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Dynamics of Electron Transfer for a Nonsuperexchange Coherent Mechanism. 2.

Numerical Calculations

R. Almeida’ and R. A. Marcus*

Noyes Laboratory of Chemical Physics,* California Institute of Technology, Pasadena, California 91125
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The expressions in part 1 are used to treat the dynamics of electron transfer in the donor-acceptor system D*BA via a molecular
bridge B. By use of a fast Fourier transform method, results are obtained for the maximum “population” of B~ and for other
properties for this coherent but nonsuperexchange model. Several approximate ideas on rate populations and energy distributions
are tested by using various values for the numerical parameters.

I. Introduction

In part 1 we explored the dynamics of electron transfer from
some donor D* to an acceptor A via a molecular bridge B, using
one form of a coherent mechanism.! A system was considered
such that the relevant orbital of B was readily accessible ener-
getically, so that a superexchange mechanism was not involved,
but such that B and A were so strongly coupled electronically that
a conventional (incoherent) two-step electron transfer, D* — B-,
B~ — A, involving a chemical intermediate B~ was also not ap-
propriate. In the present article we describe some numerical
applications of the formalism outlined in part 1. Synthesis of
suitable D*BA systems may permit the observation of this type
of mechanism.

In the formalism given in part 1, the nuclear motion accom-
panying the electron transfer in D*BA was approximated with
three collective vibrational coordinates, there being three reactive
centers, D*, B, and A. By use of equal vibration frequencies to
simplify the problem and to extract some of the features, the
three-coordinate problem for the electronic—nuclear motion was
reduced to a two-coordinate one by a suitable rotation of the
coordinate axes. A nonadiabatic mechanism was then used for
the initial loss of the electron from D*. The ensuing nuclear
motion on the BA potential energy surface was then separable
into two one-coordinate motions. Some numerical results based
on this formalism are given in the present article to illustrate some
of the consequences of the mechanism, particularly for the
transient amount of B~.

We first consider numerically in section II a simplified treat-
ment, one which contains only one collective coordinate instead
of three and which serves to test several features. In particular,
results for the decay of D* are explored to see whether they are
well-represented by a single-exponential decay (section III). The
numerical rate constant obtained there is also compared with that
found from various Golden Rule and semiclassical estimates. In
section II1 results for this one-coordinate system are also given
for the maximum population of B(¢), determined by projecting
the electronic wave function onto a basis set wave function de-
scribing the D*B-A electronic configuration. The question of
whether this B7(¢) appears to follow, roughly, the kinetics of a
two-step electron-transfer mechanism, D*BA — D*B-A — D*-
BA", with successive rate constants k; and k,, but with an ab-
normally high apparent value for k,, is explored in section II. In
section III, results for the three-collective-coordinate system are
given, and correlations are drawn between “B,,,” for various
molecular parameters and an effective “elapsed time” spent in the
D*B-A configuration.

II. One-Coordinate Test Calculation of Several Properties

() Formalism. As in part 1 we introduce electronic wave
functions to describe the three electronic configurations D*BA
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(i=1),D¥B A (i = 2), and D*BA~ (i = 3). In a standard fashion
the Schrodinger equation is again converted then into a set of three
coupled equations for the nuclear wave functions &, in each
electronic state, namely, eq 2.4 of part 1. However, even at the
outset there is now only one nuclear coordinate 2. Equation 2.4
of part 1 can be written for this case in dimensionless quantities
as

1 9 3 0%
- —¢ + }EHU@J» =iy

"3 33 2.1)

where the H,; represent various electronic matrix elements. As
before, H,; >~ 0 and H,, and H,; are treated as constants. The
diagonal quantities H; represent diabatic potential energy curves
for the three electronic configurations. In the usual vibrational

harmonic approximation, they are
Hy = Yy2?
Hy = Yz - a)’ + AE; (2.2)
Hy = Y(z - b)2 + AE);

a and b being equilibrium nuclear displacements for the electronic
configurations 2 and 3 relative to that for I. When the a in eq
2.2 is chosen so that @2 = a,% + a,2, where the a;’s are defined
in part 1, the present reorganizational parameter A, for the ¥,
— ¥, step, namely, !/,a?, is the same as that (!/,a,% + '/,a,%)
in the three-coordinate problem. Similarly, when one sets b* =
a,> + a;%, A3 is also the same in the one- and three-coordinate
cases. (However, the Ay’s differ.) The H,/'s in (1.1)—(1.2) are,
as in part 1, the actual matrix elements divided by Aw, where /27
is the vibrational frequency.

In a real system, dissipation of the energy after (and during)
the ¥, — ¥, — ¥, transition occurs by redistribution of that
energy among the numerous degrees of freedom. To avoid spu-
rious oscillations of the wave packet in the simple model described
by egs 2.1-2.2, after the system has reached the z =~ b region,
the H,; in eq 2.2 is used only for z < b, while for b < z < L the
(z - b)? term is set here equal to its value at z = b and an absorbing
boundary is introduced at a boundary,? z = L, L > b. Equation
2.1 was then integrated numerically by using a fast Fourier
transform (FFT) routine.>* The latter method is briefly sum-
marized in Appendix A.

(ii) Calculation of Rate Constant k. and Various Approxi-
mations. From a semilog plot of the population in state ¥, vs
time, [|®,(z.t)]* dz, determined from this FFT solution, a rate

(1) Marcus, R. A; Almeida, R. J. Phys. Chem., preceding paper in this
issue.

(2) Almeida, R.; Metiu, H. Unpublished results.

(3) (a) E.g.: Feit, M. D; Fleck, Jr., J. A,; Steiger, A. J. Comput. Phys.
1982, 47, 412. Kosloff, D.; Kosloff, R. J. Comput. Phys. 1983, 52, 35. (b)
Alvarellos, J.; Metiu, H. J. Chem. Phys. 1988, 88, 4957. Almeida, R. Ph.D.
Thesis, University of California, Santa Barbara, 1987; Chapter 5.

(4) We used the FFT routines available in the IMSL Library.
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Figure 1. Typical semilog plot of logarithm of survival probability D*(r)
vs t for the one-coordinate calculation. AE,, =-1.5, AE;;=-15,m =
0, and remaining parameters are given in footnote a of Table I; a and
b in eq 2.2 are both positive.

constant was calculated. The decay was typically essentially single
exponential, a plot being given in Figure 1. (Conditions for an
alternative damped oscillatory behavior, as in Figure 3, are given
later.) These rate constants are compared later in section IIT with
values obtained from several approximate expressions that are
summarized in Appendix B.

In each of these latter approximations a Golden Rule expression®
was used. Written here in terms of one coordinate, the rate
constant k, for reaction from a specific vibrational state m is

k.= 2ww|H12|2:|(<I>m(z)|¢,,,r(2)(z))|25(Em -E,») (23)

where ®,,(2) is the vibrational wave function appropriate to H,,(z),
treated as a harmonic oscillator potential, as in eq 2.2, and the
®,.? in one approximation denotes a nuclear wave function ap-
propriate to H,,(z). For comparison, in a different approximation
it denotes the eigenfunction &, appropriate to the lower adiabatic
surface E_(z) arising from the (¥,,¥;) pair (eq 2.4). The cor-
responding values of k, are denoted later in Tables I and II by
kuo and ky, respectively. This kyg is, thereby, the microcanonical
version of the usually calculated Golden Rule rate constant in the
literature. In an added approximation in each case the final-state
eigenfunction @, ? is replaced by its semiclassical stationary-phase
counterpart. The resulting Franck—Condon matrix element

{®,,(2)|®,,P(2)) in eq 2.3 is given by eqs B4-B8, in both these .

diabatic and adiabatic choices for ®,,?, and the corresponding
k.’s are denoted in Tables I and 1T by kyo* and k%, respectively.
The adiabatic potential curve E_(z) referred to above is given by

E(z) =
W[Hy(2) + Hyy(2)] = ([Hyp(2) = Hys(2)]? + 4H YY) (2.4)

When the initial vibrational state m is 0 in Tables I and II, the
energy of the initial vibrational state was close to AV, the potential
energy at the crossing point of H,,(z) and Hy(z) potential energy
curves (cf. ref 6, eq 2)

AV = (/4 + AEp/\p)? (2.5)

For this case, namely, for all m = 0 cases in Tables I and 11, a
uniform approximation (Airy function), given by eq B7, was used
for the semiclassical matrix element.

(iti) Effective Rate Constant k, for the Disappearance of B™(1).
Both for the one- and the three-coordinate calculations it is useful
to know whether the coherent dynamics for the “B~(¢)”, obtained
numerically, can be fitted by an apparent two-step kinetic equation,
in which the effective rate constant k, of the second step is much
larger than the theoretical adiabatic maximum for &, in a two-step
(incoherent) process, namely, w/2x. A method of defining B(t),
by projecting the time-dependent wave function onto the diabatic
state W, and integrating over the nuclear coordinates, was used
in part 1 (eq 4.8). The corresponding equation for the one-co-
oordinate case is

B = fdz | (¥@OW)P = [dz (@20 (26)

(5) E.g.: Merzbacher, E. Quantum Mechanics; Wiley: New York, 1970.
(6) E.g.. Marcus, R. A,; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265.
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TABLE [: First-Order Rate Constants (ps~') for Various Initial
Vibrational States m (One-Coordinate Calculation)?

AE), ky? kat ka*? kyo®  kyo*?

-0.5 1.99 2.17 2.20 2.09 2.08
0.0063  0.011 0.011 0.022  0.026
0.55 0.56 0.57 0.84 0.87
0.80 0.91 0.91 1.04 1.06
0.78 0.83 0.82 0.73 0.71

-1.5 1.52 1.62 1.64 1.56 1.56
0.0094  0.0091 0.0089 0.062  0.064
0.61 0.67 0.70 0.83 0.85
0.59 0.63 0.62 0.52 0.51
0.092 0.095 0.090 0.15 0.14

1.11 1.21 1.22 1.15 1.14
0.10 0.11 0.11 0.22 0.22
0.61 0.7t 0.72 0.73 0.73
0.14 0.15 0.19 0.11 0.10
0.069 0.053 0.050 0.12 0.13

=35 092 1.07 1.06 1.01 0.99
0.12 0.13 0.13 0.23 0.23
0.54 0.63 0.64 0.62 0.62
0.067 0.087 0.085 0.032  0.029
0.16 0.13 0.14 0.22 0.23

9For a —AE); of 0.5, 1.5, 2.5, and 3.5, in dimensionless units, the
values of A;, were (to three figures) 1.62, 2.82, 4.30, and 5.52, respec-
tively, A3 was (to three figures) 21.9, 21.4, 21.0, and 20.9, respectively,
and -AE; = 15, H;; = 0.25, Hy; = 2.5. The height AV, of the cross-
ing point of H,, and H,, was between 0.15 and 0.2, namely (as calcu-
lated from eq 2.5), 0.194, 0.155, 0.188, and 0.165, respectively. The a
and b in eq 2.2 were chosen to be of the same sign. ®Calculated using
the FFT method. “Calculated using only the cited m» term in eq 2.3
and using eq B1 for the &,.(2) in eq 2.3 and integrating in (®,|®,)
numerically to obtain this matrix element. Calculated semiclassically
using only the cited m term in eq 2.3 and using eqs B4-B6. For m =0
eq B7 was always used. ¢Calculated from eq 3.13 of part 1.
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TABLE H: First-Order Rate Constants (ps™') for Various Initial
Vibrational States m (One-Coordinate Calculation)?

m AEIZ Al-/l klb kAc kA"d kHO‘ kHoud

0 076 0.44 0.54 0.52 0.44 0.41
1.32 1.35 1.33 1.47 1.56
0.2t 0.16 0.17 0.080 0.081
R 0.14 0.13 0.23 0.24
0.89 0.68 0.67 0.69 0.69

-0.5 054 0.76 0.78 0.77 0.70 0.67
. 080 0.93 0.94 1.09 1.12
0.50 0.55 0.57 0.46 0.47
0.0091 0.0097 0.0089 0.00014 0.00042
0.45 0.45 0.54 0.54

-1.5 020 1.23 1.46 1.45 1.42 1.40
0.094 0.095 0.093 0.16 0.16
0.82 0.83 0.83 0.87 0.88
0.33 0.39 0.59 0.35 0.53
0.053 0.064 0.061 0.031 0.028

-2.5 0025 142 1.74 1.86 1.72 1.89
0.17 0.16 0.15 0.11 0.11
0.09 0.11 0.12 0.30 0.31
0.61 0.61 0.63 0.71 0.72
0.28 0.59 0.59 0.41 0.40

?We have set —AE}; = 15, A;; = 3.03 (to three figures), \y; = 21,
Hy; = 0.25, Hy; = 1.75, and Aw = 100 cm™.. The a and b in eq 2.2
were chosen to be of the same sign. ®Calculated using the FFT me-
thod. The R in the fourth entry of this column denotes a resonance-
like behavior. ©*¢See corresponding footnotes in Table I.

PLWN—O AW —O BWLWN—O bW —O
(=]
w
=]

In order to interpret the results on k,, an estimate is needed
for the region approximately corresponding to “B™" during the
motion along the z axis. As in part 1 we take it to be, roughly,
the distance between the intersection of the H,(z) and Hy,(z)
curves, which occurs at z;,% and the intersection of the Hj,(z)
and Hs,(z) curves, which occurs at z,;3%. Using the arguments that
led, in part 1, to eqs 5.5 and 5.6 there for z,;* and using an identical
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argument for z;,%, but with AE, replacing AE,; and A, replacing
A,3, we obtain

233t = z12P = Mgy + AE) (X)) 12 4 (N = AE ) (20712
2.7)

Again, as in part 1, if the local velocity in this region is denoted
by v,, we have v, = [2{E, — Hy(2) + Hyp(2,9))]'/2, or if the E_(z)
curve had been used instead of the H,,(2) one, v, = [2{E, - E_(z)
+ E_(2,9}]'/%, both as in part 1, where E, is the initial energy.
A rough approximation to k, is given by

ky ~ 0,/|z25* = 212" (when wy; ~ 1) (2.8)

where D, is some mean z velocity in the above z interval, as in eq
5.9 of part 1, and wy;, is the probability of a 2 — 3 transition when
the system crosses the “intersection region”™ at z = z,;%.

(iv) The Rate Constant k, for the Three-Coordinate Calcu-
lations. The Golden Rule approximation was used for , for the
three-coordinate system. The parameters were chosen to yield
some fixed value of &, for an initial vibrational state m = 0, so
as to explore the effect of several other parameters when the rate
constant for formation of the population “B~(¢)” was held fixed.
The low-temperature standard form of the rate constant was used,
since it corresponds to reaction from m = 0 (cf. ref 6, eq 71):

ke = 2mw|H e\ /T(p + 1) (0K) (2.9)

where p = -AE|,.

(v) The Intermediate Population “B(t)” for the Three-Co-
ordinate Calculation. The dynamics of the population B~(¢) of
the intermediate B~ was computed for two different potential
energy surfaces for the (2,3) pair of states. For the first of these
surfaces, calculations of B~(¢) were made using the coupled diabatic
states, the analogue of the present eq 2.1, described in part 1, and
in the second, for comparison, a purely adiabatic (2,3) surface
E_(y,7) there was used, the analogue of the present eq 2.4. The
time-dependent Schrodinger equation was also described in part
1. The numerical treatment was made for the one-coordinate
numerical integration over the z motion (eq 4.7 of part 1), which
followed from an analytical separation of the x and y motion there
from that of z. Details of the numerical (FFT) method are given
in Appendix A.

The three-coordinate analogue of eq 2.7 for the region z,;* -
2,5} occupied by “B™" was obtained in part 1:

233t = 2138 = [(AEy + My3) + (AE 1) ~ M)A/ N)]/ (2Ay)!/2
(2.10)

and eq 2.8 is used for k,.

IIl. Results

(i) One-Coordinate k’s. The results for the FFT-calculated
time evolution of the population of the initial electronic config-
uration 1 typically followed a first-order kinetics plot after a brief
transient period, as in Figure 1, and so was describable by a
first-order rate constant. These one-coordinate calculations were
made for Tables I and I1 using values of the parameters specified
there in the footnotes.

The rate constants obtained from the numerical (FFT) solution
for k, are denoted in Tables I and II by &, and are compared there
with those obtained by using the various approximations described
earlier in section [L.ii and in Appendix B. A comparison with the
semiclassical results is helpful in providing some insight on the
dependence of k, on the initial vibrational state and on the de-
pendence of the quantum-calculated populations B~(¢) on various
parameters.

To represent the results of the many B(¢) vs ¢ curves, it is useful
to see whether they are describable phenomenologically, for the
range of parameters chosen, by an apparent two-step sequence,’
with rate constants k| and k,, where k, is now an effective rate
constant, an adjustable parameter. This possibility was explored
here for a number of cases, an example of such a fit being given
in Figure 2. The fitted k, there is 24 ps~!, which is 8 times the
maximum adiabatic value of (at Aw = 100 cm™) 3 ps™!. Other
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Figure 2. Fit of B (¢) in the 1-D calculation to an effective two-step

incoherent formalism, using only k, = 24 ps™' as a single empirical

parameter. For these results we have AE,, = ~2.5, AE,; = -15,and m

= 0, and the remaining parameters are given in footnote a of Table I;

a and b in eq 3.2 are both positive.

1

D"(t)
0.9l

0.8 . . . . . .
0 0.8 1.8 2.4
Time (ps)
Figure 3. Example of the time evolution of D*(¢) in a 1-D calculation
for the case when w,; is made quite small (see text), by having the 2 —
3 transition in the inverted region (—AE;; > Ay3), and with a large value
of H,;. In the case depicted, ~AEy; = 19.5, A5 = 3.08, -AE;; = 1.5, and
Az = 3.58.

TABLE IIE: k;’s Fitted to B~(t) Curves, One-Coordinate
Calculations?®

m AE), ky, ps”! k, ps”! 25t - 215!
0 -0.5 1.99 29 0.41
0 -1.5 1.23 28 0.67
0 -2.5 1.42 24 0.57
0 -35 0.92 25 0.63

9The molecular parameters (A’s, etc.) are given in footnote a of Ta-
ble I.

results for fitted k,’s are given in Table III. Also given there
are the sizes of the region z,;% — z;,* “occupied” by B~. It is easy
to find molecular parameters for which such a two-step pheno-
menology is inappropriate, for example, when w,; is deliberately
made very small;” an example is being given in Figure 3. Here,
the decay of D*(r) is strongly oscillatory, in contrast with the
behavior in Figure 2, where the decay is largely monotonic. (The
absence of a dissipative term in the D*BA stage of the model
permits the oscillations to occur.)

(ii) Three-Coordinate k., By, and {(n’y. The population of
B (1) was studied numerically here for the case where the k,
calculated from the Golden Rule eq 2.9 for m = 0 was 0.92 ps™!.
The parameters used are given in Table IV. A small value of
A, corresponds to a bridge with negligible reorganization energy.
Two sets of values for the ratio H,3/H |, are used, namely, 10 and
6. In each calculation the maximum of the intermediate popu-

(7) For example, when the 2 — 3 transition is in the “inverted” region,
discussed in ref 6 (~AE,; > Ay), a large value of the H,; matrix element makes
the 2 — 3 process highly nonadiabatic and so makes w,; small. There then
tends to be an oscillatory behavior between the D*BA and the D*B-A elec-
tronic configurations, instead of a largely first-order decay of D*BA (cf.
Figure 3). In all of the results in Table IV either ~AE,; < A\y; or ~AE;; =~
Ass.
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Figure 4. Plot of B, Vs 253" - 215%, given by (2.7), for Hy3/H,, = 6, and
several families of A’s used in Table [V: O, A\; ~ X, (within a factor of
2): @, =0.1; X, \/\; ~ 1/5t0 1/6. Data are taken from Table IV.

8 r1
6
B,.
(%)
4
2 k-
0 . 1 L I O ]
-1.0 -05 0 05 1.0 15
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Figure 5. Plot of B p,, vs z55° — 2,54 given by (2.7), for Hy/Hy, = 10
(data in Table IV).

lation is given in Table V. This maximum B~ population is
denoted there by B, When all matrix elements, H,,(z), H43(2),
and Hj;(z), are used in the propagation (eq A1l for H,) and by
B 44 max When, for comparison, only H,24 is used (eq A12). Plots
Of B oy and of Byy may for Has/Hy, = 6 and 10 are given in Figures
4-7,

Two plots of B~(r) vs ¢ are given in Figures 8 and 9, with a fit
(adjusting only k) to the two-step sequential formalism. Figure
8 corresponds to the ninth row of Table IV (H,/H;, = 10), and
the fit yields a k, of 22 ps™'. Figure 9 corresponds to the fourth
row from the bottom (H,;/H,, = 10), and the fitted k, is 12 ps™'.
In a third result, corresponding to the same row but with H,3/H,,
= 6, the fitted k, was only 4.5 ps™!. This last value is seen to be
smaller than the corresponding k, at H,3/H,, = 10, presumably
because of some reflection of the wave packet at the crossing of
the H,y(z) and Hy;3(z) potential energy curves. All of these k,’s
are higher than the maximum adiabatic value for k, of 3 ps™! (at
hw = 100 cm™).

In two of the above cases the distribution of the y vibrational
states in the wave packet was analyzed. In the case of the ninth
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Figure 6. Plot of By may Vs 233} — 23}, given by (2.7), for Hy3/Hyy = 6
(data in Table V).
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Figure 7. Plot of By max VS 223% — 2,5}, given by (2.7), for Hyy/Hyy = 10
(data in Table IV).
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0.02f !
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Time (ps)

Figure 8. Fit of B(1) in the 3-D calculation to an effective two-step
incoherent formalism, using only a k, = 22 ps™! as a single empirical
parameter. These results correspond to the ninth row of Table IV, in
column 10.

row in Table IV, with H,3/H,, = 6, the population distribution
peaked at n’ = 4, with an average value (n’) of 3.9. In the case
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TABLE IV: Maximum Population P, for Several Potential Energy Surfaces®

-AE), —AEIJ )‘l A A B-ad,max*b % B_max’ % 223‘ - 212x (x0.1) B—ad,max!t % B_ma)u %
3.5 21 2.85 29 18.15 1.5 6.9 -2.0 1.3 6.0
2.5 21 2.4 2.4 18.6 1.4 5.8 -2.0 1.3 35
1.5 21 1.9 1.9 19.1 1.4 S.1 -2.0 1.3 3.0
3.5 19 5.65 0.1 15.35 1.6 4.8 -0.4 1.5 5.4
1.5 19 37 0.1 17.3 1.8 4.4 -0.4 1.8 4.1
2.5 21 24 2.4 20 2.4 6.5 0.4 2.2 3.7
1.5 21 1.9 1.9 21 2.6 5.9 1.1 2.5 295
3.5 21 2.85 29 21 3.1 7.6 1.1 2.4 38
35 17 5.65 0.1 15.35 2.9 6.4 3.2 2.5 34
1.5 17 3.7 0.1 17.3 3.1 5.85 3.0 3.0 3.45
1.5 15 3.7 0.1 15.3 3.4 6.1 3.2 3.2 34
1.5 15 3.7 0.1 16.3 4.2 6.3 4.8 4.1 4.0
35 15 5.65 0.1 15.35 5.0 7.05 6.8 43 4.6
2.5 15 4.7 0.1 16.3 5.0 7.15 6.5 4.6 4.8
1.5 15 3.7 0.1 17.3 5.1 7.2 6.4 48 495
2.5 15 4.0 0.8 17 5.85 9.9 6.8 5.3 5.4
35 15 5.0 0.75 16 6.0 9.4 7.1 5.3 5.6
25 15 35 1.3 17.5 7.9 14.4 7.1 5.6 59
2.5 15 4.0 1.75 17 9.0 15.0 7.3 6.2 6.6
35 15 3.0 1.8 18 9.6 16.4 7.2 6.05 6.6
35 13 5.65 0.1 15.35 7.8 12.2 10.4 6.5 6.6
1.5 13 3.7 0.1 17.3 8.1 13.7 9.8 7.1 7.3
When AE,; = ~1.5 and AE,; = -3.5 a k, = 0.92 ps™! was used, while when AE|, = -2.5 ps™' a k, = 0.93 ps™! was employed. ?H,/H,, = 6.
‘Hy/Hyz = 10.
(or k™), particularly for the smaller &,'s. Nevertheless, for our
0.06 other purposes we have used the ko in the subsequent calculations
| for the three-coordinate system, since the kyq expression, eq 2.9,
D‘(t) i is particularly simple and since kyq is rather close to kg, par-
0 04 ticularly for m = 0, for the parameters chosen. Use of k, might

]
|
|

0o ‘ 10 20
Time (ps)

Figure 9. Fit of 87(¢) in the 3-D calculation to an effective two-step
coherent formalism, using only a k, = 12 ps”! as a single empirical
parameter. These results correspond to the fourth row from the bottom
in Table IV, in column 10.

of the fourth row from the bottom in Table IV, with Hy3/H\, =
10, the population peaked between n’ = 4 and 5, with an average
value (n”) of 4.8. The values of (n’) predicted from the classical
expressions, eq 5.1 of part I, if the system after the 1 — 2
transition moved on the H,, surface, are 3.5 and 3.4, which are
substantially less than the observed (n")’s of 3.9 and 4.8, re-
spectively. However, if the system near (y,0,z,7) is better described
as moving on the E_ surface rather than the H,, as a result of
the 1 — (2,3) transition, use of eq 5.3 of part 1 shows that the
additional energy shared among the (y,z) motion is, in the above
units, about 0.8 and 1.7, respectively. If, as in the diabatic case
for the parameters chosen, the large proportion of the excess goes
into E,, the predicted (n’) could then be as large as 4.3 and 5.1,
Thus, the diabatic (3.5 and 3.4) and adiabatic (4.3 and 5.1) values
for (n’) bracket, in each case, the observed (n’)’s, 3.9 and 4.8,
respectively. It seems clear that the system after the 1 — 2
transition has, due to the (2,3) electronic coupling, sensed the
presence of the E_(z) adiabatic surface at z,°.

IV. Discussion

(/) One-Coordinate k.’s. From the results in Tables I and IT
there is seen to be reasonable agreement between the one-coor-
dinate numerically calculated (FFT) reaction rates and those
inferred from the various approximations. The use of adiabatic
final-state wave function, leading to the adiabatic rate constants
k4 and their semiclassical counterparts k,%, is seen to lead to a
slightly better agreement, on the average, with the numerical
values, k|, than does the harmonic-calculated rate constant ko

also have entailed consistency questions regarding the effective
electronic matrix element to be used instead of H, in the Golden
Rule expression, eq 2.3. Plots of k,(T) (not shown), which tend
to average over the differences in the various calculations for
different m’s, were all very similar for the parameters examined.

The substantial decrease in the numerically calculated k,’s on
going from m = 0 to m = | in Tables I and I, and the various
oscillations of k; with m there, can be seen to be due, in semi-
classical terms, mainly to variations in the phase angle in the
matrix element for the overlap of the vibrational wave functions,
for example, in the sine term in eq B4. When the results are
canonically averaged to yield a temperature-dependent rate
constant, there is an averaging over these oscillations and, in fact,
the results for k,(7) were usually close to those which are obtained
when the sin? term for each m = | term was replaced by an
average value, 1/2.

Plots of k.(T) vs the temperature T typically had a negative
temperature dependence when AV, given by eq 2.5, was smaller
than the zero-point energy, Aw/2 (50 cm™ in the present case),
i.e., whenever the AV, in dimensionless units was below 0.5. For
all of the results in Table IV, AV is in the neighborhood of 0.2.

(it) Population of B~. (a) Maximum Value, B p,,. It is useful
to compare the results for the maximum population of B~, B,y
given in Table 1V and Figures 6 and 7, with those which would
be calculated from an incoherent mechanism, namely, a mecha-
nism in which the electron hops from D* to B and then to A. If
the rate constants for the D* — B~ and B~ — A~ are, as denoted
earlier, k; and k,, the maximum population of B~ by this mech-
anism during the reaction, B .y, is given by'?

B-max = (kl/kz)kz/(krh) (41)

If we use the value 0.92 % 10'2 s7! for k, and use the maximum
adiabatic value w/2w for k,, which for the given frequency is 3
X 1012571 (100 cm™), then B, is estimated from eq 4.1 to be
about 18%. Examination of the results for B ,, in Table IV and
Figures 4 and 5 shows that they are appreciably less than this
value, reflecting the coherency of the overall D* — A~ electron
transfer in the present model. Thus, if eq 4.1 were used to fit the
observed B ,,, an effective k, much larger than this maximum
adiabatic value would occur for the present mechanism. Indeed,
the results in Table I1T illustrate this point, the effective k, in the
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examples cited being a factor of 8 larger than the maximum
adiabatic value.

Examination of the results in Table IV and Figures 4-7 reveals
a number of additional features, particularly in the comparison
of B max and B4 max. Differences between the two reflect a re-
flection of the wave packet at the (2,3) intersection in the B,
case. The differences in Table IV and Figures 5 and 7, for the
parameters used, are relatively small (columns 9 and 10) and are
larger at a somewhat smaller H,; (columns 6 and 7 and Figures
4 and 6). Further, there is seen in Figure 4 to be a correlation
between z,3! ~ z),} and the value of B, for various series of
the N’s. A correlation also exists in Figure 5. The scatter in that
figure at small z,3* — z);* may be due to complexities in the
overlapping of the two surface crossings when H,; is large, but
it was not explored. In plots of B 4., in Figures 6 and 7, these
complexities are absent (only one surface crossing), and there is
seen to be less scatter.

It is useful to consider a few examples for the rough estimate
of B .4 max based on egs 2.7, 2.8, and 4.1 and to compare the
estimate with values in Table IV. Two examples are given, both
where the y coordinate acquires most of the excess energy ~ AE|,
during the motion in H,, after the (1 — 2,3) transition. In this
case the systems have an excess z-mode energy E, of about Aw/2
(0.5 in dimensionless units) in the vicinity of z,°. They have
somewhat less than this amount in the vicinity of z;,* and
somewhat more in the vicinity of z,;%. The velocity v, in di-
mensionless units is 1 (since '/,0,2 = 1/,). Averaging two results
in Table TV of B g max of 4.1% and 4.3% for the case where 235}
- 2,5} equals 0.48 and 0.68, in dimensionless units, respectively,
we see that k, (=1/7,) is about 1.8 in dimensionless units.
Conversion to ps”' by multiplying by w yields 34 ps™! for k,.
Equation 4.1 then yields 2.3% for B ygmax compared with the
actual value of 4.2%. Similarly, when B4 1, is averaged over
the last five values in Table 1V, it is about 6.3%, 243} ~ z),} is about
0.8, and so k, ~ 1/0.8, i.e,, 1.25 in dimensionless units. This value
corresponds to a k, of 24 ps™' and thereby t0 a B,y p,, Of 3.4%
according to eq 4.1, again roughly a factor of 2 smaller than the
observed value of 6.3%. These values of k, may be compared with
those of about 25 ps~! estimated by fitting the data of one-co-
ordinate calculations (Table 111} to a two-step type kinetic ex-
pression.

As a footnote we consider the question of an elementary step
in the bacterial photosynthetic reaction center. In this case it has
been suggested® in the interpretation of some low-temperature data
on both Rps viridis and Rb. sphaeroides that, in electron transfer
from an electronically excited bacteriochlorophyll dimer BChl,
to a pheophytin BPh via a chlorophyll monomer BChl, the esti-
mated maximum population of BChl™ could not exceed 2%. The
value for the initial rate constant k; for forming BChl~ was close
to that employed in this paper. Examination of the B, in
Figures 4 and 5 shows no results close to this value. (Results with
A; = 0.1 are intended only to simulate a rigid bridge. For BChl
a substantially larger A, is expected.) However, perhaps the 2%
estimate in ref 8 is only a rough one. Recently, new and unex-
pected results® have been obtained for Rb. sphaeroides at room
temperature, apparently showing a substantial value for B, and
with k,/k, ~ 4. Studies in that laboratory at low temperatures
are planned to compare with those obtained® earlier. At present,
it should be added, none of these results, old and new, are univ-
ersally accepted, and further published works will be needed before
the issue of mechanism is settled.
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Appendix A: The Fast Fourier Transform Method

In the calculations made in this paper, a one-dimensional vi-
brational wave function was propagated by using a fast Fourier
transform (FFT) method.® For completeness it is reviewed briefly
here. In the method an operator exp(—itH,) is written in the form

exp(-itH,) = [exp(=itH,/M)]™ = [U(t/M)]¥ (A1)

where a short-time propagator U(t/M) is introduced, defined in
eq A2, and where the number M is taken large enough so as to
make the error term in (A2) small. We have for U(71)

U(r) = exp(—itH, /2) exp(-iTK,) exp(itH,/2) + O(7%)
(A2)

7 denoting t/M. Here, K, denotes the nuclear kinetic energy
operator (= !/, 3/8z% in the z representation). In the remainder
of this Appendix we give the method for the three-coordinate case,
where the evolution is discussed on the (2,3) surfaces. For the
one-coordinate case, the evolution was treated on the (1,2,3)
surfaces, and the sums in (A3)-(A8) are then over i = 1, 2, 3.

Hy is the electronic Hamiltonian for motion on the (2,3) pair
of curves:

3 3
H, = "Zz W) (Y Hl W) (T} = §|ai><ai|He1|ai><ai| (A3)
ij= i=

where | ;) is the ith diabatic electronic state and |a;) refers to
the ith adiabatic electronic state (cf. eq A12 for ja,)).

We define |z,,) as the eigenstate of the nuclear position operator
z defined on a grid {z,,}",.=, and write the total z wave function,
a function of 1, as

N 3
() = Z=1 Ezlzmﬂ‘l’i)‘l’i(zm,t) (Ad)

where V is the number of grid points, the sum over / is over the
diabatic electronic states 2 and 3, and ®,(z,,.?) is the value of the
nuclear wave function at (z,,?) for the ith electronic state. The

-total wave function at time ¢ + 7 is given by |¥(1+7)) = U-

(m}¥(1)). The long-time propagation is then achieved by suc-
cessive applications of the short-time propagator (A2).

In order to calculate the U(7) in eq A2, the exp(-itH,/2) in
eq A2 is computed in a representation in which H, is diagonalized
with respect to the nuclear and electronic states. In particular,
an adiabatic description is used for the electronic states and a
coordinate description for the nuclear motion:

3N

Hel = ZZ ZIIaI‘)Izm)ei(zm)(Zml(ail (AS)
1=im=

where the ¢(z) (i = 2, 3) denote the £.(z) in the text. For

diagonalization of exp(-i7K,), a representation in which KX, is

diagonal is used, namely, a diabatic description of the electronic

states and a momentum representation for the nuclear motion:

3 N
K. = Kzg Z_]I\I’i>|zm)<zm|< Vi (A6)

We next introduce momentum eigenvectors for the nuclear motion
|k,), there being the set of points {k,}",-, on a reciprocal space
grid3®  Using the completeness YN, |k, (k] = 1 and
S lzm? (Zml = 1, we have

I NN N
K. = ZHZI le‘l’i)lzl){Zl(Zzlk,.>(kn2/2)(k,.lzm)}(zml(‘l’,-l (A7)
i=2l=1 m= n=
Here (zk,) denotes a discretized form of the plane wave (z|k).
Therefore, expressions of the form ", {ka)z;)f(z;) represent a
discretized form of the Fourier transform of f(z), which will be

denoted as F[f].
By using eqs A2—-A7, we obtain
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@,-(Zm,l"'T) =

303
2 LTy exp(=ire;/2) T, Fllexp(~itk? /2) X
j=2p=2

303
%kEZF[ Tpr exp(—ire,/2) Trk*¢k(zmﬂt)” (A8)

Here, the matrix element T}; denotes (¥ /a;).

To implement the method, the reaction coordinate z is first
discretized, using a grid of NV points and length L, with Az (=L/N)
being smaller than the length scale over which the nuclear wave
functions &, change significantly. At each point of the grid the
initial wave functions &, are transformed into adiabatic wave
functions T,.'®,, then operated on with the diagonal operator
exp(—iAy7/2), diagonal in this representation, and then trans-
formed back into the diabatic representation, as in eq A8. This
step couples the diabatic electronic states. Next, each diabatic
component &, is Fourier-transformed into the k-momentum
representation, operated on by exp(iK,7) and changed back into
the z-coordinate representation using an inverse Fourier transform
(cf. eq A8). These operations couple the amplitudes {®,(z,,)} at
different points in the grid. To perform the Fourier transforms
involved at this stage, an efficient fast Fourier transform algorithm
was used.*

The times involved in the computation were long enough to
allow the wave function @ to reach the edge of the grid. When
this happens, the piece of the wave function reaching the edge
of the grid would normally reappear at the left-hand side, since
the fast Fourier transform method uses periodic boundary con-
ditions. Such a reappearance, if allowed to occur, would distort
the calculated values of the rate constant. To avoid this spurious
consequence, an absorbing boundary condition was, in effect, used,
namely, by using a complex-valued potential which removes the
wave function before it reached the grid edge,? namely

Hi® = H; — iVyu(2) (A9)

where H; are the diagonal elements of the potential matrix
and Vabs(z) causes the absorption

Vaes(2) = exp[v(z - z,)] (A10)

Here, z; is a point close to the right-hand edge of the grid and
v is a parameter that controls how rapidly ¥, will decay to zero
near that zone. The imaginary part of the potential, namely,
—iVa(2), was chosen such that it tended to zero everywhere except
near the edge of the grid.

We give below some further details on the calculations men-
tioned in the text.

When a purely adiabatic description is used for motion on the
(2,3) pair of surfaces, to compare with the previous calculations
based on the H, in eq 4.4 of part |

303 1 82
Hz=ZZ|\I/i> ‘5 6_226Ij+Hij(z) (‘I’jl (Al1)

i=2j=2

an adiabatic expression H,* was used instead of this H,
4 1 8 ) .
H = |a))| -= — + E(2) |{a,] (adiabatic) (Al2)
2 922

where |a,) is the adiabatic electronic state function for the lowest
electronic adiabatic eigenvalue E_(z). In this second instance the
z adiabatic electronic-vibrational state function, ®,2(z,1)|a,),
where ®,29(z,1) is the nuclear part and |a,) the electronic part,
is next transformed into its diabatic components.’® The z nuclear
wave function ®,(z,r) for electronic state 2 is then given by

3
®y(z,0) = Zszj(Z) p(z,1) = Ty(z) $24z.0) (A13)
=

since only one adiabatic electronic state |a,) is considered. Here,
Ty is an element of the matrix T mentioned above, which
transforms from the adiabatic to the diabatic representation, T;{z)
= (¥afz)); |¥,) and |a,(z)) are the ith electronic diabatic and
the jth adiabatic electronic state at the cited value of z, respectively
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(i=2,3j=2,3). The|afz)) and hence the T;(z) depend
parametrically on z. The transformation matrix T satisfies the
relation A, = T'HT, where H is a matrix with elements given by
the H(z) terms in eq A1l and A, is the diagonal matrix whose
elements are the adiabatic eigenvalues E£,(z) and E_(z). The
columns of the T are the eigenvectors of this H,.

Appendix B: Approximations Used for k,

(i) Airy Function Calculation for ®,,(z). The pair of potentials
Hyy(2), Hy3(z) in eq 2.4, given by eq 2.2 with the modification
noted in section ILi for x > b, and with a coupling element H,3,
are used to calculate E_(z) and, thereby, the ®,(z)’s. The
reactant’s vibrational wave function ®,,(z) for electronic state 1
is a normalized bound state wave function, while the wave function
&, given by the &,, is normalized to a Dirac delta function in
energy differences,'® the latter in units of Aw.

This approximation for ®, employs a uniform semiclassical
function based on an Airy function, which when normalized to
a Dirac delta function is given by'!

Bu(z) = 2'2LED] VA (2)] 2 Ai(-£(2)) (B1)

where
k() = 2E-£), &) = (5 [k & B2)

E - E_being in units of Aw, E_(z) is given by eq 2.4, modified
for z 2 b as noted earlier, and

) 1 p= (is3 ) )
Ai(-§) = — expl — —is¢ ) ds (B3)
2rd-» 3
The z, in eq B! is the classical turning point for nuclear motion

on the curve E_(z) at the energy E.

(ii) Harmonic ®,,(z) Calculation. This calculation of k, is the
standard one and involves choosing ®,,(z) to be a vibrational
eigenstate of the harmonic oscillator Hamiltonian eq 3.7 of part
1 with H,,(z) given by the present eq 2.2. The resulting &, in
Tables I and 11 is denoted by kyo. For a one-dimensional problem
the density of harmonic oscillator vibrational states in electronic
state W, is (Aw)', and so the sum over the final vibrational states
approaches (Aw)™! (and hence unity in the present dimensionless
quantities) times the value of the overlap integral squared, in-
terpolated from the discrete states &, to an energy where E,,
= E,,. Each of the functions &,, and &, is now a (normalized)
harmonic oscillator wave function because of the harmonic po-
tentials H;,(z) and Hy,(z) used in eq 2.2.

(iif) Semiclassical Results. A stationary-phase semiclassical
approximation to two of the above solutions—the adiabatic one
in section i and the harmonic-harmonic in section ii—is readily
obtained: WKB solutions are introduced for the wave functions
apllalearing in the integral (®,,|®,,), in eq 2.3, which is then given
by

(Bpl) = F(zg) sin [8(z,) + 7/4] (B4)

where

(z) = f & (r) dr - f "k (r) dr (BS)

and

— 1 27 12 _ 2 v
F(zo) = rkm(zc)(le”(zc)l) - (m (B9

where the fact that k,,(z;) = k,,’(z.) was used and where s, ~ 5,
denotes the difference in slopes of the potential energy curves
H\(2) and either H,y(z) (for k, = kyo®) or E_(z) (for k., = k,*)
at the crossing point z = z.. Normally, the constant F(z.) would

(10) Child, M. In Semiclassical Methods in Molecular Scattering and
Spectroscopy. NATO ASI Ser., Ser. C 1979, 53, 127.
(11) Child, M. S. Mol. Phys. 1975, 29, 1421; ref 10, p 131.
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differ by a factor of (Aw)'/2, depending on whether a wave function
&, was normalized to a delta function of the energy or whether
as in a bound state, to a delta function of the quantum numbers. !¢
In the present case, however, where we have employed dimen-
sionless energies, the two normalizations are identical.!2

In eq BS k,, is [2(E - H,1(2))]'/2 and Kk, is [2(E — Hy(2))]'/2
or [2(E - E_)]!/2, according as Hy(2) or E_ is the potential used.
z. is the crossing point between the curves H,,(z) and H,(z) [or

(12) E.g., for a bound state one uses a normalization to 8, ,, or, when the
levels are so closely spaced that sums can be replaced by integrals, to 6(m —
m’). But é(m - m’) = hwd(E,, - E,,), leading to a normalization of the ¥,
for an unbound state which differs from that of the bound state ¥, by a factor
of (hw)'/2 or, in the present case of dimensionless units, which is identical,
é8(m - m’) = §(E,, — E,,) when the E’s are in units of hw.

E_(2)] and z,, z,, are the left-hand classical turning points for
nuclear motion in the potential energy curves H,,(z) and Hy(z)
[or £(2)], respectively.

When the system was in the m = 0 state, the energy of that
initial vibrational state was typically somewhat close to the po-
tential energy at the crossing point x.. For each such calculation
in the semiclassical case, a uniform approximation version of eq
B4 was used, namely!?

(®,18)) = (IF(zo)|m)' /2614 4i(-) (B7)

where F(z,) is given by (B6) and where { is positive and equals

C/A8(z ).

(13) Reference 10; cf. eqs 20 and 27a with the present (B4) and (B7).
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The dependence of electron-transfer rates on the number of intervening groups is treated by using a single calculational method
for four separate series of compounds: a biphenylyl donor and a 2-naphthyl acceptor, separated by various rigid saturated
hydrocarbon bridges, a dimethoxynaphthyl donor and a dicyanovinyl acceptor, separated by norbornyl groups, a Ru(NH;)s!!
donor and a Ru(NH,)s"™ acceptor, separated by different numbers of dithiaspiro rings, and an Os{NH,)s!" donor and an
Ru(NH;)! acceptor separated by an isonicotinyl plus a variable number of proline groups, which again provide a rigid
spacer. The results for the electron-transfer matrix element obtained both with direct diagonalization and with the partitioning
method are compared with each other, with the experimental results and, where available, with previously calculated results.

Introduction

There is a considerable interest in the dependence of elec-
tron-transfer rates on separation distance, as well as on the driving
force, ~AG®, and on reorganizational and other molecular pa-
rameters. A number of experimental and theoretical studies have
been reported on the separation distance dependence, e.g., refs
1-20. One would, as a result of such studies, also like to answer
questions such as which are the most probable paths for long-range
electron transfers, in various proteins, for example. A second
important question is the relative importance of through-bond and
through-space interactions in long-range electron transfer.!® For
the problems involving proteins some quantum mechanical method
of calculating electronic matrix elements for very large systems
is desirable.

In the present paper we consider the distance dependence of
the electron-transfer rate from a donor D to an acceptor A, the
distance being varied by varying the number of intervening groups
in a molecular bridge B. Several such series have been studied
experimentally. The theoretical method employed in the present
article is one of the simplest available, the extended Hiicke! method
(cf. refs 9, 10, 14, and 20). This method is a semiempirical
one-electron method.2! 1In the present calculations no new pa-
rameters have been introduced and the needed parameters, in-
cluding calculated overlap integrals, for the systems considered
here were obtained from standard sources.

Four series of compounds are considered, in each system there
being a covalent link between the donor and the acceptor. The
four series considered are given in Figures 1-4, two of them being
purely organic and two of them involving metal ions connected
by an organic bridge. Three of these four series have been pre-

¥ Contribution No. 8020.

0022-3654/90,/2094-2985$02.50/0

viously studied theoretically, to some degree at least, in each case
using a different method of calculation and in some cases with
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