
1050 J .  Phis. Chem. 1990, 94, 1050-1055 

In our treatment of the frequency response method for the study 
of surface reactions in flow systems, we have chosen very simple 
examples to illustrate the principles as clearly as possible. These 
simple examples focus very sharply on the kinds of additional 

kinetic information which can be obtained when conventional 
flow-reactor investigations are modified to include the frequency 
response feature. The approach described can be adapted readily 
to other problems of interest in catalysis. 
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The reorganization free energy is calculated for a reaction (i) between two reactants, each in its own dielectric medium, 
separated by an interface, and (ii) between a reactant and some semiconductors. An expression is also given for the rate 
constant of an electron-transfer reaction at an interface between reactants in two immiscible phases. Under certain conditions 
it is shown that the reorganization energy for the twdmmiscible-liquid system is the sum of the electrochemical reorganization 
energies of the two reactants, each in its own respective solvent. The reorganization energy for a semiconductor-liquid system 
can differ considerably from the corresponding metal-liquid value, even a factor of 2. 

Introduction 
Some time ago I derived an expression for the reorganizational 

free energy X in electron-transfer reactions occurring in homo- 
geneous so l~ t ions l -~  and a t  metal-solution  interface^.^-^ Since 
that time there have also been studies on electron transfers at 
liquid-liquid interfacesG9 and at  semiconductor-liquid interfac- 
es.ID-l2 In the present paper we obtain expressions for the re- 
organization free energy at such interfaces, using the same ap- 
proximations as those used earlier.3 In the case of a metal-liquid 
surface, whose resu l t~ j -~  are given for comparison (eq 1 l),  the 
detailed electronic structure propertiesl3J4 of the metal surface 
are neglected and throughout a local dielectric response is used 
for the 1 i q ~ i d . l ~  

Earlier, using a charging path to produce a system with a 
nonequilibrium dielectric polarization, we obtained a classical 
statistical mechanical expression for the free energy of a system 
having longitudinal polarization fluctuations.16 This result was 
then expressed in terms of the free energies of certain hypothetical 
equilibrium systems16 and proved convenient for deriving ex- 
pressions for reorganization free energy,3 as well as for obtaining 
other properties, such as spectral shifts in polar media for simple 
and less simple (e.g., ellipsoidal) solute shapesi7 The principal 
assumptions used were (1 )  linearity of the response of the medium 
to a change in electric field, (2) a static treatment of the low- 
frequency motions, and (3) instantaneous response of the electronic 
polarization in the system to a change in electric field. We also 
comment on the applicability of the relation to systems with linear 
but nonlocal dielectric response. 

Theory 
We consider a nonequilibrium system having some charge 

distribution, denoted by p l ,  in an environment that would be in 
equilibrium with a different charge distribution po. Expressed 
in terms of equilibrium free energies, the free energy of formation 
GInon - GIC of this nonequilibrium system from a similar system, 
but one that is in thermal equilibrium, is given by eq 15 of ref 
16: 

1-0= (1) Glnon - G e = ~ ~ ~ e . 0 ~  - G 1 

where GIC is the free energy of the equilibrium system with charge 
distribution p l ,  is that of an equilibrium system with a 

'Contribution No. 8006. 

hypothetical charge distribution p1 - po, and Gl_Oe,op is the cor- 
responding quantity when only an electronic response of the 
medium or media to the charge occurs. (In the last case, any 
dielectric constant would be replaced by the optical dielectric 
constant.) All quantities in eq 1 are calculated at  a fixed position 
of the reactant(s). 

While statistical mechanical expressions can be introduced in 
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the right-hand side of eq 1, we employ here the dielectric con- 
tinuum expressions. We first consider the case of two dielectrics 
having a plane interface at  z = 0, z being the coordinate normal 
to the interface. A charge q is fixed a t  a distance d from the 
interface in the liquid labeled 1, which occupies the region z > 
0. The static and optical dielectric constants are denoted by Dt 
and DPP, i indicating the phase (i = 1 for z > 0,  i = 2 for z C 
0). The electrostatic Dotential S satisfies several boundary 
conditions at  the interf;ce:l* 

lim D1 = 
2-0+ 

lim a*/& = 
2-O+ 

lim a S / a y  = 
2-O+ 

where x and y are coordinates parallel to the planar interface. 
The present results are obtained for infinite dilution, in the case 

of any liquid phase, although work terms to reach the interface 
in the presence of added electrolyte can be inc1~ded.I~ To include 
an ion atmosphere reorganization term, eq 1 can still be used, as 
in ref 3, when the response of an ion atmosphere to a change in 
charge is in the linear regime. In the case of a semiconductor- 
liquid system, the semiconductor is treated here for simplicity as 
undoped or as having a small enough concentration of electrons 
and holes that eq 3 and 4 remain valid in the interfacial region. 
We expect to treat other systems later. 

The expression for S at  any field point (x,y,z) ,  denoted by P ,  
is given by (3) and (4) when these boundary conditions are sat- 
isfied:I* 

S(x ,y , z )  = - - - D 2 - D 1  1, z > o  (3) 
Dl ‘[ Rl (D2 +DI)RI’ 

and 

(4) 

Here, R I  is the distance from the ion to the field point P and Rl‘ 
is the distance to P from the electrostatic image of the ion. The 
image lies at the same x and y as the ion but a t  z = -d. 

If we consider an ion of radius a, the electrostatic potential S 
acting on this ion surface is obtainedZo by setting R 1  = a and RI’ 
= R in eq 3, R being the distance between the center of the ion 
and its image. Thus, R = 2d and so is twice the distance to the 
interface. The free energy GC is then obtained by charging the 
ion from q = 0 to q = q, calculating JS dq, and subtracting the 
corresponding quantity a t  R = 03 in a vacuum (Dl  = D2 = 1). 
We thus obtain, for this equilibrium system, 

( 5 )  

In a treatment of electron-transfer reactions, in which an ion 
(or molecule) has a charge e‘ before the electron transfer and a 
charge ep after (and there could be several such ions, e> - ep,, 
j = 1, 2, for example), the charge that determines the distribution 
of coordinates in the transition state e* was shown earlier to be 
given 

( 6 )  e* = er + m(er - ep) 

where m is a Lagrangian parameter; m is determined from the 
~ ~~~~~ ~ ~ ~ 

(18) Jackson, J .  D. Classical Electrodynamics; Wiley: New York, 1975; 

(19) E.g., electrical double-layer effects on w‘ are considered in ref 8b. 
(20) In this way, dielectric image effects within the ion, due to the dif- 

ference of the “dielectric constant” inside the ion and the dielectric constant 
of the liquid, are neglected (cf. ref 3,  footnote 29). Strictly speaking, a more 
detailed calculation would include such effects and also use the actual charge 
distribution inside the ion. Such dielectric image effects are typically small 
in bulk solution (e.g., Marcus, R.  A. J .  Chem. Phys. 1965, 43, 58). 
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thermodynamic properties of the system, e.g., eq 79 of ref 3 for 
a homogeneous reaction and eq 80 for a reaction at  a metal-so- 
lution interface, or from related equations which can be derived 
for the other systems. (We give eq 79 later.) Thus, the charge 
distribution p I  - po in eq 1 corresponds to a charge e* - e’ and 
hence to m(e‘ - eP). 

We then obtain at a fixed position of the r e a ~ t a n t ~ . ~  

GInon - G 1 e = m2h = m2(Xo + Xi) (7)  
where X i  is any vibrational contribution from the reactants, due 
to changes in the equilibrium values of their vibrational coordi- 
n a t e ~ ~ , ~  due to the reaction; X i  is given by eq 9, and X, is given 
by 

- DloP 1 DZs - Dls  1 

+ DloP DloP D; + D,s DIs 
- -  -) ( R  = 2d) ( 8 )  

where Ae = e‘ - ep. 
The reorganizational parameter X i  can be written2v3 in terms 

of the displacements qo/ - q0f’ of the equilibrium values of the 
normal vibrational coordinates and the “reduced” normal-mode 
force constants kj, 

X i  ‘/2 Zkj(q0j’ - qof)’ (9) 
J 

when a reactant has the same vibrational symmetry in the initial 
(r) and final (p) state. The sum is over all normal coordinates 
of the single reactant in the above case and of the pair of reactants 
in the next case. The kj is related to the normal-mode force 
constants before ( k i )  and after ( k f )  reaction by3 

(10) 
Normal-mode force constants appear in eq 9. A use of purely 
diagonal bond-stretching force constants has been shown to lead 
to considerable error,21 when the bond-bond cross terms are not 
small. 

Equation 8 was derived for the case of two dielectric media. 
It is useful to see what it reduces to in the case where phase 2 
is a classical metallic conductor. In this limit both D,’s are 
replaced by infinity and eq 7 becomes 

kj = 2 k / k f / ( k i  + k,J’) 

an expression obtained ear lie^-.^-^ 
We consider next the case where there are two reactants, one 

in each phase. The electrostatic potential arising from ions 1 and 
2 is now given by the sum of two terms: For z > 0,  these terms 
arise from eq 3 for ion 1, by setting q = q l .  The second con- 
tribution for z > 0 comes from ion 2 and can be obtained from 
eq 4 by setting q = q2 there and replacing R 1  by R2, the distance 
from ion 2 to the field point P: 

Similarly, S for z C 0 is obtained by interchanging the 1 and 2 
symbols: 

The relevant potential SI used in the charging of ion 1 is obtained 
from eq 12 by settingI9 R 1  = a l ,  R ,  = R,  and R1’ = 2dl, where 
dl is the distance from the center of ion 1 to the interface. The 

(21) Siders, P.; Marcus, R. A. J .  Am. Chem. SOC. 1981, 103, 748. 



1052 

relevant potential q2 used in the simultaneous charging of ion 
2 is obtained from ( I  3 )  by setting there R2 = a2, R 1  = R ,  and 

To obtain a free energy, \kl dq, + \k2 dq? is integrated from 
q,  = 0 to q1 and from q2 = 0 to q2, by setting ql = yql and q2 
= yq2 and integrating over y from 0 to 1 .  To obtain Ge, the 
corresponding quantity at R = m for a vacuum is subtracted. We 
then have 
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R i  = 2d2. 
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electrostatic image potential. There are many quantum me- 
chanical studies of the forces between a charge and a metal,I3 
designed in part to treat experimental data on work functions, 
LEED, and other topics. For distances greater than about 3 A 
the interaction energy Ge of an electron and the surfaces is ap- 
proximated by13 

Replacing q,  by m(elr  - elP) = -mAe and q2 by. !(e; - e2P) 
+mAe and then using eq 1 ,  we have, a t  fixed position of the two 
reactants, 

( 1 5 )  Gnon - GC = m2X = mZ(Xo + A,) 

where X i  is given by eq 9 and 10 and where 

When the two media are identical ( D l s  = D t  Ds, DloP = D2OP 
DP), eq 16 reduces to an expression obtained earlier:l 

In an electron-transfer reaction one also needs to have,'-5 when 
the reactants approach each other from R = m, the corresponding 
work term wr and the work term -wP to remove the products to 
R = m. The free energy barrier to reaction AG,* is then given 

AC,' = wr + mZX ( 1 8 )  
In the case of a homogeneous reaction the Lagrangian multiplier 
m satisfies the e q ~ a t i o n l - ~  

-(2m + l ) X  = AGO' + wp - wr (19) 
where AGO' is the "standard" free energy of reaction in the 
prevailing medium. In the case of an electrochemical reaction, 
m is given by the electrochemical analogue of eq 19 (e.g., for a 
metal electrode eq 80 of ref 3). 

A dielectric continuum expression for w' at  infinite dilution for 
the system can be obtained by subtracting from the Ge for 
reactants 1 and 2 the value for Ge when they are far from the 
interface. At infinite dilution, this result for w' is then found from 
eq I4 to be 

Similarly, wp is obtained by replacing each charge e l  by the 
corresponding value for the products, e)'. In practice, more ela- 
borate expressions for wr and wp are more appropriate, because 
of solvent structure-breaking and structure-forming effects of the 
ions, in addition to any electrolyte effects on wr and wP.19 

We have treated the metal in the metal-liquid system as a 
classical cond~ctor .~~* For the sake of completeness we note here 
some recent work on electronic structure effects on the calculated 

where d is the distance from the charge to the solid surfaceZ2 and 
do is a small quantity for which estimates have been made.22 To 
fit some LEED intensity line shapes eq 21 for d > 3 A was joined 
linearly to a given value at  d = OsZZb An alternative model, 
described as hydrodynamic and phenomenological, gave even 
smaller corrections to the classical image charge formula.23 

From eq 21 the electrostatic potential \kion due to the image 
acting on the charge is 

In a nonlocal treatment of the metal, Dzhavakhidze et aLZ4 used 
a Thomas-Fermi screening approximation for the wavenumber 
k dependence of the dielectric constant of the metal 

(23)  

where k;I is the Thomas-Fermi screening length (-0.5 A) and 
DM - 1-2. Results were obtained for Xo for the metal-liquid 
interface, both for the case of a local dielectric response of the 
solvent and for a nonlocal response with an exponential decay on 
separation distance. In the former instance A,, was given by 

DMs = DM(1 + k : / k 2 )  

X, = - - $(RksDM/Ds))( -!- - i, ( R  >> 2k;I) 
2 a  D O P  Ds 

(24)  

where f ( x )  is a known function which tends to unity when x - 
m (it is fairly close to unity for x - 3 )  and which passes through 
zero at x - 0.25 and then becomes negative for smaller x. It 
would appear that this type of treatment would also lead to an 
image repulsion of an approaching ion in solution, instead of image 
attraction, when Rk,DM/Ds < 0.25. Such a result might be 
capable of direct experimental test. It would also be useful to 
explore this question further theoretically, using instead the type 

(22) (a) d is defined (e.g., ref 13d) as the distance from the charge to the 
"termination" of the bulk metal, the latter being a plane halfway between the 
center of the outermast atomic layer and the center of the next would-be layer 
if the crystal were infinite. Values of do from 0.64 to 0.85 A were estimated 
in ref 13a, 0.26 to 0.50 A in ref 13b, and 0.37 to 0.66 A in ref 13c, depending 
upon the electron density in the metal. (These results are also summarized 
in Table 4 of ref 13c.) The model used in these studies entails a spillover of 
charge outside the d = 0 plane, the image charge then being situated slightly 
closer to the approaching charge e than is the image in the classical model, 
for which do = 0. (b) Dietz, R. E.; McRae, E. G.; Campbell, R. L. Phys. Rev. 
Lett. 1980, 45, 1280. The value of do was set equal to 2 A, and a linear 
interpolation was used to remove the unreal singularity a t  d = dp 

(23) In this model14 there is a sharp infinite potential step, which confines 
the negative charge and a uniform background of positive charge Cjellium 
model). Since the electronic wave function vanishes at the boundary, the 
electronic charge is displaced a distance I into the metal, in the absence of the 
approaching charge e, where I - 3?r/8kF, and kF is the Fermi wave vector. 
In this model the image charge is displaced into the metal a mean distance 
of ro equal to k;I exp(-kJ), where k, is the Thomas-Fermi screening pa- 
rameter.14 (It cannot spill over into the vacuum in this model, because of the 
infinite potential step at d = 0). Thereby, the denominator in eq 21 is found 
to be d + ro instead of d - d p  The values of kF and k, are given by kF = 
(36n)l'' and k,Z = 4(3n/?r)l/'/%, where oo is 0.529 A (Kittel, C. SolidSfate 
Physics, 6th ed.; Wiley: New York, 1986; pp 246, 266). For silver as an 
electrode n is 0.058 A-' (Smith, A. C.; Janak, J. F.; Adler, R. B. Elrcrronic 
Conduction in Solids; McGraw-Hill: New York, 1967; p 180) and so kF = 
1.12 A-I, k, = 1.70 A-', and I = 0.98 A. ro then equals 0.11 A. The (d + 
rO)-l expression was derived for the case that k,d >> 1 .  In the present case, 
with d - 3.5 A, k,d = 5.95. (The correction using instead the integral in eq 
12 of ref 14 is negligible.) 

troanal. Chem. 1%7, 228, 329. 
(24) Dzhavakhidze, P. G.; Kornyshev, A. A.; Krishtalik, L. I. J .  Elec- 
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of treatment of the metal surface given in ref 13, which is more 
rigorous than phenomenological ones such as that in ref 14. 

Reaction Rate Constant 
(i) Two Immiscible Phases. We calculate first a rate constant 

k ,  for reaction between two reactants, one in each of the two 
immiscible phases. Its units can be defined via2s 

- krnln2A dN1 -- - 
d t  

where N ,  is the number of molecules of type 1 in phase 1, n, is 
the mean concentration of reactant 1 in phase 1, n2 is the mean 
concentration of reactant 2 in phase 2, and A is the interfacial 
area. The units of k ,  are seen to be cm4 molecule-I s-l. We let 
u (determined below) be a "volume" (units of cm4) such that in 
a unit area of interface the center-to-center distance of the pair 
of reactants lies in (R ,  R+AR), where AR, defined in the Ap- 
pendix, is the region over which there is a significant contribution 
to the ET process, and where reactant 1 lies wholly in phase 1 
and reactant 2 in phase 2. If K is some Landau-Zener factorz6 
for the ET in this region of R and v is some relevant frequency 
for the molecular motion, then k, can be written, approximately, 
as 

k, = ~yue-AG'r/ksT (26) 
where AG*r is given by eq 18 and 19. The terms wr and wp in 
those equations now denote the work required to bring the 
reactants (wr) and the products (wp) from R = m to a mean 
reactive separation distance Ri (= al + a2). Such work terms 
may include not only that in eq 20 but, as already noted, other 
effects. 

In the Appendix it is shown that the leading term in an ex- 
pression for an effective u is 

(27) 
when a sharp boundary at the interface is assumed. 

When the two phases are "immiscible" liquids, some interp- 
enetration of the two phases may occur, so that the reactants may 
then be able to approach each other over a wider solid angle than 
that indicated in Figure 1. For example, if the centers of ions 
1 could each penetrate the other phase to the extent that each 
center could even reach the interfacial boundary, but such that 
the reactants would not overlap, one would obtain (Appendix) 
eq 28 instead of eq 27. 

u = 27r(al + a2)(AR)j 

u - .(al + (28) 
The rate of electron transfer typically decays with distance as 

exp(-PR) (some data are summarized in ref 27) and AR = 1 / P  
(Appendix). If one uses a value of P - 1 A-1, AR is about 1 A. 
When a, + a2 - 5 A, the u in eq 28 is then about a factor of 10 
larger than that in eq 27. A molecular investigation of the in- 
terface and of the extent of interpenetration of the reactants in 
the two-liquid case would be desirable. We plan to compare 
elsewhere the above results for u, and those given earlier for A, 
with some available data on rate constants. Equation 16 for A,, 
is restricted, of course, to the case when there is no interpene- 
tration. If only one of the two ions can interpenetrate, u has a 
value intermediate between that in eq 27 and in eq 28. 

(ii) Comment on Semiconducto~Solution Electron Transfers. 
Equation 18 and an electrochemical analogue of eq 19 have been 
applied to electron transfers at semiconductor electrodes, typically 
with X regarded as a parameter." A general X includes3 the 
reorganization of the solvent dielectric polarization, of the vi- 
brational coordinates, of the ion atmosphere in solution, and, 

(25),Similarly, in the case of reaction between a single ion or molecule 1 
and an interface, the corresponding rate constant k, is normally defined via 
-dN,/dr = k,nlA and so, conventionally, in units of cm s-I. 

(26) E.g.: Kauzmann, W. Quantum Chemistry; Academic Press: New 
York, 1957; p 541. The present discussion regarding time in the crossing 
region was motivated by the discussion there but is done somewhat differently 
in the present paper. 

(27) Marcus, R. A.; Sutin, N. Biochim. Biophys. Aria 1985, 811, 265. 
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(a) 

(b) 

Figure 1. (a) Coordinates for the calculation of the hypervolume u in the 
Appendix and eq 27. (b) Configuration indicating the maximum value 
of 8,  for a given value of z, and of R. 

depending on the system, of the electron and hole distributions 
in the semiconductor. 

One question which arises is the rapidity of response of the 
electronic and hold charge distribution in the semiconductor to 
an actual fairly abrupt electron transfer with the reactant. A 
characteristic time for that transition T can be inferred from the 
Landau-Zener-type expression for the probability P of a radia- 
tionless transition in the following way: For an electron transfer 
a t  a "crossing" of the potential energy surfaces for the electron 
transfer, we have3-26 

where H12 is the absolute value of the electronic matrix element 
for the electron transfer and u, is the velocity a t  the crossing. 

To answer the question regarding response time, it is useful to 
recast eq 29, as in eq 30. The time for a nonstationary state of 
the reactant, a t  the curve crossing, to undergo a charge transfer 
between the two nearly degenerate electronic states there is At 
= h7r/2H12, using a standard quantum mechanical analysis.28 
Equation 29 can be rewritten suggestively in the form (30), using 
this At. 

P = 1 - At = h7r/2HlZ (30) 

where 7 is, effectively, the time spent by the system in the crossing 
region; 7 is defined by a comparison of eq 29 and 30 to be 

(28) At the curve crossing there are two degenerate localized electronic 
states GI  and a2, one with the charge localized in one reactant and the other 
with the charge gone from that reactant. Each of these two states can be 
expressed as a linear combination of their symmetric and antisymmetric 
algebraic sums, namely, the two adiabatic states. At the crossing the adiabatic 
states have an energy difference of 2H12. A system fixed at the crossing and 
initially the state aI, a nonstationary state, oscillates between a, and a2 with 
the time to go in one-half of this cycle from 9, to being the Ar given in 
the text. 
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An interpretation of eq 30 is that the system passes through the 
intersection region in a time -7. When this time T is small relative 
to the time At for the change of the reactant's charge, there is 
only a small probability of the electron transfer occurring on a 
passage through the crossing region, as seen, for example, in eq 
30. 

With a little manipulation, using a vibrational coordinate as 
the reaction coordinate, with a vibration frequency u, and, for the 
present, replacing the velocity ox by an average value, one findsz9 
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Thus, the smaller the electronic interaction energy HI,, the shorter 
the time T spent by the system in the vicinity of the potential energy 
curve crossing. 

Depending on the ratio of this time scale T to the time scale 
for the relaxation of the electron (or hole) charge distribution in 
the semiconductor, the latter may act as a dielectric. For example, 
if T is relatively small, then eq 9 and 16 may be appropriate for 
Xo. At the other limit, the response in the semiconductor may 
be rapid enough, and the shielding large enough, that it can be 
treated as a metal, and eq 11 is obtained in this limit. 

A helpful discussion and survey of the theory of electron transfer 
at semiconductors and the role of X are given in ref 1 I .  We hope 
to return to this topic a t  a later date. 

Discussion 
( i )  Two-Immiscible-Liquid Interface. An interesting conse- 

quence of eq 16 is that when d i  = d2 = l / z R ,  the Xo in (16) is 
the sum of the two electrochemical X,'s (eq 1 l ) ,  each ion being 
in its own respective solvent: 

(33)  
We plan to apply this result elsewhere. 

There are both similarities and differences between eq 16 and 
the corresponding equations in ref 6. The l / a ,  and l / a ,  terms 
are the same [e.g., eq 4 of ref 6b]. The remaining part of (16) 
differs, though it and the corresponding terms in ref 6 become 
equal in some particular cases. The results in eq 20 for w' and 
wp are the same as those in ref 6 (eq 5-7 of ref 6b), when eq 20 
is specialized to the case where the line of centers of the two 
reactants is normal to the interface (i.e., when R = d i  + d 2 ) .  

( i i )  "Undoped" Semiconductor-Liquid Interface. As an ex- 
ample of eq 8 and 11 we compare them for the case that DloP = 
DzoP = 2 ,  Dis = 10 (semiconductor), and D,' = 40. In this case 
and with R E 2a, the Xo in eq 8 has about twice the value as that 
in eq 1 1 ,  The reason for this large effect is that in the metal-liquid 
case the image charge tends to reduce the effect of the approaching 
charge on the solvent polarization, whereas in a semiconductor 
(D{)/liquid (D,s) system it concentrates the effect of the charge 
in medium 1, when D,' < DIs, and hence increases the amount 
of reorganization needed. 

(iii) Metal-Electrolyte Xo. The results in ref 3 appear to be 
consistent with a comparison of some homogeneous and hetero- 
geneous (metal electrode) electron-transfer rate constants, a 
log-log plot of which appears to have a slope of roughly 0.5,30-31 

ho N A o l c i  + Xo,2c' 

(29) The difference of slopes s1 - s2 of two potential curves (k/2)(q - q o P ) 2  
and (k/2@ - qoP)2 is (k/2)(q0P - q;), the magnitude of which can be written 
as (2kh,) P - qd)2. Using the fact that the vibration 
frequency Y equals (2~)- l ($$~/~,  then replacing u,, the velocity along the 
reaction coordinate, by an average value for the present purposes 

J"ux exP(-W?/2k~T) dux/ &PexP(-W?/2k~n dux 

i.e., by ( 2 k ~ T / r p ) ' ' ~ ,  and neglecting the difference between a factor r3/*/4 
and unity, one obtains eq 31. In practice, in a calculation of the rate one 
would, of course, integrate P itself over a Boltzmann-weighted distribution 
of P's (e.g., ref 3) and not replace u, by an average. However, in the present 
context we are interested, instead, only in obfainmg an approximate time scale 
for the "almost instantaneous" electron transfer in the transition-state region. 

(30) Cannon, R. D. Electron Transfer Reactions; Buttenvorths: London, 
1980; p 221 (Figure 6.10). Weaver, M. J. J .  Phys. Chem. 1980, 84, 568, 
Figure 1. Saji, T.; Maruyama, Y.; Aoytagui, S. J .  Electroanal. Chem. 1978, 
86, 219, Figure 1. 

(31) A group of fast reactions at one end of this plot do not have this slope, 
for reasons which are still not clear. 

, where A, = ( I /  

although the scatter makes the slope somewhat uncertain. The 
homogeneous solution k's varied by some 20 orders of magnitude. 
In these systems the X, is, no doubt, nonnegligible and Xi for a 
homogeneous (self-exchange) reaction is twice that for the het- 
erogeneous one at the metal electrodes3 and so helps preserve a 
slope of roughly 0.5. The slope is p r e d i ~ t e d ~ ~ ~ ~ ~ ~ ~  to be between 
0.5 and 1, depending on whether or not there is a layer of solvent 
molecules on the electrode surface which prevents the ion from 
having R = 2a and depending, too, on the contribution of A, to 
A. This slope of 0.5 does differ from that predicted theoretically 
in ref 24, for which a very large slope of 1.9-2.4 was suggested 
for acetonitrile on the basis of nonlocal dielectric response cal- 
culations. The slope predicted30 on similar grounds for di- 
methylformamide as solvent was 0.7. The predicted slope (e.g., 
in Figures 5 and 6 in ref 24) was not given for water. No A, term 
was included there, since the focus was on ho. An experimental 
comparison of corresponding self-exchange homogeneous and 
electrochemical rate constants in acetonitrile as solvent, suitably 
corrected for work terms, would be useful as a test of this rather 
surprising nonlocal electrostatics prediction of ref 24. 

The interpretation of homogeneous vs electrochemical data 
where A, is small is currently under active investigation. Both 
solvent static and dynamic effects occur, and for these fast re- 
actions (small A,) the variation in k's was not very large. The most 
recent analysis of the data is that given in ref 3 3 ,  which illustrates 
some of the complexities. 

(iu) Nonlocal Dielectric Response. We have not treated in the 
present paper any nonlocal dielectric in the liquid. These 
and other effects such as short-range specific interactions no doubt 
occur. Apparently there is, as yet, no direct experimental mea- 
surement of nonlocal dielectric response parameter for polar 
solvents (e.g., a determination of an orientational analogue of the 
slow neutron scattering determined structure factor). Results for 
the nonlocal dielectric response would be obtainable from suitable 
molecular dynamics (MD) computer simulations of a statistical 
mechanical system, though such results would be only as good 
as the molecular model used in the calculation. Such effects are 
physically different from specific short-range electrode-solvent 
and ionsolvent interactions. To distinguish them from the latter, 
the nonlocal dielectric effects are presumably best investigated 
in MD simulations of the ion-free and interface-free solvents. 
Attempts to infer them36 from experimental data a t  interfaces or 
from data on ion-solvent interactions encounter the problem of 
disentangling those effects from the other short-range effects, 
dielectric saturation, for example, or various specific  effect^.^'^^^ 
One alternative has been to include all such effects phenomeno- 
logically into one or more  parameter^,^^ which are then adjusted 
to best fit some data. 

The derivation of eq 1 given in ref 16 was based on rather 
general linear functional type arguments and might be expected 
to apply, therefore, to nonlocal response dielectrics also. (This 

(32) Marcus, R. A. Electrochim. Acta 1968, 13, 995. 
(33) Fawcett, W. R.; Colby, A. F. J .  Electroanal. Chem., in press. 
(34) E.g., reviewed by: Kornyshev, A. A. Electrochim. Acta 1981, 26, 

1795. Dogonadze, R. R.; Kornyshev, A. A.; Kuznetsov, A. M. Theor. Math 
Phys. (USSR)  1973, 15,407. 

(35) Chandra, A.; Bagchi, B. Chem. Phys. Lett. 1988, 151, 47. 
(36) E.g.: Kornyshev, A. A. Reference 17, Part A, p 77, and references 

cited therein. 
(37) E.g., discussion between Yeager and Dogonadze: (Yeager, E.; Do- 

gonadze, R. R. J .  Phys. 1977, C5, 48). 
(38) Kornyshev, A. A,; Ulstrup, J. Chem. Phys. Lett. 1986, 126, 74. 
(39) One example is the treatment of separation distance effects in 

charge-transfer spectra, where a dielectric screening constant and an intra- 
molecular A, were used as adjustable  parameter^.^* Another example is the 
discrepancy between free energies of solvation of small ions and those calcu- 
lated by usual electrostatics (local) using the Born charging formula. Con- 
ventionally, the difference has been ascribed to dielectric saturation, and either 
an additional constant has been added to the ion radius or, sometimes, an 
innermost shell of bound solvent molecules has been assumed. As an alter- 
native for 1:l electrolytes, a nonlocal dielectric effect was postulated and 
adjustable screening constants were introd~ced.'~ However, recently Krish- 
talik, L. I. (40th ISE Meeting, Kyoto, Japan, 1989) reported that nonlocal 
solvent dielectric effects have been overestimated. He obtained, instead, good 
agreement for the free energies of transfer of (+,-) pairs of metallocene ions 
from one solvent to another, using a local dielectric response (to be published). 
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derivation of eq 1 was more general than a dielectric-continu- 
um-based d e r i ~ a t i o n , ~ ~  which did assume a local dielectric re- 
sponse.) Recently, we have made a continuum-based derivation 
using a nonlocal response for single-phase systems, and eq 1 was 
again obtained.41 For the case where there is more than one phase 
some assumption for the nonlocal dielectric constant e (r , f )  in the 
vicinity of the interface is needed. One assumption in the liter- 
ature, a "specular electron reflection ansatz", is that it correlates 
only points r,r' in the same phase and is zero 0therwise.42~~ This 
approach has been used for systems where one phase is a 
(A more elaborate ansatz has also been used for a semiconduc- 
tor-vacuum system.'"') For a system of two dielectrics, the same 
approach yields an obvious inconsistency in the limit where the 
two dielectrics have the same properties. In this case the result 
does not reduce to the correct limit for a single-phase behavior, 
for which t(r,r') correlates all pairs of points, not just those on 
the same side of a now only imagined boundary. (While the 
important property is c-l(r,r'), it too would be incorrect in the cited 
limit, since c(r,r') is presumed to have a unique inverse.) Thus, 
if a continuum-type nonlocal formalism for liquid-liquid systems 
is employed, some alternative approximation for the interfacial 
region would be desirable. 
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Appendix: Derivation of Eq 25 
We calculate here the "volume" u per unit area of interface 

defined as in eq A l ,  such that the reactant 1 lies wholly in phase 
1 and reactant 2 lies wholly in phase 2. Coordinates zl, 6, CP (CP 
is an angle, not shown, about the z1 axis), and R are introduced, 
as in Figure la. The maximum value of 6, Omax, for a fixed z1 and 

(40) Marcus, R. A. J .  Chem. Phys. 1963,38, 1958. 
(41) Marcus, R. A. To be submitted for publication. 
(42) E.g.: Bechstedt, F.; Enderlein, R.; Reichardt, D. Phys. Status Solidi 

(43) Ex.: Kornvshev. A. A.: Schmickler. W. Phvs. Reu. E 1982. 25. 5244. 
E 1983, 117, 261, and references cited therein. 

(44j Birdyszewski, W.; Dei Sole, R.; Krupski,-J.; Strinati, G. 'SufJ Sci. 
1986, 167, 363. 
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R corresponds to the arrangement in Figure lb, where reactant 
2 just touches the interface. Calculation of the "volume" u involves 
finding all configurations of the pair, per unit area of interface, 
such that the conditions mentioned above are fulfilled. At fixed 
z, and R,  the area element R2 sin 6 d6 dCP is integrated from CP 
= 0 to 2r and from 6 = 0 to 6max(zl,R). The result is then 
integrated at  fixed R from z1 = a,, the radius of reactant 1, to 
the maximum value of z,, z1 = R - q. Then, R is integrated from 
R = a, + a, to m. The final result is independent of the (x, y )  
position along the plane and so is a constant in the unit area. We 
thus have 

inasmuch as Ssin 6 d6 equals 1 - cos e,,,, i.e., 1 - ( z ,  + az)/R. 
Here, k(R) is a weighting factor, K(R) exp[-AG*,(R)/kBq, and 
R,,, is the R where this factor is a maximum. The K exp(- 
AG*,/kB7') in eq 26 denotes, in fact, k(R,,,) exp[-AG*,- 
(Rmax)/kBq. The weighting factor typically decays exponentially 
with distance at  large R27,45*46 but may even pass through a 
maximum45 at an R close to a1 + a2. If, however, in eq A1 we 
let k(R)/k(R,,,) equal exp[-(R - a, - a,)/AR], then the leading 
term from the R integration in eq A1 leads to eq 27. (AR is 
usually denoted in the literature by 1/&) 

Equation A1 is based on a sharp boundary of the two immiscible 
phases. When instead there is some interpenetration of the two 
phases a t  the interface, the Omax may be larger than the value 
indicated in Figure 1. For example, if the center of ion 2 can touch 
the interface as a result of penetration, cos emx is z l /R,  while if 
the center of ion 1 can touch the interface, zI  varies from 0 to 
R instead of the limits indicated in eq A l .  In this case we obtain 
eq 28 as the leading term in the integration, using an exponential 
decay, as above. 

For comparison, it is useful to recall the value of u when there 
was only one reactant, instead of two, as in a metal-liquid system. 
Here, for a unit area of interface we would have instead of eq 27 
or 28 

u = AR (A21 

(45) Brunschwig, B. S.; Ehrenson, S.; Sutin, N. J .  Am. Chem. Soc. 1984, 
106, 6858. Isied, S.  S.; Vassilian, A.; Wishart, J. F.; Creutz, C.; Schwarz, 
H. A,; Sutin, N. Ibid. 1988, 110, 635. 

(46) Marcus, R. A. Inr. J.  Chem. Kinet. 1981,13,865. Lewis, N. Private 
communication. 


