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Dynamics of Electron Transfer for a Nonsuperexchange Coherent Mechanism. 1 
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In addition to mechanisms such as superexchange and a chemical intermediate mechanism for electron transfer from a donor 
D* to an acceptor A via a molecular bridge B, a third possibility occurs when the BA electronic coupling is very strong and 
the D*B and D+B- states have energies moderately close to each other. This mechanism is discussed here. Like superexchange, 
it is a coherent one, in contrast to the chemical intermediate mechanism, where the transfer is sequential and incoherent. 
The dynamics of the mechanism are discussed, particularly the maximum population of "B-" and the question of whether 
an effective rate constant for its disappearance can be considerably larger than the maximum adiabatic rate constant. There 
are, as yet, no experimental data on the mechanism, though the synthesis of suitable D*BA's may permit its observation. 
I n  the treatment three collective nuclear coordinates are introduced, permitting independent reorganization energies for each 
reactive center. With certain approximations, namely, equal vibration frequencies and a nonadiabatic first step, the problem 
is reduced analytically to a one-coordinate one, which can be readily treated numerically. One rough but simple analytical 
result for the latter is also given. 

I .  Introduction 
Electron transfers from a donor D* to an acceptor A via a 

bridge B may occur by one of several mechanisms. The most 
common one is that of superexchange, in which the transferring 
electron makes use of a virtual state, an orbital quite different 
in energy from that of the donor D* or the acceptor A. A second 
mechanism, which could occur when the relevant bridge orbital 
is close enough in energy to the D* one, is for the electron transfer 
to occur via a chemical intermediate B-, whose presence could 
be detected experimentally. The kinetics of this transfer can be 
treated straightforwardly by using two consecutive steps. 

A third possibility is considered in the present paper, one for 
which there are as yet no experiments but for which suitable D*BA 
systems might be synthesized. In this mechanism the relevant 
B orbital is readily accessible energetically, as in the second 
mechanism above, but B and A are so strongly coupled elec- 
tronically that the entire transfer occurs coherently, rather than 
incoherently, in two successive steps. 

One question that arises concerns the maximum population of 
"B-" in this third mechanism. In the case of the second (se- 
quential) mechanism this maximum population E,,, is given by' 

where k ,  and k 2  are the rate constants of the D* -+ B and the 
B- - A electron transfers, respectively. The question that arises 
is whether or not for the third mechanism eq 1 .1  can still ap- 
proximately represent the data but with a considerably enhanced 
value of k 2 ,  a value substantially greater than the maximum k 2  
for an adiabatic electron transfer. (In this case E,,, would be 
much smaller than for a sequential mechanism.) The answer, as 
we shall see i n  a subsequent article on numerical results, is in the 
affirmative. Presumably, by a suitable choice of D*BA systems, 
e.g., a D* weakly coupled to B, a suitable choice of B with an 
energy level close to or far above that of D*, and a suitable choice 
of the electronic coupling between B and A (e.g., an aromatic or 
other appropriate group may provide strong coupling, a nonbornyl 
group relatively weaker coupling), it may be possible to construct 
a series of systems, different members of which proceed by one 
or the other of the three mechanisms. 

In the present paper we set up a model for performing calcu- 
lations of E,,, and other properties. In this model there should 
preferably, for the purpose cited, be a t  least three collective co- 
ordinates? each having its own reorganization parameter and each 
associated with an equilibrium vibrational displacement in a re- 
active center, D, B, and A. There should also be, in a quantum 
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mechanical treatment of the dynamics of this coherent transfer, 
some mechanism for dissipation, a t  least toward the end of the 
transfer process, so that a wave packet describing the dynamics 
is not spuriously reflected back and forth. In practice, this dis- 
sipation is provided by the many coordinates in the,actual system, 
which permit the reaction products to become thermalized before 
any reverse reaction occurs. (To design a theory that in one limit 
would yield two incoherently connected consecutive steps, a dis- 
sipative term accompanying the motion in the D+B-A stage would 
also be included, but for the present purpose of estimating a E,, 
we omit this additional feature here.) 

Rather than solve the Schrodinger equation with these three 
collective coordinates purely numerically, although that would 
be useful, we introduce in the present paper some approximations 
such that the coherent problem can be reduced analytically from 
three coordinates to one. Then the latter can be treated either 
numerically (e.g., using a one-dimensional fast Fourier transform3) 
or, in a more approximate way, analytically. A rather rough 
analytical estimate is given in section V .  

A coordinate system and the Hamiltonian are set up in section 
11, and an approximation is introduced (all three vibrational 
frequencies equal) which, when followed by a rotation of the 
coordinates, permits a reduction to a two-coordinate problem. In 
section 111, the transfer from D* to the BA coupled system is 
treated nonadiabatically (Golden Rule). To calculate the time 
evolution of B-, B-(r), the subsequent dynamics are investigated 
(section IV) in which the nonadiabatic step deposits a wave packet 
on the BA potential energy surface. This wave packet, continu- 
ously replenished from the decreasing concentration of D*, evolves 
in time on the BA surface and has a nuclear motion on BA which 
is seen in section IV to be separable. The treatment of the coherent 
dynamics has thereby been reduced to a one-coordinate problem. 
The energy partitioning and its effect on B(t) are discussed in 
section V. Numerical results are given in the following paper.4 

11. Coordinates and Hamiltonian 
Diabatic electronic wave functions \ki are introduced to describe 

the three electronic configurations D*BA, D+B-A, and D'BA-, 
corresponding to the transferring electron being on D ( i  = l ) ,  B 

( I )  Marcus, R. A. Chem. Phys. Lett. 1988, 144, 24. 
(2) ,For example, in an electron transfer involving a hexacoordinated 

transition-metal cation, all six stretching vibrations of the ligands participate 
in the reorganization and their contribution to the reorganizational parameter 
A can be described by the motion of a single collective coordinate-the normal 
coordinate involving the symmetric stretching vibration of the ligands. 

( 3 )  (a) E.g.: Feit, M .  D.; Fleck, Jr.,  J .  A,; Steiger, A. J .  Comput. Phys. 
1982, 47, 412. Kosloff, D.; Kosloff, R. J .  Compuf. Phys. 1983, 52, 35 .  (b) 
Alvarellos, J.; Metiu, H. J .  Chem. Phys. 1988, 88, 4957. Almeida, R. Ph.D. 
Thesis, University of California, Santa Barbara, 1987, Chapter 5. 

(4) Almeida, R.; Marcus, R. A. J .  Phys. Chem., following paper in this 
issue. 

0022-3654/90/2094-2973$02.50/0 0 I990 American Chemical Society 



2914 

( i  = 2), and A (i = 3). We let ai denote the corresponding 
time-dependent nuclear wave functions, to be determined by so- 
lution of the Schriidinger equation. The electronic-nuclear wave 
function q ( ~ )  at time T is now given by 
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3 

I =  I 
Q ( T )  = C@.i(T)\ki (2.1) 

The Hamiltonian contains a nuclear kinetic energy operator 
K and several nuclear-electronic terms, He,. Introduction of * ( T )  

into the Schrodinger equation H q  = i h  &€’/as, multiplication 
by qi*, and integration over the electronic coordinates yields a 
standard result for the nuclear motion: 

(2.2) 
3 

] = I  
K@[ + X H ~ ~ Q , ~  = ih a q / a T  

where H ,  denotes the matrix element 
Hij = (qilHell*j) (2.3) 

We next introduce three collective vibrational coordinates, ql, 
q2, q3, one collective vibration per center.2 For simplicity, a 
common vibration frequency w/27r is assumed for these vibrations 
(w = (ki /pi)I l2 ,  where ki is the force constant and pi a reduced 
mass), and dimensionless coordinates qi = ( p i ~ / h ) l / 2 q i  are in- 
troduced. Equation 2.2 now becomes 
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(2.4) 

where t is a dimensionless time variable UT and H ,  denotes the 
HU in eq 2.2 divided by ha. In actual fact, these three vibrational 
frequencies o will not be equal, but we are more interested here 
in obtaining some insight into what magnitudes to expect for B(t) 
for this mechanism rather than in an accurate numerical solution. 

For each of the three electronic configurations D*BA, D’B-A, 
and D+BA-, a set of three equilibrium values of the 4:s is defined. 
When the electron is on D, namely, when 9, is large, the equi- 
librium values of (q1,q2,q3)  are denoted by (al,O,O), while when 
the electron is on B, they are taken to be (0,a2,0) and, when on 
A, (0,0,a3) (Figure 1) .  Thus, with this choice we have, for ex- 
ample, q 1  = a, at the equilibrium position for the vibration 4,  in  
the D* system and q1 = 0 at the equilibrium position for q 1  when 
the D is in the form D’. Using a harmonic approximation the 
diagonal matrix elements Hii are now 

where the AEl;s denote the (equilibrium) energy differences of 
the first and the ith diabatic electronic configurations, divided 
by h w .  The off-diagonal H,;s will be taken to be independent 
of the 4’s. 

To solve eqs 2.4-2.5, we first introduce a new Cartesian co- 
ordinate system (x ,y ,z)  which permits a separation of the variable 
x from the ( y , z )  pair. The new axes are obtained by a rotation 
of the (ql ,q2,q3) axes, as in Figure 1. Customarily, three rotations 
are used for rotating the axes, as in the definition of the Euler 
 angle^.^ However, for our purposes it suffices to introduce only 
two: The rotations are such that the final x axis is perpendicular 
to the a,a2a3 plane and the final z axis is parallel to the (1203 line. 

We first rotate the axes through an angle Q, about the q l  axis, 
such that the new q3 coordinate ( z  in Figure 1 )  is parallel to the 
line +a3, and then rotate the axes through an angle 0 about this 
z axis, such that the new q 1  axis ( x )  is perpendicular to the plane 
ala2a3. We thus have 

(t) = ( F O B  i:s; :)(!I b, + :in +)tq ( 2 . 6 )  

( 5 )  E.g.: Goldstein, H. Classical Mechanics; Addison-Wesley: Reading, 

1 0 -sin + cos 0 q3 

MA, 1959: pp 107-109. 

a3 43 

/ 

q 2  
Y 

Figure 1. Original (qlq2q3) and rotated ( x y z )  coordinate axes. The x 
axis is perpendicular to the plane containing ala2a3 and intersects with 
it at  Q. The z coordinate axis is parallel to the line 0203 and serves as 
the reaction coordinate after the initial loss of the electron from D*. The 
y’axis is the result for the new 92 axis, obtained after the rotation of an 
angle + about the q1 axis, and the y axis results from Oy’ after the 
rotation about Oz through an angle 8. P i s  the foot of the perpendicular 
from 0 to the line a2a3, 

where in Figure 1 cos 0 = OP/a2, sin Q, = OP/a3, cos % = OQ/al, 
and sin % = OQ/OP. From the latter results we have OP = A2 and 
OQ = A , ,  where 

3 

i= I 
A ,  = (xa;2)-’/2, A2 = (a2-2 + a3-2)-1/2 (2.7) 

Upon multiplying the two matrices in eq 2.6 and taking the 
transpose so as to express the q column vector in terms of the x 
one, we have 

pi) = f$:: -AtIA2 Av42 la1~2  - A 2 / a ) ( i )  0 (2.8) 
93 Aila3 A,A2/ata3 Ada2 

Applying this transformation to eqs 2.4-2.5, we have 

where 

and6 

(2.9) 

(2.10) 

(2.1 1) 

With the change of coordinates from (ql ,q2,q3)  to ( x y , z ) ,  it 
is seen from eqs 2.9-2.1 1 that the x motion is identical for all H,‘s 
and so is now separable from that ofy  and z ,  an anticipated result 
since the coordinate x was defined so as to be perpendicular to 
the plane containing all the geometrical changes. The calculation 
of the dynamics of the electron transfer starting from electronic 
configuration 1 ,  Le., from D*BA, now involves only the two co- 
ordinates y and z .  

( 6 )  This definition of the Hii(z)’s was made (inclusion of the AE,,‘s in them 
instead of in  the Hii (y ) ’ s )  so as to simplify subsequent notation. E.g., in  eq 
4.10 H2zXY - H33”, which contains AEt2 - AE23, then reduces to H22(2)  - 
H33(2). 
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While eqs 2.10 and 2.1 1 follow from (2.5) and the coordinate 
transformation (2.8), the equilibrium values in the (x,y,z) system 
for the points a,, a2, a3, evident from eqs 2.10-2.1 1, are also easily 
inferred from Figure 1 .’ 
111. The Rate Constant 

For the loss of the electron from D* we use a nonadiabatic 
description (weak interaction of D* with BA). A Golden Rule 
approximation can then be used for a first-order rate constant k,  
for the disappearance of electronic configuration 1. For reactant 
from a particular vibrational state N ,  of D*, this k,  is given by8,9 

kr = 2*wH122C((a.NI(y,Z)IaN2,CY,Z))128(ENz1 - E N I )  (3.1) 
Nu 

using the separability of the x from the (y,z) motion. In eq 3.1, 
HI2 is the dimensionless HI2 in (2.4) and EN,  denotes the energy, 
divided by hw, for a system whose electronic configuration is 1 
and whose vibrational wave function is aN,(y,z). The vibrational 
wave function for the motion on a potential energy surface based 
on the pair of electronic configurations (2,3) is denoted by 
aN2,(y,z), and the corresponding vibrational energy, divided by 
h w ,  is ENz3.  

The stationary-state Schrodinger equation for aN,, obtained 
from (2.9)-(2.1 I ) ,  is 
r 
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where H 2 2 ( ~ )  is defined in (2.1 1). The first half of eq 3.6 defines 

To obtain a thermally averaged rate constant, eq 3.1 is mul- 
tiplied by the Boltzmann factor exp(-p’E,,)/Qxy and summed 
over NI.  Here, p’ denotes hw/kBT, kB being Boltzmann’s constant 
and T the temperature, and Qyr is the yz vibrational partition 
function when the electronic configuration is that of I .  Since the 
y and z vibrations for the initial electronic configuration 1 are 
treated as harmonic, QYr is given by a standard expression. When 
the y motion is that of a harmonic oscillator in  the diabatic 
electronic states 1 and 2, and when the harmonic H 2 2 ( ~ )  potential 
is used instead of an adiabatic potential EJz) discussed later, eq 
3.1 yields the standard result for the thermally averaged rate 
constant k,( T)I0 

k , ( T )  = ( k , )  = 2*wlHI2J2(exp[-Xl2 coth (p’/2) + 

where Ip (u)  is a modified Bessel function of order p and argument 
u, and where 

Hi. 

P’P/21)Ip[X,, cosech (p’/2)l (3.8) 

p = -AElz, X I 2  = 1/2(aI2 + ~ 2 ~ )  (3.9) 

XI2 is the usual “reorganization” term in electron transfers, divided 
by hw, namely, in  the present case the value of H 2 2 ( ~ )  - H,,(z) 
- AEI2, at the equilibrium z position for the H, , (z)  potential.” 
All the quantities in (3.1) and (3.9), apart from w ,  are dimen- 
sionless. 

In arriving at eqs 3.8-3.9 from (3.1), using a set of z-mode 
acceptor states (Hamiltonian H 2 2 ( ~ ) ) ,  we assumed a coupling of 
this mode to the many other coordinates in the system. Each 
z-mode acceptor state was thereby broadened. The sum over N23 
in (3.1) can then be replaced by an integral containing the density 
(hw)-I of z-mode states. The condition ENI - EN2, = 0 in the delta 
function would be satisfied by having a maximal number of vi- 
brational quanta p h w  going into the z mode, with the residual 
energy imbalance being supplied from a coupling of other modes 
of the system to a state. Thereby, the p in  (3.9) is the integer 
nearest -AEI2 (with -AE12 expressed in units of hw). In practice, 
eqs 3.8-3.9 will be treated as being interpolative, Le., with p not 
being restricted to be an integer but rather equal to -AEI2. The 
agreement of the various results in part 2, e.g., a comparison of 
(3.8) at 0 K with a numerical solution for k,, provides some support 
for this approach. 

IV. Population of B- 
When B- is formed as an intermediate in  an incoherent (hop- 

ping) mechanism, its time-dependent population can be calculated 
by standard chemical kinetics in terms of rate constants k l  and 
k2 of the two successive steps. However, when electronic con- 
figurations 2 and 3 are strongly coupled electronically, the wave 
packet representing the system can, on reaching the B- region of 
the (2,3) pair of surfaces, move rapidly downhill. It is the dy- 
namics on this (2,3) pair of surfaces that is treated next, the packet 
being steadily resupplied by the nonadiabatic transition from the 
decaying electronic configuration I .  

At zero time the system is in some zeroth-order vibrational 
eigenstate @,,,(y,z) = @,,(y) +,,,(z) of electronic configuration 1. 
If one uses the type of perturbation theory associated with ex- 
ponential decay phenomena,* the subsequent time evolution of 
@,,,,,(y,z,t) in  electronic configuration 1 is given by8 

@nm(y,~,r)  = e-kf‘/2-iEnmf@nm(y,z) (4.1) 

where the rate constant k ,  is given by eq 3.1 and E,, is the 
vibrational energy for the (n,m) vibrational state in electronic 
configuration 1. 

(10) E g :  Levich, V .  G.; Dogonadze, R. R. Collecf. Czech. Chem. Com- 
mun. 1961, 26, 193 (Translated by 0. Boshko, University of Ottawa). Levich, 
V .  G. In Physical Chemistry; An Advanced Treafise; Eyring, H.; Henderson, 
D., Jost, W., Eds.; Academic Press: New York, 1970; Vol. 9B, p 985. Jortner, 
J .  J .  Chem. Phys. 1976.64, 4860. Pagitsas, H.; Freed, K. Chem. fhys .  1977. 
23, 387. 

( 1 1 )  E.g.: Marcus, R.A.;Sutin,N. Commenfsfnorg. Chem. 1986,5, 119. 

where n and m are the respective quantum numbers for they  and 
z vibrational motions in electronic configuration 1, N, thus de- 
noting the pair (n,m). a n ~ )  and @,(z) are the corresponding wave 
functions. 

When the eigenfunctions @N3,(y ,~)  in eq 3.1 are approximated 
by being taken to be the solutions of the diabatic equation 

and 

3.5) 

3.6) 

( 7 )  E.g., a, ,  a*. and a, all have an x equal to OQ, and OQ equals A, .  
Further, z = 0 describes the plane containing q,, 0, y’, and y ,  and so the point 
aI in Figure 1 has z = 0. The z’s for a2 and a3 are seen as follows: The z for 
a, is f a ,  in Figure I ,  which equals a, cos @ = a,(Of/a,)  = a,A,/a,. The z 
for a2 is - fa , ,  which equals -a2 sin + = -a2A2/a,. T h e y  for points a2 and 
a, is A, cos B = A2Al /a l r  and they for a1 is -a1 sin 0 = -a lA, /A2.  All of these 
values agree with the minima in (2.10)-(2.11). which are the points a I ,  a2, 
and a3 in the new coordinate system. 

(8) E.g.: Merzbacher, E. Quantum Mechanics: Wiley: New York, 1970; 
Chapter 18. 

(9) This bra-ket notation is used for matrix elements involving the vibra- 
tional wave functions, indicating also by a b , z )  or Q), as in (3.1) and (4.9). 
the domain of those vibrational states to avoid confusion. The bra-ket notation 
is also used to label electronic states later in the article, as in eqs 4.2-4.8. In 
eq 4.8, a ket notation is also used to indicate an electronic-vibrational state, 
I * b , Z J )  ). 
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The wave function from electronic state I is continuously de- 
posited on the (2,3) pair of surfaces as a result of the nonadiabatic 
transition. In  the perturbation theory8 used to obtain eqs 3.1 and 
4.1, the deposited wave function is I\k2)H12@,(y,z,t). The latter 
then moves in time on the coupled (2,3) pair of surfaces, evolving 
under the influence of the electronic-nuclear Hamiltonian Hu2 
given below. The electronic-nuclear wave function \kCy,z,f) IS  
now given by the convolution expressionI2 

I\k(y,z.t)) = -iX'dB e- iHvz(' -B)l \k2)H,2@~m(y,~,8)  (4.2) 

where @,,(y,z,B) is given by eq 4. I .  It is assumed for simplicity 
in eqs 4.2 and 3.1 that because of the large separation distance 
the electronic matrix element HI3 directly coupling state \kl to 
\k3 can, in  the first approximation, be neglected. In  terms of a 
bra-ket notation for the diabatic electronic wave functions \ki's, 
the Hyr in eq 4.2 can be written as 

(4.3) HYL = H, + H, 
where, without loss of generality, the definition of H, includes the 
H23 term: 
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a harmonic oscillator Hamiltonian, eq 3.6. The z-dependent term 
in (4.7), exp(-iH,(B)l\k2)@,,,(z), can be calculated by using a fast 
Fourier transform (FFT) m e t h ~ d . ~  In the procedure some 
mechanism is prescribed for the dissipation of the wave packet 
after reaching the H 3 3 ( ~ )  surface, for example, by adding an 
imaginary term -ir to H33(z) in eq 4.4 or by modifying H33(z) 
and then introducing an absorbing b ~ u n d a r y . ~  

In  ref 4, for comparison with some of the numerical results for 
eqs 4.7-4.8, we have also made some calculations with H22(y) + 
Hz2(z) in eq 3.4 replaced by an adiabatic surface E..(y,z). From 
a comparison of the two sets of calculations information is obtained 
on the reflection, if  any, of the wave packet during its passage 
through the H22 and H33 intersection region. E-(y,z) is the lower 
of the two adiabatic potentials constructed from H22 and H3, and 
is given by 

E_(y,z) = l / z { H 2 2 Y Z  + H33"' - [(H22"' - H33"')' + 4H23'11Z2] 
(4.10) 

where Hi,V' is Hii(y) + Hii(z) ,  defined in (2.10)-(2.l I ) .  
Inasmuch as H22Y2 - H33Yz depends only on z (cf. eq 2.1 1 )  the 

adiabatic potential E - b , z )  given by (4.10) is seen to be the sum 
of two terms 

E _ ~ , z )  = y2b - A I A ~ / u ~ ) ~  + E-( z )  (4.1 1) 

where 
E J z )  = 

y2l[H22(z) H33(Z)l - ([H22(Z) - H33(Z)l2 + 4H232)1/2) 
(4.12) 

V. Energy Partitioning among the y and z Modes 
When the wave packet from state 1, given in (4.2), is deposited 

on the (2,3) surface, the population B(t) estimated in (4.8) de- 
pends on the partitioning of the excess energy among they  and 
z modes. To obtain some insight into numerical results4 for this 
partitioning, and later into an effective rate constant k2, it is useful 
to introduce here a quite rough but analytic estimate. 

The intersection of the HII(y,z) and H22(y,~) potential energy 
surfaces has some lowest point (y,2,zI2*). If we use the arguments 
given in Appendix A, the excess energy E, in they mode, measured 
relative to the energy at the lowest pointy? of the curve HZ2b) ,  
is 

Ey = n + t/z + (AE12 /X12) (X22 /X23)  - AE12 (5.1) 

where this n'so defined is predicted to be a dominant term in eq 
4.9 or an average, &n1(@d(2)1@n)12, of the terms there. Sub- 
tracting this E, from the approximate total energy after the \kl  - \k2 transition, m + n + 1 - A E I 2 ,  the average z-mode energy 
E, for motion on the (2,3) pair of surfaces is estimated to be 

n'+ y2 

E, = m + Y2 - (AE12/X12) (X22 /X23)  (5.2) 

In the three-state dynamics the system is initially deposited from 
state 1 onto the H22Cy,z) surface, since HI3 E 0. However, because 
of the strong coupling of the (2,3) pair, it may quickly settle down 
to a motion largely on the E-(y,z) surface. 

In that case there is a larger energy available at (y:,z:), larger 
than (5.1)-(5.2) and distributed between they and z motions. The 
additional amount of energy shared between those coordinates 
is estimated in Appendix A to be H22(z20) -E&?) and thereby 
that Ey + E ,  is given by 
E y + E , = m + n +  1 - A E I 2 +  

[&(A23 + AE23)2 + - f / 2 ( X 2 3  + AE23) (5.3) 
instead of m + n + 1 - AEI2 .  

To interpret some of the numerical results for B(t) and for 
E,,, given in part 2 and provide an approximate indication of 
what might be expected for other values of the various parameters, 
we obtain below a rather rough classical estimate of the time spent 
by the system in the "B- region" and for an effective rate constant 
k2.  For this purpose we approximate the length of this region by 
the z interval between zI2t and the intersection z23* of the H22(z )  

and, using the fact from eq 2.1 1 that H22(y) = H3,b )  

6,(\k,l = Hy'I (4.5) 
i -2  j = 2  

Here, I denotes the identity operator IPi) (\kil in the (\k2,\k3) 
subspace, and HyI is defined in the first half of (3.6): Hy is seen 
from eq 4.5 to induce no transitions in the ( \ k 2 , \ k 3 )  subspace, as 
expected. 

Since Hy and H, commute, the time evolution operator exp- 
(-iH r ~ )  in eq 4.2 can be written as exp(-iH,~) exp(-iH,r). 
Furtger, using (4.5) we have 

exp(-iHY~)1'P2)@,(y) = le2) exp(-iH,'T)@,Cy) (4.6) 

With a change of variable f - B - 8, eq 4.2 now becomes 

I\kQ,z,r)) = -iH e-(k,/f+i4"f dB e(k,/2+iEm)o[e-iH '8  @ n b ) l  x 

[ e-iH+7\k2) @,(z)] (4.7) 

which is the desired final expression. 
The "population" B(t) of the intermediate electronic config- 

uration 2 is obtained by projecting l\k(y,z,t)) onto the diabatic 
electronic state (q2) and integrating over the nuclear coordinates: 

B(r) = s s d y  dz I(\k2I'PCv,z,t))l2 (4.8) 

Strictly speaking, B- does not actually exist in this mechanism, 
and it would be more rigorous to treat an observable, such as the 
absorption spectrum in the B spectral region, rather than defining 
a B(t) via eq 4.8. Use of eq 4.8 for B- presumes that the quantity 
so defined adequately describes this depletion in the spectral region 
of B. 

12 s,' 

The exp(-iH,18)@,,(y) term in eq 4.7 can be written as 
e-iH;e@,,(y) = C ( @,,J2)(y)l@,,(y) )e-iE,'B@d(y) (4.9) 

where @d(2)(y)  is the n'th eigenfunction of the Hamiltonian H,," 
defined in eq 3.6, E,,, is the corresponding eigenvalue, and 
( @d(2)(y)l@,,(y)) is a Franck-Condon factor. Each of the quan- 
tities in eq 4.9 is ~ e l l - k n o w n ~ ~  for the present case where HY/ is 

n' 

( I  2)  Cf.: Loudon. R. The Quantum Theory oflight; Clarendon: Oxford, 

( I  3) Ballhausen, C. J. Molecular Electronic Structures of Transition 

(14) Child, M. S. In Semiclassical Methods in Molecular Scattering and 

( IS)  Marcus, R. A. Discuss. Faraday Soc. 1960, 29, 21. Marcus, R. A .  

1973: p 279. 

Metal Complexes: McGraw-Hill: New York, 1979; pp 112-1 IS. 

Spectroscopy. NATO ASI Ser., Ser. C. 1979, 53, 127. 

J .  Chem. Phys. 1965, 43, 679. 
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and ff33(z) surfaces. The point z~~~ is given by equations analogous 
to eqs A3 and A4 

(5.4) 

(5.5) 
Thereby, the value of ~ 2 3 *  - z12*, obtained as the difference, z23* 
- z20 - ( z 1 2 *  - z20), is found, using eqs A3 and A4 for z12* ,  to be 

(5 .6)  

When the wave packet undergoes negligible reflection in the region 
near ~ 2 3 * ,  a condition we denote by setting the 2 - 3 transition 
probability, ~ 2 3 ,  to be approximately unity, the time 7 2  spent by 
the system in the B- region is then, classically 

~ 2 3 *  = 22’ + M(z2’ - 23”) 

-(2M + l)h23 = AE23 
where M satisfies 

z23* - zl2* = [(ALE23 + x 2 3 )  + ( A E 1 2  - x 1 2 ) ( x 2 / x 1 2 ) l / ( 2 x 2 3 ) 1 ’ 2  
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Appendix A: Energy Partitioning among the x and y Modes 
The average distribution of the excess energy in each of the 

y and z modes after a 1 - (2 ,3 )  transition is estimated in this 
Appendix. When a matrix element (@,,,,(y,z)lO,(y,z)) in eq 3.1 
is treated semicla~sically,~~ it has a stationary-phase point which 
lies on the intersection surface of Hll(y,z) and a second surface, 
H 2 2 ( y , ~ )  or E-(y,z), depending on the approximate aNU(y,z) used 
for the stationary-phase condition: The stationary-phase point 
occurs where there is no change in the y and z components of 
momentum and so occurs on the above intersection surface 
(Franck-Condon principle). In the classical limit, the dominant 
semiclassical matrix elements provide information on an ensemble 
of classical trajectories from state 1 to state (2,3).  This ensemble, 
in their crossing from the Hll(y,z) surface to the second surface, 
is centered around the lowest point (yI2*,zI2*)  on the intersection 
surface. 

If the y-mode and z-mode energies before and just after the 
transition are E ,  and E,,,, respectively, in the notation of eq 3.3, 
the y-mode kinetic energy at (y12*.z12*) is E,, - I/2(yI2* - 
where (ylo,zIo) specifies the minimum of the HII(y,z) surface. The 
potential energy for they  mode on the H 2 2 ( y , ~ )  surface, relative 
to what it would be at the pointy: is ‘/2(y12* - Y:)~, where (y,”,zt) 
specifies the minimum of H22(y,z).  Thus, Ey, the y-mode energy 
in excess of the potential energy H22(y20)  after the 1 - (2 ,3 )  
transition, is 

Ey = n + f/2 - ‘/2”12* - YI’ )~  + f /2b12* - ~ 2 ’ ) ~  (AI )  
We define the corresponding z-mode energy E, as its value 

relative to that at z?. Thereby 

E,  = m + y2 - !l2(zI2* - Z , O ) ~  + y2(zl2* - z20)2 (H22 surface) 
(A21 

The dominant n’term in eq 4.9 is the one whose energy, n’+ 
in units of hw, most closely approximates the energy Ey given by 
(AI ) .  

By use of concepts employed for intersecting parabolic sur- 
f a c e ~ , ’ ~  the point (yI2*,zI2*) lying on the intersection of HII(y,z) 
and H 2 2 ( y , ~ )  surfaces and having the least potential energy is given 
by 
y12* = yIo + M(ylo - yZ0), ~ 1 2 *  = z I O  + M(zIo - 22’) (A3) 
where M satisfies the equation15 

- (2M + 1 ) X I 2  = AEI2 (A4) 

Equations AI-A5 then yield the energy partitioning expressions, 
eqs 5.1-5.2. 

If the system after the 1 - 3 transition is better described near 
z? as residing on the E-(y,z) surface rather than on the H22(y,z) 
one, then there is available for distribution among t h e y  and z 
motions some extra energy (extra when H22 > H-), namely, 
HZ2(z:) - E-(z:). Using eqs 4.1 2 and 2.1 I ,  this additional energy 
term is found to be given by eq 5.3. 

Appendix B: Landau-Zener Transmission Probability near 
z23* 

In a Landau-Zener treatment the probability ~ 2 3  of remaining 
on the potential energy curve E&) after a single passage through 
~ 2 3 t  is given byI4 

(B1) 
when ~ 2 3 *  is real. Here, u, is the velocity at the crossing point and 
A.Y is the difference of slopes of the intersecting diabatic potential 
energy curves there. If we set u> = N in dimensionless units 
(which defines N) and if we introduce the value1 for IaSl, namely, 
(z,O - z20) in dimensionless units, one finds that 

w23 = 1 - e-2~H~~~/uzlAd 

w23 1 - e-2*H2?/(~23/M1/2 (B2) 
For example, if  the z energy in the vicinity of ~ 2 3 *  is approx- 

imately the zero-point energy, then N = 1. Employing eq B2 
when H23 becomes very large may, however, be questionable. 

where u, is the local z component of velocity. In the case of the 
H22(z) curve u, is [2 {E ,  - H 2 2 ( ~ )  + H22(z:)}]1/2,  and in the case 
of the E - ( z ) ,  curve u, would be somewhat larger. Equation 5.7 
can be written in terms of some averaged velocity, or, T~ = ( 2 2 3 1  

I f  72 is regarded as the reciprocal of an effective rate constant 
k2, then eq 1 .1  still applies approximately for the maximum 
population of B-, but now with the k2 given by 

- z12*,/o,. 

k2 - 8,/1223* - zlz*l (when ~ 2 3  - 1) ( 5 . 8 )  

A few examples of calculated from eqs 1 . I  and 5.8 are given 
in part 2 and indicate that eq 5.8 is correct to roughly a factor 
of about 2 when ~ 2 3  is approximately unity. Further, a comparison 
is also made there with the full B(t) vs t curve using this effective 
k2.  This k2 becomes large when the z interval in the denominator 
of eq 5.8 becomes small (but not too small, if  the expression is 
to have some validity) and if a t  the same time ~ 2 3  - 1. 

In several respects a recent article16 by Lin on a donor- 
bridge-acceptor electron transfer is complementary to the present 
one: the case when the B- orbital is close to D* is included there, 
and the overall D* - A transfer is assumed to be coherent. There 
are several differences: a steady-state (Golden Rule) perturbative 
type treatment was used in ref 16 for the entire process, D* - 
A, so that the time evolution for the formation of A- was described 
by a single exponential. The electronic matrix elements are 
presumably assumed to be small in ref 16, so that the perturbative 
treatment can be used throughout. In the present treatment a 
highly nonexponential formation of A- may occur (e.g., Figure 
3 in part 2) ,  and a large H23 matrix element is permitted. One 
focus in the present article, unlike that in ref 16, is on the max- 
imum “B-” population. Another treatment akin to that in ref 16 
is that of Kharkats et al.,” who used for simplicity a one-coordinate 
treatment. Other studies include one by Friesner and Wer- 
theimer,l* who assumed a strong vibronic (nonperturbative) 
coupling in a photosynthetic system: They employed vibrational 
frequencies that nearly matched the assumed electronic energy 
gaps and so caused, thereby, a strong electronic interstate mixing. 
Coherent electron transfer in a two-level system has been discussed 
by Jortner.I9 

Applications of the present formalism are made in part 2. 
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