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Molecular wave packets generated by Gaussian optical pulses dare discussed in the present paper. The systems treated either
have pulses which are narrow relative to the width of the spectral absorption band or have molecules whose absorption band can
be approximated by a Gaussian. One convenient approximate description is given, it is shown, by a semiclassical angle varnable
representation, which we used earlier in the treatment of inelastic molecular collisions. The results offer a relatively simple de-
scription of the motion of the packet, including its periods of oscillation, the time spent in various regions, and tts extension 1n
space at various times. The results are applied elsewhere to experimental data and to quantum mechanical calculations. The wave

packet description 1s multidimensional.

1. Introduction

In recent observations of real-time dynamics 1n
molecular systems a short optical pulse in the fem-
tosecond regime has been used {1]. The resulting
wave packet for the motion of the system on an up-
per electronic state arises from a convolution of the
optical pulse and a function consisting of dipole op-
erator acting on the initial molecular wavetunction.
In the present paper we consider the ensuing molec-
ular dynamics, treating first the one-dimensional case
(section 2) and then extending the results to the
multidimensional one (section 3). Because of the
convolution, i1t should be noted, the width of the mo-
lecular wave packet moving on the upper surface just
after the pulse can be considerably larger in coor-
dinate space than that of the original wavefunction
in the ground electronic state [2]. The relation of the
width of the packet to that of the pulse and to that
~ of the absorption spectrum is given in section 4.

For these systems we find 1t convenient to use the
angle representation which we used earlier in the
semiclassical theory of molecular collisions [3]. The
properties of the resulting molecular wave packets
can then (with a Gaussian distribution of energies)
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be relatively simple to treat in the first approxima-
tion. An application of some of the present results 1s
given elsewhere, where an analysis of quantum me-
chanical and experimental results i1s made for the real-
time oscillatory behavior of excited sodium halide
molecules [2]. The present wave packets differ from
packets which are Gaussian in ordinary space (or
sums of the latter), treated by Heller and co-workers
(ref. [4], and references therein). The difference 1s
due, 1n part, to the different aims of the two calcu-
lations (section 5).

2. Theory

If an optical pulse is Gaussian shaped in time, as
in the probability distribution p(¢)=exp[— (f—
to)*/a;], the corresponding probability distribution
in frequency space v, p(v), determined from the
Fourier * transform of the amplitude function
expl — (t—1,)?/207 —2rwiv. t], is proportional to
exp[ —h?(v—v.)?/oi], where g, =#/0, and v, is the
most probable optical frequency,

p(t)=exp[ - (t—1t)*/o?] ,
p(v)=exp[—h*(v—r.)*/0i], o.=hla,. (1)



Volume 152, number 1 |

When the spectral absorption envelope is suffi-
ciently broad relative to the energy distribution in
the optical pulse, as in the Nal case studied earlier
[1,2), and when any detailed vibrational structure
in the spectrum is neglected, the probability distri-
bution of energies P(E) of the molecular wave packet
formed on the upper electronic state is also approx-
imately a Gaussian, given by

P(E)=exp|—(E—-E,)*/03] , (2a)
where
or=nlog, =0, . | (2b)

More generally, when the absorption spectrum is not
“white”, but when it can be approximated by a
Gaussian function of the frequency, eq. (2a) still ap-
plies, but with a 6, given by an expression more gen-
eral than eq. (2b) (section 4, eq. (26)).

We introduce molecular action—angle variables J
and w that describe the exact motion (typically an-
harmonic) on the upper adiabatic surface [5]. In this
angle representation an approximate eigenfunction
for the Schrédinger equation i1s very simple (one rea-
son for choosing this representation) [3]:

Wr:(w, f)=exp(2ﬂ:lﬂw—lE”f/ﬁ) ; (3)

where E, 1s the eigenvalue. ¥, satisfies an approx-
imate  Schrdodinger  equation H(J+0)Y, =
1md¥, /ot [3]. Eq. (3) replaces the usual represen-
tation in ordinary space, which can involve Hermite
polynomuials, Laguerre polynomials, or more com-
plicated wavefunctions. The angle variable w rep-
resents the phase of the molecular motion, while J is
the classical analog of the quantum number n [5].
An unnormalized molecular wave packet for the
molecular motion on the upper surface is next con-
structed from the eigenfunctions in eq. (3):

Yw, t)
= ) exp[—(E,~E, ) 20% +2ninw—1E, t/h] ,
(4)

where the £ and £, in eq. (1) are now written equiv-
alently as £, and E,,. To treat eq. (4), E,—E,, is
first expanded in a series in n— n,,

E—-Eoﬁ(J—Jg)pg+”.=(n'—'n0)hy0+..., (5)

where n, 18 the most probable value of » and v, de-
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notes the molecular vibration frequency, dE/9J, eval-
uvated at J=J,. (There should be no danger of
confusion of v, with the most probable optical fre-
guency v, in the pulse.) When the typical values of
|n—ng)/ngy are small, the limits of oo can be used
for n—ny. The sum 1n eq. (4) is next approximated
by an integral. If the first-order expansion in eq. (5)
15 1ntroduced for the E,, in the phase term 1E, /% 1n
eq. (4), integration shows that no spreading of the
packet occurs. For spreading to occur a second-order
expansion for the E, in the 1E,t/% 1s needed,

Erz -—EHDmhvg(n—no)+%h.v{}(n—n0)2+..., (6)

where v, =dv(n)/dn evaluated at n=n,. Integration
of eq. (4) then vields

Y(w,1)=(2ro;) "2
Xexp[ —(Ww—vot)*/20: + 2ringw—1E t/A]  (7)

and
g = (hvy/or)* +ivst/2n . (8)

We thus have for the unnormalized probability
distribution of angle variables in the molecular wave
packet,

[P(w, 1)|°
=(2nlo.|7) " exp[ — (w—wot)* Re(l/a})] , (9)

where Re denotes “real part of” and where

Re(l/os) =[(Avy/og)* + (oevit/hvy)?] ! . (10)

There are a number of consequences of eqgs. (9)
and (10). We first recall that in action-angle vari-
ables the interval (0, 1) for the angle variable covers
one period of oscillation of the molecular motion,
All values of w which differ by an integer correspond
to the same value of the spatial coordinate [5]. For
any time ¢ in the prespreading time regime
((opvitlhvy)* < 1), the maximum of the probabil-
ity distribution | ¥(w, ¢)|* is seen from eq. (9) to
occur at w=wv,yt. Thus, this maximum moves 1n angle
space with a velocity w=v,. The packet oscillates,
thereby, with a period 1/v, equal to the classical pe-
riod that corresponds semiclassically to the most
probable quantum number n, 1n the packet.

The full width at half maximum Aw in angle space

9
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during the prespreading time regime 1s a constant,
equal to 20,../In2, and in time space it 1s equal to

20.../In 2/v,. Its fwhm in ordinary coordinate space

Ax is then given in the first approximation by
Ax=2./In2 v.0,./vo , (11a)

where v, denotes the local classical velocity for the
most probable energy E,,.

When v, is not constant over the interval Ax a more
accurate conversion of g, to Ax 1n this prespreading
regime 1s given by

Ax=2./In2 J vo.(w)ydw/vy=2./1n2 j v.dt, (11b)

where the integrals over w and ¢ are over an interval
g.. and an interval o,/v,, respectively, each centered
at the center of the wave packet. In the limit of a nar-
row wave packet eq. (11b) reduces to (11a).

3. Multidimensional case

When there are a number of coordinates, the e1-
genfunctions are again given by €q. (3), but with nw
replaced by the sum 2, n.w, [3]. The energy differ-
ence E,—E,, can again be expanded as 1n eq. (J),
but with the (n—ny)hy, replaced by the sum
> A n, —no ) hve, where vy, =0E/dJ, evaluated at
J.=Jo., and in the case of eq. (6) with the quadratic
term becoming the sum 2, 3AV; (10 —ng)(ny—
nox ), where v, denotes

v = (32 E/on,dn, h), . C(12)

The second derivative in eq. (12) is evaluated at the
maximum, #,=H,,, for all k.

In this way the expression for the wave packet be-
“comes, on introducing as variables x;, =n, — #oy,

P(w, t)= jj exp(—‘z Ay X X, +1 Z bk-xﬁc)

— A

x| [ dxiexp(i®) , (13)

where g, is a symmetric complex-valued matrix A
and the b, can be regarded as components of a vector
b,

d . =h2V0jV0k/20'i"—7tiIﬁkf, (14)

10
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b;{:zn(wk—yo;([) i (15)
D =2n ) nywir—Estih. . (16)

The exponent in eq. (13) can be written as
—x-Ax+ib-x, where the dot denotes the scalar prod-
uct and x is a vector with components x,. This
expression is equivalent to —y-Ay—3b-A~'b, where
y=x—341A~'b and where we have used the fact that
A (and hence A~—!) equals its own transpose (A 1s
a symmetric matrix). The integral over the y,’s is a
standard one, and one finds

Y(w,t)=n?(detA)~"?*exp(—41b-A~'b+1D),
| (17)

where N is the number of coordinates.

Thus, the exponent in the packet is a quadratic
function of the b.’s and hence of the factors w;,— v,t.
The center of the packet thus moves with velocity
components in angle space given by the vy’s. The
probability distribution in angle space 1s given by
| W (w, 1) ],

P(w, 1)|2=n"|detA|'exp(—iReb-A"'b) .
(18)

In the multidimensional case the packet can be re-
garded as having an N-dimensional elliptical cross
section and so has N “principal widths” along the
principal axes of this cross section. The 1/g%’s for
these widths are the real parts of the eigenvalues of
the matrix of coefficients of the factors w, — vyt there,
i.e. of $(2n)*A~". |

4. Energy distribution and its relation to pulse and
absorption widths

We next obtain an expression for the 6 1n eq. (2a),
namely eq. (26) below. The latter reduces to eq. (2b)
when the width of the absorption spectrum 1s large
relative to that of the optical pulse. We consider the
optical excitation of a molecule from one electronic
state to the upper state, the transition being induced
by an electric tield E(¢),

E(t)=E,exp(—iw t—1t"/20;)+c.c., 12—l ,(19)

where w,/2n (=v, ) is the mean optical frequency of
the pulse. Using first-order perturbation theory for
the optical-molecular interaction, the molecular
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wavefunction ¥(¢) for the resulting nuclear motion
in the upper electronic state 1s given by [2,6]

!

Y(t)=(1/h) j drexp[ —1H(t—1)/7]

— ()

Xu-E(1)D,exp(—1E,;1/h) , (20)

where H is the Hamiltonian for the nuclear motion

on the upper electronic state, # 1s the transition di-.

pole moment operator, and @,exp(—1E;t/#) 1s the
molecular wavefunction for the initial electronic
state.

We consider the behavior at some time after the
pulse has effectively ceased. In effect, the upper limait
in eq. (20) can then be replaced by +cc. The lower

limit was effectively —oo. The eigenfunctions ¥, of

H are given by eq. (3). H acting on exp(2rninw) yields
E, exp(2rninw) [3]. The projection of # along E 1s
denoted by u.. If u; acting on the ground-state wave-
function @, is expanded 1n the eigenfunctions of the
upper state,

U@ (w)= ) f.exp(2ninw) , (21)

we then have

W(w, t)=(E°/ih) ), f,exp(—1E,t/h) exp(2rninw)

xj exp[i(E, —E, —hw ) t/A]

xexp(—1%/207)dT, (22)

where EY is the amplitude of E, (not to be confused
with the E; 1n eq. (2)).

Parenthetically we note that eq. (21) and 1ts time-
dependent counterpart (the same as eq. (21), but
with an additional factor exp( —i£,t/#) on the left-
and exp( —1E,t/#) on the right-hand side), can be
introduced into a time-correlation function, e.g. ref.
[4], for e(w)/w, where e( w) 1s the absorbance. This
e(w)/w 1s found, thereby, to be proportional to the
usual >, |/, |?°0(E,—E,—hw), and so to |f,|*
summed over n’s with ( E,, — E,)/A 1n a small interval
(w, w+Aw). |

Integration over 7 1n eq. (22) yields
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P(w, )= (EU/ifz)Jf\/ﬂ > f.exp(—1E,t/h)

Xexp[—(E,—E;—hw)?/20{] exp(2rinw) ,
(23)

where o, =#%/0, (eq. (1)).

The |f,|* has a maximum n=#n,, at an energy
E, , which corresponds to the maximum 1n the ab-
sorption spectrum (or really in e(w)/w):

E, —E, =hwm* (24)

where w®*/2n is the frequency of light at the ab-
sorption maximuimnt.

We next approximate the shape of the “reduced”
absorbance e(w)/w, and hence of |f,|* by a Gaussian:

f.|* =exp[—(E,—-E,)*/03] . (25)

We take f, as real (it is for a non-degenerate vibra-
tion) and let the maximum of f,exp[—(E,—E, —
hiw, )?/20¢ ] occur at some n=H,.

The distribution of energies E,, P(E,), arising from
eqs. (23) and (25) is the same as in eq. (2a), with
E and E, replaced by E, and E,, now given by

and

E, =E, +(apAw /o). (27)
Here, Aw,/27n 1s the off-resonance frequency
Aw, =w — ™ . (28)
Eq. (23) thus yields |

Y(w, t)=¥(w, f)eq*(ct)(EG/ih)U:\/E

X exp[ — (Ahwy )2/267] , (29)

where | |
§2=02 402 (30)

and wherethe g1neq. (4) 1sgiven by eq. (26). Eqs.
(26) and (29) are the desired results of this section.

The &2 in the attenuation factor in eqs. (29) and
(30) 1s the expected one: 1n the overlap 1n eqs. (23)-
(25) of two Gaussian energy distributions the stan-
dard result is obtained that the total o is the sum of
the two 0%’s. In eq. (26) the expected limits of g7
are also obtained: When the absorption spectrum has

11
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a sufficiently large width o, (““white spectrum’), the
energy width o, of the molecular wave packet re-
duces to that of the optical pulse, g, as in eq. (2b).
At the other limit, when o, 1s sufficiently large
(“white” pulse) o, 1s seen from (26) to reduce to
T

In the multidimensional case, eq. (23) can again
be used, but with the 2rxaw replaced by 2, 2rnn,w,.
Thereby, eq. (17) is again obtained with the addi-
tional multiplicative factor contained in eq. (29). The
U in eq. (21) is a function of the orientational w;’s
and (except in a Condon approximation) the vibra-
tional w,’s.

5. Discussion
We consider several miscellaneous aspects of the

present formulation. In ref. {2] a quantum mechan-
ical analysis of the time behavior of the Nal system

a one-dimensional (radial coordinate) treatment of
the vibration was made, and some of the results were

interpreted semiclassically with the present expres-
sions. These applications included the use of eq.
(11a), as well as an estimate of aspects such as vi-
brational and centrifugal rotational eftects on the os-

cillation frequency of the packet [2]. The width of

the packet in ref. [2] showed reasonable agreement
with eq. (11a) for fixed x, for different optical pulse
times. It can also be seen from (11a) that as x 1s var-
ied the width Ax is expected to change, even when
Aw is constant: When v, decreases, for example, 1n
a region where the potential energy approaches
E,., Ax is also expected to decrease, and in propor-
tion to v,. An example of this behavior was found in
ref. [2]: A narrowing of the Nal wave packet oc-
curred after it moved from its covalent to 1ts 10nic
form on the upper adiabatic curve [2], and the ex-
tent of narrowing was consistent with eq. (11a). (The
wave packet has a complicated behavior, however,
when the potential energy curve is steep near the
classical turning point [2].)

In a system such as Nal, where an avoided cross-
ing of two diabatic potential curves occurs near some
point x, and the system moves mainly on the upper
adiabatic curve, it spends part of its time essentially
on one of the diabatic curves (on one side of the
avoided crossing) and part of the time on the other.

12
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The time spent on the covalent part was determined
by direct real-time off-resonant spectroscopic obser-
vation [1]. This time is simply 2/dx/v,, where the
integral is from relevant classical turning point to x,.
The total period of the motion 1s obtained by inte-
grating 2[dx/v, between the two classical turning
points. This result was applied in ref. [2].

Since the present analysis is multidimensional 1t
can be also used to treat systems with more coor-
dinates than those in Nal, provided the quantum
mechanical motion is “quasi-periodic”, 1.€. provided
an approximate action-angle quantum mechanical
description can be used. Incidentally, even where the
classical motion is chaotic rather than quasi-peri-
odic, the chaos is sometimes on a small enough scale
locally that the quantum system still retains fairly well
the regular sequences of energy levels expected for a
“quasi-periodic” system [7,8] (few ‘“overlapping
avoided crossings” [7]). |

The quantum number # in eq. (4) is an integer,
enabling the wavefunction to be single-valued. In eq.
(4) the distribution of n’s is presumed to be sutfi-
ciently broad that a continuous distribution for z can
be used. There results no difficulty with single-val-
uedness of the wavefunction in eq. (7) provided the
w in the w—r,t 1s understood to be such that w—wv,!
is chosen to lie in the unit interval. As noted earlier
all values of w mod an integer correspond to the same
point in ordinary coordinate space [ 5], and the above
choice for the w appearing in eq. (7) is clear from

‘the results w=v;.

One question which we plan to explore concerns
the conditions under which the expansion for £ — E;
in eq. (5) suffices for calculating the probability dis-
tribution of #n’s, whereas in treating the complex-val-
ued quantity iE¢/# the next term in the expansion
was also used (eq. (6)). The latter term affects only
the spreading, so that the use of eq. (2) for both pur-
poses would be appropriate before significant
spreading occurs. Regardless, however, eqs. (7) and
(8) remain a valid description for spreading also,

 when the molecular wave packet in eq. (4) can be

regarded as having an initial Gaussian distribution
in quantum-number space for motion on the given
adiabatic potential energy surface.

In one wave packet, a minimum uncertainty wave
packet constructed from harmonic oscillator wave-
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functions, the distribution in quantum number space
which appears in the amplitude 1s a”/,/n! (a sum
over such #’s is used, rather than an integral),[9].
When the n’s involved are sufficiently large this dis-
tribution of amplitudes, too, can be expressed as a
Gaussian function of n— »n,. The lack of spreading in
a harmonic oscillator potential well is then reflected
in egs. (9) and (10), since v is now zero for that
potential.

The main focus in the present paper and in ref.
[2] is on experiments involving the real-time ob-
servation of the dynamics of molecular wave pack-
ets. When, instead, the problem of particular interest
is the calculation of time-independent properties such
as absorption spectra [4], the “optical pulse” used
is one which is so long that the study of the dynamics
involves that of the wavefunction uz@;, 1tself, mov-
ing on the upper potential energy surface, as in ref.
[4]. As noted in section | and can be seen from sec-
tion 4, this wavefunction is typically much narrower
than that involved in real-time observations asso-
ciated with, say, a 50 fs optical pulse.

It will be interesting to see the development of this
interplay between the femtosecond real-time mea-
surements and the high-resolution longer time spec-
troscopic techniques. An example of the interplay is
seen 1n ref. [1].
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