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Abstract. Intramolecular electron transfer (ET) processes with the main energetic
contributions coming from the solvent reorganization are investigated for a polar
medium that exhibits dynamic disorder. Dynamic disorder provides a description
of the anomalous relaxational behavior of correlation functions in complex glass-like
systems, alternative to static disorder. In particular, the questions addressed are
whether time-resolved observation of nonexponential ET in such a medium can
readily distinguish experimentally between static and dynamic disorder and whether
a contribution of intramolecular degrees of freedom to the ET can be 1dentified by 1t.

1. INTRODUCTION
There has been a rapidly growing interest, experimen-
tally!~!! as well as theoretically,'**’ in the influence of
the dynamics of the surrounding medium on electron
transfer (ET) processes. A class of reactions of particu-
lar interest are intramolecular?® ET processes where the
reaction is coupled to polarization fluctuations of the
environment. For the case that the relaxation of the
polarization fluctuations of the surrounding medium
has a simple Debye form, and the main energetic con-
tributions to the ET come from the solvent reorganiza-
tion, the ET exhibits an approximately single-exponen-

tial time behavior, with a rate constant then given
by20,22,29

Ke
Ker(7) = 1+ Tkt

(1)

where 7 is the longitudinal dielectric relaxation time of
the solvent. I i1s a numerical factor depending on the
free energy barrier AG* of the reaction,”**? with

exp[(1 — xHDAG*/kgT] — 1
] — x?

1
I=ln2+2f dx
0

7t
~ \ /—L— exp(AG*/k, T
\/AG*/kBTexD( s 1)

for AG*/k,T large. (2)

The free energy barrier is related to the standard free
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energy AG° of the reaction by AG* = (AG® + 4,)*/44, 4o
being the reorganization energy of the solvent. The raie
constant k, used in Eq. (1) is the semiclassical equili-
brated ET rate constant,

k, = v, exp( — AG*/kyT), (3)

and refers to adiabatic as well as nonadiabatic pro-
cesses. 3! The detailed functional form of the prefactor
v, in Eq. (3) depends on the adiabaticity of the
reaction.’® In the limit of fast dielectric relaxation of the
solvent, the experimentally observed rate constant kg
will be k..

It has been demonstrated theoretically that a non-
vanishing contribution A; from intramolecular degrees
of freedom to the total reorganization energy A =
A. + A, can lead to considerable deviations from a single-
exponential time behavior of the ET process,**** and
there are also recent experimental indications for this
vibrational effect.!! Such a situation voids the concept
of a time-independent ET rate constant kg, and the
complete time behavior of the reaction process has to
be taken into account for a comparison of theory and
experiment.

However, a nonexponential behavior of the observed

ET process may be due not only to a competition be-
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tween fast intramolecular and slow solvational degrees
of freedom, but also can be due to a non-Debye be-
havior of the fluctuations in the medium surrounding
the ET complex. There are recent experimental indica-
tions for such an effect for the case of ET processes in
higher alcohols (glycerol and propylene glycol).”'?
These particular solvents belong to the large class of
complex or “glassy” systems where fluctuations exhibit
an anomalous nonexponential relaxation behavior.*
For example, the frequency-dependent dielectric con-
stant, involved in the polarization fluctuations, takes on
a Davidson—Cole form?*** in those higher alcohols.

The generic physical reasons for anomalous relaxa-
tion in complex systems and the question of whether
there is some universal concept that allows a unified
description of anomalous relaxation in various systems
are still unresolved.*>* Static models, based on 1nho-
mogeneity of the medium, as well as dynamic models
describing complex local dynamical processes, have
been both employed as possible descriptions of such
relaxation behavior of fluctuations.’>>® Particularly, a
static model has been employed recently as an explana-
tion of the findings of nonexponential ET in higher
alcohols.z> However, only its predictions for the short-
time behavior of the reaction were compared with the
observations.'’

In a recent article?’” we have provided a method for a
description of the complete time behavior of ET obey-
ing the approximate Eq. (1) in a medium exhibiting
static disorder. We continue this work by analyzing
here instead the effect of a dynamic model for anoma-
lous relaxation, a model which describes dynamic dis-
order, and by comparing the results with those from the
corresponding model>*?” describing static disorder. The
questions we wish to address with this work are: (1) do
the models considered here for static and dynamic
disorder, models that describe the same anomalous
relaxation behavior of the polarization fluctuations,
predict a markedly different dynamic behavior of the
ET process; and (ii) is it possible to distinguish non-
exponential ET reaction behavior due to the contribu-
tion from intramolecular degrees of freedom from the
nonexponential behavior due to anomalous relaxation
behavior of the polarization fluctuations coupled to the
ET?

We note that the static disorder and dynamic dis-
order models for ET that will be discussed in the
present paper both use a certain approximation (in
particular, Eq. (1)) in order to simplify the treatment.
This study has, therefore, mainly a qualitative nature
but can be useful in providing insight into a more

rigorous mainly numerical treatment.”’
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2. STATIC AND DYNAMIC MODELS
FOR ANOMALOUS RELAXATION
In many complex systems, particularly ones that show
glass-like behavior, the autocorrelation function of a
quantity x, with a time scale 7 of the relaxation,

C(t/7) = (x()x(0))/{x*), (4)

shows an anomalous relaxation behavior.***>~° Anoma-
lous means here that |d1n C(¢/7)/dt| decreases with
time, i.e., the relaxation is slowing down. In case of a
single-exponential relaxation, this quantity would be
constant. Experimentally, the functional form of the
correlation function remains relatively constant when
macroscopic parameters such as the temperature are
varied, whereas the time scale 7 shows a strong tem-
perature dependence.’>*

An example for the functional form of C(i/7) 1s the
Davidson-Cole (DC) form

Coc(t/t) =T(B, /T 1(p), (5)

where T(8,t/t,) denotes the incomplete Gamma
function,*® and I'(B#) denotes the usual Gamma func-
tion. § and the time scale 1, are the only parameters for
this strongly nonexponential relaxation. When x 1n Eq.
(4) represents the polarization of the medium, this
particular functional form gives rise to the well-known
Davidson-Cole form of the frequency-dependent di-
electric constant®*>*

Epc(W) — & _ fm e ot [ — i CDC(I/TO)] dt
80_.. ED:: 0 dt

1
(14 iwty)?

(6)

Other functional forms, e.g., the Kohlrausch-
Williams-Watts form, are discussed in Refs. 32-34.
Since Eq. (6) describes the dielectric behavior in
glycerol-like solvents, we will be concerned only with
the Davidson—Cole behavior 1n this paper.

In the static disorder approach, it is assumed that
in a medium which shows anomalous relaxation the
Jocal relaxation behavior of the correlation function
(x(t)x(0)) is single-exponential, 1.e., has the Debye
form. However, the medium is assumed to be inhomo-
geneous in this static disorder model, and the local
relaxation time 7’ varies within the medium according
to a distribution function g(z’). The final form of the
correlation function is then given by averaging over all
local processes,

Clt/T) = fom de'e(t)e ", (7)



where the overall time scale 7 can be chosen to be the
mean relaxation time with respect to the distribution
g(t’), ie., 1= [dt'g(t')t/=(1"),. A particular dis-
tribution function g(z’) that reproduces a Davidson-
Cole behavior of the dielectric constant, Eq. (6), is**

sin nﬂ( (i

nt’ \Tp— 1’

goc(7) = )ﬂ . o1& % (8)
with gnc(7’) being zero for v/ > 1,,.

An approach based on such an inhomogeneous distri-
bution of relaxation times within a medium makes
sense physically for inhomogeneous systems such as
disordered solids, or, perhaps, proteins at low
temperatures,*® although even in these cases the local
dynamics may be much more complicated. However,
there are many liquid systems, such as the higher
alcohols, whose correlation functions also show an
anomalous complex relaxation behavior. Particularly,
here one should consider the possibility that the local
relaxational behavior is the same everywhere within the
medium, but obeys a more complicated dynamics. In
such systems, the fluctuations of the quantity x could be
coupled to one or more additional degrees of freedom
which, in turn, also undergo fluctuations. Such an
additional degree of freedom could be a local “free
volume”,*? or, in the case of glycerol and glycerol-like
solvents, the number of saturated hydrogen bonds.*
Both quantitites could affect the local relaxation of the
solvent molecules, e.g., the relaxation process being fast
for a large free volume or for a small number of
saturated hydrogen bonds.

Denoting by v the deviation of this new degree of
freedom from its average value, we can now write down
a simplified stochastic model for the local relaxation of
x, the Fokker-Planck equation

éP(x, v, 1) = [ : L(x) + 1 L(v)] P(x,v,t) (9)
at 1".)4:(1)) TU

for the probability distribution P(x, v, ¢) of fluctua-

tions. The time scale 7, of the fluctuations of v could be

the time scale of the free volume or hydrogen bond

fluctuations; 7,(v) is the t~-dependent time scale of the
fluctuations of x. L(x) and L{(») have both the form:

I,

Lix)=—|—+ x) 10

x) ox (ébc S

and are Fokker-Planck operators that describe Orn-

stein—Uhlenbeck processes which, taken by themselves,

would lead to a single-exponential relaxation of the

respective correlation functions. Due to the coupling of
the relaxation time 7,(v) to the v fluctuations in Eq. (9),
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the relaxation behavior of x is now more complicated.
Such a model may be termed a model for dynamic dis-
order, in distinction from the static disorder models
described earlier. In the former, the relaxation time 7, 1$
still distributed inhomogeneously in the medium at any
instance of time, but it 1s also fluctuating locally.

It is easy to see that, employing 7, as the overall time
scale 7, the functional form of C(¢/1) depends only on
the dimensionless part of the »~dependent relaxation
time 7,.(v), which we will call f(v):

J) = 1,()/7,. (11)

From the observation that the functional form of the
correlation function C(¢/7) is relatively insensitive to
the change of external parameters, €.g., to temperature
change,**** one may infer that a particular functional
form of f(v) determines the local fluctuations of x overa
wide range of these parameters. Only the time scale 7,
underlies a strong dependence on them.

Particularly for the case of a Davidson-Cole be-
havior of the correlation function, Egs. (5) and (6),
Anderson and Ullmann* noticed qualitatively that a
function

aexpl + v¥/28’]
o exp[ — v4/28’]

forv=0,

12
for v <O, 1}

f() ={

can give a good approximate description of a David-
son—-Cole function. We have made an extensive numeri-
cal study with the above choice of the “free volume”-
dependent relaxation time,”’ and present in Table 1
results for the best choices of the parameter o 1n Eq. (12)
for various values of ’ to obtain Davidson-Cole be-
havior with a particular exponent 8. Those results will be
employed in this paper. The ratio of the parameter 7, of
the Davidson—Cole form, Eq. (6), to the time scale T,

Table 1. Parameters 8/, a, and 1, of a Dynamic Model for
Davidson—Cole Behavior with Exponent # and Time Scale 7,
Eqgs. (6) and (12), and Exponent #” for Asymptotic Behavior of
Short-Time Rate Constant k,, Eq. (20)

ﬁ; o TO/TIJ ﬂ ﬂ”

0.3 0.59 1.31 0.54 - 0.38
0.4 0.80 1.38 0.61 0.47
0.5 1.00 1.45 0.70 0.57
0.6 1.18 1.53 0.77 0.67
0.7 1.38 1.66 0.85 0.78
0.8 1.60 1.81 0.83 0.85
0.9 1.80 1.95 0.86 0.92
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of the v fluctuations is constant for given parameters «
and B’. This ratio is given 1n Table 1.

The dynamical model presented above does not
attempt to provide a universal physical explanation for
anomalous relaxational behavior in each individual
case. Rather, it is an attempt to model the local fluctua-
tions of a quantity x, e.g., the polarization. These local
fluctuations, in turn, determine the dynamics of the ET
process. From a phenomenological point of view, a
mathematically (but not necessarily physically) correct
description of the local fluctuations of a quantity 1s
sufficient for the analysis of the effects that these
fluctuations have on reaction processes that are coupled
to them.

3. ET UNDER STATIC AND DYNAMIC DISORDER
The previous section provides us with the means to
compare the effects of static and dynamic disorder on
the ET process. Within the approximation Eq. (1) for
the effects due to polarization fluctuations of Debye
form, the local ET processes take place with a rate
constant kgr(7). In the case of static disorder, the
fraction of unreacted molecules at time ¢, Q(t), is then
given simply by an average of the local single-exponen-
tial reaction processes over all local relaxation times 7,

()= [ 7 drg@expl — kexmi), (13
In Ref. 27 a numerical method was given to approxi-
mate this function for general distributions g(7), and
we have analyzed its behavior for the case of a distribu-
tion, Eq. (8), satisfying the Davidson—-Cole plot. In this
case, Eq. (13) becomes

Q) = sin(75) fl dx x?~1(1 —x)"*
T 0

k.t )
1+Ik,31'0x .

Xexp(— (14)

From this equation, it can be readily seen that, using

k! as time scale, the reaction process depends on the
reaction barrier parameter AG*/kyT and the time scale
7, of the fluctuations only via the product of parameters
Ik_1,. Particularly, for large values of this product the
behavior of Q(¢) can become nonexponential.”’” We
shall see that this dependence of the time behavior of
Q(?), for a given B, on the single parameter Ik, 7, no
longer holds for dynamically disordered systems.

In the dynamic disorder model, the polarization
fluctuations are coupled to the v- fluctuations via Eq. (9),
and a treatment’’ of the reaction problem then involves
Eq. (A5). In the present paper, the simplified solution is
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given in which the approximation Eq. (1) 1s used to
describe the effects due to polarization fluctuations on
the local ET processes. The local rate for the ET 1s given
again by kgr(7), but now with 7 replaced by 7,(v). The
- fluctuations then give rise to the reaction-diffusion

equation:
3 1
aPr(U, [) =+ ?L(U) - kET[Tx(v)]} P.(v, 1), (15)

which describes the time behavior of the reactant dis-
tribution P.(v, t). The stationary distribution of the v
fluctuations, Py(v) = exp( — v %/2)/ \/277:, is to be used as
initial reactant distribution P.(v, t = 0) in Eq. (15). The
unreacted fraction of molecules in the dynamic dis-
order model i1s then given by:

00 = | P 1) (16)

For the numerical solution of the above reaction-dif-
fusion problem, we have employed the generalized
moment method as described in Ref. 22.

In Fig. 1 results for the time behavior of the ET
process that arises from treating the polarization fluc-
tuations according to the static model are compared to
those obtained using the above dynamic model. In
order to make possible a better comparison with the
qualitative form of observational curves that arise from
different experiments, log Q(¢) is plotted vs. ¢ 1n Fig. 1a
(corresponding to a fluorescence decay experiment as,
for example, in Ref. 10), and log Q(¢) vs. log ¢ 1n Fig. 1b
(corresponding to absorption experiments as, for exam-
ple, in Ref. 43, which could cover a wider range of time
scales).

As noted above, for a particular value of the product
Ik, 7, the static model (with Eq. (1)) predicts a unique
function for the ET time behavior. However, the dy-
namic model (with Eq. (1)) predicts a somewhat dif-
ferent behavior for different combinations of the para-
meters / and k.7, at a fixed value of Ik,1,, as seen in Fig.
1. (In the dynamic model, Eq. (15), the ratio 7,/7, 18

given for various f’s in Table 1.)
For small values of k.7, the ET is single-exponential

in the dynamic model, even for large values of the
product Ik.7,. In this single-exponential regime, the rate
constant is given by the averaged rate,** defined by

(ker) = f _‘I’ dv Py(v)ker[T(V)]. (17)

Only for large values of k.7, does the time behavior of
the ET become nonexponential (as in Fig. 1a). There 1s
a noticeable difference in the behavior of static and
dynamic models and for different values of k.1, for the
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Fig. 1. Effects of static (dashed line) and dynamic disorder
(solid line) on the time behavior of ET processes; g’ =0.5.
a. log Q(f) vs. t; the parameters of the respective lines
are (from bottom to top) k.7,=1, 10, 100. b. log Q(#) vs.
log ¢; the parameters of the respective lines are (from left to
right) k.t, = 1, 10, 100; note that 1, is related to 7, according to
Table 1.

dynamic model at fixed Ik,t,. This behavior can be
seen clearly in Fig. 1. However, as seen there, for an
increase of a factor 100 of k,t,, keeping Ik, 7, fixed, the
time scale of the decay of Q(¢) at long times changes
only by about a factor of 3. This somewhat logarithmic
dependence of the time scale of Q(¢) on the time scale
of the fluctuations (under the restriction of constant
Ik.7,) may not be easily detectable in an actual experi-
mental situation.

4. ASYMPTOTIC AND AVERAGED PROPERTIES
A simpler approach to the nonexponential behavior of
the unreacted fraction Q(¢) is to analyze not the full
time-dependence but its averaged and asymptotic prop-
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erties only. Two natural quantities for such an analysis
are the short-time rate constant

a
K, = —— 1), 18
o (18)
and the mean reaction time
‘ra=fm dt 0(0). (19)
0

Of particular interest is how both quantities scale with
the time scale 7 of the fluctuations.

In the case of a static description of the anomalous
relaxation of Davidson-Cole form, the short-time rate
constant k, and the mean reaction time 7, have been
determined, assuming Eq. (1), to be***’

k./k,= (1 + ITk,15)”, (20)

and

kera — 1 + IkETU. (21)

We note that for any functional form g(z’) of static
disorder the mean reaction time 7, has the general form:

kt,= 1+ Ik (1), (22)

where (7’), is the mean relaxation time of the fluctua-
tions, averaged over the distribution of local relaxation
times g(t7’). Equation (22) can be seen immediately by
inserting Eq. (13) into Eq. (19). Since (7’), 1s the time
scale of the fluctuations in the static model, the func-
tional form of the scaling of 7, with the time scale (),
of the fluctuations is always linear, and it is indepen-
dent of the functional form of g(t’).

For the case of ET in a dynamically disordered
system, as described by the reaction-diffusion Eq. (15),
the short-time rate constant k; is given by the averaged
rate defined in Eq. (17), 1.e.,

ks = (kET>- (23)

For the particular choice of f(v) for the Davidson-Cole
behavior, Eq. (12), we have determined k, numerically
according to Eq. (17). The results are shown in Fig. 2
and compared with results for the short-time rate con-
stant from the static model, Eq. (20). It is seen in Fig. 2
that the numerical values for k, from the static and from
the dynamic models are fairly close. This property was
observed already in the previous section. It can also be
seen in Fig. 2 that the short-time rate constant from the
dynamic model obeys a power law

k./k, oc (Tk,to)®"

for large values of the product Ik,7,. The value of the
exponent 87 in Eq. (24) depends on the value of the

(24)
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Fig. 2. Short-time rate constant k, vs. 1, for static (dashed line) and dynamic (solid line) models; the parameters of the respective

lines are (from bottom to top) /= 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3.

parameter B’ in the function f(v), Eq. (12), and values
are given 1n Table 1. As can be seen there, £’ also
determines the value of the parameter S for the corre-
sponding Davidson-Cole function. One can see from
Table 1 that for a particular value of 8’ the value of 8
for the corresponding Davidson—Cole function and the
value of B” for the asymptotic behavior of the short-
time rate constant are not markedly different.

The mean reaction time 7,, Eq. (19), of the ET
process described by the reaction-diffusion, Eq. (19),
can be written in the formal expression??

'ra=--—<1

where (| |) denotes a scalar product with Py(v) as
weight function,

h1A18) = [ Pi0RAG)g()db:

1>, (25)

1 ]
{kET[Tx(U)] — L+(U)][’

By

(26)

Ly (v) is the operator adjoint to the Fokker-Planck
operator, Eq. (10),

vw-(2-5)2

: 27
ov v 27)

and | 1) is the constant function, with the value 1, and
is also the eigenfunction of L*(v) with the eigenvalue
zero. Equation (235) can also be cast into the form

ke Ta ™

<1 {1 [ : +If(v)] L+(v)}—l(1 + Ikt (V) 1>. (28)
k.7,
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For large values of k,1,, this expression can be approxi-
mated by

kefa & C(I)kerﬂa (29)

where
c(l) = (1,/1x)(1|[1 = If(v)L* ()] ~'If(v)| 1). (30)

This result demonstrates that in the dynamically dis-
ordered system the mean relaxation time of the ET
depends linearly on the time scale 7, of the fluctuations
(for slow fluctuations). Such a result was already ob-
tained for the case of the statically disordered model.
There the proportionality constant ¢() was simply
equal to /, see Eq. (21). Here the proportionality con-
stant ¢(I) is given by the matrix element, Eq. (30). We
note that 7,/7, 1s a constant for a particular functional
form of the relaxation of the correlation function, as
shown 1n Table 1 for the Davidson-Cole case. Although
the dependence of ¢(I) on the parameter I looks more
complicated here, numerical calculations show that c(J)
1s still very close to being linear in 7, so that any de-
viations may not be detectable experimentally.

5. DISCUSSION
In the present paper, the influence of polarization fluc-
tuations on intramolecular ET processes was explored
for the case that the fluctuations show an anomalous
relaxation behavior, and that the main contribution to
the reorganization energy A comes from the solvent
reorganization energy A,. The focus was on the effects of
a particular dynamic disorder model on the time be-
havior of the ET process, as opposed to the effects of
static disorder. Both static and dynamic disorder are



possible descriptions for anomalous relaxation of fluc-
tuations. The treatment was centered here mainly on
fluctuations of Davidson-Cole form, Eq. (6), but the
analysis can be extended to other functional forms of
the fluctuation relaxation time-scale function f(v) and
the local relaxation time-distribution function g(z’).?

In Section 3 we showed that the time behavior of ET
processes predicted by the static disorder model differs
from the time behavior predicted by the dynamic dis-
order model. However, for a distinction between both
models on the basis of the experimentally observed ET
time behavior it is necessary to know the parameters k.,
and AG*/kyT for the ET system under investigation,
e.g., from other experiments. The independence of the
static disorder model to variations of the parameters /
and k_t,, with the product Ik.7, held constant, may not
be sufficient for such an experimental distinction, con-
sidering the various uncertainties. The reason i1s the
somewhat logarithmic dependence of the time scale of
ET in the present dynamic disorder model on the
variations of k,t,, at constant /k,1,,.

The results of the last section showed that the scaling
behavior of both the short-time®® rate constant k, and
the mean relaxation time 7, with the time scale 7, of the
fluctuations, k./k, o« (k.1,)~#" and k.7, o k.7, rESpEC-
tively, are relatively independent of whether a static or
the present dynamic model is employed for the model
description of the Davidson—-Cole fluctuations. Within
the range of validity of the models employed (Appendix
and Ref. 37), this fact demonstrates that an analysis of
the scaling of either of these quantities does not show
a marked difference between the above static and dy-
namic disorder models.

The scaling behavior of the mean reaction time 7,,
namely the linear dependence of 7, on 7, for large 7,
holds for both the static as well as for the present
dynamic disorder model, irrespective of the form of
2(1) or f(v). The scaling of the mean reaction time ,,
therefore, does not markedly distinguish between a
Debye and a non-Debye form of the polarization fluc-
tuations nor between static and dynamic disorder.

These results for 7, hold for the limiting case of a
vanishing contribution A, of intramolecular degrees of
freedom to the reorganization energy A = A, + 4,. It was
shown earlier’? that a nonvanishing contribution A,
from intramolecular degrees of freedom can lead to an
asymptotic behavior of the mean reaction time that has

a scaling form
keTa C (kerﬁ)a (3 1)

for 0 = A,/A,< 1, and for A,/4,> 1 the mean reaction
time approaches a finite value for 7,— oo,
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(32)

T, To(20).

In Eq. (31) 0 <a =1 holds, and the exponent « and
7,(c0) in Eq. (32) both depend on 4,/4, and on the free
energy barrier AG*/kzT. For the limiting case 4, /4, = 0,
the exponent o becomes unity. These results were dem-
onstrated in Ref. 22 for polarization fluctuations of
Debye form. This difference from the 7, behavior for
non-zero A, /A, warrants further investigation and offers
the possibility that it can be employed for a reliable
experimental distinction between vanishing and non-
vanishing contributions of intramolecular degrees of
freedom to the reorganization energy.
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APPENDIX
A model for the coupling of ET processes to polariza-
tion fluctuations of Debye form with relaxation time 7
that also allows for any (assumed rapid) vibrational
reorganization is given by the reaction-diffusion equa-
tion

0

— PAX. [ T) = lL(x)—k(X)_ P(x,t;7) (Al)
ot T ]

for the reactant distribution function P,(x, t; 7).*>*

Equation (A1) describes a polarization-dependent (1.€.,
x-dependent) ET reaction process, given by the Xx-
dependent rate constant k(x), which is coupled to x-
fluctuations of Debye form governed by the Fokker-
Planck operator L{x), as in Eq. (10). In the present
paper, we are interested in the particular case of a
vanishing energetic contribution of vibrational degrees
of freedom to the reorganization energy, which results
in a k(x) of the form?%*

k(-x) — ked(x T xc)/PO(x):

where Py(x) = exp( — x2/2)/\/ﬂ is the stationary dis-
tribution of the x-fluctuations and where Xx, =
V2AG*/kT.

Equations (Al) and (A2) can lead to a single-ex-
ponential ET time behavior with Eq. (1) as rate con-
stant. However, for large values of k.7 there can be
deviations from the single-exponential behavior if the
free energy barrier parameter AG*/kgT 1s small
(AG*/kxT < 1). We note that all considerations in the
present paper based on Eq. (1) are valid only with that
restriction.

(A2)
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Equation (A1) also provides a starting point for a
more rigorous treatment of the effects of static and
dynamic disorder of polarization fluctuations:

In the case of static disorder, the time behavior of
the fraction of unreacted molecules 1s given by an
average of the time behavior of the local quantities
Q(t; /) over the distribution of local relaxation times,

g(1’), 1.e.,

0 = | drg@row o). (A3)
The t’-dependent time behavior of the local fractions of
unreacted molecules 1s given by

0wty = [ axPie s (A4
where P.(x, t;t’) is the solution of Eq. (Al) with 7
replaced by the local relaxation time 17’.

In the case of dynamic disorder, the x-fluctuations
are coupled to the v-fluctuations via Eq. (9). This leads
to a two-dimensional reaction-diffusion equation

o
—P(x, vt
Py (x, v, 1)

=[ 1 L(,)C)—F—I'L(U)_k(x)ﬁ Pr(xa v, t) (AS)
T,(V) Ty =

for the reactant distribution function P.(x, v, ). The
fraction of unreacted molecules Q(¢) 1s then obtained
from the reactant distribution function by integration
over all x and v,

Q(t)=f dxf dv P(x, v, t). (A6)

One can arrive at the simplified model treated in the
present paper by certain approximations to the rigorous
model presented above. The static disorder model,
Eq. (13), 1s obtained by approximating the Q(¢; t’)
in Eq. (A4) as a single exponential with a rate con-
stant kgr(t”). A formal solution of Eq. (Al) yields
the first line of (A7), while the second line of (A7)
i1s obtained by assuming that integrating over the x-
fluctuations yields approximately a single-exponential
decay of Q(t), the corresponding rate constant being

given by Eq. (1):

Q)= f _m dx exp H% L(x)— k(x)} t] Py(x)

~ exp[ — ker(7)t]- (A7)

The validity of the approximation in the second half of
(A7) was discussed above.
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The dynamic disorder model represented by Eq. (15)
is obtained from (AS5) by a formal solution of the latter,
and then by using the assumption employed in the
second line of Eq. (A7) for the integration over the x-
fluctuations, with 7 replaced by 7,(v). We then have:

0(1) = _f : dv f : dx

1
X exp _{Tx(v)

Py(x)Py(v)

-l

L{x) + TlL(v) — k(x)} !

~ f ) dv exp {l L(v) — kET['cx(v)]} t— Py(v). (A8)

Ty

We note that the approximation 1n Eq. (A8) 1s rigorous
only in the case that the v-fluctuations are much slower
than the reactive transitions along the x-coordinate,
i.e., that one can perform the integration over x in the
first half of (A8) at fixed v and then integrate over v. The
- fluctuations are relatively slow when 7, ® 1/kgr[7,.(D)].
Since kir[7,(v)] i1s largest in the half-plane v <0, the
main contribution to the reaction comes from that half-
plane. Since 7,.(v) in Egs. (11) and (12) is very small in
that half-plane, we arrive at k,7,> 1 as a condition
necessary for the approximation. This consideration
agrees also with the observations of a numerical analy-
sis of the more rigorous model,*>” where we find that for
k.7,~ 1, i.e., in the single-exponential regime, the cor-
rect rate constant can be overestimated by the model
Eq. (15). However, for k,7,> 1, 1.e., in the nonexponen-
tial regime, the results for the long-time behavior of the
model treated in the present paper are very close to the
results from (A5). We note that there are differences in

the short-time behavior.*’
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