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Dynamics of Electron Transfer for a Nonsuperexchange Coherent Mechanism. 2. 
Numerical Calculations 
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The expressions in part 1 are used to treat the dynamics of electron transfer in the donor-acceptor system D'BA via a molecular 
bridge B. By use of a fast Fourier transform method, results are obtained for the maximum "population" of B- and for other 
properties for this coherent but nonsuperexchange model. Several approximate ideas on rate populations and energy distributions 
are tested by using various values for the numerical parameters. 

1. Introduction 
In part 1 we explored the dynamics of electron transfer from 

some donor D* to an acceptor A via a molecular bridge B, using 
one form of a coherent mechanism.l A system was considered 
such that the relevant orbital of B was readily accessible ener- 
getically, so that a superexchange mechanism was not involved, 
but such that B and A were so strongly coupled electronically that 
a conventional (incoherent) two-step electron transfer, D* - B-, 
B- - A, involving a chemical intermediate B- was also not ap- 
propriate. In  the present article we describe some numerical 
applications of the formalism outlined in part 1. Synthesis of 
suitable D*BA systems may permit the observation of this type 
of mechanism. 

I n  the formalism given in part I ,  the nuclear motion accom- 
panying the electron transfer in D*BA was approximated with 
three collective vibrational coordinates, there being three reactive 
centers, D*, B, and A. By use of equal vibration frequencies to 
simplify the problem and to extract some of the features, the 
three-coordinate problem for the electronic-nuclear motion was 
reduced to a two-coordinate one by a suitable rotation of the 
coordinate axes. A nonadiabatic mechanism was then used for 
the initial loss of the electron from D*. The ensuing nuclear 
motion on the BA potential energy surface was then separable 
into two one-coordinate motions. Some numerical results based 
on this formalism are given in the present article to illustrate some 
of the consequences of the mechanism, particularly for the 
transient amount of B-. 

We first consider numerically in section I1  a simplified treat- 
ment, one which contains only one collective coordinate instead 
of three and which serves to test several features. In particular, 
results for the decay of D* are explored to see whether they are 
well-represented by a single-exponential decay (section H I ) .  The 
numerical rate constant obtained there is also compared with that 
found from various Golden Rule and semiclassical estimates. In 
section 111 results for this one-coordinate system are also given 
for the maximum population of B(t), determined by projecting 
the electronic wave function onto a basis set wave function de- 
scribing the D'B-A electronic configuration. The question of 
whether this B(r) appears to follow, roughly, the kinetics of a 
two-step electron-transfer mechanism, D*BA - D+B-A - D+- 
BA-, with successive rate constants k ,  and k2,  but with an ab- 
normally high apparent value for k2, is explored in section 11. In  
section 111, results for the three-collective-coordinate system are 
given, and correlations are drawn between "Emax" for various 
molecular parameters and an effective "elapsed time" spent in the 
D+B-A configuration. 

11. One-Coordinate Test Calculation of Several Properties 
(i) Formalism. As in part 1 we introduce electronic wave 

functions to describe the three electronic configurations D*BA 
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( i  = I ) ,  D'B-A ( i  = 2), and D'BA- ( i  = 3). In a standard fashion 
the Schriidinger equation is again converted then into a set of three 
coupled equations for the nuclear wave functions ai in each 
electronic state, namely, eq 2.4 of part 1. However, even at  the 
outset there is now only one nuclear coordinate z. Equation 2.4 
of part 1 can be written for this case in dimensionless quantities 
as 

where the H, represent various electronic matrix elements. As 
before, HI3 * 0 and HI2 and H23 are treated as constants. The 
diagonal quantities Hii represent diabatic potential energy curves 
for the three electronic configurations. In  the usual vibrational 
harmonic approximation, they are 

HI,  = Y2z2 

H22 = y2(z - a)2  + AE12 

H33 = 7 2 ( ~  - b)' + AEl, 

a and b being equilibrium nuclear displacements for the electronic 
configurations 2 and 3 relative to that for 1. When the a in eq 
2.2 is chosen so that u2 = a i 2  + a?, where the ai's are defined 
in part 1, the present reorganizational parameter X12 for the \kl - \k2 step, namely, ' / 2 a 2 ,  is the same as that ( 1 / 2 a 1 2  + 1 /2a22)  
in the three-coordinate problem. Similarly, when one sets b2 = 
a I 2  + a3*, XI3 is also the same in the one- and three-coordinate 
cases. (However, the X23(s differ.) The Hiis in  (1 .l)-( 1.2) are, 
as in part 1, the actual matrix elements divided by hw, where w / 2 ~  
is the vibrational frequency. 

In a real system, dissipation of the energy after (and during) 
the 9, - \k2 - \k, transition occurs by redistribution of that 
energy among the numerous degrees of freedom. To avoid spu- 
rious oscillations of the wave packet in the simple model described 
by eqs 2.1-2.2, after the system has reached the z N b region, 
the H33 in eq 2.2 is used only for z < b, while for b 5 z I L the 
( z  - b)2 term is set here equal to its value at z = b and an absorbing 
boundary is introduced at a boundary,2 z = L, L > b. Equation 
2.1 was then integrated numerically by using a fast Fourier 
transform (FFT) r ~ u t i n e . ~ , ~  The latter method is briefly sum- 
marized in Appendix A. 

( i i )  Calculation of Rate Constant k ,  and Various Approxi- 
mations. From a semilog plot of the population in state \kl  vs 
time, l l+ l ( z , t )12  dz, determined from this FFT solution, a rate 

( 1 )  Marcus, R. A,; Almeida, R. J. Phys. Chem., preceding paper in this 
issue. 

(2) Almeida, R.; Metiu, H. Unpublished results. 
(3) (a) E.g.: Feit, M. D.; Fleck, Jr., J. A.; Steiger, A. J .  Compur. Phys. 

1982, 47, 412. Kosloff, D.; Kosloff, R. J .  Compur. Phys. 1983, 52, 3 5 .  (b) 
Alvarellos, J.; Metiu, H. J. Chem. Phys. 1988,88,4957. Almeida, R. Ph.D. 
Thesis, University of California, Santa Barbara, 1987; Chapter 5.  

(4) We used the FFT routines available in the IMSL Library. 
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TABLE I: First-Order Rate Constants (ps-') for Various Initial 
Vibrational States m (One-Coordinate Calculation)" 

kAc kAP kHOe kHOP m AEi2 k l b  
0 -0.5 1.99 2.17 2.20 2.09 2.08 
1 0.0063 0.01 I 0.01 1 0.022 0.026 
2 0.55 0.56 0.57 0.84 0.87 
3 0.80 0.91 0.91 1.04 1.06 
4 0.78 0.83 0.82 0.73 0.71 

0 -1.5 1.52 1.62 1.64 1.56 1.56 
1 0.0094 0.0091 0.0089 0.062 0.064 
2 0.61 0.67 0.70 0.83 0.85 
3 0.59 0.63 0.62 0.52 0.51 
4 0.092 0.095 0.090 0.15 0.14 

0 -2.5 1.11 1.21 1.22 1.15 1.14 
1 0.10 0.11 0.11 0.22 0.22 
2 0.61 0.71 0.72 0.73 0.73 
3 0.14 0.15 0.19 0.1 1 0.10 
4 0.069 0.053 0.050 0.12 0.13 

0 -3.5 0.92 1.07 1.06 1.01 0.99 
1 0.12 0.13 0.13 0.23 0.23 
2 0.54 0.63 0.64 0.62 0.62 
3 0.067 0.087 0.085 0.032 0.029 
4 0.16 0.13 0.14 0.22 0.23 

"For a -AElz of 0.5, 1.5, 2.5, and 3.5, in dimensionless units, the 
values of Xi, were (to three figures) 1.62, 2.82, 4.30, and 5.52, respec- 
tively, X1, was (to three figures) 21.9, 21.4, 21.0, and 20.9, respectively, 
and -AE,,  = 15, Hi, = 0.25, H,, = 2.5. The height AVi of the cross- 
ing point of Hl i  and HZ2 was between 0.15 and 0.2, namely (as calcu- 
lated from eq 2.5), 0.194, 0.155, 0.188, and 0.165, respectively. The a 
and b in eq 2.2 were chosen to be of the same sign. bCalculated using 
the FFT method. CCalculated using only the cited m term in eq 2.3 
and using eq BI  for the @,,,,(z) in eq 2.3 and integrating in (@,,,I@,,,,) 
numerically to obtain this matrix element. dCalculated semiclassically 
using only the cited m term in eq 2.3 and using eqs B4-B6. For m = 0 
eq B7 was always used. CCalculated from eq 3.13 of part I .  

OFr----- 
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Figure 1. Typical semilog plot of logarithm of survival probability D * ( f )  
vs f for the one-coordinate calculation. AE,, = -1.5, AEi3 = -15, m = 
0, and remaining parameters are given in footnote a of Table I;  a and 
b in eq 2.2 are both positive. 

constant was calculated. The decay was typically essentially single 
exponential, a plot being given in Figure 1. (Conditions for an 
alternative damped oscillatory behavior, as in Figure 3, are given 
later.) These rate constants are compared later in section 111 with 
values obtained from several approximate expressions that are 
summarized in Appendix B. 

In each of these latter approximations a Golden Rule expression5 
was used. Written here in terms of one coordinate, the rate 
constant k ,  for reaction from a specific vibrational state m is 

where @.,(z) is the vibrational wave function appropriate to H , , ( z ) ,  
treated as a harmonic oscillator potential, as in eq 2.2, and the 

in one approximation denotes a nuclear wave function ap- 
propriate to Hz2(z).  For comparison, in a different approximation 
it denotes the eigenfunction @A appropriate to the lower adiabatic 
surface E J z )  arising from the ( \ k 2 , \ k 3 )  pair (eq 2.4). The cor- 
responding values of k,  are denoted later in Tables I and I 1  by 
kHO and kA, respectively. This kHO is, thereby, the microcanonical 
version of the usually calculated Golden Rule rate constant in the 
literature. In  an added approximation in each case the final-state 
eigenfunction is replaced by its semiclassical stationary-phase 
counterpart. The resulting Franck-Condon matrix element 
( @ , , , ( z ) ~ ~ , , , ~ ( ~ ) ( z ) )  in eq 2.3 is given by eqs B4-B8, in both these 
diabatic and adiabatic choices for @,,,J2), and the corresponding 
kr)s are denoted in Tables I and I1 by kHOSC and k,", respectively. 
The adiabatic potential curve E J z )  referred to above is given by 
E J z )  = 

!hI[H22(~)  + H,,(z)I - I[H22(z) - Hn(z )12  + 4H23211'21 (2.4) 
When the initial vibrational state m is 0 in Tables I and 11, the 

energy of the initial vibrational state was close to AV,, the potential 
energy at the crossing point of H , , ( z )  and H 2 2 ( ~ )  potential energy 
curves (cf. ref 6, eq 2) 

(2.5) 

For this case, namely, for all m = 0 cases in Tables I and 11, a 
uniform approximation (Airy function), given by eq B7, was used 
for the semiclassical matrix element. 

(iii) Effective Rate Constant k2for the Disappearance of B(t). 
Both for the one- and the three-coordinate calculations it is useful 
to know whether the coherent dynamics for the "B(t)", obtained 
numerically, can be fitted by an apparent two-step kinetic equation, 
in which the effective rate constant k2 of the second step is much 
larger than the theoretical adiabatic maximum for k2 in a two-step 
(incoherent) process, namely, w/2n. A method of defining B(t), 
by projecting the time-dependent wave function onto the diabatic 
state \k2 and integrating over the nuclear coordinates, was used 
in part 1 (eq 4.8). The corresponding equation for the one-co- 
oordinate case is 

AVi = O12/4)(1 + AE12/M2 

( 5 )  E.g.: Merzbacher, E. Quunrum Mechanics; Wiley: New York, 1970. 
(6) E.g.: Marcus, R. A,; Sutin, N.  Biochim. Biophys. Acto 1985,811, 265.  

TABLE 11: First-Order Rate Constants (ps-') for Various Initial 
Vibrational States m (One-Coordinate Calculation)" 

0 0 0.76 0.44 0.54 0.52 0.44 0.41 
I 1.32 1.35 1.33 1.47 1.56 
2 0.21 0.16 0.17 0.080 0.081 
3 R 0.14 0.13 0.23 0.24 
4 0.89 0.68 0.67 0.69 0.69 

0 -0.5 0.54 0.76 0.78 0.77 0.70 0.67 
1 , 0.80 0.93 0.94 1.09 1.12 
2 0.50 0.55 0.57 0.46 0.47 
3 0.0091 0.0097 0.0089 0.00014 0.00042 
4 0.39 0.45 0.45 0.54 0.54 

0 -1.5 0.20 1.23 1.46 1.45 1.42 1.40 
1 0.094 0.095 0.093 0.16 0.16 
2 0.82 0.83 0.83 0.87 0.88 
3 0.33 0.39 0.59 0.35 0.53 
4 0.053 0.064 0.061 0.031 0.028 

0 -2.5 0.025 1.42 1.74 1.86 1.72 1.89 
I 0.17 0.16 0.15 0.11 0.11 
2 0.09 0.11 0.12 0.30 0.31 
3 0.61 0.61 0.63 0.71 0.72 
4 0.28 0.59 0.59 0.41 0.40 

We have set -AE,, = 15, Xi, = 3.03 (to three figures), A,, = 21, 
Hi, = 0.25, H,, = 1.75, and hw = 100 cm-'. The a and b in eq 2.2 
were chosen to be of the same sign. bCalculated using the FFT me- 
thod. The R in the fourth entry of this column denotes a resonance- 
like behavior. resee corresponding footnotes in Table 1. 

I n  order t o  interpret the results on k 2 ,  an estimate is needed 
for the region approximately corresponding to "B-" during the 
motion along the z axis. As in part 1 we take it to be, roughly, 
the distance between the intersection of the H l , ( z )  and H 2 2 ( ~ )  
curves, which occurs at zI2t, and the intersection of the H22(z)  
and H33(z) curves, which occurs at ~ 2 3 ' .  Using the arguments that 
led, in part I ,  to eqs 5 .5  and 5.6 there for ~ 2 3 *  and using an identical 
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argument for zI2*, but with A E 1 2  replacing AE23 and XI2 replacing 
X23, we obtain 
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223' - ~ 1 2 *  = (A23 + AE2,)(2X23)-Il2 + (XI2  - AE12)(2XIJ1/' 
(2.7) 

Again, as in part 1, if the local velocity in this region is denoted 
by o,, we have u, = [2{E, - H 2 2 ( ~ )  + H22(z20)1]1/2, or if the E-(z) 
curve had been used instead of the one, o, = [2{E, - E-(z)  
+ E-(Z~O)I]'/~, both as in part I ,  where E, is the initial energy. 
A rough approximation to k 2  is given by 

k 2  - L?,/Iz23* - zl2*( (when ~ 2 3  - 1) (2.8) 

where L?, is some mean z velocity in the above z interval, as in  eq 
5.9 of part 1, and ~ 2 3  is the probability of a 2 - 3 transition when 
the system crosses the "intersection region" at z = ~ 2 3 ' .  

( i o )  The Rate Constant k ,  for  the Three-Coordinate Calcu- 
lafions. The Golden Rule approximation was used for k,  for the 
three-coordinate system. The parameters were chosen to yield 
some fixed value of k ,  for an initial vibrational state m = 0, so 
as to explore the effect of several other parameters when the rate 
constant for formation of the population "B(t)" was held fixed. 
The low-temperature standard form of the rate constant was used, 
since it corresponds to reaction from m = 0 (cf. ref 6, eq 71): 

k ,  = 2 . r r ~ I H ~ ~ 1 ~ e - ~ ~ 2 X ~ ~ P / r ( P  + 1) (0 K )  (2.9) 

where p = -MI*. 
(o) The Intermediate Population "B(t)" for  the Three-Co- 

ordinate Calculation. The dynamics of the population B(t) of 
the intermediate B- was computed for two different potential 
energy surfaces for the (2,3) pair of states. For the first of these 
surfaces, calculations of B(t) were made using the coupled diabatic 
states, the analogue of the present eq 2.1, described in part 1, and 
in the second, for comparison, a purely adiabatic (2,3) surface 
E-(y,z)  there was used, the analogue of the present eq 2.4. The 
time-dependent Schrodinger equation was also described in part 
1. The numerical treatment was made for the one-coordinate 
numerical integration over the z motion (eq 4.7 of part I ) ,  which 
followed from an analytical separation of the x and y motion there 
from that of z. Details of the numerical (FFT) method are given 
in Appendix A.  

The three-coordinate analogue of eq 2.7 for the region ~ 2 3 '  - 
zI2*  occupied by "B-" was obtained in part I :  

z23* - Z12* = [(AE23 + X23) + (AE12 - X12)(X2/X12)1/(2X23)'/2 
(2.10) 

and eq 2.8 is used for k 2  

111. Results 
( i )  One-Coordinate k,'s. The results for the FFT-calculated 

time evolution of the population of the initial electronic config- 
uration 1 typically followed a first-order kinetics plot after a brief 
transient period, as in  Figure I ,  and so was describable by a 
first-order rate constant. These one-coordinate calculations were 
made for Tables I and I1 using values of the parameters specified 
there in the footnotes. 

The rate constants obtained from the numerical (FIT)  solution 
for k,  are denoted in Tables I and I1 by k ,  and are compared there 
with those obtained by using the various approximations described 
earlier in section II.ii and in Appendix B. A comparison with the 
semiclassical results is helpful in providing some insight on the 
dependence of k ,  on the initial vibrational state and on the de- 
pendence of the quantum-calculated populations B(t) on various 
parameters. 

To represent the results of the many B(t) vs t curves, it is useful 
to see whether they are describable phenomenologically, for the 
range of parameters chosen, by an apparent two-step sequence,' 
with rate constants k l  and k2, where k2 is now an effective rate 
constant, an adjustable parameter. This possibility was explored 
here for a number of cases, an example of such a fit being given 
in Figure 2. The fitted k 2  there is 24 ps-', which is 8 times the 
maximum adiabatic value of (at h w  = 100 cm-I) 3 ps-I. Other 
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Time (ps) 
Figure 2. Fit of B(t) in the I-D calculation to an effective two-step 
incoherent formalism, using only kz = 24 ps-' as a single empirical 
parameter. For these results we have A E , ,  = -2.5, AE, ,  = -15,  and m 
= 0, and the remaining parameters are given in footnote a of Table I; 
a and b in eq 3.2 are both positive. 

1 

0 8 1  I 

Time (ps )  
0 0 8  1 6  2 4  

Figure 3. Example of the time evolution of D * ( t )  in a I-D calculation 
for the case when w23 is made quite small (see text), by having the 2 - 
3 transition in the inverted region (-AE23 > h23), and with a large value 
of H2, .  In the case depicted, -AE23 = 19.5, Xz3 = 3.08, -AE12 = 1.5, and 
,412 = 3.58. 

TABLE 111: k,'s Fitted to B - ( t )  Curves, One-Coordinate 
Calculations' 

0 -0.5 1.99 29 0.41 
0 -1 .5  I .23 28 0.67 
0 -2.5 1.42 24 0.57 
0 - 3 . 5  0.92 25 0.63 

"The molecular parameters (A's, etc.) are given in footnote u of Ta- 
ble I .  

results for fitted k2's are given in Table 111. Also given there 
are the sizes of the region ~ 2 3 *  - z12' "occupied" by B-. It is easy 
to find molecular parameters for which such a two-step pheno- 
menology is inappropriate, for example, when ~ 2 3  is deliberately 
made very small;' an example is being given in Figure 3. Here, 
the decay of D*(t)  is strongly oscillatory, in contrast with the 
behavior in Figure 2, where the decay is largely monotonic. (The 
absence of a dissipative term in the D+B-A stage of the model 
permits the oscillations to occur.) 

( i i )  Three-Coordinate k, ,  S,,,, and ( n ' ) .  The population of 
B(t) was studied numerically here for the case where the k ,  
calculated from the Golden Rule eq 2.9 for tn = 0 was 0.92 ps-'. 
The parameters used are given in Table IV. A small value of 
X2 corresponds to a bridge with negligible reorganization energy. 
Two sets of values for the ratio H23/H12 are used, namely, IO and 
6. In  each calculation the maximum of the intermediate popu- 

(7)  For example, when the 2 - 3 transition is in the "inverted" region, 
discussed in ref 6 (-A&, > A,,), a large value of the HZ3 matrix element makes 
the 2 - 3 process highly nonadiabatic and so makes wZ3 small. There then 
tends to be an oscillatory behavior between the D'BA and the D'B-A elec- 
tronic configurations, instead of a largely first-order decay of D'BA (cf. 
Figure 3). In  all of the results in Table IV either C A,, or -AE2, u 
A 2 3 .  
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16 - 

12 - 

-1.0 -0.5 0 0.5 1 .o 1.5 

t t  
'23 -'I2 

Figure 4. Plot of B,,, vs zZ3* - zI2! given by (2.7), for H2,/HI2 = 6, and 
several families of A's used in Table IV: 0, A, - A2 (within a factor of 
2): 0, A2 = 0.1; X, A 2 / A l  - 1 / 5  to 1/6. Data are taken from Table IV. 

o /  
- 1.0 -0.5 0 0 5  1 .o 1 5  

t t  
'23 - ' I2 

Figure 5. Plot of E,,, vs z2,* - zL2*, given by (2.7), for H2,/H12 = I O  
(data in Table IV). 

lation is given in Table IV. This maximum B- population is 
denoted there by B,,,, when all matrix elements, H22(z) ,  H 3 3 ( z ) ,  
and H z 3 ( z ) ,  are used in the propagation (eq A I  1 for H,) and by 
B a d , m a x  when, for comparison, only H:d is used (eq A12). Plots 
of E, and of Bad,, for H z 3 / H I 2  = 6 and 10 are given in Figures 

Two plots of B(r) vs t are given in Figures 8 and 9, with a fit 
(adjusting only k 2 )  to the two-step sequential formalism. Figure 
8 corresponds to the ninth row of Table IV ( H 2 3 / H 1 2  = lo), and 
the fit yields a k2 of 22 ps-'. Figure 9 corresponds to the fourth 
row from the bottom ( H 2 3 / H 1 2  = IO), and the fitted k2 is 12 ps-I. 
In a third result, corresponding to the same row but with H 2 J H 1 2  
= 6, the fitted k2 was only 4.5 ps-l. This last value is seen to be 
smaller than the corresponding k2 at H 2 s / H 1 2  = 10, presumably 
because of some reflection of the wave packet a t  the crossing of 
the H 2 2 ( ~ )  and H 3 3 ( ~ )  potential energy curves. All of these k2's 
are higher than the maximum adiabatic value for k2 of 3 ps-l (at 
hw = 100 cm-I). 

In two of the above cases the distribution of they  vibrational 
states in the wave packet was analyzed. In the case of the ninth 

4-1. 
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Figure 6. Plot of Bad,max  vs z2,!- z12*, given by (2.7), for HZ3/Hl2 = 6 
(data in Table IV). 

t f  
'23 - ' I2 

Figure 7. Plot of Bad,max  vs z2,* - z , ~ ~ ,  given by (2.7), for H23/H,2 = IO 
(data in Table IV). 

OO 1:l 10 20 

Time (ps) 
Figure 8. Fit of S( f )  in the 3-D calculation to an effective two-step 
incoherent formalism, using only a k2 = 22 ps-I as a single empirical 
parameter. These results correspond to the ninth row of Table IV, in 
column I O .  

row in Table IV, with H Z 3 / H I 2  = 6, the population distribution 
peaked at n'= 4, with an average value (n') of 3.9. In the case 
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TABLE IV: Maximum Population P I  for Several Potential Energy Surfaces“ 

2.5 
1.5 
3.5 
1.5 
2.5 
1.5 
3.5 
3.5 
1.5 
I .5 
I .5 
3.5 
2.5 
1.5 
2.5 
3.5 
2.5 
2.5 
3.5 
3.5 
1.5 

21 
21 
19 
19 
21 
21 
21 
17 
17 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
13 
13 

2.4 2.4 18.6 
I .9 I .9 19.1 
5.65 0.1 15.35 
3.7 0. I 17.3 
2.4 2.4 20 
1.9 1.9 21 
2.85 2.9 21 
5.65 0. I 15.35 
3.7 0.1 17.3 
3.7 0.1 15.3 
3.7 0.1 16.3 
5.65 0.1 15.35 
4.7 0.1 16.3 
3.7 0. I 17.3 
4.0 0.8 17 
5 .O 0.75 16 
3.5 1.3 17.5 
4.0 I .75 17 
3.0 1.8 18 
5.65 0. I 15.35 
3.7 0.1 17.3 

I .4 
I .4 
1.6 
1.8 
2.4 
2.6 
3.1 
2.9 
3. I 
3.4 
4.2 
5.0 
5.0 
5.1 
5.85 
6.0 
7.9 
9.0 
9.6 
7.8 
8.1 

5.8 
5. I 
4.8 
4.4 
6.5 
5.9 
7.6 
6.4 
5.85 
6. I 
6.3 
7.05 
7.15 
7.2 
9.9 
9.4 

14.4 
15.0 
16.4 
12.2 
13.7 

-2.0 
-2.0 
-0.4 
-0.4 

0.4 
1 . 1  
1 . 1  
3.2 
3.0 
3.2 
4.8 
6.8 
6.5 
6.4 
6.8 
7.1 
7. I 
7.3 
7.2 
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When AE12 = - 1 . 5  and A E I 2  = -3.5 a k ,  = 0.92 ps-I was used, while when AEI2 = -2.5 ps-’ a k ,  = 0.93 ps-I was employed. b H 2 3 / H 1 2  = 6. 
‘H23/H,2 = 10. 

, 
I 

Figure 9. Fit of s(t) in the 3-D calculation to an effective two-step 
coherent formalism, using only a k2 = 12 ps-l as a single empirical 
parameter. These results correspond to the fourth row from the bottom 
in  Table IV. in column I O .  

of the fourth row from the bottom in Table IV, with H Z 3 / H l 2  = 
10, the population peaked between n’= 4 and 5, with an average 
value ( n ’ )  of 4.8. The values of (n’) predicted from the classical 
expressions, eq 5.1 of part I ,  i f  the system after the 1 - 2 
transition moved on the H2* surface, are 3.5 and 3.4, which are 
substantially less than the observed (n’)’s of 3.9 and 4.8, re- 
spectively. However, if the system near (y2.z:) is better described 
as moving on the E- surface rather than the HZ2 as a result of 
the 1 - (2,3) transition, use of eq 5.3 of part 1 shows that the 
additional energy shared among the (y,z) motion is, in the above 
units, about 0.8 and 1.7, respectively. If, as in the diabatic case 
for the parameters chosen, the large proportion of the excess goes 
into E,, the predicted ( n ’ )  could then be as large as 4.3 and 5.1. 
Thus, the diabatic (3.5 and 3.4) and adiabatic (4.3 and 5.1) values 
for ( n ’ )  bracket, in each case, the observed (n’)’s, 3.9 and 4.8, 
respectively. It seems clear that the system after the 1 - 2 
transition has, due to the (2,3) electronic coupling, sensed the 
presence of the E..(z) adiabatic surface at z20. 

IV. Discussion 
( i )  One-Coordinate k,’s. From the results in  Tables I and 11 

there is seen to be reasonable agreement between the one-coor- 
dinate numerically calculated (FFT) reaction rates and those 
inferred from the various approximations. The use of adiabatic 
final-state wave function, leading to the adiabatic rate constants 
k A  and their semiclassical counterparts kAX,  is seen to lead to a 
slightly better agreement, on the average, with the numerical 
values, k , ,  than does the harmonic-calculated rate constant k H O  

(or kHOr), particularly for the smaller k,‘s. Nevertheless, for our 
other purposes we have used the kHO in the subsequent calculations 
for the three-coordinate system, since the kHo expression, eq 2.9, 
is particularly simple and since kHo is rather close to kA,  par- 
ticularly for m = 0, for the parameters chosen. Use of kA might 
also have entailed consistency questions regarding the effective 
electronic matrix element to be used instead of H I ,  in the Golden 
Rule expression, eq 2.3. Plots of k,( 71 (not shown), which tend 
to average over the differences in the various calculations for 
different m’s, were all very similar for the parameters examined. 

The substantial decrease in the numerically calculated k,’s  on 
going from m = 0 to m = 1 in Tables I and 11, and the various 
oscillations of k ,  with m there, can be seen to be due, in semi- 
classical terms, mainly to variations in the phase angle in the 
matrix element for the overlap of the vibrational wave functions, 
for example, in the sine term in eq B4. When the results are 
canonically averaged to yield a temperature-dependent rate 
constant, there is an averaging over these oscillations and, in fact, 
the results for k,( T )  were usually close to those which are obtained 
when the sin2 term for each m I 1 term was replaced by an 
average value, 112. 

Plots of k,( T )  vs the temperature T typically had a negative 
temperature dependence when AV,, given by eq 2.5, was smaller 
than the zero-point energy, hw/2 (50 cm-’ in the present case), 
Le., whenever the AV, in dimensionless units was below 0.5. For 
all of the results in Table IV, AV, is in the neighborhood of 0.2. 

(i i)  Population o f B .  ( a )  Maximum Value, B,. It is useful 
to compare the results for the maximum population of B-, E,,, 
given in Table IV and Figures 6 and 7, with those which would 
be calculated from an incoherent mechanism, namely, a mecha- 
nism in which the electron hops from D* to B and then to A. If 
the rate constants for the D* - B- and B- - A- are, as denoted 
earlier, k ,  and k2, the maximum population of B- by this mech- 
anism during the reaction, E,,,, is given by” 

(4.1) 

If we use the value 0.92 X 10l2 s-I for k l  and use the maximum 
adiabatic value w / 2 n  for k2,  which for the given frequency is 3 
X I O i 2  s-I (100 cm-I), then E,,, is estimated from eq 4.1 to be 
about 18%. Examination of the results for E,,, in Table IV and 
Figures 4 and 5 shows that they are appreciably less than this 
value, reflecting the coherency of the overall D* - A- electron 
transfer in the present model. Thus, if eq 4.1 were used to fit the 
observed B,,,, an effectioe k ,  much larger than this maximum 
adiabatic value would occur for the present mechanism. Indeed, 
the results in Table 111 illustrate this point, the effective k2 in the 
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examples cited being a factor of 8 larger than the maximum 
adiabatic value. 

Examination of the results in Table IV and Figures 4-7 reveals 
a number of additional features, particularly in the comparison 
of Emax and B a d , m a x .  Differences between the two reflect a re- 
flection of the wave packet at the (2,3) intersection in the Emax 
case. The differences in Table 1V and Figures 5 and 7 ,  for the 
parameters used, are relatively small (columns 9 and 10) and are 
larger at a somewhat smaller H23 (columns 6 and 7 and Figures 
4 and 6). Further, there is seen in Figure 4 to be a correlation 
between 223; - zI2$ and the value of B,,,, for various series of 
the A's. A correlation also exists in Figure 5. The scatter in that 
figure at small ~ 2 3 *  - 213; may be due to complexities in the 
overlapping of the two surface crossings when H23 is large, but 
it was not explored. In plots of B a d , m a x  in Figures 6 and 7,  these 
complexities are absent (only one surface crossing), and there is 
seen to be less scatter. 

It is useful to consider a few examples for the rough estimate 
of B a d  .,,ax based on eqs 2.7, 2.8, and 4.1 and to compare the 
estimate with values in Table IV. Two examples are given, both 
where they coordinate acquires most of the excess energy - AEI2 
during the motion in H22 after the ( 1  - 2,3) transition. In this 
case the systems have an excess z-mode energy E,  of about hw/2 
(0.5 in dimensionless units) in  the vicinity of 22. They have 
somewhat less than this amount in  the vicinity of zI2t and 
somewhat more i n  the vicinity of ~ 2 3 * .  The velocity u, in  di- 
mensionless units is 1 (since 1/2u,2 = Averaging two results 
in  Table IV of B a d , m a x  of 4.1% and 4.3% for the case where 233; 
- zI2t  equals 0.48 and 0.68, in dimensionless units, respectively, 
we see that k2 (=1/r2) is about 1.8 in dimensionless units. 
Conversion to ps-' by multiplying by w yields 34 ps-l for k2.  
Equation 4.1 then yields 2.3% for Bad,max, compared with the 
actual value of 4.2%. Similarly, when B a d , m a x  is averaged over 
the last five values in Table IV, it is about 6.3%, z23; - zl$ is about 
0.8, and so k2  = 1 /0.8, Le., 1.25 in dimensionless units. This value 
corresponds to a k 2  of 24 ps-' and thereby to a B a d , m a x  of 3.4% 
according to eq 4. I ,  again roughly a factor of 2 smaller than the 
observed value of 6.3%. These values of k2 may be compared with 
those of about 25 ps-I estimated by fitting the data of one-co- 
ordinate calculations (Table I l l )  to a two-step type kinetic ex- 
pression. 

As a footnote we consider the question of an elementary step 
in the bacterial photosynthetic reaction center. In this case it has 
been suggesteds in the interpretation of some low-temperature data 
on both Rps uiridis and Rb. sphaeroides that, in electron transfer 
from an electronically excited bacteriochlorophyll dimer BCh12 
to a pheophytin BPh via a chlorophyll monomer BChl, the esti- 
mated maximum population of BChl- could not exceed 2%. The 
value for the initial rate constant kl  for forming BChl- was close 
to that employed in this paper. Examination of the Emax in  
Figures 4 and 5 shows no results close to this value. (Results with 
A2 = 0.1 are intended only to simulate a rigid bridge. For BChl 
a substantially larger A, is expected.) However, perhaps the 2% 
estimate in ref 8 is only a rough one. Recently, new and unex- 
pected results9 have been obtained for Rb. sphaeroides at room 
temperature, apparently showing a substantial value for E,, and 
with k 2 / k l  4. Studies in that laboratory at low temperatures 
are planned to compare with those obtaineds earlier. At present, 
it should be added, none of these results, old and new, are univ- 
ersally accepted, and further published works will be needed before 
the issue of mechanism is settled. 
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Appendix A: The Fast Fourier Transform Method 
In  the calculations made in this paper, a one-dimensional vi- 

brational wave function was propagated by using a fast Fourier 
transform (FFT) method.3b For completeness it is reviewed briefly 
here. In the method an operator exp(-itH,) is written in the form 

exp(-itH,) = [exp(-itH,/M)IM 1 [U(t/M)IM (Al)  

where a short-time propagator U ( t / M )  is introduced, defined in 
eq A2, and where the number M is taken large enough so as to 
make the error term in (A2) small. We have for U ( T )  

U ( r )  = exp(-irHeI/2) exp(-irK,) exp(irHeI/2) + 0(73) 
(A21 

7 denoting t / M .  Here, K, denotes the nuclear kinetic energy 
operator (= dZ/dz2 in the z representation). In the remainder 
of this Appendix we give the method for the three-coordinate case, 
where the evolution is discussed on the (2,3) surfaces. For the 
one-coordinate case, the evolution was treated on the (1,2,3) 
surfaces, and the sums in (A3)-(A8) are then over i = 1, 2, 3. 

He, is the electronic Hamiltonian for motion on the (2,3) pair 
of curves: 

3 3 

i j=2  i=2 
He, = C l * i ) ( * i ~ ~ e ~ l * j ) ( * j l  = C . l Q i ) ( Q i l H e l l a i ) ( a i l  (A31 

where Jqi) is the ith diabatic electronic state and lai) refers to 
the ith adiabatic electronic state (cf. eq A12 for l a 2 ) ) .  

We define Jz,,) as the eigenstate of the nuclear position operator 
z defined on a grid {zm}Nm=l and write the total z wave function, 
a function o f t ,  as 

N 3  

m=l i=2 
I*(?)) = C C I Z m ) l * i ) @ i ( Z m r t )  ('44) 

where N is the number of grid points, the sum over i is over the 
diabatic electronic states 2 and 3, and @i(zm,t) is the value of the 
nuclear wave function at  (z,,t) for the ith electronic state. The 
total wave function at time t + 7 is given by J\k(t+r))  = U- 
(r)l*(t)) .  The long-time propagation is then achieved by suc- 
cessive applications of the short-time propagator (A2). 

I n  order to calculate the U ( T )  in eq A2, the exp(-irHel/2) in 
eq A2 is computed in a representation in which Hel is diagonalized 
with respect to the nuclear and electronic states. In particular, 
an adiabatic description is used for the electronic states and a 
coordinate description for the nuclear motion: 

3 N  

i s2  m = l  
He1 = C C I a i ) I z m ) t i ( z m ) ( z m I ( a i I  ('45) 

where the t i ( z )  ( i  = 2, 3) denote the E*(z) in the text. For 
diagonalization of exp(-irK,), a representation in which K,  is 
diagonal is used, namely, a diabatic description of the electronic 
states and a momentum representation for the nuclear motion: 

(8) Martin, J.-L.; Breton, J . ;  Lambry, J.-C.; Fleming, G. R. In  The Pho- 
tosynthetic Reaction Center-Structure and Dynamics. NATO ASI Ser., Ser. 
A 1988, 149, 195. Room-temperature results were obtained in references cited 
therein, and results for Rb. capsulatus were obtained in: Kirmaier, C.; Holten, 
D. Isr. J .  Chem. 1988, 152, 79. 

(9) Holzapfel, W.; Finkele, U.; Kaiser, W.; Oesterhelt, B.; Scheer, H.; Stilz, 
H. U.; Zinth, W .  Chem. Phys. Lett. 1989, 160, 1. 

We next introduce momentum eigenvectors for the nuclear motion 
Ik,,), there being the set of points {k,,}Nn=l on a reciprocal space 
grid.3b Using the completeness Cr=l Ik,,)(k,,l = 1 and 
C ~ = l l z m ) ( z m l  = 1, we have 

Here ( z J k , )  denotes a discretized form of the plane wave ( z l k ) .  
Therefore, expressions of the form Cy ( knlzj)f(z,) represent a 
discretized form of the Fourier trans&& off(z), which will be 
denoted as FV]. 

By using eqs A2-A1, we obtain 
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@i(z,,t+7) = 

Almeida and Marcus 

3 3  
1=2p=2 Ti, exp(- irc , /2)TjPtF’(exp(- i7k2/2)  x 

Here, the matrix element Ti. denotes ( \kila,). 
To implement the method, the reaction coordinate z is first 

discretized, using a grid of N points and length L, with Az (=L/N)  
being smaller than the length scale over which the nuclear wave 
functions ak change significantly. At each point of the grid the 
initial wave functions ak are transformed into adiabatic wave 
functions Trktak, then operated on with the diagonal operator 
exp(-iAelr/2), diagonal in  this representation, and then trans- 
formed back into the diabatic representation, as in  eq A8. This 
step couples the diabatic electronic states. Next, each diabatic 
component a,, is Fourier-transformed into the k-momentum 
representation, operated on by exp(iK,~) and changed back into 
the z-coordinate representation using an inverse Fourier transform 
(cf. eq A8). These operations couple the amplitudes {@,,(z,,,)] at 
different points in the grid. To perform the Fourier transforms 
involved at this stage, an efficient fast Fourier transform algorithm 
was used.4 

The times involved in the computation were long enough to 
allow the wave function @ to reach the edge of the grid. When 
this happens, the piece of the wave function reaching the edge 
of the grid would normally reappear at the left-hand side, since 
the fast Fourier transform method uses periodic boundary con- 
ditions. Such a reappearance, if allowed to occur, would distort 
the calculated values of the rate constant. To avoid this spurious 
consequence, an absorbing boundary condition was, in effect, used, 
namely, by using a complex-valued potential which removes the 
wave function before it reached the grid edge,2 namely 

Hj!4) = Hjj - iVabs(z) (A91 

where H,.  are the diagonal elements of the potential matrix He, 
and Vadz)  causes the absorption 

(A 10) 

Here, zL is a point close to the right-hand edge of the grid and 
y is a parameter that controls how rapidly \kj will decay to zero 
near that zone. The imaginary part of the potential, namely, 
-iVab(z), was chosen such that it tended to zero everywhere except 
near the edge of the grid. 

We give below some further details on the calculations men- 
tioned in the text. 

When a purely adiabatic description is used for motion on the 
(2,3) pair of surfaces, to compare with the previous calculations 
based on the H, in eq 4.4 of part 1 

Vats(Z) = ~ X P [ T ( Z  - Z L ) ~  

an adiabatic expression H$d was used instead of this H, 

+ EJz) (a21 (adiabatic) (A12) 1 
where In,) is the adiabatic electronic state function for the lowest 
electronic adiabatic eigenvalue E-(z). In this second instance the 
z adiabatic electronic-vibrational state function, @2ad(z,t)la2), 
where @2ad(~, t )  is the nuclear part and 10,) the electronic part, 
is next transformed into its diabatic components.3b The z nuclear 
wave function a2(z,t) for electronic state 2 is then given by 

since only one adiabatic electronic state la2) is considered. Here, 
Tij is an element of the matrix T mentioned above, which 
transforms from the adiabatic to the diabatic representation, Tv(z) 
= ( \ki laj(z)); I\ki) and laj(z)) are the ith electronic diabatic and 
thejth adiabatic electronic state at the cited value of z, respectively 

(i = 2, 3 ; j  = 2, 3). The la,(z)) and hence the Tij(z) depend 
parametrically on z. The transformation matrix T satisfies the 
relation A, = T’HT, where H is a matrix with elements given by 
the H,.(z) terms in eq AI 1 and Az is the diagonal matrix whose 
elements are the adiabatic eigenvalues E+(z) and E-(z). The 
columns of the T are the eigenvectors of this H,. 

Appendix B: Approximations Used for k ,  
(i) Airy Function Calculation for @,,(z). The pair of potentials 

H2,(z), H 3 3 ( ~ )  in eq 2.4, given by eq 2.2 with the modification 
noted in section 1l.i for x > 6, and with a coupling element H23, 
are used to calculate E-(z) and, thereby, the aA(z)’s. The 
reactant’s vibrational wave function @,,,(z) for electronic state 1 
is a normalized bound state wave function, while the wave function 
@,,,,, given by the @A, is normalized to a Dirac delta function in 
energy differences,’O the latter in units of hw.  

This approximation for @A employs a uniform semiclassical 
function based on an Airy function, which when normalized to 
a Dirac delta function is given by” 

@A( Z) = 2’12[ ((z)] ‘/4[k(z)]-’f2Ai(-(‘(z)) (B 1 ) 

where 

k2(z) = 2(E - E-), (‘(2) = ()/2J2k(z) d z p 3  (B2) 

E - E- being in units of h w ,  EJz) is given by eq 2.4, modified 
for z 2 b as noted earlier, and 

20 

Ai(-[) = I J a e x p (  2 7  -- - is(‘) ds 033) 

The zo in eq BI is the classical turning point for nuclear motion 
on the curve E-(z) at the energy E .  

(ii) Harmonic @,,,,(z) Calculation. This calculation of k,  is the 
standard one and involves choosing @,,,,(z) to be a vibrational 
eigenstate of the harmonic oscillator Hamiltonian eq 3.7 of part 
1 with H 2 2 ( ~ )  given by the present eq 2.2. The resulting k, in 
Tables 1 and I1 is denoted by kHo For a one-dimensional problem 
the density of harmonic oscillator vibrational states in electronic 
state \k2 is (hw) - ’ ,  and so the sum over the final vibrational states 
approaches (hw)-’ (and hence unity in the present dimensionless 
quantities) times the value of the overlap integral squared, in- 
terpolated from the discrete states @,,,, to an energy where E,,,, 
= E,,,. Each of the functions @,,, and @mr is now a (normalized) 
harmonic oscillator wave function because of the harmonic po- 
tentials H,,(z) and H 2 2 ( ~ )  used in eq 2.2. 

(iii) Semiclassical Results. A stationary-phase semiclassical 
approximation to two of the above solutions-the adiabatic one 
in section i and the harmonic-harmonic in section ii-is readily 
obtained: WKB solutions are introduced for the wave functions 
appearing in the integral in eq 2.3, which is then given 
by” 

(B4) (@mJ@,,,t) = F(z,) sin [0(z,) + r / 4 ]  

where 

and 

where the fact that k,,,(zi) = k,,,’(z,) was used and where sl - s,,,, 
denotes the difference in slopes of the potential energy curves 
Hll(z)  and either H22(z) (for k ,  = kHOx) or E-(z) (fork, = kAr) 
at the crossing point z = z,. Normally, the constant F(z,) would 

(10) Child, M. In Semiclassical Methods in Molecular Scattering and 

( 1 1 )  Child, M .  S. Mol. Phys. 1975. 29, 1421: ref I O ,  p 131. 
Spectroscopy. NATO ASI Ser., Ser. C 1979, 53, 127. 
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differ by a factor of (hw)'l2,  depending on whether a wave function 
b, was normalized to a delta function of the energy or whether 
as in a bound state, to a delta function of the quantum numbers.I0 
In the present case, however, where we have employed dimen- 
sionless energies, the two normalizations are identical.I2 

In  eq B5 k ,  is [2(E - Hll(z))11~2 and kd is [2(E - H ~ ~ ( z ) ) I ' / ~  
or [2(E - E - ) ] 1 / 2 ,  according as H2*(z) or E- is the potential used. 
z, is the crossing point between the curves Hll(z) and H22(~)  [or 

(12) E.g., for a bound state one uses a normalization to a,,,,& or, when the 
levels are so closely spaced that sums can be replaced by integrals, to 6(m - 
m'). But 6(m - m ' )  = hw6(Em - E,,,), leading to a normalization of the qm, 
for an unbound state which differs from that of the bound state 9, by a factor 
of (ho)'/* or, in the present case of dimensionless units, which is identical, 
6(m - m')  = 6 ( E ,  - E,,,,) when the E's are in units of hw. 

E-(z)]  and z l ,  zm, are the left-hand classical turning points for 
nuclear motion in the potential energy curves HIl(z) and H22(z) 
[or E-(z)], respectively. 

When the system was in the m = 0 state, the energy of that 
initial vibrational state was typically somewhat close to the po- 
tential energy at the crossing point x,. For each such calculation 
in the semiclassical case, a uniform approximation version of eq 
B4 was used, namelyI3 

where F(z,) is 
(3/21e(z,)12/3). 

given and where { is positive and equals 

(13) Reference IO; cf. eqs 20 and 27a with the present (84) and (B7). 
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The dependence of electron-transfer rates on the number of intervening groups is treated by using a single calculational method 
for four separate series of compounds: a biphenylyl donor and a 2-naphthyl acceptor, separated by various rigid saturated 
hydrocarbon bridges, a dimethoxynaphthyl donor and a dicyanovinyl acceptor, separated by norbornyl groups, a Ru(NH&I 
donor and a Ru(NHJ5111 acceptor, separated by different numbers of dithiaspiro rings, and an OS(NH~):~ donor and an 
RU(NH,)~"' acceptor separated by an isonicotinyl plus a variable number of proline groups, which again provide a rigid 
spacer. The results for the electron-transfer matrix element obtained both with direct diagonalization and with the partitioning 
method are compared with each other, with the experimental results and, where available, with previously calculated results. 

Introduction 
There is a considerable interest in the dependence of elec- 

tron-transfer rates on separation distance, as well as on the driving 
force, -AGO, and on reorganizational and other molecular pa- 
rameters. A number of experimental and theoretical studies have 
been reported on the separation distance dependence, e.g., refs 
1-20. One would, as a result of such studies, also like to answer 
questions such as which are the most probable paths for long-range 
electron transfers, in various proteins, for example. A second 
important question is the relative importance of through-bond and 
through-space interactions in long-range electron transfer.ls For 
the problems involving proteins some quantum mechanical method 
of calculating electronic matrix elements for very large systems 
is desirable. 

I n  the present paper we consider the distance dependence of 
the electron-transfer rate from a donor D to an acceptor A, the 
distance being varied by varying the number of intervening groups 
in a molecular bridge B. Several such series have been studied 
experimentally. The theoretical method employed in the present 
article is one of the simplest available, the extended Huckel method 
(cf. refs 9, IO, 14, and 20). This method is a semiempirical 
one-electron method.21 In the present calculations no new pa- 
rameters have been introduced and the needed parameters, in- 
cluding calculated overlap integrals, for the systems considered 
here were obtained from standard sources. 

Four series of compounds are considered, in each system there 
being a covalent link between the donor and the acceptor. The 
four series considered are given in Figures 1-4, two of them being 
purely organic and two of them involving metal ions connected 
by an organic bridge. Three of these four series have been pre- 
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viously studied theoretically, to some degree at least, in each case 
using a different method of calculation and in some cases with 

( I )  Closs, G. L.; Calcaterra, L. T.; Green, N. J.; Penfield, K. W.; Miller, 
J. R. J. Phys. Chem. 1986, 90, 3673. 

(2) Oevering, J.; Paddon-Row, M. N.; Heppener, M.; Oliver, A. M.; 
Cotsaris, E.; Verhoeven, J. W.; Hush, N. S. J .  Am. Chem. SOC. 1987, 109, 
3258. 

(3) Stein, C. A.; Taube, H.  J .  Am. Chem. SOC. 1981, 103,693. 
(4) Stein, C. A.; Lewis, N. A.; Seitz, G. J. J .  Am. Chem. Soc. 1982, 104, 

(5) Beratan, D. N.; Hopfield, J. J. J .  Am. Chem. SOC. 1984, 106, 1584. 
(6) Isied, S. S.; Vassilian, A.; Wishart, J. F.; Creutz, C.; Schwartz, H. A.; 

Sutin, N. J .  Am. Chem. SOC. 1988, 110, 635. 
(7) Johnson, M. D.; Miller, J. R.; Green, N. S.; Closs, G. L. J .  Phys. Chem. 

1989, 93, 1173. 
(8) Penfield, K. W.; Miller, J. R.; Paddon-Row, M. N.; Cotsaris, E.; Oliver, 

A. M.; Hush, N. S. J .  Am. Chem. SOC. 1987, 109, 5061. 
(9) Larsson, S.; Volosov, A. J .  Chem. Phys. 1986,85, 2548. Larsson, S.; 

Volosov, A. J. Chem. Phys. 1987, 87, 6623. 
(IO) Larsson, S. J .  Am. Chem. SOC. 1981, 103, 4034. 
( I  1) Larsson, S.; Matos, J. M. 0. J. Mol. Struct. 1985, 120, 35. 
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