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VIBRATIONAL ENERGY REDISTRIBUTION ACROSS A HEAVY ATOM

Steven M. LEDERMAN 2! Vicente LOPEZ ®, Victor FAIREN °,

Gregory A. VOTH #»* and R.A. MARCUS ?

2 Arthur Amos Noyes Laboratory of Chemical Physics *, California Institute of Technology, Pasadena, CA 91125, USA
b Departamento de Quimica, Universidad Autonoma de Madrid, 28049 Madrid, Spain
< Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, A pdo. 60141, 28080 Madrid, Spain

Received 11 May 1989

Vibrational energy relaxation is studied for a model system with two different ligands separated by a heavy atom, there being
initially an excess energy in one metal-ligand subsystem. The model has eleven coordinates to achieve a high density of states
(two coordinates for one metal-ligand subsystem and nine for the other). The behavior was studied using classical and quantum
mechanical methods, and the results compared. Artificial intelligence searching was used in the quantum treatment, because of
the large number of potenfially contributing quantum states. For the present system the adiabatic separation of motion of the
local group modes, previously characterized for a C-C-Sn ligand in a smaller system, still holds when the other ligand has this
high density of states. Further, the agreement between the classical and quantum results is much improved over that obtained
earlier for a four-coordinate symmetric system. In the latter case isolated intrinsic resonances were responsible for the “energy
transfer”, which was facilitated sometimes by tunneling. The present agreement of the classical and quantum calculations 1s
generally quantitative at shorter times and at least qualitative for longer times for most states studied. This agreement 1s encour-

aging since the former can be less computationally intensive.

1. Introduction

In previous papers [1-3] we considered model
systems containing two identical ligands separated by
a heavy atom, there being four coordinates in all. The
ligands were treated as linear carbon skeleton chains
and the heavy central atom was tin. These models
were initially motivated by an experimental study [4]
that suggested the possibility that a central tin atom
acted as a barrier which reduced the rate of intramo-
lecular vibrational energy transfer between hydrocar-
bon ligands. Subsequent experiments [5,6] on re-
lated chemical systems gave a contradictory
conclusion. Large classical calculations on a model
related to the experimental molecules led to results
which showed a dependence of the potential energy
surface used [7].
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In our previous theoretical studies on a small sys-
tem (two coordinates for each metal-ligand subsys-
tem ) it was found that the motion of ligands attached
to a heavy atom could be described with what was
termed local group modes [1]. Each of the latter in-
volved an anharmonic collective motion of the metal
and the ligand atoms attached to it and they resulted
in the approximate constants of the motion. The
quantum state for a metal-ligand subsystem was de-
scribed using semiclassical theory, by specifying the
relevant actions and, thereby, semiclassically the cor-
responding quantum numbers. These local group
modes characterized separate motions of the ligand
and the heavy atom attached to it, independently of
the rest of the molecule, in the same way a local mode
characterizes the motion of a light atom attached to
a molecule by a relatively heavier atom [1-3]. For
the system studied, both the classical and the quan-
tum calculations on a linear model system confirmed
the presence and usefulness of the local group mode
concept in describing the dynamics of such systems.

A system composed of ligands separated by a heavy
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atom can be viewed as a perturbation of the limiting
case 1 which an infinite central mass leads (in the
absence of potential energy coupling) to an indepen-
dent motion of the ligands. Resonances between
metal-ligand subsystems are responsible for strong
modifications of the dynamics of the ligands for a fi-
nite central mass and can lead to vibrational energy
transfer between the ligands [ 1-3,8 ]. The symmetric
model systems used in our previous studies [2,3]
(e.g., C-C-Sn-C-C) resulted in the existence of a 1 : 1
resonance that was intrinsic and therefore present for
all energies of excitation. The local group mode con-
cept yielded physical insight into the dynamics of dif-
ferent excitations of the ligands. For the case of a C-
C-Sn ligand and adiabatic separability of the two lo-
cal group modes led to completely different dynam-
1cs when the different local group modes were excited
[ 1-3]. The results of these studies were 1nstructive,
but the symmetry of the model meant that experi-
mentally the studies would be more related to spec-
troscopic splittings between symmetric and asym-
metric states rather than to the study of real-time
energy redistribution.

In this paper, energy transfer is studied 1n a non-
symmetric model system with two different ligands
separated by a heavy atom and so the results are more
closely related to real-time energy redistribution. One
ligand is the previously characterized C-C-Sn chain
while the other ligand i1s a model for a higher-dimen-
sional deuterium-substituted carbon chain. We have
used an artificial intelligence searching method [9]
to calculate the quantum mechanical time evolution
and loss of the energy 1n an excited C-C-Sn moiety.
These quantum results are compared to results for the
time evolution obtained using classical or partly
semiclassical methods. The results of the present
study show that the adiabatic separation of motion
of the two local group modes found 1n our previous
study for the C-C-Sn subsystem still occurs and that
resulting differences in the energy transfer can be dis-
tinguished. The results also permit a comparison of
quantum and classical calculations for this larger
system.

The model system used 1n the present study 1s dis-
cussed 1n section 2. A description of the classical
and quantum calculations 1s given 1n section 3. The
results are given in section 4 and discussed in
section 3.

2. Model system

In order to test the effectiveness of the adiabatic
separation of the motion of the local group modes of
the two degree-of-freedom-ligand subsystem found
previously [2,3], the C-C-Sn chain was retained as
one of the ligands attached to the heavy atom. To
make the model closer to molecules of experimental
interest (and to relate to a real-time evolution), the
number of coordinates in the second ligand was 1n-
creased, thereby introducing an asymmetry of the
ligands.

The increase in the number of degrees of freedom
causes an increase in the density of states [ 10] which
1s shown to be strongly correlated to the amount of
relaxation 1n the model system. The increase in the
number of degrees of freedom and the asymmetry can
be achieved by mimicking a common experimental
technique for labelling, e.g., 1sotope substitution. With
this in mind the previous five-atom model was mod-
ified, 1n part, by mass-weighting the carbons to eftec-
tively include the masses of hydrogen in one ligand
and deuterium 1n the other ligand. The number of de-

grees of freedom in the deuterated ligand was also in-

creased, by considering explicitly the motions of two
deutertum atoms and all bending motions. The re-
sulting model could still be treated reliably with both
guantum and classical mechanics and provides some
insight on energy transfer across a heavy atom.

In the present paper an eleven-degree-of-freedom
dynamical system, intended as a step toward model-
ling a larger system, (CH;CH,);SnCD,CD;, 1s dis-
cussed and depicted in fig. 1. One ligand subsystem,
C-C-S8n, denoted by L, below, 1s stmilar to the ligand
previously studied in the symmetric model in which
only the two vibrational stretching motions were
considered, except that in the present ligand the car-
bon chain 1s not linear but 1s chosen to have the ex-
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Fig. 1. Model system studied. L, =C,C,Sn, L,=Sn(D),C..
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perimental tetrahedral angles. The second ligand-
metal subsystem, denoted by L,, has nine vibrational
degrees of freedom, namely, the four stretching and
five bending motions associated with a methane-like
ligand [11]. The carbon atoms labeled C,, C,, and C,
in fig. 1 were given the etfective masses of CH,, CH,
and CD;, respectively, to simulate the mass of the at-
tached atoms not included explicitly #!. The Hamil-
tonian chosen for this model system is

H=H1+H2+V12, (1)
where
1 2 2
> L Zp i Pj
+ ZID{I-—exp[a(qx —q5)1}2, (2)
1 12 12[ ( 12 aG ) ]
H, = — A G+ |
: 2i=31§3 Pi ; 23 aqk Q=qeqk pJ
{12
t5 2 ki(gi—gi)*, (3)
Via=A(papscos0°)/ M. (4)

Here, g; and p; are the internal coordinates and their
conjugate momenta, respectively, and ¢¢ is the equi-
librium value of the ith bond coordinate given 1n ta-
ble 1. The G, are the Wilson G matrix elements [11 ]
and are evaluated, together with their first deriva-
tives, at the equilibrium value of the bond coordi-
nates. This A, represents a two-term expansion of the
actual coordinate dependent kinetic energy matrix
element. 6° in eq. (4) 1s the equilibrium tetrahedral
angle C-Sn-C between the two ligands. Analytic
expressions for the first derivatives of the G matrix
with respect to the displacement coordinates were
obtained using the symbolic manipulation pro-

#1 The values used are for the average mass weighted by the nat-
ural abundance. The mass (in g/mole) of Sn equals 118.69,
C equals 12.01115, D equals 2.014, C, (=CH;) equals
15.03506, C, (=CH,) equals 14.027109, and C, (=CD;)
equals 18.0532.

Table 1
Parameters of model Hamiltonian

D a) Y b)
(kcal/mole) (A~1)
C.-C, 84.08 1.8194
Cy-Sn 52.84 1.6426
Bond Equilibrium

distance g (A)

Sn-C 2.143

C-D 1.093

C-C. 1.552
Bond Force

constant <’

Sn-C K,=1.5858
C-D k,=4.72
C-C. K,=4.76
Sn-C-D kﬂ&Z 0.74
Sn-C-C, Koe=0.63
D-C-C, Kog=0.62
D-C-D koo=0.46
Sn-C/C-C, K, =—0.28
C-C./D-C-~C. ko=0.72

2 Ref. [12]. ™ Ref. [13].
©) Ref, [14]. k,, and k,, in mdyn/A, kg in mdyn A and L, in
mdyn.

eram *2, which was also used to provide the Fortran
eXPressions.

The set of ten bond coordinates included in A in
eq. (3) contains a redundant bending coordinate
[11], since the sum of all the displacement angles 1S
constrained to be a constant value. This redundant
variable 1s one of the ten symmetry coordinates. For
this reason H, was transformed into symmetry coor-
dinates before performing the classical and quantum
evolutions. The values of the Morse parameters D;
and «; for L, are given in table 1. The anharmonicity
parameters «,, in eq. {(2), were obtained from the
harmonic limit of the Morse oscillator where
a,-=\/ 1;/2D;, and the f; are the harmonic force con-
stants. A non-linear least-squares fit of the normal
mode frequencies in terms of the bond mode force
constants to the experimental frequencies [15] was
performed to determine the harmonic force con-
stants ..

#2 SMP was developed by the High Energy Physics Group at
Caltech.
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In the case of the ligand-~metal subsystem L,, the
harmonic force constants &, were determined from the
literature [14] where the experimental frequencies
of CH,CH;SnH; molecule were analyzed. In order to
translate those values to our approximate molecular
mode, the Sn—-C force constant for L, was optimized
until agreement was obtained with the experimental
frequency for the predominantly Sn—C normal mode.
To be able to compare the present model with the ex-
perimental frequencies, the deuterium atoms 1n L,
were replaced with hydrogen atoms during the op-
timization. The force constants determined i1n the
above manner were then used 1n the deuterated model
given in fig. 1 and are tabulated 1n table 1.

To test the utility of the first-order approximation
to the ¢ matrix dependence on the displacements, we
have also evaluated classically the dynamics gener-
ated by a more general Hamiltonian for the ligand
metal L,,

1 12 12 1 12
Hy==5% % p;Gi(q)p S ki(gi—q%)*,  (5)
2 1= J=5 2 =5

where the complete dependence of the G; on the dis-
placement of ¢ 1s included.

The Hamiltonian for L, contains Morse potentials,
in order to retain the local group modes discussed in
the previous papers [1-3]. The Hamiltonian for L,
has harmonic potentials, but the first derivative of
the G matrix elements adds cubic anharmonic cou-
plings [16]. Further, the first derivatives of the G
matrix remove the symmetry-based decoupling of the
three A’ modes in L, from the remaining modes of
the molecule, 1.e. both L, and L.,. Harmonic poten-
tials were used for L,, and the necessary quantum
matrix elements were easily calculated, as discussed
below. The coupling between L, and L, is repre-
sented as a kinetic coupling in the present model. The
kinetic coupling between L, and L, depends on the
central mass (M ineq. (4)), and the effect of varying
that central mass on the energy transfer 1s studied
below.

However, varying the central mass not only affects
the kinetic coupling term but also changes the tre-
quencies associated with each ligand. A change 1n the
frequencies of the ligands can cause changes in the
energy transfer between these ligands by modifying
the resonances between them. Since the model only
crudely approximates actual molecular systems, only

the general trends expected from varying the central
mass will be studied here. By varying, instead, the pa-
rameter A in eq. (4) a change in the kinetic coupling
between the ligands associated with a change 1n the
central mass could be mimicked without varying the
frequencies of the metal-ligand subsystems. In this
way the two effects of varying M were separated. The
central mass M is set equal to that of tin 1n the pres-
ent study and the parameter A is varied to change the
value of the coupling term between the L, and L, to
the values associated with a series of central masses.
Thus, a “pure’ mass effect upon energy transfer was
studied without the effect of having a change 1n vi-
bration frequencies.

3. Dynamic description

The flow of energy across the heavy atom 1in the
present model was examined for different initial ex-
citations using both classical and quantum mechan-
ics. The initial states of the model system were char-
acterized using the pair of quantum numbers of the
local group modes of L, and the nine quantum num-
bers of the zeroth-order harmonic normal modes of
L,. The local group modes were those characterized
for a similar L, in a previous study [2]. At very low
excitation energies they practically coincide with the
two normal modes of the ligand, whereas for higher
excitation energies the high-frequency mode corre-
sponds predominantly to the C-C stretching (1.e. to
the vibration of the C against C-Sn) and the other to
the stretching of the C-C group against the Sn atom.
For this reason the high-frequency local group mode
in L, will be referred to as the C local group mode
with quantum number nc and the low-frequency
mode as the Sn local group mode with quantum
number nq, **. The flow of energy across the central
heavy atom is induced by the presence of the V', term
in the full Hamiltonian dynamics based on eq. (1).

The semiclassical adiabatic switching method [17]
was used to obtain the tori for the classical quasi-pe-
riodic motion of L, with actions, Jc and Jg, of the
local group modes for the Hamiltonian of L,. The lat-
ter were chosen for given #e and ng, from the EBK

#3 In refs. [2,3] the C and Sn local group modes were referred to
as X and Y modes, respectively.
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semiclassical relations, Jo= (nc+1/2)h, Js, = (ns, +
1/2)h. The zeroth-order actions of L, were chosen to
be the normal mode actions in the harmonic limit of
the Morse oscillators, and the anharmonicities were
switched on during periods of time longer than 200
times the period of the higher-frequency normal
mode. Converged values of the energy in the final
perturbed torus were obtained for excitations lower
than 8000 cm~'. Above this energy the instabilities
of the results suggested the presence of resonances
between the two degrees of freedom of L,. Only ex-
citations below this limit have been used as initial
states 1n the present dynamical studies.

The semiclassical results were also used for the la-
beling of the quantum mechanical wavefunctions for
L;. These wavefunctions for the L, ligand were ob-
tained by diagonalization of H, using a basis set of
1497 elements, consisting of the products of Morse
oscillator wavefunctions. The basis set included in the
calculation contained all elements with a total energy
less than 28000 cmm—'. This procedure provided con-
verged results for all the L, wavefunctions used in the
dynamics. Comparison between the energies ob-
tained in the diagonalization and the energies of phase
space points on the semiclassical tori permitted the
latter to be used in the labeling of the L, wavefunc-
tions in terms of local group modes. The values of the
energies obtained semiclassically were almost always
close enough to the quantum eigenvalues of H, to al-
low a unique assignment of the pair of quantum
numbers (%, Mg, ) to the wavefunctions.

For every initial excitation of the system consid-
ered, Hamilton’s equations of motion were inte-
grated for a set of 25 initial conditions randomly cho-
sen from those on the semiclassical zeroth-order torus
labeled with the specified set of the eleven quantum
numbers. The ligand L, contained the zero-point en-
ergy of the nine modes. The excess energy E, in L, at
any time step was defined classically as the average
of the function H, in eq. (1) over the 25 trajectories,
minus the quantum zero-point energy in L,. While
this average over the set of initial conditions on the
mnitial unperturbed torus for the Hamiltonian
H\+ H,, provides a better correspondence to the
quantum time evolution of the expectation value of
the operator A, than the consideration of single tra-
Jectories, the high dimensionality of the phase space
would normally require a very large representative

sampling of the phase space. An average over 25 tra-

jectories provided a coarse graining over some of the

irrelevant single trajectory oscillations and so per-
mitted a better comparison with the qguantum results.

For the quantum dynamics, the basis set wave-
functions used were the product of the wavefunc-
tions of H, with the normal mode wavefunctions of
L,. The latter were the eigenfunctions of H, when the
first derivatives of the G matrix are omitted. In this
basis set there are two types of off-diagonal matrix
elements of the Hamiltonian given in eq. (1) that
need to be evaluated, namely, those arising from the
first derivatives of the G matrix and those due to the
Vi, coupling between L, and L,. The latter are the
more difficult to evaluate. Thus, to obtain the V,,
matrix elements the eigenfunctions of H, were ex-
pressed 1n terms of the original local mode Morse os-
cillator wavefunctions. This transformation was
computationally intensive and required almost 10
min of CPU time on a Cray-2 to determine the mo-
mentum matrix elements for the 101 lowest energy
wavetunctions of L,. The lowest 101 wavefunctions
of L, were the the ones used in the dynamics of the
complete system. The transformation, however,
needed only to be performed once for a given choice
of parameters.

Since L, has nine degrees of freedom, the basis set
of L, was chosen to avoid the necessity of making a
numerical transformation of coordinates in order to

evaluate the V), matrix elements. This procedure is

possible with the use of a normal mode basis set for
which there exists a linear transformation from local
bond coordinates into normal mode coordinates *4.
The latter transformation permitted the ready eval-
uation of the ¥}, matrix elements in the normal modes
basis set.

The basis set elements used in the quantum calcu-
lation of the stationary states of the combined system
were determined by the artificial intelligence (Al)
best-first search, which has been discussed in detail
elsewhere [9]. In using this method the possible a
prior1 basis elements were searched to find those
members of the basis set which are important for the

#* Tt is noted that one of the symmetry coordinates coincides with
the local mode coordinate for the Sn-C bond in L, so that
transformation from the normal mode coordinates into sym-
metry coordinates trivially yields the Sn—C local bond mode.
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subsequent dynamics of time evolution from a se-
lected 1nitial excitation. The best-first search method
was used 1n the present calculations because the high
dimensionality of the model presented would have
required consideration of numerous basis states if a//
basis states within the energy range of the initial state
were considered. For example, one excitation of the
present model at 7000 cm ' of excess energy would
have required the inclusion of over 64000 basis set
functions 1f all basis set states within twice the energy
spread of the 1nitial state wavefunction were in-
cluded. Such a number of basis states would pose a
formidable problem for calculating the dynamics in
a reasonable amount of computer time.

Application of the Al best-first search considerably
reduced the number of states necessary tor perform-
1ng the dynamics without strictly restricting the en-
ergy range of basis set states considered or excluding
more degrees of freedom. Another advantage of us-
ing the Al best-first search for determining the 1m-
portant dynamical states 1s that the amount of com-
puter time required for performing the dynamics on
higher energy excitations 1s comparable to lower en-
ergy excitations even though the density of states in-
creases exponentially. For example, an excess energy
excitation of the L, of 7108 cm ! required 18 min of
VAX 11/780 CPU time to perform the Al best-first
search for 1000 basis functions, while an excitation
of 3855 cm~! required 15 min. Thus, the higher en-~
ergy excitation required only 20% more computer
time for the Al best-first search even though the ex-
cess energy was almost double and the density of states
was over 40 times greater. Further, the computer time
spent on the AI best-first search was less than one
percent of the computer cost necessary to perform the
dynamics.

In the results presented, the Al best-first search
method was used to choose 1000 basis states with no
restriction on their energy. The eigenstates of the full
Hamiltonian in eq. (1) were determined on this re-
stricted basis set by performing a matrix diagonali-
zation. Each initial state chosen in the present calcu-
lations was an element of the basis set used to
determine the eigenstates of the system. The time
evolution of the initial state was approximated by the
time evolution of the appropriate linear combination
of eigenstates. The dynamical quantity calculated was
the excess energy in L, as a function of time (in ex-

cess of the zero-point energy ), given by calculating at
each time the expectation value of H, for the propa-
gated 1nitial excitation of the system. The dynamics
was performed using the selected 1000 basis set states,
since it was found that the dynamical quantity £, (7),
the excess energy 1n L, at time ¢, was ‘“‘converged” at
the time studied for this number of basis set states
using the Al best-first search method.

4. Results

Previous results for the classical and quantum time
evolutions for the two-degree-of-freedom subsystem
L,, e.g., C—C~Sn, coupled to a similar subsystem L,
in a symmetric model system showed an adiabatic
separation of motion of what we have termed here C
and Sn local group modes [1-3] *. The analysis given
below of the time evolution of the present model sys-
tem 1ndicates that the adiabatic separation of motion
of the C and Sn local group modes found 1n refs. [1-
3] remains when the C-C-Sn subsystem L, 18 cou-
pled instead to the high-dimensional ligand of the
present model. This result justifies the description of
the energy transfer in the present model system in
terms of these local group modes excitations, since
the different excitations show qualitatively different
behavior in the amount of energy transferred to L,,
which initially had only zero-point energy. This re-
sult may be seen in fig. 2, where the time evolution of
E, is given for initial excitations of both modes. These
guantum calculations confirm the previous results
[2,3], in which for a C local group mode excitation
(ne=3_8, ng,=0, 1n fig. 2) there 1s a localization of the
excess energy on L,, while an excitation of the Sn lo-
cal group mode (n-=0, ng,=135, 1n fig. 2) 1s identi-
fied as responsible for the excess energy loss from the
C-C-Sn system. For the comparison, both initial ex-
citations were chosen to be close 1in energy (AE =28
cm— ).

In fig. 3 a plot of the excess energy £, 1n L, versus
time is given for a series of increasing excitations for
both pure C and Sn local group modes. It can be seen
that while the excitation of a C local group mode does
not produce a significant transfer of energy for a se-
ries of excitations between the (4, 0) and (8, 0) states
(3688 to 7141 cm~!), the excitation of a Sn local
group mode yields an increase in the amount of en-
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Fig. 2. Comparison of pure C and Sn local group modes with the
central mass of Sn for the quantum calculation. The excess en-
ergy E, in ligand L, is plotted versus time. The solid line arises
from an initial excitation of the Sn (0, 15) local group mode and
the dotted line from that of the C (8, 0) local group mode.

ergy transfer with increasing excitation energies for
the range of the (0, 8) to (0, 15) states (3855 to 7109
cm™'). A quantitative measure of the amount of the
energy transfer in the present model system is the
percentage of relaxation, Re, which is plotted in fig.
4 versus the excitation energy of L, for the pure Sn
local group mode excitation. Here, Ry, is defined as

Ry=[1—¢E >./E (t1=0)]x100, (6)

where ¢E,>., is the average energy of L, for long
times and £, (1=0) is the initial excitation energy of
L,. All excitations are of L, in this study. For the re-
sults given in fig, 4, ¢ E, >, is the value of ( £, ) found
directly from the ecigenvalues and eigenvectors in the
limit of t—co.

It is also interesting to investigate the dependence
of the energy transfer upon the magnitude of the ki-
netic energy term coupling L, to L,. The parameter A
in eq. (4) has been varied so as to cover a range of
couplings simulating the central masses of Sn
(A=1.0), Ge (1=1.6351), Ti (1=2.4779), and Si
(A=4.2259) ¥ In fig. 5, E, is plotted versus time for
the (5, 0) and (0, 8) initial excitations for each of
the masses specified above. The amount of energy
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Fig. 3. Comparison of quantum calculations for a series of initial
excitations for pure C and Sn local group modes with the central
mass of Sn. The series of plots on the left-hand side of the figure
are for an initial excitation of the C local group mode whereas
the right-hand side is for that of the Sn local group mode. The
energy of the initial excitation decreases from the top plot to the
bottom plot. The plots across from each other represent C and Sn
local group modes of approximately the same energy of initial
excitation. The energy E, in ligand L, is plotted versus time.

transferred displayed in fig. 5 shows the expected de-
crease with increasing central mass. The percentage
of relaxation Ry, versus the parameter 4 is given in
fig. 6 for both the (5, 0) and (0. 8) excitations.

It is also interesting to compare the classical and
quantum estimates of the energy redistribution across
the central atom. For symmetric model systems these
two sets of results were [ 1-3] qualitatively different
for the amount of energy present in one ligand. The
case is different for the present asymmetric model
system. In fig. 7 the classical and quantum time evo-
lution of E, is compared for the initial excitation
(8, 0) and the central mass of Sn. Both results agree
in showing that the excitation energy remains local-
ized in L,. For the Sn local group mode pure excita-
tion (0, 15) and the central mass of Sn, both the clas-
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Fig. 4. Comparison of percentage of relaxation for the series of
initial excitations of C and Sn local group modes in fig. 3. The
percentage of relaxation (Rs) is plotted versus energy of the ini-
tial excitation. (@) represent C local group mode excitation (»,
0), with n=4 10 8, and (@) represent Sn local group mode 1nitial
excitations (0, n), with n=38, 10, 11, 13, 15, as in table 2.

sical and quantum time-evolution display in fig. 8 a
decay of the energy in L,. For some cases, €.g., the
(5, 0) excitation with Ti, Ge and Si as central mass,
we have observed that classical and quantum situa-
tions were qualitatively different in their time evo-
lution of the excess energy E,(¢) in L,. In fig. 9 the
results obtained for Si are shown.

In table 2 the percentage of relaxation Re, 1S com-
pared for the classical and quantum calculations for
all results presented. The classical and first quantum
results are from an average of the energy in L, from
the dynamical calculations from 2 ps to the length of
the classical trajectory (generally 10 ps). The second
quantum result is that obtained directly from the ei-
genvalues and eigenvectors when 7—oco. (The cross
terms between wavefunctions vanish in this limait.)
The last column is the statistical value as derived in
the appendix, eq. (A.4). It represents a semiclassical
estimate, assuming separability of the motion of L,
from that of L,, as well as an equal probability for all
states 1n the system.

In the present model system we have included an-
harmonic terms in the Hamiltonian of L, by consid-
ering the first-order correction to the variation of the

(3,0) (0,8)

Sn Sn

Ge Ge

E1 (Em_l)
0

Time (ps)

Fig. 5. Comparison of quantum calculations for a series of cen-
tral masses for C and Sn local group modes. The series of plots
on the left-hand side of the figure is for the C (5, 0) local group
mode initial excitation whereas the right-hand side is for an ini-
tial excitation of the Sn (0, 8) local group mode, which is similar
in energy. The central mass decreases (i.e. A increases) from the
top plot to the bottom plot. The energy E, in ligand L, is plotted
versus time. (A1 =effective reciprocal mass parameter in eq. (4).)
For Si (0, 8) E, (1=0)=3855 cm™', as in table 2.

G matrix with the displacement coordinates. The first-
order correction was used because inclusion of the full
G matrix dependence is more difficult to implement
in the quantum calculation. (It is even computation-
ally intensive in the classical calculation. ) Clearly, this
first-order correction is only valid for small displace-
ments from the equilibrium position. To check the
effect of higher-order corrections on the energy redis-
tribution across the heavy atom we have studied the
classical dynamics of the present model system using
H, in eq. (5), where the complete dependence of the
G matrix on the displacement coordinates is taken
into account. The results obtained for the time evo-
lution of E, are shown in figs. 7 and 8, for compari-
son with the results obtained with only the first-order
correction to the equilibrium G matrix.
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Fig. 6. Comparison of percentage of relaxation for the series of
masses in fig. 5 for initial excitation of the C and Sn local group
modes. The percentage of relaxation ( Ry, ) is plotted versus 4 (see
text). (@) represent C local group mode excitations and (l)
represent Sn local group mode excitations.
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Fig. 7. Comparison of typical quantum and classical calculations
for the C (8, 0) local group mode initial excitation when the cen-
tral mass is that of Sn. The energy E, in L, is plotted versus time.
The dashed line represents the quantum calculation, the dotted
line the classical calculation using for L, the Hamiltonian H, in
eq. (3) and the solid line the analogous classical calculation us-
ing the Hamiltonian H, in eq. (5). Note that the y axis 1s broken.
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Fig. 8. Same as fig. 7 for the Sn (0, 15) state.
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Fig. 9. Comparison of the quantum and classical calculation for
the C (5, 0) local group mode when the central mass 1s that of S1,
where the greatest disagreement occurred between the quantum
and classical calculations. The energy E, in L, is plotted versus
time. The dashed line refers to the quantum calculation and the
dotted line to the classical calculation using the Hamiltonian in

eq. (3).
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5. Discussion

In the model employed in this paper we have stud-
1Ied quantum mechanically an asymmetric, high-di-
mensional system which extends the study of the
simpler (symmetric) models studied 1n refs. [1-3].
The dynamics found for this system are now proba-
bly due to the presence of multiple resonances and
not to the single resonances responsible for the dy-
namics 1n the previous symmetric model systems. The
multiple resonances in this asymmetric model would
arise from the presence of a larger number of degrees
of freedom. The present eleven-degree-of-freedom
model led to a substantially larger density of states
whose quantum dynamics could be modeled through
the use of the artificial intelligence best-first search
method. The present model also included the first de-
rivative of the G matrix which included anharmon-
1cities 1n the dynamics and served to couple the A’
modes and the A modes of the model system. The
anharmonicities were added in this way in the ab-
sence of detailed information on the other potential
energy anharmonicities.

In the results presented in fig. 2 the difference in
the dynamics for the C and Sn local group modes are
shown for a similar energy of excitation. They are
representative of the general trends observed
throughout the calculations, where a greater relaxa-
tion of energy occurs for the Sn local group mode.
This result 1s similar to the separability of the two
modes, found in the previous symmetric models, but
1s now found to exist in a system with multiple reso-
nances and more complex dynamics.

In figs. 3 and 4 results are given for the effect of the
energy of excitation on the dynamics of the Sn and C
local group modes. The dynamics given in fig. 3 shows
that the amount of relaxation increases for the Sn lo-
cal group mode when the energy of excitation 1s in-
creased, whereas the amount of relaxation 1s near zero
tor all C local group mode excitations studied here.
In fig. 4, the percent relaxation as a function of en-
ergy 1s plotted for the results in fig. 3. This quantita-
tive plot confirms the trends seen in fig. 3 and shows
that the amount of relaxation increases as a function
of the excess energy of excitation for the Sn local group

mode. This result 1s consistent with statistical models,
which show a similar trend because the density of

states increases exponentially as a function of the ex-
CESS energy.

In contrast, the C local group modes show almost
no relaxation for any of the energies of excitation. The
lowest energy C local group mode excitation studied,
the (4, 0) state, shows a percent relaxation compa-
rable to the Sn local group mode with similar energy.
This result, which 1s 1n contrast to the other C local
group mode excitations, remains to be analyzed fur-
ther. Also, the two C local group mode excitations
presented for the (6, 0) state were used, because a
unique identification of this state was not made using
the primitive semiclassical quantization. This situa-
tion may have arisen from the presence of a reso-
nance, and these two points represent a mixture of
two nearby states and so may not be “pure” C modes.
An exact description could have been made using the
best of these two eigenfunctions of L, but we did not
analyze this point further.

In the results the effect of varying the mass (more
precisely, the A parameter) i1s shown in fig. 5 for the
M (0, 8) and the C (85, 0) local group modes. For
both types of excitation, the trend is for greater relax-
ation with decreasing central mass, with the Sn local
group mode showing greater relaxation than the C lo-
cal group mode. This result 1s expected intuitively,
since the lighter central atom acts as a smaller barrier
against energy transfer. A quantitative measure 1s
given in fig. 6 where the percent relaxation 1s plotted
versus A for the results 1n fig. 5. (4 1s proportional to
the inverse of the mass and thus directly proportional
to the coupling across the central atom.) The results
shown confirm the trends seen in fig. 5 and show that
the percent relaxation has a general linear depen-
dence on A. The C mode excitation for T1 (1=2.4779)
does clearly not obey the trend of the other points.
The reason for this exception was not explored
further.

Some results for the comparison of the quantum
and classical dynamics are given in figs. 7-9. In figs.
7 and 8 are results which are typical for many cases
in which there was good agreement between the clas-
sical and gquantum calculations. We first consider
these results. In fig. 7 the result 1s depicted for the
central mass of Sn for the (8, 0) C local group mode
excitation. There is seen to be quantitative agree-
ment at the shorter times, and no qualitative differ-
ence at longer times, between the classical and quan-
tum results. Two different classical results are given,
one which includes the first derivative of the G ma-
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trix (eq. (3)) and the other which utilizes the full G
matrix (eq. (5)). (Only the first derivative 1s used
in the quantum results. ) It is seen that no noticeable
difference exists between the classical results for the
first derivative and those for the full G matrix in this
case, though the latter involved one order of magni-
tude more computer time than the former.

Results for the central mass of Sn for the (0, 15)
Sn local group mode excitation are given 1n fig. 8.
Here, there is a quantitative agreement at short times
between the quantum and classical results. At longer
times, the frequencies are in good agreement but the
amplitudes only agree in their general trends. Fur-
ther, as was the case in fig. 7, there are seen to be no
qualitative differences between the classical results 1n
the present study for the first derivative and those for
the full G matrix. Since the use of the full G matrix in
the quantum calculations is prohibitive for large sys-
tems, the agreement in the classical cases supports the
use of the first derivative approximation to the full G

Table 2

Comparison of classical, quantum and statistical percent relaxation

181

matrix in the quantum calculations. (This 1s espe-
cially true in light.of the agreement between quantum
and classical calculations. ) -

In fig. 9 the excitation used is the one having the
largest disagreement and is typical of the case in which
there was an appreciable difference in £, (¢) between
the classical and quantum results. In particular the
frequencies in the classical results are seen to be quite
different than the principal frequency in the quan-
tum result. This type of disagreement was found only
for the cases of the C local group mode (35, 0) exci-
tation for the central masses of Si, Ti and Ge. For
other excitations of the same central masses the dis-
agreement was small and there was qualitative agree-
ment (e.g., results for (0, 8) in table 2).

In table 2 the results are given for the percent relax-
ation for the classical, quantum, and statistical re-
sults for all excitations presented. For most cases there
is good agreement between the classical and quan-
tum results. The percent relaxation represents an av-

[nitial state Excess R,
(”Cs NSn) Cnergy
(cm™') classical quantum quantum (f=o00) statistical

Si (0, 8) 3855 47.2 48.5 52.8 74.2
T1 (0, 8) 3855 227 28.8 28.7 74.2
Ge (0, 8) 3855 17.2 21.0 23,2 74.2
Sn (0, 8) 3855 6.46 12.8 13.9 74.2
S1(5,0) 4574 42.7 22.7 22.2 75.3
T1(5,0) 4574 41.5 39.0 37.0 73.3
Ge (5,0) 4574 11.9 4.8 6.9 75.3
Sn (5,0) 4574 1.22 0.18 0.88 75.3
Sn (0, 8) 3855 6.46 12.8 13.9 74.2
Sn (0, 10) 4796 9.66 15.4 15.5 3.5
Sn (0, 11) 5264 13.4 18.2 19.4 76.1
Sn (0, 13) 6191 21.8 22.9 253 76.9
Sn (0, 15) 7109 21.8 26.2 34.4 T1.3
Sn (4, 0) 3688 4.09 3.1 12.0 74.0
Sn (5,0) 4574 1.22 0.18 0.88 75.3
Sn (6,0) # 5445 0.25 1.4, 5.9 ‘1.4, 6.0 76.2
Sn (7,0) 6300 0 0.01 0.01 76.9
Sn (8, 0) 7141 0.13 0.0 0.0 77.5

2) The multiple values for the Sn (6, 0) for the quantum calculation are due to the two nearby states in the semiclassical quantization as

noted 1n the text.
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erage long-time behavior of the system and therefore
does not represent the short-time agreement or the
agreement in the frequencies at those times (e.g., figs.
7 and 8) which was typically present. The statistical
estimate in table 2 of the percent relaxation 1s greater
than that found in the dynamics calculations. This
disagreement reflects the fact that the quantum cal-
culations do not show equal probabilities for all states
at long times. This result may be due to the lack of
sufficient couplings and sufficient number of degrees
of freedom to accurately model a large molecule. In
some experiments strict/y statistical results have been
found, even at low energies [12]. A point of further
study would involve the effect of including addi-
tional couplings and additional degrees of freedom,
particularly in L;, on the amount of relaxation pres-
ent 1in the model system.

Thus, we have found that in most cases the classi-
cal estimate (with semiclassically chosen initial
states ) gives results at least qualitatively comparable
to the quantum results at longer times and quantita-
tive at shorter times. Such agreement illustrates the
usefulness of classical mechanics in the present model
system for the range of the various atoms considered
and for the various frequencies involved and allows
for the possibility of using classical mechanics in more
complex models where the use of quantum mechan-
ics may not be practical.
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Appendix

In this appendix we derive an expression for the
percent relaxation in the limit of statistical distribu-
tion of energy in the present model system. In order
to obtain an estimate of the statistical values for the

energy in L, or L,, a separability of the motions of L,
and L, is assumed. With this approximation it 1s pos-
sible to define the density of states as a function of
the excess energy for L, and L,, p,(€;) and p,(¢€;),
respectively. When to every state of the system an
equal probability is assigned, the resulting statistical
value of the energy present in L, is given by the con-
volution integral [10],

EEn)= | p(epa(Er—e)ede
e=0

ET

><( J Pl(E)Pz(ET—E)dE) : (A.1)

c=({)

where Ey is the total excess energy in both L; and L.
In the semiclassical limit the density of states for a
set of harmonic oscillators can be estimated by

pi(e)= (¢ +E1,Z)Sl_l

><((Sl ~I] hv,-) , (A.2)

where E, 7 is the zero-point energy in L, §; the num-
ber of degrees of freedom in L, and »; the frequency
of the ith harmonic oscillator in L,;. An analogous
expression applies for the p¥ (€, ). Using the fact that
S, =2 in the present model and after substitution of
eq. (A.2) and the equivalent expression for p3(¢€;)
into €q. (A.1), one obtains

2(E+E2$?_;)32"'2
(S;+1)(S;+2)

EFiC(ET)=|:

E3y ( 2E; 7

— +Er+
S,+1\S,+2 EI*Z)

E,z(Ex+E;z)>"
+ *
S5 +1

X
_ETE%?Z(S Z_i_zl +ET +EI’Z>:I/D ] (A.3)
2

where

(Ex+E;2)>*"!
S, +1

D=FE, ;(Et +E, )%+

E
—ESy| Ex+E 2+ 2= ).
2,Z(ET 1,2 S2 na l)
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The substitution of E5°(E+) 1into eq. (6) 1n the text
for ( E, )., yields a statistical estimate for the percent
relaxation. It can be easily shown that this expression
tor the percent relaxation approaches the expected
Iimit of 1008,/ (S5+2), 1.e. the ratio of the number
of degrees of freedom in L, to the total number of
degrees of freedom, as £+ — oo.

A more accurate estimation of the statistical value
of E,(FEr) for the quantum case can be obtained by
using the Whitten-Rabinovitch expression [18] for
the density of states given by

P R(€)= (€ '1'451E1,,Z)S]“l

x((sl—l)!f']huf) (1~ %), (A.4)

]

where
= 41— B (e)
l—_El,zj i =1—p Wi €1),
S, —1{(v?)
ﬁl__ 3 3
S (v)
Wl((?rl ) = (5.006!1 +2.73Er10'5 + 3.51 )_1 6’1.'( 10,
=exp( —2.4191€0-% 1.0<¢],
dw
e = —(5.004+1.365¢77%)yw? €, <1.0,
1

= (0.60478¢7) ~°"°w, 1.0<¢€]

with an analogous formula for p¥'* (€, ). When these
Whitten—-Rabinovitch expressions are used 1n eq.
(A.1), a numerical evaluation of the resulting
expression was used to obtain a more accurate value
of EVR(E+). As expected the values obtained in both
approximations show a larger disagreement at lower
values of the total excess energy and approach the
same asymptotic limit for infinite total excess energy.
Eq. (A.4) wasused in eq. (6) to obtain the statistical
results in table 2.

Since harmonic estimates of the density of states
were used 1n €q. (A.2) and the model presented con-
tains anharmonic terms, it is useful to estimate the
etfect of anharmonicity on E,(E+) ineq. (A.3). The
maximum effect from anharmonicities on L; can be
made by performing a Birge-Sponer fit to the C and
Sn local group modes to obtain the value of the an-
harmonicity constant 1f they are presumed to be
Morse osciliators. If the frequency for the anhar-

monic C and Sn local group modes is calculated with
the Morse oscillator fit from the Birge-Sponer plot,
where E+ 1s introduced for cach mode, the lowest
possible frequency for each mode 1s obtained for the
L, modes. The use of these frequencies 1n eq. (A.2)
for estimating pi°(€. ) would give a maximum ¢sti-
mate of the density of states in L, and thus the mini-
mum value of percent relaxation in eq. (6). It would
represent a lower limit on the change of percent re-
laxation from the anharmonicity on L,. The possibie
effect 1s small, as represented by the fact that the lower
limit for percent relaxation for Er=7027 cm™"' is
73.8, while utilizing eq. (A.3) gives 74.0. Thus, 1n-
clusion of the effect of the anharmonicity on L, 1n eq.
(A.3) does not appreciably change the result. The ef-
fect of the anharmonicity in L, 1s not easily evalu-
ated, but it 1s also presumed to be small, as was the
case for L.
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