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BeC,H, complexes are found to have 'A, ground states, while the
MgC,H, and MgC,H, complexes have *B, ground states. The
minima in the !A, potential energy surfaces are due to an avoided
crossing and concomitant change in electronic configuration at
intermediate metal-hydrocarbon distances.

The potential energy surfaces derived from the interaction of
Be(1!P) and Mg(1!'P) with ethylene and acetylene were not ex-
amined in this study. However, in analogy to the Be('P) + H,
and Mg('P) + H, systems,” we expect the 'B, surfaces to be very
attractive for the interaction of Be('P) or Mg('P) with C,H, or
C,H, and that there are likely to be crossings between the 'B,
and 'A, potential energy surfaces, near the potential barriers of
the latter. Such crossings could play an important role in the
quenching dynamics of the 'P metal toms by the hydrocarbons.?®

(28) Breckenridge, W. H.; Umemoto, H. Adv. Chem. Phys. 1982, 50, 325.

Several of the properties considered here such as the relative
energies of the singlet and triplet states of the complexes could
be strongly altered if the metal atoms were replaced by small metal
clusters. Theoretical studies of the interaction of C,H, and C,H,
with two or more Be or Mg atoms are currently under way in our
laboratory.
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An alternative method for implementing RRKM theory for unimolecular reactions with highly flexible transition states is
described using conventional coordinates. The number of available states for motion in the transition state state Vg, is determined
via an appropriate average over the absolute space orientations and body-fixed momenta of the two fragments. The results
of calculations of Ny, for the C,;H, — 2CH, reaction (or alternatively for the corresponding recombination reaction) obtained
from the present expression are shown to be equivalent numerically to those obtained previously by Wardlaw and Marcus.

I. Introduction

In recent years there has been an increase in the degree of
molecular state selection available in experimental studies of
unimolecular reactions.! Concurrent with this increase in state
resolution has been an increased need for the theoretical deter-
mination of energy and angular momentum resolved unimolecular
dissociation or isomerization rate constants kg, for realistic po-
tential energy surfaces. Previous calculations of kz; have included
those involving fully classical methods (both trajectory calculations
and variationally implemented RRKM theory),? the statistical
adiabatic channel model,® and a partially quantum partially
classical variationally implemented RRKM theory.* The present
paper focuses on an alternative method for implementing the latter.

In RRKM theory the specific rate constant, kg, for the dis-
sociation or isomerization at a given energy E and total angular
momentum quantum number J is given by’

_ Ng
hpgs

where pg; is the density of states for the reactant at the given E
and J. The quantity Ny, is the number of available states for
motion in the transition state, which is to be determined varia-
tionally, i.e., by finding a potential hypersurface for which Ng;
is minimized. In most practical applications the full hypersurface
is not varied but rather some coordinate R, which describes the
progress of the reaction. The value of R that gives a minimum
in Ng;, labeled R', is a function of E and J.

In a recent series of articles,* Wardlaw and Marcus have shown
how Monte Carlo integration techniques may be used to facilitate
the calculation of Ng,’s. The basis of this method is the intro-
duction of an approximate separation of variables into the con-
served modes, i.e., modes which do not change their nature in the
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transition from reactant to products, and the transitional modes,
i.e., modes which do have a considerable such change. The
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Zewail, A. H. J. Phys. Chem. 19885, 89, 4659. Scherer, N. F.; Knee, J. L.;
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conserved modes are typically vibrations and were treated quantum
mechanically. In a unimolecular dissociation the transitional
modes are typically the fragment-fragment hindered rotations
(or bending modes) and the overall rotations and were treated
classically. [A quantum correction for the latter for the high-
pressure (i.e., canonically averaged) k.;'s was recently given.5]

The number of states Nz, is then given by the convolution*

E
= J. NUE - Ops(0 de @)

where Ny(F) is the number of quantum states for the conserved
modes with an energy less than or equal to E, and p(¢) is the
density of states for the transitional modes at the given energy
e and total angular momentum quantum number J for the given
R. Upon introducing various canonical transformations using
action-angle variables, Wardlaw and Marcus obtained p,(¢) as
a reduced phase space average of the product of triangle ine-
qualities and a“delta function in e — H, where H is the classical
Hamiltonian for the relevant modes. In this reduced phase space
average the total angular momentum was fixed, and the z com-
ponent of the total angular momentum and the two coordinates
conjugate to these two momenta had been eliminated via an
analytical integration. The problem was thereby reduced to a
Monte Carlo integration of a given analytical expression over
typically (for the case of two polyatomic fragments) six coordinates
and six momenta.

In the present article a simple alternative method for evaluating
Ngy is presented, in which the transformation of variables to
action-angle coordinates is avoided. For the conditions we have
explored it is also shown how an alternative method for handling
the integration limits can be used. The resulting overall method
is very easily programmed and executed. In section II a series
of transformations are introduced which serve to reduce the di-
mensionality of the phase space integral, without making any
transformations in the remaining variables. The resulting phase
space integral is then evaluated as a free-rotation canonical average
in section IT1. Results for N, from calculations using this method
are discussed and compared with previous results of Wardiaw and
Marcus in section IV.

II. Determination of Nz; Using Absolute Space Orientations
and Conjugate Momenta

Since the rapid determination of accurate Ny (E)’s for eq 2 is
usually possible through direct count algorithms,’ the evaluation
of Ng; mainly involves finding a rapid method for determining
ps(€). The first step in evaluating the latter involves the choice
of an appropriate coordinate system. In the present article the
coordinates chosen are the conventional Euler angles® (6,,¢,,4,)
for the absolute orientation in space of fragment i, denoted by

(3) Quack, M.; Troe, J. Ber. Bunsen-Ges. Phys. Chem. 1974, 78, 240.
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(6) Klippenstein, S. J.; Marcus, R. A. J. Chem. Phys. 1987, 87, 3410.

(7) When the energies of interest are so large as to make a direct count
algorithm inside a Monte Carlo routine too time-consuming, one may instead
calculate and store an array of N{E) values for all the energies of interest.
E.g., see Appendix F of ref 4b.

(8) Goldstein, H. Classical Mechanics, 2nd ed.; Addison-Wesley: Reading,
MA, 1980. The y convention in this text (Appendix B) is used. It contains
a typo in the last row of the matrix A there; the y’s should be replaced by
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Q;, and the two angles 6, and ¢;, which describe the spatial
orientation of the line of centers of the two fragments. The
conjugate momenta for these coordinates are then denoted by py,
Psp» Pyp Do, and py , respectively. The first three of these momenta
are denoted later by P,

In terms of these coordinates p;(€) can be written as

1
o = — fole= HOIOUA - (D] dr (3)

where 7 denotes the above-described coordinates and their con-
jugate momenta. Jy is the magnitude of the total angular mo-
mentum as a function of the coordinates and momenta, and now
a delta function in Jh — J; is present, unlike in the treatment of
Wardlaw and Marcus, who used a fixed J; as one of their ac-
tion-angle coordinates. We have introduced the £ in eq 3 with
the following reasoning: Without it the right-hand side of eq 3
would be the classical number of quantum states per unit energy
per unit angular momentum Jy. By multiplying by &, we have
obtained the semiclassical equivalent of the number of states per
unit energy for a given value of the angular momentum quantum
number J.

The integral over € in eq 2 can now be performed to yield

Ney=—s f NJE - H(OBIA - Jr()] dr (4)
The above choice of conventional coordinates is convenient in that
it allows for a simple evaluation of the Hamiltonian. However,
the dimensionality of the phase-space integral should still be
reduced by four, to obtain the dimensionality of integration used
previously by Wardlaw and Marcus.” To this end, several
transformations of the coordinates and momenta describing the
line of centers orientation and momenta are now introduced. These
transformations, in conjuction with several observations about the
dependence of the integral on certain variables, permit the desired
reduction in dimensionality of the integral.

The first observation is that the integrand in eq 4 is independent
of the direction of the total angular momentum vector J; and,
hence, of the value of Jr,, the z component of J;. Thus, the
integral will be unchanged if Jy is restricted to lie along the z axis
by introducing a delta function in J1 — J1,, which singles out a
particular J1,, multiplying again by 4 for reasons analogous to
those described for eq 3, and then multiplying by the actual
number of Jr, quantum states (semiclassically speaking), for the
given Jq, namely, 2J + 1. Thereby

(2J + 1)h?
Ney = [ NJIE - HDLJA = Jr(n)o[ () -
ch
Jr(n)] dr (5)

The dimensionality of the integral in eq 5 can be reduced by
two by performing an analytical integration over the arguments
of the delta functions. To this end, a transformation of variables
is needed to new variables which include J; and Jr, or their
equivalents. For simplicity, the required transformation is divided
into two steps with the first transformation being from 6,,, py,,,
and p,,, to the Cartesian components of the orbital angular mo-
mentum I, /,, and /,?

[y = =py, sin ¢13 — py,, €08 &y cot 8,
I, = Py, €OS ¢13 = Py, sin ¢y cot By, L. = p,. (6)
the Jacobian of the transformation being |8(812041204:2) /6(1 L)

|sm 012/Ps,,). The latter equals |/,|/[(cos ¢,/ + sin ¢>121 )?
+ 1,%], thereby yielding
J+ l)h2
Ny = ~——— { NJ[E - H(z)] %

8lJh — J(+)]8[J (7)) ~ Jr (v
(cos ¢pol, + sin ¢15l,)? + 12

dr (7)

(9) Levine, 1. N. Molecular Spectroscopy; Wiley: New York, 1975.
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where 7’ denotes @, P;, ¢15, I, ,, I, and d7’ is the corresponding
volume element.

The second transformation is from /,, /,, and /, to Jr, 6, and
¢, where the 6 and ¢ are the polar coordinates of Jr:

I+ k.,=Jrsinfcos ¢, [, +k,=Jrsinbsing¢
I+ k,=Jrcosé (8)

Here, k,, k,, and k, are the Cartesian components of the sum of
the space-fixed rotational angular momenta of the individual
fragments j;, which in turn are given in terms of the P, by’

Jx = =[(cos 8p, — py) cos ¢;/sin 6; + sin ¢;py]
Jy, = —[(cos 8ps, ~ py) sin ¢,/sin 6; — cos ¢y, Jji, = py, (9)

The Jacobian of the transformation is given in this case by
[8(1d,1,) /8(J188)| = J? sin 6, yielding
2J + h?
= S [ NJIE - H()]6(h ~ J1)s(Ur -
ah?

Jr cos O){(|J1 cos 6 — k,|J1? sin 6) /
([cos ¢y2(J sin 8 cos ¢ — k) +
sin ¢y, (J1 sin 8 sin ¢ — k)] + (Jy cos 0 - k,)?)} d7” (10)

EJ

where 7”7 denotes the variables ,, P;, ¢15, J1, 0, ¢.
The integrals over J; and cos § may now be performed by using
the delta functions, whence

(27 + 1)A2
51 = ——— f NyE - H(,P81575,6=0,6)] X
oh®

|Th - k)R
(cos ok, + sin ¢y 2k,)? + (Jh — k,)?

2
d¢ doy, 11dQ; dP, (11)
i=]

Two final observations permit the analytic evaluation of the
¢ and ¢,, integrations in eq 11 and thus complete the reduction
in dimensionality of the integral. Firstly, in the Appendix it is
shown that the integrand of eq 11 is independent of ¢ and therefore
one may integrate over ¢ yielding a factor of 2x. Next, in the
Appendix it is also shown that the dependence of the integrand
on the three variables ¢,, ¢,, and ¢,, occurs only via ¢, — ¢, and
¢, — ¢12. Therefore, one may choose ¢y, in the integrand to have
any constant value, labeled ¢,,* and then integrate over ¢,,,
yielding a value of 27.1® These steps yield

_ @+ 1)

EJ
oht

 ME - H@,Py1,* Th 9=0)] X

|JA - k,|Jh 2
. _ S -11dQ, dP; (12)
(cos ¢12*k, + sin ¢,*k,)* + (Jh - k)%=

The above expression is seen to involve only conventional co-
ordinates. A Monte Carlo evaluation of this integral requires some
treatment of the sampling limits (e.g., assigning some maximum
values for the P;'s). In the next section it is shown how the integral
in eq 12 may conveniently be transformed into a form where
importance sampling can be used in the Monte Carlo evaluation,
thereby eliminating the need for this specific consideration of
maximum values.

III. Free-Rotation Canonical Average

The first step in simplifying the Monte Carlo evaluation of N,
is to remove the dependence of T2, the kinetic energy of rotation
of fragment i about its center of mass, on its orientation 8;,¢,,\;.
This step serves to make the evaluation of weighting factors more
efficient in the importance sampling Monte Carlo integration to
follow. To remove this orientation dependence of T the
space-fixed P, are first transformed to the three fragment i-fixed
components of the angular momenta, p,, ps,p., defined by®
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Pa, = —C08 ¥, cs¢ B;p,, + cos Y, cot f;p,, + sin Y;p,,
Py, = sin ¢; csc 8;p,, — sin §; cot O,py, + cos ¥ipg, P, = Py,
(13)
In terms of these new momenta 7° is given by

7o = P’ PP

Tt o2t 24t

(14)

where 1.}, I5", and I;' are the principal moments of inertia of
the rigid-body fragment i for the transition-state structure. The
Jacobian of the transformation in eq 13 introduces a factor of sin
6, sin 6, into the integrand of eq 12.

The next step is to select an appropriate weighting function.
We recall that in importance sampling!! a weighing function is
introduced which has a large weight in the regions where the
integrand is large and also for which the integral over the desired
coordinates is known. The function exp[—8(7,° + T%)] sin 6, sin
6, is suitable, since 3 may be chosen to restrict the momenta
coordinates to the region where the mean value of the kinetic part
of H is less than E, the region of importance to the integrand given
in eq 12. In addition, the integral of this function over @, p,,
Pss Pep for i = 1, 2 (i.e., the coordinates which specify the ori-
entation in space of each fragment and the body-fixed momenta
of each fragment), is just A° times the product of the free-rotation
canonical partition functions for the two fragments Q,, defined
by

1 2
Q0 =+ J expl=6(T* + 1111 cos 6, do, dv, dp,, dpy, dp,

2
= 8r(keT/ 8D’ LI (1, 15 I (15)
i=1

Making the transformation described in eq 13 and introducing
the above weight function into eq 12 by multiplying the integrand
by exp(BX %=1 T}") exp(-8%%-1T), eq 12 for Ng; becomes

Ngy =
(27 + D)Jh [ NAE - H)(Jh - k;) exp[8(T\° + T,0)]
T\ (cos d1a*ky + sin @1,%k,)2 + (Jh - k)
(16)

where (f) denotes an average with respect to the free-rotation
weight function

U') =
S f expl-6ry2 + T cos 6, do, 0y, dps, dpy, dpe,/ O
a7

For each sampling point the integrand f is set equal to zero
whenever H > E.

A Monte Carlo evaluation of eq 16 is now straightforward using
crude sampling for the orientational coordinates and importance
sampling'! for the momentum coordinates, with exp[-8(T,° +
T,%] as the weighting.function. This sampling using the free-
rotation canonical distribution is most effective in those cases in
which the potential energy is not too large in the regions of im-
portance to-the original integral. This situation corresponds to
large values of R', since the interaction potentials are smaller at
large R!. However, in the present calculations it was observed
that the free-rotation sampling was reasonably efficient at all E’s
and J’s of interest (e.g., see discussion and Table I in the next
section.)

[

IV. Results and Discussion

The formalism described above for evaluating Vg, was applied
to the methyl radical recombination reaction (or ethane disso-
ciation), using the same potential energy function as that employed

(10) More precisely, one transforms to variables ¢,5, &; = ¢, — ¢, (i = 1,
2) and then, after the ¢,, integration, transforms the @; back to the ¢, with
¢, set at any preassigned value ¢,,*.

(11) Valleau, J. P.; Whittington, S. G. In Statistical Mechanics; Berne,
B. J; Ed.; Plenum: New York, 1977; p 137. Valleau, J. P.; Torrie, G. M.
In Sta;istical Mechanics; Berne, B. J.; Ed.; Plenum: New York, 1977; p 169.
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TABLE I: Test of N, Calculation for the Reaction 2CH; — C,H,

E — Ezp(»),*
kcal mol™! J, h RYA Ng/ Ngf
0.13 25 5.7 1.4 1.7
0.44 25 5.6 143) 1403)
1.18 25 5.6 4.5 (4) 4.4 (4)
50 4.4 11(4) 114
2.36 25 38 4.4 (5) 4.3 (5)
50 40 27(5)  28(5
4.73 25 3.6 4.3 (6) 4.2 (6)
50 36 42(6)  41(6)
100 37 1.5 (5) 1.4 (5)
9.53 25 3.3 7.5 7.1(7)
50 34 94(7)  88(T
100 34 17() 11D
19.55 25 3.1 3.1 (9) 3.4 (9)
50 3.1 5.0 (9) 49 (9)
100 3l 1.9-9) 1.8 (9)
150 31 11(8)  1.0(8)
39.10 25 2.8 3.6 (11) 3.7 (11)
50 28 69(11)  67(11)
100 28 41(11) 42011
150 2.8 6.4 (10) 6.7 (10)
63.52 25 2.6 1.6 (13) 2.0 (13)
50 2.6 43(13) 39 (13)
100 2.6 3.5(13) 2.8 (13)
150 26 85(12)  79(12)

9 Ezp() refers to the zero-point energy of the products (i.e., the
zero-point energy of two isolated CH; fragments). °Present calcula-
tions of Ng;. The numbers in parentheses denote the power of 10.
Monte Carlo errors are in all cases less than 7%, with the largest error
bars arising in the highest energy calculations. ¢ N, taken from ref 4c.

by Wardlaw and Marcus.®® The structure of the rigid-body
fragments for a given RT was taken to be as in ref 4b, and o was
taken to be 72. ’

The results for Ny, are given in Table I, together with the
previous results of ref 4c, the latter multiplied by (2J + 1) /0, since
the results reported there are actually Ng,0/(2J + 1) (cf. footnote
in ref 4d). Also, no J = 0 results are presented here since the
transformation given by eq 8 is not valid in this special case. In
the calculations 80000 Monte Carlo points were used and typical
computation times were only 10~15 min on a Vax 11/780. The
sampling temperature was chosen to keep the maximum kinetic
energy sampled 1-2 times the maximum available energy (E minus
the minimum V(R) for the given R, minus the zero-point energy
difference), since this choice seemed to give the most rapid con-
vergence. At small R there is a slower convergence of this
particular importance sampling because of the increased impor-
tance of the potential energy term, although, as we have noted
previously, we did not encounter any difficulty in our current
calculations. Had such a difficulty been encountered, we could
have used a sampling method analogous to the earlier one.*

Inspection of the results given in Table [ indicates that both
methods give equivalent numerical results.!? As mentioned
previously, the action-angle transformations are now avoided and
an alternative method for handling the integration limits has been
used. To be sure, the action-angle transformations are
straightforward albeit a little tedious. It may also be possible to
implement in the method of Wardlaw and Marcus the same idea
of avoiding these integration limits although this possibility has
not yet been explored. The present calculation is very easily
programmed and implemented.
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(12) The minor differences at higher energies corresponding to smaller R"’s
are most likely due to the ad hoc “dynamic” barrier restriction in the Monte
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but not here. Also, the Monte Carlo errors in the present calculation are larger
at these higher energies.
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Appendix: Dependence of the Integrand in Eq 11 on ¢, ¢,
and ¢;,

The Hamiltonian may be written as H = T° + ¥, where T° is
the kinetic energy and V'is the potential energy. The kinetic energy
may be written as

=T+ T0 + T, (A1)

where T',° is the kinetic energy of rotation of the line of centers
about the overall center of mass; 7,° is as described in the text
and is given by the standard expression'?

. 2
T°=—1—pcos¢+(p cos@-)M +
i [ i o~ Py i),
ar,t 0',

L sin ¢, - (p cosﬁ)o‘p' + L 2 (A2)
218 Py S i o~ Py, i 21Cifp\bi

T,," is given by’

1 Ps
T = —\ pp} + —— A3
12 2Idi'r p@\z Sinz 012 ( )

where I is the “diatomic” moment of inertia for the centers of
mass of the two fragments. Upon transforming to the variables
appearing in eq 11 of the text, eq A3 becomes

1 1
T = S =P = == Ur + k2 + k4 k7 - 271k
di di
(A4)

since Jr is chosen to have only one nonzero component, Jr,.

We now consider how 7° depends on the four variables ¢, ¢,
= ¢y — dra 2 = ¢y — P13, and ¢15. An 1nspectxon of eq A1-A4
shows that k,? + k,? is the only quantity in 7° which depends on
the above angles Referrmg to eq 9 of the text and focusing on
the dependence of k, and &, on these above angles, it is seen that
k. and k, may be written in the form

2
k, = 2(f; cos ¢; + g; sin ¢,) (A5a)
i=1
2 .
k, = 2(f sin ¢, - g; cos ¢;) (ASb)
=1

where f; and g; are functions of the remaining variables (6,,,,P)).
Thereby, after some simplification

kx2+ ky2 =f12 +f22 +g12 +g22+

205 + g1g2) cos (o1 —-¢7) + 2(gufs — f1g2) sin (¢ z b2)
A6)

We note, too, that ¢, — ¢, can be written as ¢, — @,. Thus, the
T%in eq Al is independent of ¢,,. Also, eq A1-A4 and A6 show
that 7° is also independent of ¢.

It remains to be shown that the potential energy V-
(0:,9i¥i912,0,2) is independent of ¢;, and ¢ when the ¢, are
introduced. This independence can be shown by first considering
the dependence of 6,, on the variables ¢,, ¢,,, and ¢ and then
considering the dependence of the interatomic separation distances
on these same variables.

We first note that 6, depends on ¢, via the expression, obtained
from a consideration of eq 6 and 8 with sin 6 set to zero

k, cos ¢y, + k, sin ¢,
81, = cot™! (A7)

Jr—k,

Use of the definitions of k, and k, and use of eq AS show that
an expression occurring in eq A7, as well as in the Jacobian term
in eq 11, may be written as

(13) McQuarrie, D. A. Statistical Mechanics; Harper and Row: New
York, 1976.
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2
k, cos ¢y, + k, sin ¢, = 2(f; cos ¢, + g; sin ¢;) (A8)
i=1

Thus, 6,, is independent of ¢ and ¢, when written in terms of
the ¢;’s.

The space-fixed coordinates x; of a specific point in fragment
i relative to the space-fixed coordinates of the center of mass of
fragment i are given by A;'x/, where the x;/ are the body-fixed
coordinates of the point in fragment /i and A, is the inverse
rotation matrix® (using the convention in ref 8). The space-fixed
coordinates of the center of mass of fragment / relative to a
space-fixed origin at the overall center of mass are A;,7'x;,/, where
the x,,/ are the coordinates describing the initial location (i.e.,
along the space-fixed z axis) of the center of mass of fragment
iand A;;7! is the inverse rotation matrix describing the orientation
of the line of centers. Thereby

x; = A7/ + AyTixgy/ (A9)

The separation distance r;, between a point in fragment 1 and
a point in fragment 2 is given by

1 = (X = X)) (X; — Xyp) (A10)

Here, the observation is made that any inverse rotation matrix
for rotation through (6,,¢,,¥;) may be written in the form® A,
= D;IC/ B!, where all of the dependence of A;™! on ¢, is in the
matrix D;”!, which in turn is given by®

—sin ¢, -cos¢; O
D'=|cos¢; -sing; O (A1l)
0 0 1

Also, A;,™! for rotation through (6,,,4,,) may be written in the
form A;,”! = Dy,”IC,,7!, where D,,! contains all the ¢,, depen-
dence and is given by eq All with ¢, replaced by ¢,,. Upon
substituting eq A1l and A9 into eq A10, one finds after some
straightforward algebraic manipulations that the separation
distance r|, depends on the variables ¢; and ¢, only through the
variables ¢; and is independent of ¢. Thus, all the quantities in
eq 11 have now been shown to be independent of ¢ and ¢, when
written in terms of the ¢,'s.
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Photon absorption spectra during the reaction between the K atom and the NaCl molecule are investigated theoretically.
The potential energy surfaces of the ground (12A’) and the electronically excited states (22A’, 32A’, and 12A”) are determined
by the MRSD-CI method with effective core potentials. The absorption intensity is assumed to be proportional to the density
of KCINa classical trajectories on the ab initio fitted ground-state potential surface and to the square of ab initio transition
dipole moments at the respective geometries. It is found that the spectra consist of two broad bands which originate from
two types of transitions: 1A’~2A’ and 1A’-3A’ (as well as 1A’~1A"), respectively. Some structures seen in the spectra are
further interpreted in terms of potential surfaces characteristics of the ground and the excited electronic states and the ground-state
collision dynamics. The breadth of each band has been found to represent the angular distribution of trajectories in the
collision. A spectroscopy that would probe bound states on the 2A’ and 3A’ excited states of the complex is proposed.

Introduction

The influence of lasers on chemical reaction processes had long
been a topic of only theoretical interest! without any reliable
experimental data. However, recently experimental studies on
the possibility of direct photoexcitation or spectroscopic observation
of transition species that are intermediates between reactants and
products, the “transition states” or “reaction complexes”, have
received considerable attention? related to experimental probes
of potential energy surfaces in interaction regions as well as la-
ser-catalyzed chemical reactions.

Polanyi and co-workers® have studied the F + Na, reaction and
observed a broad “wing” emission on either side of the Na D line,
which they ascribed to the emission from the FNa, transition state.
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Brooks and co-workers have reported evidence for absorption from
the intermediate configurations in the reactions*

K + HgBr, — KBr + HgBr

and’®
K + NaCl — KCl + Na

More recently, laser-assisted reactions have been observed in
Hg/HgBr, gas mixtures® and in the MgH, collision system.’

Stimulated by these studies, theoretical simulations have been
carried out by Polanyi and co-workers® on the transition-state
absorption spectra for H + H, — H, + H based on classical
trajectory calculations. They studied the effects of increasing
relative translational energy and reagent vibrational excitation
on the features of the absorption spectrum. It has been found
that several peaks present in the spectra reflect characteristic
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