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Dynamics of Electron Trénsfer for a Nonsuperexchange Coherent Mechanism. 1
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In addition to mechanisms such as superexchange and a chemical intermediate mechanism for electron transfer from a donor
D* to an acceptor A via a molecular bridge B, a third possibility occurs when the BA electronic coupling is very strong and
the D*B and D*B- states have energies moderately close to each other. This mechanism is discussed here. Like superexchange,
it is a coherent one, in contrast to the chemical intermediate mechanism, where the transfer is sequential and incoherent.
The dynamics of the mechanism are discussed, particularly the maximum population of “B™ and the question of whether
an effective rate constant for its disappearance can be considerably larger than the maximum adiabatic rate constant. There
are, as yet, no experimental data on the mechanism, though the synthesis of suitable D*BA’s may permit its observation.
In the treatment three collective nuclear coordinates are introduced, permitting independent reorganization energies for each
reactive center. With certain approximations, namely, equal vibration frequencies and a nonadiabatic first step, the problem
is reduced analytically to a one-coordinate one, which can be readily treated numerically. One rough but simple analytical

result for the latter is also given.

I. Introduction

Electron transfers from a donor D* to an acceptor A via a
bridge B may occur by one of several mechanisms. The most
common one is that of superexchange, in which the transferring
electron makes use of a virtual state, an orbital quite different
in energy from that of the donor D* or the acceptor A. A second
mechanism, which could occur when the relevant bridge orbital
is close enough in energy to the D* one, is for the electron transfer
to occur via a chemical intermediate B-, whose presence could
be detected experimentally. The kinetics of this transfer can be
treated straightforwardly by using two consecutive steps.

A third possibility is considered in the present paper, one for
which there are as yet no experiments but for which suitable D*BA
systems might be synthesized. In this mechanism the relevant
B orbital is readily accessible energetically, as in the second
mechanism above, but B and A are so strongly coupled elec-
tronically that the entire transfer occurs coherently, rather than
incoherently, in two successive steps.

One question that arises concerns the maximum population of
“B~" in this third mechanism. In the case of the second (se-
quential) mechanism this maximum population B, is given by

B_max = (k]/kZ)kZ/(krk]) (1])

where k| and k, are the rate constants of the D* — B and the
B~ — A electron transfers, respectively. The question that arises
is whether or not for the third mechanism eq 1.1 can still ap-
proximately represent the data but with a considerably enhanced
value of k,, a value substantially greater than the maximum &,
for an adiabatic electron transfer. (In this case B, would be
much smaller than for a sequential mechanism.) The answer, as
we shall see in a subsequent article on numerical results, is in the
affirmative. Presumably, by a suitable choice of D*BA systems,
e.g., a D* weakly coupled to B, a suitable choice of B with an
energy level close to or far above that of D*, and a suitable choice
of the electronic coupling between B and A (e.g., an aromatic or
other appropriate group may provide strong coupling, a nonbornyl
group relatively weaker coupling), it may be possible to construct
a series of systems, different members of which proceed by one
or the other of the three mechanisms.

In the present paper we set up a model for performing calcu-
lations of B ., and other properties. In this model there should
preferably, for the purpose cited, be at least three collective co-
ordinates,? each having its own reorganization parameter and each
associated with an equilibrium vibrational displacement in a re-
active center, D, B, and A. There should also be, in a quantum
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mechanical treatment of the dynamics of this coherent transfer,
some mechanism for dissipation, at least toward the end of the
transfer process, so that a wave packet describing the dynamics
is not spuriously reflected back and forth. In practice, this dis-
sipation is provided by the many coordinates in the actual system,
which permit the reaction products to become thermalized before
any reverse reaction occurs. (To design a theory that in one limit
would yield two incoherently connected consecutive steps, a dis-
sipative term accompanying the motion in the D¥BA stage would
also be included, but for the present purpose of estimating a B,
we omit this additional feature here.)

Rather than solve the Schrodinger equation with these three
collective coordinates purely numerically, although that would
be useful, we introduce in the present paper some approximations
such that the coherent problem can be reduced analytically from
three coordinates to one. Then the latter can be treated either
numerically (e.g., using a one-dimensional fast Fourier transform?)
or, in a more approximate way, analytically. A rather rough
analytical estimate is given in section V.

A coordinate system and the Hamiltonian are set up in section
11, and an approximation is introduced (all three vibrational
frequencies equal) which, when followed by a rotation of the
coordinates, permits a reduction to a two-coordinate problem. In
section III, the transfer from D* to the BA coupled system is
treated nonadiabatically (Golden Rule). To calculate the time
evolution of B, B7(7), the subsequent dynamics are investigated
(section 1V) in which the nonadiabatic step deposits a wave packet
on the BA potential energy surface. This wave packet, continu-
ously replenished from the decreasing concentration of D*, evolves
in time on the BA surface and has a nuclear motion on BA which
is seen in section IV to be separable. The treatment of the coherent
dynamics has thereby been reduced to a one-coordinate problem.
The energy partitioning and its effect on B~(¢) are discussed in
section V. Numerical results are given in the following paper.*

II. Coordinates and Hamiltonian

Diabatic electronic wave functions ¥, are introduced to describe
the three electronic configurations D*BA, D*B"A, and D*BA™,
corresponding to the transferring electron beingon D (i = 1), B

(1) Marcus, R. A. Chem. Phys. Lett. 1988, 144, 24,

(2) For example, in an electron transfer involving a hexacoordinated
transition-metal cation, all six stretching vibrations of the ligands participate
in the reorganization and their contribution to the reorganizational parameter
X can be described by the motion of a single collective coordinate—the normal
coordinate involving the symmetric stretching vibration of the ligands.

(3) (a) E.g.: Feit, M. D.; Fleck, Jr., J. A,; Steiger, A. J. Comput. Phys.
1982, 47, 412. Kosloff, D.; Kosloff, R. J. Comput. Phys. 1983, 52, 35. (b)
Alvarellos, J.; Metiu, H. J. Chem. Phys. 1988, 88, 4957. Almeida, R. Ph.D.
Thesis, University of California, Santa Barbara, 1987, Chapter 5.

(4) Almeida, R.; Marcus, R. A. J. Phys. Chem., following paper in this
issue.
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(i =2),and A (! = 3). We let & denote the corresponding
time-dependent nuclear wave functions, to be determined by so-
lution of the Schrddinger equation. The electronic—nuclear wave
function ¥(r) at time 7 is now given by

¥(r) = ‘iq’i("')‘l’i 2.1)
i=1

The Hamiltonian contains a nuclear kinetic energy operator
K and several nuclear—electronic terms, H,. Introduction of ¥(7)
into the Schrodinger equation H¥ = ik d¥ /37, multiplication
by ¥,;*, and integration over the electronic coordinates yields a
standard result for the nuclear motion:

3
K& + Y H;® = ih 0;/0r (2.2)
=1

where Hj; denotes the matrix element
Hy = (Y |Hy|¥)) (2.3)

We next introduce three collective vibrational coordinates, g,
s g3, one collective vibration per center.? For simplicity, a
common vibration frequency w /2 is assumed for these vibrations
(w = (k;/u;)!/%, where k; is the force constant and g, a reduced
mass), and dimensionless coordinates g; = (uw/h)'/3g; are in-
troduced. Equation 2.2 now becomes

1 82 9%,
2;(9%2@, +THE =i (2.4)

where 1 is a dimensionless time variable wr and H;; denotes the
H;;in eq 2.2 divided by hw. In actual fact, these three vibrational
frequencies w will not be equal, but we are more interested here
in obtaining some insight into what magnitudes to expect for B7(¢)
for this mechanism rather than in an accurate numerical solution.

For each of the three electronic configurations D*BA, D*B"A,
and D*BA", a set of three equilibrium values of the g;'s is defined.
When the electron is on D, namely, when &, is large, the equi-
librium values of (¢,,91,9;) are denoted by (a,,0,0), while when
the electron is on B, they are taken to be (0,4,,0) and, when on
A, (0,0,a;) (Figure 1). Thus, with this choice we have, for ex-
ample, ¢, = a, at the equilibrium position for the vibration ¢, in
the D* system and ¢; = 0 at the equilibrium position for g, when
the D is in the form D*. Using a harmonic approximation the
diagonal matrix elements H;; are now

Hy = (g - a))* + /g + ey’
Hy =9 + 5y - a))* + hg3* + AE), (2.3)
Hy = g2 + a7 + (s - a3)* + AE,

where the AE,;’s denote the (equilibrium) energy differences of
the first and the ith diabatic electronic configurations, divided
by Aw. The off-diagonal H,/’s will be taken to be independent
of the ¢’s.

To solve eqs 2.4-2.5, we first introduce a new Cartesian co-
ordinate system (x,,z) which permits a separation of the variable
x from the (y,z) pair. The new axes are obtained by a rotation
of the (g,,95,¢3) axes, as in Figure 1. Customarily, three rotations
are used for rotating the axes, as in the definition of the Euler
angles.* However, for our purposes it suffices to introduce only
two: The rotations are such that the final x axis is perpendicular
to the a,a,a, plane and the final z axis is parallel to the a,a; line.

We first rotate the axes through an angle ® about the g, axis,
such that the new g; coordinate (z in Figure 1) is parallel to the
line a,a,, and then rotate the axes through an angle 8 about this
z axis, such that the new g, axis (x) is perpendicular to the plane
a,a,a;. We thus have

X cosd sind O\/1 O 0 4
y]={-sinf cosf8 ONO cos® sind}|{g, (2.6)
z 0 0 1/\0 -sin & cos &/ \g,

(5) E.g.: Goldstein, H. Classical Mechanics; Addison-Wesley: Reading,
MA, 1959; pp 107-109.
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Figure 1. Original (g,4,9;) and rotated (xyz) coordinate axes. The x
axis is perpendicular to the plane containing a,a,a; and intersects with
it at Q. The z coordinate axis is parallel to the line a,a; and serves as
the reaction coordinate after the initial loss of the electron from D*. The
y’axis is the result for the new ¢, axis, obtained after the rotation of an
angle ® about the g, axis, and the y axis results from Oy’ after the
rotation about Oz through an angle 8. P is the foot of the perpendicular
from O to the line a,a;.

where in Figure 1 cos & = 0P/a,, sin & = 0P/as, cos § = 0Q/a,,
and sin § = 0Q/0P. From the latter results we have OP = A4, and
0Q = A,, where

3
A = (Ta )V Ay = (a4 a2 2.7

=1
Upon multiplying the two matrices in eq 2.6 and taking the

transpose so as to express the q column vector in terms of the x
one, we have

q Afay -A/A, 0 X
42 ) = [ AJay Aidy/aa; -Ayfa)| ¥ (2.8)
93 Afay Aidy/ma; Aya J\z

Applying this transformation to eqs 2.4-2.5, we have

& 2 8 e vsne =i oo
2\ ax2 9  9z? s Ud)j_lat (29)
where
Hy = (x-A)+ Ky + a4, /A)? + 2P
Hy = fh(x = A)* + Hyp(y) + Hy(2) (2.10)
Hy = Yo(x - A + Hy(v) + Hyy(2)
and®

Hyu(y) = Hyu() = h(y - 414y/a))?
Hy(2) = Yoz + ay4y/ay)* + AE), (2.11)
Hy(z) = Yoz — asAy/a;)* + AE|;

With the change of coordinates from (4,,45,93) to (x,»,2), it
is seen from eqs 2.9-2.11 that the x motion is identical for all H;/s
and so is now separable from that of y and z, an anticipated result
since the coordinate x was defined so as to be perpendicular to
the plane containing all the geometrical changes. The calculation
of the dynamics of the electron transfer starting from electronic
configuration 1, i.e., from D*BA, now involves only the two co-
ordinates y and z.

(6) This definition of the H,(z)'s was made (inclusion of the AE,’s in them
instead of in the H;(y)’s) so as to simplify subsequent notation. E.g., in eq
4.10 Hy” — H33®, which contains AE,, — AEy;, then reduces to Hyy(z) —
Hy(2).
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While egs 2.10 and 2.11 follow from (2.5) and the coordinate
transformation (2.8), the equilibrium values in the (x,y,z) system
for the points a,, a,, a3, evident from egs 2.10-2.11, are also easily
inferred from Figure 1.

III. The Rate Constant

For the loss of the electron from D* we use a nonadiabatic
description (weak interaction of D* with BA). A Golden Rule
approximation can then be used for a first-order rate constant k,
for the disappearance of electronic configuration 1. For reactant
from a particular vibrational state N, of D*, this k, is given by®®

k. = 27r<.uH1221fl\__‘,|(tI>N|(y,z)|<I>Nu(y,z))|2<3(EN23 - Ey) 3.0

using the separability of the x from the (y,z) motion. Ineq 3.1,
H,, is the dimensionless H,, in (2.4) and E, denotes the energy,
divided by hw, for a system whose electronic configuration is 1
and whose vibrational wave function is ®,(y,z). The vibrational
wave function for the motion on a potential energy surface based
on the pair of electronic configurations (2,3) is denoted by
®y,,(1.2), and the corresponding vibrational energy, divided by
hw, is Ey,,.

The stationary-state Schrédinger equation for ®,,, obtained
from (2.9)-(2.11), is

18 18 o
""" — + h + a4 /A + 2 |8y 02) =

2 92 2422
Endy,0,2) (3.2)
Equation 3.2 is separable, and we have
oy, (0.2) = 8,(0) ®,(2), En=E,+ E, (3.3)

where n and m are the respective quantum numbers for the y and
z vibrational motions in electronic configuration 1, ¥V, thus de-
noting the pair (n.m). $,(y) and ®,,(z) are the corresponding wave
functions.

When the eigenfunctions &, (v,z) in eq 3.1 are approximated
by being taken to be the solutions of the diabatic equation

1 9 1 &
____ — + Hyp(y) + Hp(2) J2p,0.2) =

2 92 2 422
Epn,®n,,0,2) (3.4)

®y,,(r,2) becomes
Eny02) = 8,/00) B2, Epy = Ex+ Ep (3.5)

where

2
o 0 A )t [0 = HB ) =

L
2
E 2,(y) (3.6)

and

2 922

[ | T
~= =+ Hy(2) |®m(2) = E,v®,(2) (3.7

(7) E.g., ay, a;, and a; all have an x equal to 0Q, and 0Q equals A,.
Further, z = 0 describes the plane containing g;, 0, y, and y, and so the point
a, in Figure 1 has z = 0. The z's for a, and a; are seen as follows: The z for
a3 is Pay in Figure 1, which equals a; cos & = a,(0P/a,) = a34,/a,. The z
for a, is — Pa,, which equals —a; sin & = ~a,4,/a;. The y for points a, and
ay is Ay cos 6 = A;A,/ay, and the y for a, is —a, sin 8 = —a,4,/A,. All of these
values agree with the minima in (2.10)—(2.11), which are the points a,, a,,
and a; in the new coordinate system.

(8) E.g.. Merzbacher, E. Quantum Mechanics: Wiley: New York, 1970;
Chapter 18.

(9) This bra—ket notation is used for matrix elements involving the vibra-
tional wave functions, indicating also by a (y,z) or (¥), as in (3.1) and (4.9),
the domain of those vibrational states to avoid confusion. The bra—ket notation
is also used to label electronic states later in the article, as in eqs 4.2-4.8. In
eq 4.8, a ket notation is also used to indicate an electronic-vibrational state,

¥ (y,z.0)).
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where H,y(z) is defined in (2.11). The first half of eq 3.6 defines
H !’

yTo obtain a thermally averaged rate constant, eq 3.1 is mul-
tiplied by the Boltzmann factor exp(-8'Ey, )/ @xy and summed
over NV,. Here, 8 denotes Aw/kgT, kg being Boltzmann’s constant
and T the temperature, and Q,, is the yz vibrational partition
function when the electronic configuration is that of 1. Since the
y and z vibrations for the initial electronic configuration 1 are
treated as harmonic, @,, is given by a standard expression. When
the y motion is that of a harmonic oscillator in the diabatic
electronic states 1 and 2, and when the harmonic Hy(z) potential
is used instead of an adiabatic potential E_(z) discussed later, eq
3.1 yields the standard result for the thermally averaged rate
constant k(T)'°

k(T) = (k;) = 2mw|H;l(exp[-Ay; coth (87/2) +
B'p/21,[ A, cosech (8/2)] (3.8)

where (1) is a modified Bessel function of order p and argument
u, and where

p=-8Ep Ay =Y+ a?) (3.9)

A, is the usual “reorganization” term in electron transfers, divided
by hw, namely, in the present case the value of H,(z) - H (2)
- AE,,, at the equilibrium z position for the H|,(z) potential.!!
All the quantities in (3.1) and (3.9), apart from w, are dimen-
sionless.

In arriving at eqs 3.8-3.9 from (3.1), using a set of z-mode
acceptor states (Hamiltonian H,,(z)), we assumed a coupling of
this mode to the many other coordinates in the system. Each
z-mode acceptor state was thereby broadened. The sum over N,;
in (3.1) can then be replaced by an integral containing the density
(hw)™ of z-mode states. The condition Ey, — E,, = 0 in the delta
function would be satisfied by having a maximal number of vi-
brational quanta phw going into the z mode, with the residual
energy imbalance being supplied from a coupling of other modes
of the system to a state. Thereby, the p in (3.9) is the integer
nearest —AE |, (with —AE, expressed in units of Aw). In practice,
eqs 3.8-3.9 will be treated as being interpolative, i.e., with p not
being restricted to be an integer but rather equal to ~AE,,. The
agreement of the various results in part 2, e.g., a comparison of
(3.8) at 0 K with a numerical solution for k,, provides some support
for this approach.

IV. Population of B~

When B~ is formed as an intermediate in an incoherent (hop-
ping) mechanism, its time-dependent population can be calculated
by standard chemical kinetics in terms of rate constants k; and
k, of the two successive steps. However, when electronic con-
figurations 2 and 3 are strongly coupled electronically, the wave
packet representing the system can, on reaching the B region of
the (2,3) pair of surfaces, move rapidly downhill. It is the dy-
namics on this (2,3) pair of surfaces that is treated next, the packet
being steadily resupplied by the nonadiabatic transition from the
decaying electronic configuration .

At zero time the system is in some zeroth-order vibrational
eigenstate ®,,(1,z) = &,(y) ®,(z) of electronic configuration 1.
If one uses the type of perturbation theory associated with ex-
ponential decay phenomena,® the subsequent time evolution of
®,..(y,2,1) in electronic configuration 1 is given by?

®,,,(n,z,1) = ekt/ZEmlD (y 7) 4.1)

where the rate constant k, is given by eq 3.1 and E,,, is the
vibrational energy for the (n,m) vibrational state in electronic
configuration 1.

(10) E.g.: Levich, V. G.; Dogonadze, R. R. Collect. Czech. Chem. Com-
mun. 1961, 26, 193 (Translated by O. Boshko, University of Ottawa). Levich,
V. G. In Physical Chemistry, An Advanced Treatise, Eyring, H.; Henderson,
D., Jost, W., Eds.; Academic Press: New York, 1970; Vol. 9B, p 985. Jortner,
J. J. Chem. Phys. 1976, 64, 4860. Pagitsas, H.; Freed, K. Chem. Phys. 1977,
23, 387.

(11) E.g.: Marcus, R. A.; Sutin, N. Comments Inorg. Chem. 1986, 5, 119.
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The wave function from electronic state | is continuously de-
posited on the (2,3) pair of surfaces as a result of the nonadiabatic
transition. In the perturbation theory® used to obtain egs 3.1 and
4.1, the deposited wave function is |¥,) H,,®,,(1,2,t). The latter
then moves in time on the coupled (2,3) pair of surfaces, evolving
under the influence of the electronic—nuclear Hamiltonian H,
given below. The electronic—nuclear wave function ¥(y,z,t) is
now given by the convolution expression!?

t
W(.z.0) =i fo d6 e Hnt DY) Hyy®,,(7,2,0) (4.2)

where &,,,(y,z,0) is given by eq 4.1. It is assumed for simplicity
in eqs 4.2 and 3.1 that because of the large separation distance
the electronic matrix element H |3 directly coupling state ¥, to
V¥, can, in the first approximation, be neglected. In terms of a
bra-ket notation for the diabatic electronic wave functions ¥/’s,
the H,, in eq 4.2 can be written as

H,,=H,+H, (4.3)

where, without loss of generality, the definition of H, includes the
H,; term:

H,= Z Z|\II )( il 6,7 + H,-j(z))(\llj| (4.4)

y=2 jm=2

and, using the fact from eq 2.11 that Hy(y) = H3(p)

2
H =2 5|, >( L szw))a.,w,l = H/I (4.5)
jmQ j=2 y
Here, I denotes the identity operator S (W] in the (Wy,¥5)
subspace, and H,’ is defined in the first half of (3.6): H, is seen
fromeq 4.5 to induce no transitions in the (¥,,¥,) subspace, as
expected.
Smce H, and H, commute, the time evolution operator exp-
H,,7) m eq 4. 2 can be written as exp(-iH,r) exp(-iH,7).
Furtfv\er using (4.5) we have

exp(—iH,T)|¥;) ®,(y)

With a change of variable 1 - § — 6, eq 4.2 now becomes

= |¥,) exp(~iH,/7)®,(y) (4.6)

{
N (20)) = _iHne-(k,/zﬁs,,,,.)nJ; d8 elk/ PHEmW[=iHy0p ()] X
[eH48,)®,,(2)] (4.7)

which is the desired final expression.

The “population™ B(¢) of the intermediate electronic config-
uration 2 is obtained by projecting |¥(y,z,t)) onto the diabatic
electronic state |¥,) and integrating over the nuclear coordinates:

B0 = f faydz (0P (48)

Strictly speaking, B~ does not actually exist in this mechanism,
and it would be more rigorous to treat an observable, such as the
absorption spectrum in the B spectral region, rather than defining
a B(?) via eq 4.8. Use of eq 4.8 for B~ presumes that the quantity
so defined adequately describes this depletion in the spectral region
of B.

The exp(-iH,/8)®,(y) term in eq 4.7 can be written as

eH®,(0) = AP, P0NBA))eE 0D, (y)  (49)

where ®,9(y) is the n'th eigenfunction of the Hamiltonian H,/,

defined in eq 3.6, E, is the corresponding eigenvalue, and
(®,P()|®,()) is a Franck-Condon factor. Each of the quan-
tities in eq 4.9 is well-known!3 for the present case where H,' i

(12) Cf.: Loudon, R. The Quantum Theory of Light; Clarendon: Oxford,
1973: p 279.

(13) Ballhausen, C. J. Molecular Electronic Structures of Transition
Metal Complexes: McGraw-Hill: New York, 1979; pp 112-115.

(14) Child, M. 8. In Semiclassical Methods in Molecular Scattering and
Spectroscopy. NATO ASI Ser., Ser. C. 1979, 53, 127.

(15) Marcus, R. A. Discuss. Faraday Soc. 1960, 29, 21. Marcus, R. A.
J. Chem. Phys. 1968, 43, 679.
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a harmonic oscillator Hamiltonian, eq 3.6. The z-dependent term
in (4.7), exp(-iH (6)|\¥,)®,(z), can be calculated by using a fast
Fourier transform (FFT) method.®> In the procedure some
mechanism is prescribed for the dissipation of the wave packet
after reaching the Hy;(z) surface, for example, by adding an
imaginary term —iT" to H;3(z) in eq 4.4 or by modifying Hs;(z)
and then introducing an absorbing boundary.*

In ref 4, for comparison with some of the numerical results for
egs 4.7-4.8, we have also made some calculations with H5,(y) +
H,,(2) in eq 3.4 replaced by an adiabatic surface £_(y,z). From
a comparison of the two sets of calculations information is obtained
on the reflection, if any, of the wave packet during its passage
through the H,, and H;; intersection region. E_(y,z) is the lower
of the two adiabatic potentials constructed from H,; and H;; and
is given by

E_(y,2) = B{Hyp* + Hy = [(Hy* ~ Hy™)? + 4HpM' Y

(4.10)

where H;?? is H;(y) + H,(z), defined in (2.10)-(2.11).

Inasmuch as H,,”* — H;y* depends only on z (cf. eq 2.11) the
adiabatic potential E_(y,z) given by (4.10) is seen to be the sum
of two terms

E.(y.2) = (y - A1 Ay/a)* + E(2) (4.11)
where

E(z)=
YA[Hy(2) + Hys(2)] = {[H(2) = Hys(2)]2 + 4Hp Y
(4.12)

V. Energy Partitioning among the y and z Modes

When the wave packet from state 1, given in (4.2), is deposited
on the (2,3) surface, the population B™(¢) estimated in (4.8) de-
pends on the partitioning of the excess energy among the y and
z modes. To obtain some insight into numerical results* for this
partitioning, and later into an effective rate constant k,, it is useful
to introduce here a quite rough but analytic estimate.

The intersection of the H,,(»,z) and Hy,(y,2) potential energy
surfaces has some lowest point (y;;},2;,"). If we use the arguments
given in Appendix A, the excess energy E, in the vy mode, measured
relative to the energy at the lowest pomt 50 of the curve Hqy(p),
is

E,=n+ h+ (AE /N (MNP /A) - AEp=n'+ ) (51)
where this n’so defined is predicted to be a dominant term in eq
4.9 or an average, 3, n1(®,@|®,)| of the terms there. Sub-
tracting this E, from the approximate total energy after the ¥,
— ¥, transmon m+n+1-AE,, the average z- -mode energy
E, for motion on the (2,3) pair of surfaces is estimated to be

E,=m+ Y- (AE )3/ N)) (M Ay) (5.2)

In the three-state dynamics the system is initially deposited from
state 1 onto the Hy(y,z) surface, since H,; ~ 0. However, because
of the strong coupling of the (2,3) pair, it may quickly settle down
to a motion largely on the E_(y,z) surface.

In that case there is a larger energy available at (,%,2,%), larger
than (5.1)-(5.2) and distributed between the y and z motions. The
additional amount of energy shared between those coordinates
is estimated in Appendix A to be Hq,(z,°) - E_(z,°) and thereby
that E, + E, is given by

E,+E,=m+n+1-0E,+
(Yahgs + AEy)? + Hy3?1'2 = Yy(Nys + AEy3) (5.3)

instead of m + n + 1 — AE,.

To interpret some of the numerical results for B(¢) and for
B . given in part 2 and provide an approximate indication of
what might be expected for other values of the various parameters,
we obtain below a rather rough classical estimate of the time spent
by the system in the “B~ region” and for an effective rate constant
ky. For this purpose we approximate the length of this region by
the z interval between z,,* and the intersection z,3* of the H,,(z)
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and Hiy3(z) surfaces. The point z,,} is given by equations analogous
to eqs A3 and A4

223t = 220 + 1‘{(220 - 230) (54)
where M satisfies
_(ZM + ]))\23 = AE23 (55)

Thereby, the value of 2,5t - z,,}, obtained as the difference, z,5}
- 2,9 = (215} ~ 2,0), is found, using eqs A3 and A4 for z,,}, to be

233t = 2130 = [(AEy + Ajy) + (AE ) = M) (A1/A12)]/ (2A55)!/2
(5.6)

When the wave packet undergoes negligible reflection in the region
near z,3%, a condition we denote by setting the 2 — 3 transition
probability, w,;, to be approximately unity, the time 7, spent by
the system in the B~ region is then, classically

2
Ty ~ J;:dz/v, (when wy; ~ 1) 5.7)

where v, is the local z component of velocity. In the case of the
H,y(2) curve v, is [2{E, — Hy(2) + H,5(2,°)}11'2, and in the case
of the E_(z), curve v, would be somewhat larger. Equation 5.7
can bte written in terms of some averaged velocity, 5,, 7, = (253}
- 21/,

If 7, is regarded as the reciprocal of an effective rate constant
k,, then eq 1.1 still applies approximately for the maximum
population of B~, but now with the k, given by

ky ~ 8./lz33 = 2121 (When wyy ~ 1) (5.8)

A few examples of B_,, calculated from egs 1.1 and 5.8 are given
in part 2 and indicate that eq 5.8 is correct to roughly a factor
of about 2 when w; is approximately unity. Further, a comparison
is also made there with the full B~(¢) vs ¢ curve using this effective
k,. This k, becomes large when the z interval in the denominator
of eq 5.8 becomes small (but not too small, if the expression is
to have some validity) and if at the same time wy; ~ 1.

In several respects a recent article!® by Lin on a donor-
bridge-acceptor electron transfer is complementary to the present
one: the case when the B~ orbital is close to D* is included there,
and the overall D* — A transfer is assumed to be coherent. There
are several differences: a steady-state (Golden Rule) perturbative
type treatment was used in ref 16 for the entire process, D* —
A, so that the time evolution for the formation of A~ was described
by a single exponential. The electronic matrix elements are
presumably assumed to be small in ref 16, so that the perturbative
treatment can be used throughout. In the present treatment a
highly nonexponential formation of A~ may occur (e.g., Figure
3 in part 2), and a large H,; matrix element is permitted. One
focus in the present article, unlike that in ref 16, is on the max-
imum “B™” population. Another treatment akin to that in ref 16
is that of Kharkats et al.,!” who used for simplicity a one-coordinate
treatment. Other studies include one by Friesner and Wer-
theimer,'® who assumed a strong vibronic (nonperturbative)
coupling in a photosynthetic system: They employed vibrational
frequencies that nearly matched the assumed electronic energy
gaps and so caused, thereby, a strong electronic interstate mixing.
Coherent electron transfer in a two-level system has been discussed
by Jortner.!?

Applications of the present formalism are made in part 2.
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Appendix A: Energy Partitioning among the x and y Modes

The average distribution of the excess energy in each of the
v and z modes after a 1 — (2,3) transition is estimated in this
Appendix. When a matrix element (@Nl(y,z)lfb,vu(y,z)) ineq 3.1
is treated semiclassically,'* it has a stationary-phase point which
lies on the intersection surface of H,,(y,z) and a second surface,
Hy(y,2) or E_(y,z), depending on the approximate &y, (y,z) used
for the stationary-phase condition: The stationary-phase point
occurs where there is no change in the y and z components of
momentum and so occurs on the above intersection surface
(Franck—Condon principle). In the classical limit, the dominant
semiclassical matrix elements provide information on an ensemble
of classical trajectories from state 1 to state (2,3). This ensemble,
in their crossing from the H,,(y,z) surface to the second surface,
is centered around the lowest point (3,,%,2,,*) on the intersection
surface.

If the y-mode and z-mode energies before and just after the
transition are £, and E,,, respectively, in the notation of eq 3.3,
the y-mode kinetic energy at (yo4z5Y) is E, = /202t = »93,
where (,%,z,°) specifies the minimum of the H,,(y,z) surface. The
potential energy for the y mode on the H,,(y,z) surface, relative
to what it would be at the point y, is !/,(y15} — 3,%)2, where (3°,2,%)
specifies the minimum of Hy(y,z). Thus, E,, the y-mode energy
in excess of the potential energy H,,(y,°) after the 1 — (2,3)
transition, is

E,=n+ Y- Y%t -9+ Kt -0 (Al

We define the corresponding z-mode energy E, as its value
relative to that at z,°. Thereby

E,=m+ - Szt - 29 + ozt - 2,77 (Hy, surface)
(A2)

The dominant n’term in eq 4.9 is the one whose energy, n’+ !/,,
in units of Aw, most closely approximates the energy E, given by
(A1),

By use of concepts employed for intersecting parabolic sur-
faces,'® the point (y;,%,2,,*) lying on the intersection of H,,(y,z)
and Hy(y,2) surfaces and having the least potential energy is given
by
it =+ MO -0, 2t =204 M(2,°- 20 (A3)
where M satisfies the equation'?

-(2M + 1)\, = AE, (A4)

Equations A1-AS then yield the energy partitioning expressions,
egs 5.1-5.2.

If the system after the 1 — 3 transition is better described near
2,0 as residing on the E_(y,z) surface rather than on the Hp(y,2)
one, then there is available for distribution among the y and z
motions some extra energy (extra when H,, > H_), namely,
Hy(2,%) — E_(z,%). Using eqs 4.12 and 2.11, this additional energy
term is found to be given by eq 5.3.

Appendix B: Landau-Zener Transmission Probability near
Zx3

In a Landau—Zener treatment the probability w,; of remaining
on the potential energy curve E_(z) after a single passage through
2,3} is given by

oy = 1 — e 2eHat/vlas (B1)

when z,;% is real. Here, v, is the velocity at the crossing point and
As is the difference of slopes of the intersecting diabatic potential
energy curves there. If we set v,> = N in dimensionless units
(which defines V) and if we introduce the value' for |As|, namely,
(250 - z,%) in dimensionless units, one finds that

wyy = | — e 2xHR (/M) (B2)
For example, if the z energy in the vicinity of z,;} is approx-

imately the zero-point energy, then V ~ 1. Employing eq B2
when H,; becomes very large may, however, be questionable.



