold energy for excitation of a conserved
mode 4 the following behaviour will ensue when N}, , > Ng5%,. At threshold for state
1, the flux for this state ¢ will be essentially zero, since all rotational channels but the
lowest are closed at zero excess energy. As the energy is increased each successive
rotational channel becomes open and a step-like population against energy plot
results. At high enough excitation energies (typically ca. 100 em™ above threshold
for each state » of the conserved modes, in the case of our calculations for CH,CO —
CH,+CO), Ng5'; is no longer smaller than N, (R}, ;). For slightly higher excess
energies (ca. 200 cm™' and above for this reaction), there is typically little further
subsequent reflection of the dissociating systems in the pst R* region and it suffices
to use only the R}, ; transition state.

Using the above arguments, the population of a particular state (¢,f{) of the
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conserved modes in state ¢ and transitional modes in state ¢ is given by the following
expressions. In PST the lux yielding a particular quantum state (i, ) of the separated
products is proportional to the number of states N5, with total energy equal to or
less than K and with this specification (¢, ) at the psT Ris. It includes a sum over all

accessible [s. The normalized population pg3',,. is then given by
PST _ NJPST TPST
Per.it = Ngg,ul ZNgJ - (4.1)
i,

When a single transition state is used in the variational RRKM-based treatment
of the products’ quantum state distribution, the probability p,, , is given, instead,

by
Pes it = (EvéJ,i/ZNE'J,i) (Ng:?fTat/ZNggTu) (TS at RE‘J,*E)' (4.2)
i t

When N, ; > Ni57; for any state 4, where NE5T; denotes Z, N55%,,, then N}, ; in (4.2)
1s replaced by Ng5%; in this single-1s model.

The first factor in parentheses in (4.2) is the probability of finding the transition
state 1In quantum state ¢ of a conserved mode. The second factor is the conditional
PST probability that, given that the system is in this state ¢, the system is found in
state ¢ of the transitional modes in the psT region.

When there are two bottlenecks, namely at R}, ; and at the psT R}s, equation (4.2)
1s modified to account for the fact that, particularly just above threshold for state i,
some of the ¢-states which pass R}, ; will be reflected in the psT transition state
region. Instead of (4.2) we have, as in the present Appendix A,

Peg.ut = (Ngg,i/ENg’f},i) (Ng?as/z Ar,gg?it) (composite Ts), (4.3)
i ¢

1 1 | 1

where = -
eff PST Tmax
NE‘J, i N,{:J, g NEJ, ; ‘E\/EJ, ;

(4.4)

[/

Ngy (8) at Bi; ; and at the psT R*s. When NE5%, and N}, ; are greatly different,
for all 7, equations (4.3) and (4.4) reduce to (4.2) (or to its counterpart for the
Ni, i > NEST, case). .

The position of the transition state in this two-transition-state RRKM-based
model for determining the products quantum state distribution varies from being in
the PST region, when the energy is just above the threshold for the vibrational
excitation of state i, to being, at somewhat higher excess energies, in an inner region
at B3, ;. In general the transition state is a composite one, as in (4.3) and (4.4). This
shift of the transition state plays an important role in our interpretation later of
photofragmentation spectra (§5¢).

Corresponding to (4.1)—(4.3) the distribution of the i-states of the products is

obtained from them by summing over ¢ in each of those expressions:

In the plot of N, ,(R) against B, N7 1s the local maximum between the minima in

Pgﬁ?i = ZN}:F:)._S;T&/ 2N Eﬁ% = Nﬁ%ﬂ/ ENE?E# l (4.5)
; i, i

Pes i~ Ni’J,i/ZNEJJ,i! (4.6)

Pry i~ Ngf}%/zNgﬁz (4.7)
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Given some knowledge or estimate of the potential energy surface in the transition
state region, a calculation of Ny, (R) using (3.1) and the various N ;8 in the above
equations becomes practical and relatively straightforward, and has been done for a
number of reactions. Some knowledge is needed, particularly of the potential energy
surface for the transitional modes in the vicinity of the nearly loose transition state.
In the calculations an effort was made to avoid adjustable parameters: non-bonded
interactions were estimated according to some available prescription. The bonded
interaction potential for the dissociating bond was obtained by subtracting from an
‘experimental ’ bond potential the contribution of the non-bonded interactions in the
most stable molecular configuration at each R. When available such estimates can
later be compared with the results of more ab initio calculations for each system, as

in the comparison of Darvesh et al. (1989) with Wardlaw & Marcus (19835).

5. Results

(@) Bimolecular association rates

One of the systems that has been treated with variational RRKM is the
recombination of methyl radicals. Here, the high pressure rate constant k;(1’) can be
calculated using the above formalism for kg, for the dissociation. Upon thermally
averaging over £ and J at the given 7' the unimolecular rate constant k. (7') 18
obtained, and then with use of similar information the equilibrium constant, k. (T)
can be calculated. The value obtained for &, ;(7) when 7' was varied from about 300 K
to about 1200 K decreased by about a factor of roughly two, as in Wardlaw & Marcus
(1987) and Darvesh et al. (1989), and appears to be consistent with available high-
pressure limit data. (References to the experimental data are cited in Wardlaw &
Marcus (1986), Wagner & Wardlaw (1988) and in Darvesh et al. (1989).) Phase space
theory, on the other hand, leads to a k;(7") which varies as T% and so increases rather
than decreases with temperature. In psT the average position of the transition states
is shifted to slightly smaller Rjs with increasing T'({(R*) oc 7-%), as seen in Appendix
B. but this effect is more than compensated by the effect of temperature causing an
increased mean velocity for crossing the centrifugal plus attractive force barrier
(Appendix B). In variational RRKM theory the mean position of the transition state
is also shifted to smaller Ris as 7' is increased, but even more so: the larger spacing
of the hindered rotational states at smaller R typically lowers the Ng,;(£) curve more
than at larger R and enhances the shift of R* to smaller values at high 7T's. This eftect,
and the enhanced steric restrictions in the TS that results, usually causes k,;(7') tor
recombination to decrease with increasing temperature.

Another example of a bimolecular recombination process is the reaction between
NC and O,, studied by Sims & Smith (1988), which 1s believed to proceed via some
intermediate NCOO, an analogue of NCNO. Here, ky(7T) showed a significant
decrease (roughly a factor of almost 3) when the temperature 7" was increased from
100-765 K. Calculations of k,(7) based on long range attractive potential
(dipole—quadrupole) was shown by Clary (1984) to give rise only to a relatively small
decrease of k,.(T') with increasing temperature. The effects ot non-bonded interactions
may well, as in the 2CH, — C,H, recombination, lead to a larger temperature
coefficient, judging from some unpublished results in our group for the NC+NO
recombination. It is planned to explore this matter further.

Variational RRKM calculations for CH,+ H recombination have been made by
Aubanel & Wardlaw (1989). The value of R? again shifted to smaller values with
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increasing temperature, the decrease being somewhat less than fhat for the
CH,+CH, recombination. The calculated rate showed, however, an increase with
increasing temperature, as does that of pst, instead of the decrease found for 2CH,;,
and perhaps reflecting, in part, the fewer and less restricted hindered rotors in the
CH,+H transition state. The experimental data for CH;+H — CH, are not yet
sufficiently established to make an adequate comparison with those calculations.

Detailed studies of the CH,+H recombination, using various potential energy
surfaces, have been made by Hu & Hase (1989).

(b) Unimolecular dissociation rates

Experimental measurements of microcanonical rates of the NCNO —» NC+NO
dissociation have been described by Khundkar et al. (1987), and for the CH,CO —
CH, +CO dissociation by Potter et al. (1989). Theoretical studies with variational
RRKM theory have been given for the microcanonical rates of the NCNO dissociation
by Klippenstein et al. (1988) and of the CH,CO dissociation by Klippenstein &
Marcus (1989). In the NCNO system, photoexcitation to the 5, state is followed by
internal conversion to the S, state, with some contribution to the reaction from
triplet states. In the case of psT, when all final states were included without regard
to the nature of the potential energy function (a local maximum in the triplet state)
in the intervening region, the calculation of the microcanonical rate constants kg,
exceeded the experimental values by a factor of ten or so at the higher energies in the
excess energy interval studied, 0-700 em™. Inclusion by Klippenstein ef al. (1988) of
the locally high barriers for the exit channel for all but the S, state suggested that
at these low excess energies only the S, states need be considered (provided there IS
negligible S-T intersystem crossing at larger Rs). When this feature was included In
the pST calculation, the psT results were quite close to those for variational RRKM.
Thus, at these energies the RRKM transition state is rather loose.

The experimental results for the microcanonical NCNO — NC+ NO dissociation
by Khundkar et al. (1987) are shown in figure 2, where they are compared with
variational RRKM theory. The results are seen to be quite close. Experimental
results for &, at higher energies would be useful. Since at ca. 700 cm™! excess energy
the lifetime is still ca. 10 ps, shorter lifetimes could presumably be studied.

Photoexcitation of CH,CO, yields the singlet S, state, which is followed by
internal conversion to S,, as well as by intersystem crossing to the triplet T,. The Ly
state has a local maximum in the potential energy curve in the exit channel. In the
excess energy range investigated (ca. 100-6000 cm™ above the singlet dissociation
energy threshold) most of the reaction appeared to proceed via the singlet state, and
use of the latter sufficed for comparison with the experimental results on the
dissociation rates. The experimental results of Potter et al. (1989) are given in
figure 3.

Comparing psT and RRKM calculations for the singlet surface for CH,CO there
was a considerable difference in the two ks (Klippenstein & Marcus 1989), the PST
value being some eight times higher at the higher end of this energy range, as in figure
3. Even at a 500 cm™~! excess energy there is seen to be already a factor of about five
difference between psT and RRKM ; at the low end of the range at 100 cm™ the ratio
is 1.3. In part, the difference between the psT and RRKM kg, results for CH,CO,
compared with their being close to each other for NCNO, appears to be due to the
shorter range interaction of CH, and CO, resulting in stronger hinderance of the
rotations at R} ,. The rotational motion of the CH, about its mass centre also appears
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Figure 2. Plot of log,, k., for NCNO dissociation against excess energy E. The pluses denote the
experimental results of Khundkar et al. (1987) and the circles and squares refer to the use of two
different potential energy functions in variational RRKM theory (figure 4 of Klippenstein et al.

1988).
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Figure 3. Plot of log,, k;, for CH,CO dissociation against excess energy K. The pluses denote the
experimental results of Potter ef al. (1989), the open circles the variational RRKM results and the
upper curve describes the classical (crosses) and quantal (boxes) psT results (figure 2 of
Klippenstein & Marcus 1989). (a) psT, (b) experimental RRKM.

to involve a larger asymmetry in its interaction with CO than is apparently the case
in the NC + NO case, and so causes a larger difference between pST and RRKM results
in CH,CO —» CH, +CO.

The experimental, psT and RRKM results for CH,CO are given in figure 3. The
variational RRKM treatment yields substantially better agreement with the
experimental data of Potter ef al. (1989), reflecting the presence of steric hindrance
in the transition state.
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Figure 4. Plot of relative CN rotational state population for both the v =0 and v =1 CN
vibrational states resulting from the dissociation of NCNO at an excess energy of 2348 cm~ . For
v = 0 (the three upper set of points) the triangles denote experimental results of Wittig et al. (1985),
the circles denote RRKM-based results and the pluses those of psT. For » = 1, the triangles denote
experimental results (using data from H. Reisler) the circles the RRKM-based results and the

pluses the psT results (fig. 15 of Klippenstein et al. 1988).

(c) Distribution of quantum states of the separated fragments

At subvibrational excitation energies of the products of a dissociation, the results
for variational RRKM theory (with the dynamical exit channel assumptions
discussed earlier) for the products’ quantum state distribution are the same as those
of PST, as seen from a comparison of (4.1) and (4.2). The first factor in the right-hand
side of (4.2) is unity at those energies. When instead the excess energy 1s sufficient
to excite the products vibrationally there can be additional vibrational excitation,
over and above that expected from pst (Klippenstein ef al. 1988; Klippenstein &
Marcus 1989, 1990).

Experimental results for the NCNO dissociation were reported by Qian et al. (1985)
and Wittig ef al. (1985) for the CN and NO gquantum state distributions. Results were
obtained both at low excess energies (95-940 em™ above threshold), below the
vibrational excitation threshold of the products, and for higher excess energies
(2348-4269 cm™!) where some of the products were vibrationally excited to a
vex = 1 Or a vy, = 1 state. The data for NCNO at subvibrational products excitation
energy showed good agreement with both theories; at those excitations the two
theories for the product state distribution agree with each other. At excitations
permitting the vibrational excitation of the products, the RRKM +dynamical
assumption model shows better agreement with the data, in comparison with PST, as
in figure 4, but at the higher energies the two sets of results approached each other
(Klippenstein et al. 1988).

Results on products quantum state distribution for CH,CO dissociation have been
obtained by Chen et al. (1988) and by Green el al. (1988, 1990). For CH,CO —
CH,+CO the photofragmentation excitation spectra (PHOFEX) have been studied.
Here, the appearance threshold of individual rotational states of the produects have
been determined, superimposed on a vibrational excitation, as in figure 5. The step-
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Figure 5. Photofragment excitation spectrum for the vy.y = 1, Jy x = 1,, vibrational-rotational
state of methylene formed from CH,CO. The experimental results (Green et al. 1990) are given by
the solid line, the pST results based on (4.1) by the long-dashed line (the lowest line), the absolute
minimum RRKM-based results (ef. equation (4.2)) by the dot-dashed lines (highest line), and the
RRKM-based treatment based on (4.3) by the short dashed line (the line which most closely follows

the experimental trend). The excess energy ranges from approximately 1335 em™ to 1635 cm™.

like nature of the PHOFEX spectra reflects the quantized behaviour of the individual
rotational states of the products. Typical calculated results are given in Klippenstein
& Marcus (1990), and the three expressions (4.1), (4.2) and (4.3), (4.4) are illustrated
in figure 5, scaled so that (4.3) and (4.4) agrees with the experimental data near the
maximum in the latter. (Additional examples are given in that reference.) Poorer
results for the shape of the plots were obtained when the scaling was based, instead,
on (4.1) or (4.2). Equations (4.3) and (4.4) also gave better agreement than the PsT
(4.1) for the yield of vibrationally-excited products.

Interestingly enough, although the two-Ts model plays, in this view, an important
role for a PHOFEX spectrum near any ¢-state threshold, its role in the calculation of
k., was minor, as in Klippenstein et al. (1988) and Klippenstein & Marcus (1989),
except at the threshold for kg, itself. Typically, the contribution to kg, from ¢ states
at their thresholds at any £ is appreciably less than that of the non-threshold 2

states, in the systems studied.

6. Summary

In summary, studies for various reactions have shown interesting comparisons ot
the experimental data and theory for reaction rates and for the distributions of
quantum states of the products. Using variational RRKM theory and its extension
to include some dynamics in the post transition state region, to permit a treatment
of the products quantum state distribution, it has been possible to obtain a unified
basis for treating both types of data. It would be of particular interest to extend the
experimental studies to other systems, to explore the generality, if any, of the trends
found thus far in the present series of studies discussed above.

It is a pleasure to acknowledge the support of this research by the National Science Foundation,
and helpful discussions with S. J. Klippenstein.
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Appendix A. Derivation of equations (4.3) and (4.4)

Hirschfelder & Wigner (1939) showed that if there are two transition states, i.e.
two regions, not just one, where a transmission or reflection of the reacting flux can
occur and that if «; and «x, denoted the transmission probabilities, the net
transmission probability « for reaction is given by

¥ o Ky Ky
1—(1—x«,) (1_"{2)‘

(A 1)

Miller (1976) pointed out that each «;, a ratio of fluxes, could be written as a ratio

of numbers of states:
Ky = Ni/N™ g, = Nj/Nmax, (A 2)

where N} is the number of quantum states at transition state 1 with energy equal to
or less than £, Nj is the corresponding quantity at transition state 2, and N™2X jg the
local maximum in N between R} and Ri.

Equations (4.3) and (4.4) are essentially an extension of (A 1) and (A 2). In the
present case transition state 2 is, instead, a set of pST transition states, each
transition state with its own value of I. That is, there will be reflection at various
alternative, mutually exclusive, Bjs in the transition state region 2. N, the sum of
the numbers of states over all ! contributions, is denoted here by N5T. Upon further
specializing’ the reacting systems considered to those of a particular ¥, J, and 4, as
in Klippenstein & Marcus (1989), the present equations (4.3) and (4.4) are obtained. |

Multiple transition states for the unimolecular dissociations of ions have been
discussed by Chesnavich (1986) and by Jarrold et al. (1984) and are closely related to
the subject matter of this Appendix.

Appendix B. Phase space theory {R}>

In phase space theory a transition state, R = Rj, is considered for each [. At the psT
transition state the attractive force, —0V(R)/OR and the centrifugal force
O/OR(L*/2uR?) just balance. (L, the total angular momentum is (/(I+ 1) #2)2 which we
can approximate below as I for brevity.) Thus, at any £ and J there are many Rjs
because there is a distribution of Is. We can define some average R} at a given X and
J/, or since, in the relevant discussion in the text we were interested in knowing how
an average R in PST varies with temperature, we examine that quantity instead.

In this form, the psT model for the dependence of a bimolecular association
reaction rate on temperature, rather than on £ and J, reduces to the theory of Gorin
(1938), in which the separated fragments rotate freely in the transition state.

For the bimolecular reaction rate constant we then have in the standard way

kPST(T') = (Jm exXp | — (Vegr)/ kg T (214 1) dl) ( fm eXp [-Pz/zﬂkﬁ T (p/ph) dp)
. : 2mukeT/ 0 (2rukT)/h ﬂ

(B 1)

where Vi denotes V(R)+ L?/2ulR?, evaluated at the maximum of V.., (R), and depends
only on / and on the properties of V(R). The rovibrational partition functions of the
transition state in the numerator and that of the reactants in the denominator
cancelled in (B 1), since the fragments rotate freely in the psT transition state.
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The second factor on the right-hand side of (B 1) equals (kT'/2nu): )? and represents
the velocity-weighted factor for crossing the transition state region. In the first
factor on the right-hand side of (B 1), for a V(R) which is AR™®, the 0/0R(V,;) 18 zero
at B = R}, where R} equals ( (644 /L%). Equation (B 1) then ylelds

e = (2 oo mad)(2Df @2

where the constant (' denotes 3(644°):.
Several consequences follow from this expression: it is seen that L? seales with 7'

as kg T and so the first Parentheses factor in (B 2) varies as (kgT)? i/k, T, i.e. as
(kg T) Thus, the (kg T)? from the second parentheses’ factor more than compen-
sates for this inverse temperature dependence, and yields the well-known T depen-
dence for kST (T). Further since L? scales as kT and B} was seen above to vary as
L3, R} scales as Ts. More precisely, the average R}, given by (B 3), varies as 7%, and
so shifts to smaller values with increasing 7', as noted in the text and in Ral &

Truhlar (1983):

o . L3 oG LS
R = f (6A;1,/L2)Eexp[ % T] dL2/J exp[ k. T] dL2. (B 3)
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