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In our treatment of the frequency response method for the study
of surface reactions in flow systems, we have chosen very simple
examples to illustrate the principles as clearly as possible. These
simple examples focus very sharply on the kinds of additional

kinetic information which can be obtained when conventional
flow-reactor investigations are modified to include the frequency
response feature. The approach described can be adapted readily
to other problems of interest in catalysis.
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The reorganization free energy is calculated for a reaction (i) between two reactants, each in its own dielectric medium,
separated by an interface, and (ii) between a reactant and some semiconductors. An expression is also given for the rate
constant of an electron-transfer reaction at an interface between reactants in two immiscible phases. Under certain conditions
it is shown that the reorganization energy for the two-immiscible-liquid system is the sum of the electrochemical reorganization
energies of the two reactants, each in its own respective solvent. The reorganization energy for a semiconductor-liquid system
can differ considerably from the corresponding metal-liquid value, even a factor of 2.

Introduction

Some time ago I derived an expression for the reorganizational
free energy A in electron-transfer reactions occurring in homo-
geneous solutions'™ and at metal-solution interfaces.>> Since
that time there have also been studies on electron transfers at
liquid~liquid interfaces®® and at semiconductor-liquid interfac-
¢s./%12  In the present paper we obtain expressions for the re-
organization free energy at such interfaces, using the same ap-
proximations as those used earlier.® In the case of a metal-liquid
surface, whose results®= are given for comparison (eq 11), the
detailed electronic structure propertiesi®4 of the metal surface
are neglected and throughout a local dielectric response is used
for the liquid.!s

Earlier, using a charging path to produce a system with a
nonequilibrium dielectric polarization, we obtained a classical
statistical mechanical expression for the free energy of a system
having longitudinal polarization fluctuations.!® This result was
then expressed in terms of the free energies of certain hypothetical
equilibrium systems!® and proved convenient for deriving ex-
pressions for reorganization free energy,’ as well as for obtaining
other properties, such as spectral shifts in polar media for simple
and less simple (e.g., ellipsoidal) solute shapes.!” The principal
assumptions used were (1) linearity of the response of the medium
to a change in electric field, (2) a static treatment of the low-
frequency motions, and (3) instantaneous response of the electronic
polarization in the system to a change in electric field. We also
comment on the applicability of the relation to systems with linear
but nonlocal dielectric response.

Theory

We consider a nonequilibrium system having some charge
distribution, denoted by p,, in an environment that would be in
equilibrium with a different charge distribution p,. Expressed
in terms of equilibrium free energies, the free energy of formation
G™" — G, of this nonequilibrium system from a similar system,
but one that is in thermal equilibrium, is given by eq 15 of ref
16:

G -G =G °P - G (1)

where G)® is the free energy of the equilibrium system with charge
distribution p,, G,° is that of an equilibrium system with a

* Contribution No. 8006.

hypothetical charge distribution p, — pg, and G,,* is the cor-
responding quantity when only an electronic response of the
medium or media to the charge occurs. (In the last case, any
dielectric constant would be replaced by the optical dielectric
constant.) All quantities in eq 1 are calculated at a fixed position
of the reactant(s).

While statistical mechanical expressions can be introduced in
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the right-hand side of eq 1, we employ here the dielectric con-
tinuum expressions. We first consider the case of two dielectrics
having a plane interface at z = 0, z being the coordinate normal
to the interface. A charge g is fixed at a distance 4 from the
interface in the liquid labeled 1, which occupies the region z >
0. The static and optical dielectric constants are denoted by D
and D/, i indicating the phase (i = 1 for z > 0, i/ = 2 for z <
0). The electrostatic potential ¥ satisfies several boundary
conditions at the interface:'

lim D, 9% /dz
—0*

lim D, 0% /dz

0"
lim 9% /dx = lim 8% /dx V)
z—0* z—0"

lim a¥ /9y = lim 3¥ /dy
0% =0
where x and y are coordinates parallel to the planar interface.
The present results are obtained for infinite dilution, in the case
of any liquid phase, although work terms to reach the interface
in the presence of added electrolyte can be included.!” To include
an ion atmosphere reorganization term, eq 1 can still be used, as
in ref 3, when the response of an ion atmosphere to a change in
charge is in the linear regime. In the case of a semiconductor-
liquid system, the semiconductor is treated here for simplicity as
undoped or as having a small enough concentration of electrons
and holes that eq 3 and 4 remain valid in the interfacial region.
We expect to treat other systems later.
The expression for ¥ at any field point (x,y,z), denoted by P,
is giveg by (3) and (4) when these boundary conditions are sat-
isfied:

Vo) = 1[L _ &] >0 )
D|| R, (Dy+ D)R/
and
2q
¥(x,y,z) = m, z<0 (4)

Here, R, is the distance from the ion to the field point P and R/
is the distance to P from the electrostatic image of the ion. The
image lies at the same x and y as the ion but at z = —d.

If we consider an ion of radius g, the electrostatic potential ¥
acting on this ion surface is obtained? by setting R, = g and R’
= Rin eq 3, R being the distance between the center of the ion
and its image. Thus, R = 2d and so is twice the distance to the
interface. The free energy G° is then obtained by charging the
ion from g = 0 to ¢ = g, calculating ¥ dg, and subtracting the
corresponding quantity at R = « in a vacuum (D, = D, = 1).
We thus obtain, for this equilibrium system,

¢ 11 D, - D, g
(5)

Go=—|--— |- =
2Dy{ a (Dy+ D)R 2a

In a treatment of electron-transfer reactions, in which an ion
(or molecule) has a charge ef before the electron transfer and a
charge e after (and there could be several such ions, ', — &P,
j =1, 2, for example), the charge that determines the distribution
of coordinates in the transition state e* was shown earlier to be
given by!??

et = e+ m(e' - eP) (6)

where m is a Lagrangian parameter; m is determined from the

(18) Jackson, J. D. Classical Electrodynamics; Wiley: New York, 1975;
pp 110-112.

(19) E.g., electrical double-layer effects on w' are considered in ref 8b.

(20) In this way, dielectric image effects within the ion, due to the dif-
ference of the “dielectric constant” inside the ion and the dielectric constant
of the liquid, are neglected (cf. ref 3, footnote 29). Strictly speaking, a more
detailed calculation would include such effects and also use the actual charge
distribution inside the ion. Such dielectric image effects are typically small
in bulk solution (e.g., Marcus, R. A, J. Chem. Phys. 1965, 43, 58).
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thermodynamic properties of the system, e.g., eq 79 of ref 3 for
a homogeneous reaction and eq 80 for a reaction at a metal—so-
lution interface, or from related equations which can be derived
for the other systems. (We give eq 79 later.) Thus, the charge
distribution p, — py in eq 1 corresponds to a charge e! - ¢ and
hence to m(e" — eP).

We then obtain at a fixed position of the reactant?

G - Gt = mix = m2(>\0 + N) ™)

where A, is any vibrational contribution from the reactants, due
to changes in the equilibrium values of their vibrational coordi-
nates? due to the reaction; A, is given by eq 9, and ), is given
by

Dlop Dls
a2 D -D® | Dp-Dp |
(Ae) 7 1 p 1 (R = 2d) (8)

2R \ D, + D D,® Dy + D# D

where Ae = e - eP.

The reorganizational parameter A; can be written®? in terms
of the displacements gy — gof of the equilibrium values of the
normal vibrational coordinates and the “reduced” normal-mode
force constants k;,

= ?kj(qur - qof)? 9

when a reactant has the same vibrational symmetry in the initial
(r) and final (p) state. The sum is over all normal coordinates
of the single reactant in the above case and of the pair of reactants
in the next case. The k; is related to the normal-mode force
constants before (k;) and after (k) reaction by?

k= 2kfkp/ (kf + k) (10)

Normal-mode force constants appear in eq 9. A use of purely
diagonal bond-stretching force constants has been shown to lead
to considerable error,?! when the bond—bond cross terms are not
small.

Equation 8 was derived for the case of two dielectric media.
It is useful to see what it reduces to in the case where phase 2
is a classical metallic conductor. In this limit both D,’s are
replaced by infinity and eq 7 becomes

_erf 1 L(l 1) i}
b= (Dlop_DlS)a_E (R=2d) (D

an expression obtained earlier.>-S

We consider next the case where there are two reactants, one
in each phase. The electrostatic potential arising from ions 1 and
2 is now given by the sum of two terms: For z > 0, these terms
arise from eq 3 for ion 1, by setting ¢ = ¢,. The second con-
tribution for z > 0 comes from ion 2 and can be obtained from
eq 4 by setting g = g, there and replacing R, by R,, the distance
from ion 2 to the field point P:

V(x,p,z) =
D,-D 2
ML ), o502
D\ R, (D, + D)R, (D) + D3)R,

Similarly, ¥ for z < 0 is obtained by interchanging the 1 and 2
symbols:

V(x,y,2) =
D, - D 2
LT3 N, <o) 13)
D)\ R; (D) + Dy)R, (D, + DR,

The relevant potential ¥, used in the charging of ion 1 is obtained
from eq 12 by setting!® R, = a;, R, = R, and R/’ = 2d,, where
d, is the distance from the center of ion 1 to the interface. The

(21) Siders, P.; Marcus, R. A. J. Am. Chem. Soc. 1981, 103, 748.
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relevant potential ¥, used in the simultaneous charging of ion
2 is obtained from (13) by setting there R, = a5, R; = R, and
R2, = 2d2

To obtain a free energy, ¥, dg, + ¥, dg, is integrated from
g, = 0 to g, and from ¢, = 0 to g,, by setting ¢, = vq, and ¢q,
= ~gq, and integrating over v from 0 to 1. To obtain G*, the
corresponding quantity at R = « for a vacuum is subtracted. We
then have

2 2
T A T A
2a| Dl 202 D2

9, _ 7> \D,- D 2¢49,
44,D, 4d,D, ] D, + D, R(D, + D,)

(14)

Replacing g, by m(e," — e,P) = ~mAe and g, by m(eyf — e,f) =
+mAe and then using eq 1, we have, at fixed position of the two
reactants,

G™ — G = m?\ = m¥(A\g + A) (15)
where A, is given by eq 9 and 10 and where
Ae)? 1 Ae) | 1 1
NLCO BT DO R TR

2ay \ D\*® D¢ 2a; \ D Dy
(Ae)? Dy - D, Dy - D¢
4d, \ D™Dy + D) DDy + D)
(Ae)?[ D\ - Dy Dy - Dy
4dy \ DD\ + D) DDy + D)
2(4e)? 1 1
R \D®+ D> D+ Dy

(16)

When the two media are identical (D,* = D,* = D*, D|°° = D,*
= DP), eq 16 reduces to an expression obtained earlier:!

1 1 1 1 1 '
=) —+—-=)| =-= 7
AO (Ae) (2(1] 202 R)(Dop Ds) (1 )

In an electron-transfer reaction one also needs to have,'* when
the reactants approach each other from R = =, the corresponding
work term w' and the work term ~wP to remove the products to
R =5°°. The free energy barrier to reaction AG,* is then given
by~

AG,* = W'+ m2\ (18)

In the case of a homogeneous reaction the Lagrangian multiplier
m satisfies the equation!™

~(2m + 1A = AG® + wP — wt (19)

where AG®’ is the “standard” free energy of reaction in the
prevailing medium. In the case of an electrochemical reaction,
m is given by the electrochemical analogue of eq 19 (e.g., for a
metal electrode eq 80 of ref 3).

A dielectric continuum expression for w' at infinite dilution for
the system can be obtained by subtracting from the G® for
reactants 1 and 2 the value for G¢ when they are far from the
interface. At infinite dilution, this result for w* is then found from
eq 14 to be

(&) (&)

4d,Dy¢  4d,Dy

DZS — Dls
Dy + Dy

2 efef

R Dy + Dy

(20)

Similarly, wP is obtained by replacing each charge e/ by the
corresponding value for the products, ef. In practice, more ela-
borate expressions for w' and wP are more appropriate, because
of solvent structure-breaking and structure-forming effects of the
ions, in addition to any electrolyte effects on w* and wr.!®

We have treated the metal in the metal-liquid system as a
classical conductor.* For the sake of completeness we note here
some recent work on electronic structure effects on the calculated

Marcus

electrostatic image potential. There are many quantum me-
chanical studies of the forces between a charge and a metal,’®
designed in part to treat experimental data on work functions,
LEED, and other topics. For distances greater than about 3 A
the interaction energy G° of an electron and the surfaces is ap-
proximated by!?

e?

MRS

d>34) (21)

where 4 is the distance from the charge to the solid surface? and
d, is a small quantity for which estimates have been made.?? To
fit some LEED intensity line shapes eq 21 for d > 3 A was joined
linearly to a given value at d = 0.2 An alternative model,
described as hydrodynamic and phenomenological, gave even
smaller corrections to the classical image charge formula.?

From eq 21 the electrostatic potential ¥;,, due to the image
acting on the charge is

q

R TP

d>34) (22)

In a nonlocal treatment of the metal, Dzhavakhidze et al.2 used
a Thomas-Fermi screening approximation for the wavenumber
k dependence of the dielectric constant of the metal

Dy = Dy(1 + k2/Kk?) (23)

where k,! is the Thomas~Fermi screening length (~0.5 A) and
Dy ~ 1-2. Results were obtained for A, for the metal-liquid
interface, both for the case of a local dielectric response of the
solvent and for a nonlocal response with an exponential decay on
separation distance. In the former instance Ay was given by

1 1 1 -
P —Rf(RksDM/D‘))(—— - E) (R » 2k

P
(24)

where f(x) is a known function which tends to unity when x —
o (it is fairly close to unity for x ~ 3) and which passes through
zero at x ~ 0.25 and then becomes negative for smaller x. It
would appear that this type of treatment would also lead to an
image repulsion of an approaching ion in solution, instead of image
attraction, when Rk, Dy/D* < 0.25. Such a result might be
capable of direct experimental test. It would also be useful to
explore this question further theoretically, using instead the type

(22) (a) d is defined (e.g., ref 13d) as the distance from the charge to the
“termination” of the bulk metal, the latter being a plane halfway between the
center of the outermost atomic layer and the center of the next would-be layer
if the crystal were infinite. Values of dj from 0.64 to 0.85 A were estimated
in ref 13a, 0.26 to 0.50 A in ref 13b, and 0.37 to 0.66 A in ref 13c, depending
upon the electron density in the metal. (These results are also summarized
in Table 4 of ref 13¢c.) The model used in these studies entails a spillover of
charge outside the 4 = O plane, the image charge then being situated slightly
closer to the approaching charge e than is the image in the classical model,
for which dy = 0. (b) Dietz, R. E.; McRae, E. G.; Campbell, R. L. Phys. Rev.
Lett. 1980, 45, 1280. The value of d, was set equal to 2 A, and a linear
interpolation was used to remove the unreal singularity at d = d,.

(23) In this model' there is a sharp infinite potential step, which confines
the negative charge and a uniform background of positive charge (jellium
model). Since the electronic wave function vanishes at the boundary, the
electronic charge is displaced a distance / into the metal, in the absence of the
approaching charge e, where ! ~ 37 /8ky, and kg is the Fermi wave vector.
In this model the image charge is displaced into the metal a mean distance
of ry equal to k;' exp(=k,/), where k; is the Thomas~Fermi screening pa-
rameter.'* (It cannot spill over into the vacuum in this model, because of the
infinite potential step at 4 = 0). Thereby, the denominator in eq 21 is found
to be d + ry instead of d — dj. The values of kg and k, are given by kg =
(37?1)'/3 and k2 = 4(3n/m)/3/ay, where ag is 0.529 A (Kittel, C. Solid State
Physics, 6th ed.; Wiley: New York, 1986; pp 246, 266). For silver as an
electrode n is 0.058 A~ (Smith, A. C.; Janak, J. F.; Adler, R. B. Electronic
Conduction in Solids; McGraw-Hill: New York, 1967; p 180), and so kg =
1.12 A", k, = 1.70 A7, and / = 0.98 A. 7, then equals 0.11 A. The (d +
ro)”' expression was derived for the case that k,d >> 1. In the present case,
with d ~ 3.5 A, k,d = 5.95. (The correction using instead the integral in eq
12 of ref 14 is negligible.)

(24) Dzhavakhidze, P. G.; Kornyshev, A. A,; Krishtalik, L. I. J. Elec-
troanal. Chem. 1987, 228, 329.
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of treatment of the metal surface given in ref 13, which is more
rigorous than phenomenological ones such as that in ref 14,

Reaction Rate Constant

(i) Two Immiscible Phases. We calculate first a rate constant
k. for reaction between two reactants, one in each of the two
immiscible phases. Its units can be defined via?®

dv,

—_d—t_ = k,n,nzA (25)
where V, is the number of molecules of type 1 in phase 1, n; is
the mean concentration of reactant 1 in phase 1, n, is the mean
concentration of reactant 2 in phase 2, and A is the interfacial
area. The units of k, are seen to be cm* molecule™ s™!. We let
v (determined below) be a “volume” (units of cm*) such that in
a unit area of interface the center-to-center distance of the pair
of reactants lies in (R, R+AR), where AR, defined in the Ap-
pendix, is the region over which there is a significant contribution
to the ET process, and where reactant 1 lies wholly in phase 1
and reactant 2 in phase 2. If « is some Landau-Zener factor?
for the ET in this region of R and » is some relevant frequency
for the molecular motion, then k, can be written, approximately,
as

k, = kpve G"/ksT (26)

where AG?, is given by eq 18 and 19. The terms w* and wP in
those equations now denote the work required to bring the
reactants (w") and the products (wP) from R = « to a mean
reactive separation distance R} (=~ a, + a;). Such work terms
may include not only that in eq 20 but, as already noted, other
effects.

In the Appendix it is shown that the leading term in an ex-
pression for an effective v is

v = 27r(a1 + 02)(AR)3 (27)

when a sharp boundary at the interface is assumed.

When the two phases are “immiscible” liquids, some interp-
enetration of the two phases may occur, so that the reactants may
then be able to approach each other over a wider solid angle than
that indicated in Figure 1. For example, if the centers of ions
1 could each penetrate the other phase to the extent that each
center could even reach the interfacial boundary, but such that
the reactants would not overlap, one would obtain (Appendix)
eq 28 instead of eq 27.

v ~ w(a, + a,)’AR (28)

The rate of electron transfer typically decays with distance as
exp(—BR) (some data are summarized in ref 27) and AR = 1/8
(Appendix). If one uses a value of 8 ~ 1 A, AR is about | A.
When a, + a, ~ 5 A, the v in eq 28 is then about a factor of 10
larger than that in eq 27. A molecular investigation of the in-
terface and of the extent of interpenetration of the reactants in
the two-liquid case would be desirable. We plan to compare
elsewhere the above results for v, and those given earlier for A,
with some available data on rate constants. Equation 16 for Ay
is restricted, of course, to the case when there is no interpene-
tration. If only one of the two ions can interpenetrate, v has a
value intermediate between that in eq 27 and in eq 28.

(it) Comment on Semiconductor-Solution Electron Transfers.
Equation 18 and an electrochemical analogue of eq 19 have been
applied to electron transfers at semiconductor electrodes, typically
with A regarded as a parameter.!! A general X\ includes® the
reorganization of the solvent dielectric polarization, of the vi-
brational coordinates, of the ion atmosphere in solution, and,

(25) Similarly, in the case of reaction between a single ion or molecule 1
and an interface, the corresponding rate constant k, is normally defined via
—dN,/dt = k.n 4 and so, conventionally, in units of cm s7.

(26) E.g.. Kauzmann, W. Quantum Chemistry; Academic Press: New
York, 1957; p 541. The present discussion regarding time in the crossing
region was motivated by the discussion there but is done somewhat differently
in the present paper.

(27) Marcus, R. A,; Sutin, N. Biochim. Biophys. Acta 1988, 811, 265.
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z2=0

(b)

Figure 1. (a) Coordinates for the calculation of the hypervolume v in the
Appendix and eq 27. (b) Configuration indicating the maximum value
of 4, for a given value of z, and of R.

depending on the system, of the electron and hole distributions
in the semiconductor.

One question which arises is the rapidity of response of the
electronic and hold charge distribution in the semiconductor to
an actual fairly abrupt electron transfer with the reactant. A
characteristic time for that transition 7 can be inferred from the
Landau—-Zener-type expression for the probability P of a radia-
tionless transition in the following way: For an electron transfer
at a “crossing” of the potential energy surfaces for the electron
transfer, we have26

2r H?
P=1-exp h T sio. (29)

where H,, is the absolute value of the electronic matrix element
for the electron transfer and v, is the velocity at the crossing.

To answer the question regarding response time, it is useful to
recast eq 29, as in eq 30. The time for a nonstationary state of
the reactant, at the curve crossing, to undergo a charge transfer
between the two nearly degenerate electronic states there is Az
= hx/2H,,, using a standard quantum mechanical analysis.?®
Equation 29 can be rewritten suggestively in the form (30), using
this At.

P=1-¢7/8 At=hr/2H, (30)

where 7 is, effectively, the time spent by the system in the crossing
region;  is defined by a comparison of eq 29 and 30 to be

7 = 7 Hy, /v s, — 53 31

(28) At the curve crossing there are two degenerate localized electronic
states $; and &,, one with the charge localized in one reactant and the other
with the charge gone from that reactant. Each of these two states can be
expressed as a linear combination of their symmetric and antisymmetric
algebraic sums, namely, the two adiabatic states. At the crossing the adiabatic
states have an energy difference of 2H,,. A system fixed at the crossing and
initially the state &,, a nonstationary state, oscillates between &, and $, with
the time to go in one-half of this cycle from &, to &, being the At given in
the text.
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An interpretation of eq 30 is that the system passes through the
intersection region in a time ~7. When this time 7 is small relative
to the time Ar for the change of the reactant’s charge, there is
only a small probability of the electron transfer occurring on a
passage through the crossing region, as seen, for example, in eq
30.

With a little manipulation, using a vibrational coordinate as
the reaction coordinate, with a vibration frequency », and, for the
present, replacing the velocity v, by an average value, one finds?

T~ Hy/v(NkgT)'? (32)

Thus, the smaller the electronic interaction energy H,,, the shorter
the time 7 spent by the system in the vicinity of the potential energy
curve crossing.

Depending on the ratio of this time scale = to the time scale
for the relaxation of the electron (or hole) charge distribution in
the semiconductor, the latter may act as a dielectric. For example,
if 7 is relatively small, then eq 9 and 16 may be appropriate for
Ao- At the other limit, the response in the semiconductor may
be rapid enough, and the shielding large enough, that it can be
treated as a metal, and eq 11 is obtained in this limit.

A helpful discussion and survey of the theory of electron transfer
at semiconductors and the role of A are given in ref 11. We hope
to return to this topic at a later date.

Discussion

({) Two-Immiscible-Liquid Interface. An interesting conse-
quence of eq 16 is that when d, = d, = !/,R, the Xy in (16) is
the sum of the two electrochemical Ay’s (eq 11), each ion being
in its own respective solvent:

Ao = Moy + Aoyt (33)

We plan to apply this result elsewhere.

There are both similarities and differences between eq 16 and
the corresponding equations in ref 6. The 1/a, and 1/a, terms
are the same [e.g., eq 4 of ref 6b]. The remaining part of (16)
differs, though it and the corresponding terms in ref 6 become
equal in some particular cases. The results in eq 20 for w™ and
wP are the same as those in ref 6 (eq 5-7 of ref 6b), when eq 20
is specialized to the case where the line of centers of the two
reactants is normal to the interface (i.e., when R = d, + d,).

(i) “Undoped” Semiconductor-Liquid Interface. As an ex-
ample of eq 8 and 11 we compare them for the case that D,°P =
D, = 2, D = 10 (semiconductor), and D,* = 40. In this case
and with R = 2a, the Agin eq 8 has about twice the value as that
ineq 11. The reason for this large effect is that in the metal-liquid
case the image charge tends to reduce the effect of the approaching
charge on the solvent polarization, whereas in a semiconductor
(Dy%)/liquid (D,*) system it concentrates the effect of the charge
in medium 1, when D,* < D%, and hence increases the amount
of reorganization needed.

(iif) Metal-Electrolyte \y. The results in ref 3 appear to be
consistent with a comparison of some homogeneous and hetero-
geneous (metal electrode) electron-transfer rate constants, a
log~log plot of which appears to have a slope of roughly 0.5,303!

(29) The difference of slopes s, — s, of two potential curves (k/2)(g - q°)?
and (k/ 2)5 - qoP)?is (k/2)(go° - q¢), the magnitude of which can be written
as (2kA)'/?, where \; = (1/2)(qu ~ go")% Using the fact that the vibration
frequency » equals (27)"1(k/u)!/2, then replacing v,, the velocity along the
reaction coordinate, by an average value for the present purposes

S e exp(ouv,?/ 2KkT) dve/ " exp(-un2/ 2KsT) do

i.e., by (2kg7/7u)!/%, and neglecting the difference between a factor 7°/2/4
and unity, one obtains eq 31. In practice, in a calculation of the rate one
would, of course, integrate P itself over a Boltzmann-weighted distribution
of P's (e.g., ref 3) and not replace v, by an average. However, in the present
context we are interested, instead, only in obtaining an approximate time scale
for the “almost instantaneous” electron transfer in the transition-state region.

(30) Cannon, R. D. Electron Transfer Reactions; Butterworths: London,
1980; p 221 (Figure 6.10). Weaver, M. J. J. Phys. Chem. 1980, 84, 568,
Figure 1. Saji, T.; Maruyama, Y.; Aoytagui, S. J. Electroanal. Chem. 1978,
86, 219, Figure 1.

(31) A group of fast reactions at one end of this plot do not have this slope,
for reasons which are still not clear.
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although the scatter makes the slope somewhat uncertain. The
homogeneous solution k’s varied by some 20 orders of magnitude.
In these systems the A, is, no doubt, nonnegligible and A; for a
homogeneous (self-exchange) reaction is twice that for the het-
erogeneous one at the metal electrodes® and so helps preserve a
slope of roughly 0.5. The slope is predicted®?"*? to be between
0.5 and 1, depending on whether or not there is a layer of solvent
molecules on the electrode surface which prevents the ion from
having R = 2a and depending, too, on the contribution of A; to
A. This slope of 0.5 does differ from that predicted theoretically
in ref 24, for which a very large slope of 1.9-2.4 was suggested
for acetonitrile on the basis of nonlocal dielectric response cal-
culations. The slope predicted® on similar grounds for di-
methylformamide as solvent was 0.7. The predicted slope (e.g.,
in Figures 5 and 6 in ref 24) was not given for water. No A; term
was included there, since the focus was on Ay. An experimental
comparison of corresponding self-exchange homogeneous and
electrochemical rate constants in acetonitrile as solvent, suitably
corrected for work terms, would be useful as a test of this rather
surprising nonlocal electrostatics prediction of ref 24.

The interpretation of homogeneous vs electrochemical data
where A, is small is currently under active investigation. Both
solvent static and dynamic effects occur, and for these fast re-
actions (small ;) the variation in k’s was not very large. The most
recent analysis of the data is that given in ref 33, which illustrates
some of the complexities.

(iv) Nonlocal Dielectric Response. We have not treated in the
present paper any nonlocal dielectric effects*** in the liquid. These
and other effects such as short-range specific interactions no doubt
occur. Apparently there is, as yet, no direct experimental mea-
surement of nonlocal dielectric response parameter for polar
solvents (e.g., a determination of an orientational analogue of the
slow neutron scattering determined structure factor). Results for
the nonlocal dielectric response would be obtainable from suitable
molecular dynamics (MD) computer simulations of a statistical
mechanical system, though such results would be only as good
as the molecular model used in the calculation. Such effects are
physically different from specific short-range electrode—solvent
and ion—solvent interactions. To distinguish them from the latter,
the nonlocal dielectric effects are presumably best investigated
in MD simulations of the ion-free and interface-free solvents.
Attempts to infer them? from experimental data at interfaces or
from data on ion-solvent interactions encounter the problem of
disentangling those effects from the other short-range effects,
dielectric saturation, for example, or various specific effects.’”*
One alternative has been to include all such effects phenomeno-
logically into one or more parameters,® which are then adjusted
to best fit some data.

The derivation of eq 1 given in ref 16 was based on rather
general linear functional type arguments and might be expected
to apply, therefore, to nonlocal response dielectrics also. (This

(32) Marcus, R. A. Electrochim. Acta 1968, 13, 995.

(33) Fawcett, W. R,; Colby, A. F. J. Electroanal. Chem., in press.

(34) E.g., reviewed by: Kornyshev, A. A. Electrochim. Acta 1981, 26,
1795. Dogonadze, R. R.; Kornyshev, A. A.; Kuznetsov, A. M. Theor. Math.
Phys. (USSR) 1973, 15, 407.

(35) Chandra, A.; Bagchi, B. Chem. Phys. Let:. 1988, 151, 47.

(36) E.g.: Kornyshev, A. A. Reference 17, Part A, p 77, and references
cited therein.

(37) E.g., discussion between Yeager and Dogonadze: (Yeager, E.; Do-
gonadze, R. R. J. Phys. 1977, C5, 48).

(38) Kornyshev, A. A.; Ulstrup, J. Chem. Phys. Lett. 1986, 126, 74.

(39) One example is the treatment of separation distance effects in
charge-transfer spectra, where a dielectric screening constant and an intra-
molecular A; were used as adjustable parameters.® Another example is the
discrepancy between free energies of solvation of small ions and those calcu-
lated by usual electrostatics (local) using the Born charging formula. Con-
ventionally, the difference has been ascribed to dielectric saturation, and either
an additional constant has been added to the ion radius or, sometimes, an
innermost shell of bound solvent molecules has been assumed. As an alter-
native for 1:1 ‘electrolytes, a nonlocal dielectric effect was postulated and
adjustable screening constants were introduced.® However, recently Krish-
talik, L. I. (40th ISE Meeting, Kyoto, Japan, 1989) reported that nonlocal
solvent dielectric effects have been overestimated. He obtained, instead, good
agreement for the free energies of transfer of (+,~) pairs of metallocene ions
from one solvent to another, using a local dielectric response (to be published).
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derivation of eq 1 was more general than a dielectric-continu-
um-based derivation,*® which did assume a local dielectric re-
sponse.) Recently, we have made a continuum-based derivation
using a nonlocal response for single-phase systems, and eq 1 was
again obtained.#! For the case where there is more than one phase
some assumption for the nonlocal dielectric constant e(r,r’) in the
vicinity of the interface is needed. One assumption in the liter-
ature, a “specular electron reflection ansatz”, is that it correlates
only points r,r in the same phase and is zero otherwise.4>** This
approach has been used for systems where one phase is a solid 4243
(A more elaborate ansatz has also been used for a semiconduc-
tor—vacuum system.*) For a system of two dielectrics, the same
approach yields an obvious inconsistency in the limit where the
two dielectrics have the same properties. In this case the result
does not reduce to the correct limit for a single-phase behavior,
for which e(r,r’) correlates all pairs of points, not just those on
the same side of a now only imagined boundary. (While the
important property is €''(r,, it too would be incorrect in the cited
limit, since e{r,r’) is presumed to have a unique inverse.) Thus,
if a continuum-type nonlocal formalism for liquid-liquid systems
is employed, some alternative approximation for the interfacial
region would be desirable.
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Appendix: Derivation of Eq 25

We calculate here the “volume” v per unit area of interface
defined as in eq A1, such that the reactant 1 lies wholly in phase
1 and reactant 2 lies wholly in phase 2. Coordinates z;, 8,  (®
is an angle, not shown, about the z, axis), and R are introduced,
as in Figure la. The maximum value of 6, 6,,,, for a fixed z, and

(40) Marcus, R. A. J. Chem. Phys. 1963, 38, 1958.

(41) Marcus, R. A, To be submitted for publication.

(42) E.g.. Bechstedt, F.; Enderlein, R.; Reichardt, D. Phys. Status Solidi
B 1983, /17, 261, and references cited therein.

(43) E.g.: Kornyshev, A. A; Schmickler, W. Phys. Rev. B 1982, 25, 5244.

(44) Bardyszewski, W.; Del Sole, R.; Krupski, J.; Strinati, G. Surf. Sci.
1986, 167, 363.
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R corresponds to the arrangement in Figure 1b, where reactant
2 just touches the interface. Calculation of the “volume” v involves
finding all configurations of the pair, per unit area of interface,
such that the conditions mentioned above are fulfilled. At fixed
z; and R, the area element R? sin 6 d6 d& is integrated from &
= 0 to 27 and from § = 0 to ,,,(z,R). The result is then
integrated at fixed R from z; = g, the radius of reactant 1, to
the maximum value of z|, z; = R —a,. Then, R is integrated from
R = a; + a, to ». The final result is independent of the (x, y)
position along the plane and so is a constant in the unit area. We
thus have

® R-a; Ops(z.R) 27
= 2 o
v j; e f - j; . j; _ R¥sin 0.4 df dz, dR
k(R) / k(R p4y)

= WJ;‘:GH'H;(R - al - az)sz(R) dR/k(RmaX) (Al)

inasmuch as f'sin 6 df equals 1 — cos Oy, i€, 1 — (2, + ay)/R.
Here, k(R) is a weighting factor, «(R) exp[-AG*.(R)/kgT], and
R, is the R where this factor is a maximum. The x exp(-
AG*./kgT) in eq 26 denotes, in fact, k(Ry,,) exp[-AG*-
(Rpax)/ksT]. The weighting factor typically decays exponentially
with distance at large R?™45% but may even pass through a
maximum® at an R close to a, + a,. If, however, in eq Al we
let k(R) /k(Rp,,) equal exp[-(R - a; — a;)/ AR], then the leading
term from the R integration in eq Al leads to eq 27. (AR is
usually denoted in the literature by 1/8.)

Equation A1 is based on a sharp boundary of the two immiscible
phases. When instead. there is some interpenetration of the two
phases at the interface, the 8, may be larger than the value
indicated in Figure 1. For example, if the center of ion 2 can touch
the interface as a result of penetration, cos 6y,, is z;/R, while if
the center of ion 1 can touch the interface, z; varies from 0 to
R instead of the limits indicated in eq Al. In this case we obtain
eq 28 as the leading term in the integration, using an exponential
decay, as above.

For comparison, it is useful to recall the value of v when there
was only one reactant, instead of two, as in a metal-liquid system.
Here, for a unit area of interface we would have instead of eq 27
or 28

v=AR (A2)

(45) Brunschwig, B. S.; Ehrenson, S.; Sutin, N. J. Am. Chem. Soc. 1984,
106, 6858. Isied, S. S.; Vassilian, A.; Wishart, J. F.; Creutz, C.; Schwarz,
H. A.; Sutin, N. Ibid. 1988, 110, 635.

(46) Marcus, R. A. Int. J. Chem. Kinet. 1981, 13, 865. Lewis, N. Private
communication.



