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BeCzH4 complexes are found to have 'Al ground states, while the 
MgC2H2 and MgCzH4 complexes have 3B2 grouna states. The 
minima in the 'Al potential energy surfaces are due to an avoided 
crossing and concomitant change in electronic configuration at  
intermediate metal-hydrocarbon distances. 

The potential energy surfaces derived from the interaction of 
Be(1'P) and Mg(1'P) with ethylene and acetylene were not ex- 
amined in this study. However, in analogy to the Be(lP) + Hz 
and Mg(IP) + H2 systems,25 we expect the lBZ surfaces to be very 
attractive for the interaction of Be('P) or Mg('P) with C2H2 or 
CzH4 and that there are likely to be crossings between the 'Bz 
and 'Al potential energy surfaces, near the potential barriers of 
the latter. Such crossings could play an important role in the 
quenching dynamics of the 'P metal toms by the hydrocarbons.28 

(28) Breckenridge, W. H.; Umemoto, H. Adu. Chem. Phys. 1982,50, 325. 

Several of the properties considered here such as the relative 
energies of the singlet and triplet states of the complexes could 
be strongly altered if the metal atoms were replaced by small metal 
clusters. Theoretical studies of the interaction of C2H2 and C2H4 
with two or more Be or Mg atoms are currently under way in our 
laboratory. 
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An alternative method for implementing RRKM theory for unimolecular reactions with highly flexible transition states is 
described using conventional coordinates. The number of available states for motion in the transition state state NEj is determined 
via an appropriate average over the absolute space orientations and body-fixed momenta of the two fragments. The results 
of calculations of NEj for the C2H6 - 2CH3 reaction (or alternatively for the corresponding recombination reaction) obtained 
from the present expression are shown to be equivalent numerically to those obtained previously by Wardlaw and Marcus. 

I. Introduction 
In recent years there has been an increase in the degree of 

molecular state selection available in experimental studies of 
unimolecular reacti0ns.I Concurrent with this increase in state 
resolution has been an increased need for the theoretical deter- 
mination of energy and angular momentum resolved unimolecular 
dissociation or isomerization rate constants kEJ for realistic po- 
tential energy surfaces. Previous calculations of kEJ have included 
those involving fully classical methods (both trajectory calculations 
and variationally implemented RRKM theory),2 the statistical 
adiabatic channel model,3 and a partially quantum partially 
classical variationally implemented RRKM theory." The present 
paper focuses on an alternative method for implementing the latter. 

In RRKM theory the specific rate constant, kEh for the dis- 
sociation or isomerization at  a given energy E and total angular 
momentum quantum number J is given by5 

where PEJ is the density of states for the reactant a t  the given E 
and J .  The quantity NEj is the number of available states for 
motion in the transition state, which is to b.e determined varia- 
tionally, Le., by finding a potential hypersurface for which NEj 
is minimized. In most practical applications the full hypersurface 
is not varied but rather some coordinate R, which describes the 
progress of the reaction. The value of R that gives a minimum 
in NEj, labeled RT, is a function of E and J .  

In a recent series of articles: Wardlaw and Marcus have shown 
how Monte Carlo integration techniques may be used to facilitate 
the calculation of NEJ)s. The basis of this method is the intro- 
duction of an approximate separation of variables into the con- 
served modes, Le., modes which do not change their nature in the 

'Contribution No. 7633. 

transition from reactant to products, and the transitional modes, 
Le., modes which do have a considerable such change. The 

(1) Crimm, F. F. Annu. Reu. Phys. Chem. 1984, 35, 657. Rizzo, T. R.; 
Crim, F. F. J.  Chem. Phys. 1982, 76, 2754. Rizzo, T. R.; Hayden, C. C.; 
Crim, F. F. Faraday Discuss. Chem. SOC. 1983, No. 75, 223. Rizzo, T. R.; 
Hayden, C. C.; Crim, F. F. J .  Chem. Phys. 1984.81, 4501. Diibal, H.-R.; 
Crim, F. F. Ibid. 1985, 83, 3863. McGinley, E. S.; Crim, F. F. Ibid. 1986, 
85, 5741, 5748. Butler, L. J.; Ticich, T. M.; Likar, M. D.; Crim, F. F. Ibid. 
1986,85, 2331. Ticich, T. R.; Rizzo, T. R.; Diibal, H.-R.; Crim, F. F. Ibid. 
1986, 84, 1508. Syage, J.; Lambert, W. R.; Felker, P. M.; Zewail, A. H.; 
Hochstrasser, R. M. Chem. Phys. Lett. 1982, 88, 266. Shepanski, J. F.; 
Keelan, B. W.; Zewail, A. H. Ibid. 1983, 103, 9. Knee, J. L.; Khundkar, L. 
R.; Zewail, A. H. J .  Chem. Phys. 1985, 82, 4715. Knee, J. L.; Khundkar, 
L. R.; Zewail, A. H. Ibid. 1985, 83, 1996. Knee, J. L.; Khundkar, L. R.; 
Zewail, A. H. J .  Phys. Chem. 1985, 89, 4659. Scherer, N. F.; Knee, J. L.; 
Smith, D. D.; Zewail, A. H. Ibid. 1985,89, 5141. Scherer, N.  F.; Doany, F. 
E.; Zewail, A. H.; Perry, J. W. J .  Chem. Phys. 1986, 84, 1932. Khundkar, 
L. R.; Knee, J. L.; Zewail, A. H. Ibid. 1987, 87, 77. Scherer, N. F.; Zewail, 
A. H. Ibid. 1987,87, 97. Knee, J. L.; Khundkar, L. R.; Zewail, A. H. Ibid. 
1987, 87, 115. Nadler, I . ;  Pfab, J.; Radhakrishnan, G.; Reisler, H.; Wittig, 
C. Ibid. 1983, 79,2088. Nadler, I.; Pfab, J.; Reisler, H.; Wittig, C. Ibid. 1984, 
81, 653. Nadler, I.; Noble, M.; Reisler, H.; Wittig, C. Ibid. 1985, 82, 2608. 
Wittig, C.; Nadler, I.; Reisler, H.; Noble, M.; Catanzarite, J.; Radhakrishnan, 
G. Ibid. 1985, 83, 5581. Qian, C. X. W.; Noble, M.; Nadler, I.; Reisler, H.; 
Wittig, C. Ibid. 1985, 83, 5573. Nakashima, N.; Shimo, N.; Ikeda, N.; 
Yoshihara, K. Ibid. 1984,81, 3738. Ikeda, N.; Nakashima, N.; Yoshihara, 
K. Ibid. 1985,82, 5285. Bamford, D. J.; Filseth, S. V.; Foltz, M. F.; Hepburn, 
J. W.; Moore, C. B. Ibid. 1985, 82, 3032. Nesbitt, D. J.;  Petek, H.; Foltz, 
M. F.; Filseth, S. V.; Bamford, D. J.; Moore, C. B. Ibid. 1985, 83, 223. Dai, 
H. L.; Field, R. W.; Kinsey, J. L. Ibid. 1985,82, 1606. Amirav, A.; Jortner, 
J. Chem. Phys. Lett. 1983, 95, 295. Troe, J.; Amirav, A.; Jortner, J. Ibid. 
1985, 115, 245. Hippler, H.; Luther, K.; Troe, J.; Wendelken, H. J. J .  Chem. 
Phys. 1983, 79, 239. 

(2) Viswanathan, R.; Raff, L. M.; Thompson, D. L. J .  Chem. Phys. 1984, 
81, 31 18. Viswanathan, R.; Raff, L. M.; Thompson, D. L. Ibid. 1984,81, 828. 
Duchovic, R. J.; Hase, W. L. J .  Chem. Phys. 1985, 82, 3599. Hase, W. L.; 
Duchovic, R. J. Ibid. 1985,83, 3448. Hase, W. L.; Mondro, S. L.; Duchovic, 
R. J.; Hirst, D. M. J .  Am. Chem. SOC. 1987, 109, 2916. Uzer, T.; Hynes, J. 
T.; Reinhardt, W. P. Chem. Phys. Lett. 1985, 117, 600. Uzer, T.; Hynes, J. 
T.; Reinhardt, W. P. J .  Chem. Phys. 1986, 85, 5791. 
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conserved modes are typically vibrations and were treated quantum 
mechanically. In a unimolecular dissociation the transitional 
modes are typically the fragment-fragment hindered rotations 
(or bending modes) and the overall rotations and were treated 
classically. [A quantum correction for the latter for the high- 
pressure (Le., canonically averaged) kEJ)s was recently g i ~ e n . ~ ]  

The number of states NEj is then given by the convolution4 

where N d E )  is the number of quantum states for the conserved 
modes with an energy less than or equal to E,  and p J ( t )  is the 
density of states for the transitional modes at  the given energy 
e and total angular momentum quantum number J for the given 
R.  Upon introducing various canonical transformations using 
action-angle variables, Wardlaw and Marcus obtained p J ( t )  as 
a reduced phase space average of the product of triangle ine- 
qualities and a-delta function in t - H ,  where H i s  the classical 
Hamiltonian for the relevant modes. In this reduced phase space 
average the total angular mpmentum was fixed, and the z com- 
ponent of the total angular momentum and the two coordinates 
conjugate to these two momenta had been eliminated via an 
analytical integration. The problem was thereby reduced to a 
Monte Carlo integration of a given analytical expression over 
typically (for the case of two polyatomic fragments) six coordinates 
and six momenta. 

In the present article a simple alternative method for evaluating 
NEj is presented, in which the transformation of variables to 
action-angle coordinates is avoided. For the conditions we have 
explored it is also shown how an alternative method for handling 
the integration limits can be used. The resulting overall method 
is very easily programmed and executed. In section I1 a series 
of transformations are introduced which serve to reduce the di- 
mensionality of the phase space integral, without making any 
transformations in the remaining variables. The resulting phase 
space integral is then evaluated as a free-rotation canonical average 
in section 111. Results for NEj from calculations using this method 
are discussed and compared with previous results of Wardlaw and 
Marcus in section IV. 

11. Determination of NEj Using Absolute Space Orientations 
and Conjugate Momenta 

Since the rapid determination of accurate NdE)’s for eq 2 is 
usually possibte through direct count algorithms,’ the evaluation 
of NEj mainly involves finding a rapid method for determining 
pJ( t ) .  The first step in evaluating the latter involves the choice 
of an appropriate coordinate system. In the present article the 
coordinates chosen are the conventional Euler angles8 (0,,4,,$,) 
for the absolute orientation in space of fragment i, denoted by 

(3) Quack, M.; Tme, J.  Ber. Bunsen-Ges. Phys. Chem. 1974, 78, 240. 
Quack, M.; Troe, J .  Ibid:1975, 79, 170. Quack, M.; Troe, J.  Ibid. 1977, 81, 
329. Troe, J. J .  Chem. Phys. 1981, 75, 226. Troe, J. Ibid. 1983, 79, 6017. 
Cobs ,  C; J . ;  Troe, J. Chem. Phys. Lett. 1985, 113, 419. Cobs ,  C. J.; Troe, 
J. J .  Chem. Phys. 1985,83, 1010. Troe, J. J .  Phys. ,hem. 1986, 90, 3485. 
Brouwer, L.; Cobs ,  C. J.; Troe, J.; Diibal, H.-R.; Crjm, F. F. J .  Chem. Phys. 
1987, 86, 6 17 1. 

(4) (a) Wardlaw, D. M.; Marcus, R. A. Chem. Phys. Lett. 1984, 110,230. 
(b) Wardlaw, D. M.; Marcus, R. A. J .  Chem. Phys. 1985, 83, 3462. (c) 
Wardlaw, D. M.; Marcus, R. A. J .  Phys. Chem. 1986, 90, 5383. (d) 
Wardlaw, D. M.; Marcus, R. A. Ado. Chem. Phys. 1988, 70, 231. 

( 5 )  Robinson, P. J.; Holbrook, K .P .  Unimofecular Reactions; Wiley: New 
York, 1972. Forst, W. Theory of Unimolecular Reactions; Academic: New 
York, 1973. Weston, R. E.; Schwarz, H. A. Chemical Kinetics; Prentice-Hall: 
Englewood Cliffs, NJ, 1972. Marcus, R. A. J .  Chem. Phys. 1952, 20, 359. 
Marcus, R. A.; Rice, 0. K. J .  Phys. Colloid Chem. 1951, 55, 894. Marcus, 
R. A. J .  Chem. Phys. 1965.43, 2658. Marcus, R. A. Ibid. 1970, 52, 1018. 

( 6 )  Klippenstein, S.  J.; Marcus, R. A. J .  Chem. Phys. 1987, 87, 3410. 
(7) When the energies of interest are so large as to make a direct count 

algorithm inside a Monte Carlo routine too time-consuming, one may instead 
calculate and store an array of N d E )  values for all the energies of interest. 
E.g., see Appendix F of ref 4b. 

(8) Goldstein, H. Classical Mechanics, 2nd ed.; Addison-Wesley: Reading, 
MA, 1980. They convention in this text (Appendix B) is used. It contains 
a typo in the last row of the matrix A there:’ -the I1.‘s should be replaced by 
4’s. 

Qi, and the two angles and dI2 which describe the spatial 
orientation of the line of centers of-the two fragments. The 
conjugate momenta for these coordinates are then denoted by ps, ,  
p42, P+~, ps,,, and pG1,, respectively. The first three of these momenta 
are denoted later by P,. 

In terms of these coordinates p J ( f )  can be written as 

where T denotes the above-described coordinates and their con- 
jugate momenta. JT is the magnitude of the total angular mo- 
mentum as a function of the coordinates and momenta, and now 
a delta function in J h  - JT is present, unlike in the treatment of 
Wardlaw and Marcus, who used a fixed JT as one of their ac- 
tion-angle coordinates. We have introduced the h in eq 3 with 
the following reasoning: Without it the right-hand side of eq 3 
would be the classical number of quantum states per unit energy 
per unit angular momentum JT. By multiplying by h ,  we have 
obtained the semiclassical equivalent of the number of states per 
unit energy for a given value of the angular momentum quantum 
number J .  

The integral over t in eq 2 can now be performed to yield 

The above choice of conventional coordinates is convenient in that 
it allows for a simple evaluation of the Hamiltonian. However, 
the dimensionality of the phase-space integral should still be 
reduced by four, to obtain the dimensionality of integration used 
previously by Wardlaw and Marcus.- To this end, several 
transformations of the coordinates and momenta describing the 
line of centers orientation and momenta are now introduced. These 
transformations, in conjuction with several observations about the 
dependence of the integral on certain variables, permit the desired 
reduction in dimensionality of the integral. 

The first observation is that the integrand in eq 4 is independent 
of the direction of the total angular momentum vector J T  and, 
hence, of the value of JTz, the z component of JT. Thus, the 
integral will be unchanged if JT is restricted to lie along the z axis 
by introducing a delta function in JT - JT,, which singles out a 
particular JTz, multiplying again by h for reasons analogous to 
those described for eq 3, and then multiplying by the actual 
number of JTz quantum states (semiclassically speaking), for the 
given JT, namely, 2J + 1.  Thereby 

J d 7 ) I  d~ ( 5 )  

The dimensionality of the integral in eq 5 can be reduced by 
two by performing an analytical integration over the arguments 
of the delta functions. To this end, a transformation of variables 
is needed to new variables which include JT and JTr or their 
equivalents. For simplicity, the required transformation is divided 
into two steps with the first transformation being from 6 1 2 ,  pa, , ,  
and pG,, to the Cartesian components of the orbital angular mo- 
mentum l,, l y ,  and l: 

1, = -pa,, sin @ I 2  - PG12 cos 612 cot 612 

I )  = Po,,  cos 412 - Pm,, sin 412 cot 012, 1, = P@,, (6) 

the Jacobian of the transformation being la(0,zppslzpG12)/a(l,1,1,)1 
= Isin* 012/pm121. The latter equals Ilzl/[(cos 4121x + sin 4121,)2 
+ 1 2 * ] ,  thereby yielding 

(9) Levine, I .  N. Molecular Spectroscopy; Wiley: New York, 1975. 
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where T' denotes Q,, PI,  412, l,, I,,, I, and dr' is the corresponding 
volume element. 

The second transformation is from I,, l y ,  and I ,  to JT, 8, and 
4, where the 8 and 4 are the polar coordinates of JT: 

I ,  + k,  = JT sin 8 cos 4, 1, + ky = JT sin 8 sin 4 
I ,  + k,  = JT COS 8 (8) 

Here, k,, k,,, and k, are the Cartesian components of the sum of 
the space-fixed rotational angular momenta of the individual 
fragments j,, which in turn are given in terms of the P, by9 

j , ,  = -[(cos Bp,, - P+,) cos $,/sin 4 + sin 4 ~ 0 ~ 1  

j y ,  = -[(cos 8pm, - p$,)  sin +,/sin 4 - cos 4 ~ ~ 1 ,  j , ,  = P,, (9) 

The Jacobian of the transformation is given in this case by 
~ C 3 ( l , l y l ~ ) / ~ ( J ~ ~ 4 ) ~  = JTz sin 8, yielding 

JT cos e)((lJT COS 8 - k,lJT2 sin 8 ) /  
([COS ~ I ~ ( J T  Sin 8 COS 4 - k,) + 

sin +12 (JT sin 8 sin 4 - kY)lz + (JT COS 8 - k,)')) dr" (10) 

where 7'' denotes the variables Qi, Pi, 412, JT, 8, 4. 

the delta functions, whence 
The integrals over JT and COS 8 may now be performed by using 

Two final observations permit the analytic evaluation of the 
4 and 412 integrations in eq 1 1  and thus complete the reduction 
in dimensionality of the integral. Firstly, in the Appendix it is 
shown that the integrand of eq 1 1  is independent of 4 and therefore 
one may integrate over 4 yielding a factor of 2r. Next, in the 
Appendix it is also shown that the dependence of the integrand 
on the three variables 41, d2, and c $ ~ ~  occurs only via 41 - 412 and 
dZ - 412. Therefore, one may choose 412 in the integrand to have 
any constant value, labeled +lz*, and then -integrate over dI2, 
yielding a value of 2a.1° These steps yield 

( 2 J +  1 )  
NEj = - l N , [ E  - H(Qi,Pi,q512*,Jh,8=O)] X 

ah6 - ._ 
IJh - kJJh 

h d Q i  dPi (12) 
(cos 41z*k, + sin 412*ky)2 + ( J h  - k,)2i=I 

The above expression is seen to involve only conventional co- 
ordinates. A Monte Carlo evaluation of this integral requires some 
treatment of the sampling limits (e.g., assigning some maximum 
values for the Pis). In the next section it is shown how the integral 
in eq 12 may conveniently be transformed into a form where 
importance sampling can be used in the Monte earlo evaluation, 
thereby eliminating the need for this specific consideration of 
maximum values. 

111. Free-Rotation Canonical Average 
The first step in simplifying the Monte Carlo evaluation of NEj 

is to remove the dependence of T:, the kinetic energy of rotation 
of fragment i about its center of mass, on its orientation e,,&$,. 
This step serves to make the evaluation of weighting factors more 
efficient in the importance sampling Monte Carlo integration to 
follow. To remove this orientation dependence of TIo the 
space-fixed PI are first transformed to the three fragment i-fixed 
components of the angular momenta, pal,  Pb,,Pc,, defined by9 

pa, = -cos J., csc Op,, + cos $, cot 8p$, + sin $poi 

Pb,  = sin J., csc 6pm, - sin J., cot b+, + cos +,PO,, pC, = P$, 
(13)  

In terms of these new momenta T: is given by 

where la:, le?, and IC,+ are the principal moments of inertia of 
the rigid-body fragment i for the transition-state structure. The 
Jacobian of the transformation in eq 13 introduces a factor of sin 
O1 sin O2 into the integrand of eq 12. 

The next step is to select an appropriate weighting function. 
We recall that in importance sampling" a weighing function is 
introduced which has a large weight in the regions where the 
integrand is large and also for which the integral over the desired 
coordinates is known. The function exp[-P(TIo + T?)] sin 8,  sin 
O2 is suitable, since P may be chosen to restrict the momenta 
coordinates to the region where the mean value of the kinetic part 
of H is less than E, the region of importance to the integrand given 
in eq 12. In addition, the integral of this function over Q,, pqr, 
pb,, pci, for i = 1 ,  2 (Le., the coordinates which specify the ori- 
entation in space of each fragment and the body-fixed momenta 
of each fragment), is just h6 times the product of the free-rotation 
canonical partition functions for the two fragments Qo, defined 
by 

Making the transformation described in eq 13 and introducing 
the above weight function into eq 12 by multiplying the integrand 
by exp(PC2,=lT,") exp(-PC2,=lT,0), eq 12 for NEj becomes 

NEJ = 
N A E  - H)(Jh - k,) exp[P(Tlo + T2')1 ) (2J + 1)Jh 

U do( (cos 412*kx + sin 41z*ky)z + ( J h  - 
(16) 

where v) denotes an average with respect to the free-rotation 
weight function 

v)= 

(17) 
For each sampling point the integrand f is set equal to zero 
whenever H > E .  

A Monte Carlo evaluation of eq 16 is now straightforward using 
crude sampling for the orientational coordinates and importance 
sampling" for the momentum coordinates, with exp[+( TIo + 
TZ0)] as the weighting.function. This sampling using the free- 
rotation canonical distribution is most effective in those cases in 
which the potential energy is not too large in the regions of im. 
portance to the original integral. This situation corresponds to 
large values of Rt, since the interaction potentials are smaller at 
large Rt. However, in the present calculations it was observed 
that the free-rotation sampling was reasonably efficient at all E's 
and Ss 6f interest (e.g., see discussion and Table I in the next 
section.) 

IV. Results and Discussion 
The formalism described above for evaluating NEJ was applied 

to the methyl radical recombination reaction (or ethane disso- 
ciationj, using the same potential energy function as that employed 

(10) More precisely, one transforms to variables &2, & = 4, - q512 (i =, 1 ,  
2) and then, after the 412 integration, transforms the 4, back to the 4, with m I 2  set at any preassigned value 412*. 

( I  1) Valleau, J. P.; Whittington, S. G. In Statistical Mechanics; Berne, 
B. J.; Ed.; Plenum: New York, 1977; p 137. Valleau, J. P.; Torrie, G. M. 
In Statistical Mechanics; Berne, B. J.; Ed.; Plenum: New York, 1977; p 169. 
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Appendix: Dependence of the Integrand in Eq 11 on 4, di,  
and 412 

The Hamiltonian may be written as H = P + V, where p is 
the kinetic energy and Vis the potential energy. The kinetic energy 
may be written as 

( A l l  

where TI? is the kinetic energy of rotation of the line of centers 
about the overall center of mass; Ti0 is as described in the text 
and is given by the standard expression13 

T' = Tlo + T? + TI? 

TABLE I: Test of NE)  Calculation for the Reaction 2CH3 - C2H, 
E - Ezp(m)," 

kcal mol-' J ,  f i  Rt, A NEJb N E J c  

0.13 25 
0.44 25 
1.18 25 

50 
2.36 25 

50 
4.73 25 

50 
100 

9.53 25 
50 

100 
19.55 25 

50 
100 
150 

39.10 25 
50 

100 
150 

63.52 25 
50 

100 
150 

5.7 
5.6 
5.6 
4.4 
3.8 
4.0 
3.6 
3.6 
3.7 
3.3 
3.4 
3.4 
3.1 
3.1 
3.1 
3.1 
2.8 
2.8 
2.8 
2.8 
2.6 
2.6 
2.6 
2.6 

1.4 
1.4 (3) 
4.5 (4) 
1.1 (4) 
4.4 (5) 
2.7 (5) 
4.3 (6) 
4.2 (6) 
1.5 (5) 
1.5 (7) 
9.4 (7) 
1.7 (7) 
3.1 (9) 
5.0 (9) 
1 .P (9) 
1.1 (8) 
3.6 (11) 
6.9 (11) 
4.1 (11) 
6.4 (10) 
1.6 (13) 
4.3 (13) 
3.5 (13) 
8.5 (12) 

1.7 
1.4 (3) 
4.4 (4) 
1.1 (4) 
4.3 (5) 
2.8 (5) 
4.2 (6) 
4.1 (6) 
1.4 (5) 
7.1 (7) 
8.8 ( 7 )  
1.7 (7) 
3.4 (9) 
4.9 (9) 
1.8 (9) 
1.0 (8) 
3.1 (11) 
6.7 (11) 
4.2 (1 1) 
6.7 (10) 
2.0 (13) 
3.9 (13) 
2.8 (13) 
1.9 (12) 

" E Z p ( - )  refers to the zero-point energy of the products (Le., the 
zero-point energy of two isolated CH3 fragments). Present calcula- 
tions of NE,. The numbers in parentheses denote the power of 10. 
Monte Carlo errors are in all cases less than 7%, with the largest error 
bars arising in the highest energy calculations. ' N E ,  taken from r e f  4c. 

by Wardlaw and Marcus.4b The structure of the rigid-body 
fragments for a given Rt was taken to be as in ref 4b, and u was 
taken to be 72. 

The results for NEJ are given in Table I, together with the 
previous results of ref 4c, the latter multiplied by (W + l)/u, since 
the results reported there are actually NEJu/(2J + 1) (cf. footnote 
in ref 4d). Also, no J = 0 results are presented here since the 
transformation given by eq 8 is not valid in this special case. In 
the calculations 80000 Monte Carlo points were used and typical 
computation times were only 10-15 min on a Vax 11/780. The 
sampling temperature was chosen to keep the maximum kinetic 
energy sampled 1-2 times the maximum available energy ( E  minus 
the minimum V(R) for the given R,  minus the zero-point energy 
difference), since this choice seemed to give the most rapid con- 
vergence. At small Rt there is a slower convergence of this 
particular importance sampling because of the increased impor- 
tance of the potential energy term, although, as we have noted 
previously, we did not encounter any difficulty in our current 
calculations. Had such a difficulty been encountered, we could 
have used a sampling method analogous to the earlier 

Inspection of the results given in Table I indicates that both 
methods give equivalent numerical results.'2 As mentioned 
previously, the action-angle transformations are now avoided and 
an alternative method for handling the integration limits has been 
used. To be sure, the action-angle transformations are 
straightforward albeit a little tedious. It may also be possible to 
implement in the method of Wardlaw and Marcus the same idea 
of avoiding these integration limits although this possibility has 
not yet been explored. The present calculation is very easily 
programmed and implemented. 
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(1 2) The minor differences at higher energies corresponding to smaller Rt's 
are most likely due to the ad hoc "dynamic" barrier restriction in the Monte 
Carlo sampling procedure which was used in ref 4c (see footnote 15  there) 
but not here. Also, the Monte Carlo errors in the present calculation are larger 
at these higher energies. 

Tl2' is given by13 

where Id$ is the "diatomic" moment of inertia for the centers of 
mass of the two fragments. Upon transforming to the variables 
appearing in eq 11 of the text, eq A3 becomes 

TI2O = ~ 1 (JT - k)2 = -!-(JT2 + k,2 + k,2 + k: - 2J~k,) 
2&i+ 21di+ 

( A 9  

since JT is chosen to have only one nonzero component, JT,. 
We now consider how 7'' depends on the four variables 4, 
dI - d12, q2 42 - 4121. and 412. An inspection of eq Al-A4 

shows that k: + k,2 i s  the only quantity in p which depends on 
the above angles. Referring to eq 9 of the text and focusing on 
the dependence of k, and k, on these above angles, it is seen that 
k,  and k, may be written in the form 

2 

i= I 

2 

i= 1 

k,  = Ccf; cos di  + gi sin $ J  

k, = Ccf, sin di  - gi cos d i )  

(A5a) 

(A5b) 

wherefi and gi are functions of the remaining variables (L~~,$~ ,PJ.  
Thereby, after some simplification 

kX2 + k,2 = f12 + f Z 2  + g12 + g22 + 
2w-2 + g1g2) cos (41 - 4 2 )  + U L f 2  -fig21 sin ($1 - 42) 

('46) 

We note, too, that - d2 can be written as & - &. Thus, the 
P in eq AI is independent of $12. Also, eq A1-A4 and A6 show 
that 7" is also independent of 4. 

It remains to be shown that the potential energy V- 
(0i,4i,$i,412,012) is independent of and 4 when the & are 
introduced. This independence can be shown by first considering 
the dependence of eI2 on the variables 412, and 4 and then 
considering the dependence of the interatomic separation distances 
on these same variables. 

We first note that 012 depends on d12 via the expression, obtained 
from a consideration of eq 6 and 8 with sin 0 set to zero 

) ('47) 
k,  cos dI2 + k, sin 4,2 ( JT - kz 

4, = cot-' 

Use of the definitions of k ,  and k, and use of eq A5 show that 
an expression occurring in eq A7, as well as in the Jacobian term 
in eq 11, may be written as 

(13) McQuarrie, D. A. Sfatistical Mechanics; Harper and Row: New 
York, 1976. 
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2 

i= 1 
k,  cos 412 + ky sin d12 = C(f; cos iji + gi sin &) (A8) 

Thus, BIZ  is independent of 4 and 412 when written in terms of 
the 4:s. 

The space-fixed coordinates xi of a specific point in fragment 
i relative to the space-fixed coordinates of the center of mass of 
fragment i are given by A;’x;, where the x/ are the body-fixed 
coordinates of the point in fragment i and A;l is the inverse 
rotation matrixs (using the convention in ref 8). The space-fixed 
coordinates of the center of mass of fragment i relative to a 
space-fmed origin at the overall center of mass are A12-1~12,;, where 
the xl2,{ are the coordinates describing the initial location (Le., 
along the space-fixed z axis) of the center of mass of fragment 
i and A,;l is the inverse rotation matrix describing the orientation 
of the line of centers. Thereby 

xi = A;’x,‘ + A12-1~12,: (A9) 
The separation distance r12 between a point in fragment 1 and 

a point in fragment 2 is given by 

r122 = (XI - X2)‘(Xl - x2) (‘410) 

Here, the observation is made that any inverse rotation matrix 
for rotation through (Bi,4i,$i) may be written in the forms A;l 
= D;’C;lB;I, where all of the dependence of A;‘ on +i is in the 
matrix D;], which in turn is given bys 

(A1 1) 

Also, A12-l for rotation through (42,+12) may be written in the 
form AI2-l = DI2-lCl2-l, where D12-I contains all the 412 depen- 
dence and is given by eq A l l  with 4i replaced by dI2. Upon 
substituting eq A1 1 and A9 into eq A10, one finds after some 
straightforward algebraic manipulations that the separation 
distance r12 depends on the variables +i and 412 only through the 
variables & and is independent of +. Thus, all the quantities in 
eq 11 have now been shown to be independent of 4 and 412 when 
written in terms of the &’s. 

3 1 io 0 

-sin @i -cos di 
D;’ = cos C#Jj -sin C#Ji 
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Photon absorption spectra during the reaction between the K atom and the NaCl molecule are investigated theoretically. 
The potential energy surfaces of the ground (1’A’) and the electronically excited states (22A’, 32A’, and 12A”) are determined 
by the MRSD-CI method with effective core potentials. The absorption intensity is assumed to be proportional to the density 
of KClNa classical trajectories on the ab initio fitted ground-state potential surface and to the square of ab initio transition 
dipole moments at the respective geometries. It is found that the spectra consist of two broad bands which originate from 
two types of transitions: 1A‘-2A’ and 1A‘-3A‘ (as well as lA’-lA’’), respectively. Some structures seen in the spectra are 
further interpreted in terms of potential surfaces characteristics of the ground and the excited electronic states and the ground-state 
collision dynamics. The breadth of each band has been found to represent the angular distribution of trajectories in the 
collision. A spectroscopy that would probe bound states on the 2A‘ and 3A‘ excited states of the complex is proposed. 

Introduction 
The influence of lasers on chemical reaction processes had long 

been a topic of only theoretical interest’ without any reliable 
experimental data. However, recently experimental studies on 
the possibility of direct photoexcitation or spectroscopic observation 
of transition species that are intermediates between reactants and 
products, the “transition states” or “reaction complexes”, have 
received considerable attention2 related to experimental probes 
of potential energy surfaces in interaction regions as well as la- 
ser-catalyzed chemical reactions. 

Polanyi and -workers3 have studied the F + Na2 reaction and 
observed a broad “wing” emission on either side of the Na D line, 
which they ascribed to the emission from the FNa2 transition state. 

(1) (a) Light, J. C.; Altenberger-Siczek, A. J.  Chem. Phys. 1979, 70,4108. 
(b) Orel, A. E.; Miller, W. H. J .  Chem. Phys. 1980, 73, 241. (c) Kulander, 
K. C.; Orel, A. E. J .  Chem. Phys. 1981, 75, 675. (d) George, T. F. J .  Phys. 
Chem. 1982.86, 10 and references cited therein. (e) Zimmerman, I .  H.; Baer, 
M.; George, T. F. J .  Phys. Chem. 1983, 87, 1478. 

(2) (a) Polanyi, J. C. Faraday Discuss. Chem. SOC. 1979, 67, 129. (b) 
Foth, H.-J.; Polanyi, J. C.; Telle, H. H. J .  Phys. Chem. 86, 1982, 5027. (c) 
Brooks, P. R.; Curl, R. F.; Maguire, T. C. Ber. Bunsen-Ges. Phys. Chem. 
1982, 86, 401. (d) Imre, D.; Kinsey, J. L.; Sinha, A,; Krenos, J. J .  Phys. 
Chem. 1984, 88, 3956. 

(3) Arrowsmith, P.; Bartoszek, F. E.; Bly, S. H. P.; Carrington, T., Jr.; 
Charters, P. E.; Polanyi, J. C. J .  Chem. P b s .  1980, 73, 5895. Polanyi, J. C.; 
Wolf, R. J. J .  Chem. Phys. 1981, 75, 5951. Arrowsmith, P.; Bly, S. H. P.; 
Charters, P. E.; Polanyi, J. C. J .  Chem. Phys. 1983, 79, 283. 

Brooks and co-workers have reported evidence for absorption from 
the intermediate configurations in the reactions4 

K + HgBr, - KBr + HgBr 
andS 

K + NaCl - KC1 + Na 
More recently, laser-assisted reactions have been observed in 
Hg/HgBr2 gas mixtures6 and in the MgH, collision system.’ 

Stimulated by these studies, theoretical simulations have been 
carried out by Polanyi and co-workers* on the transition-state 
absorption spectra for H + H2 - H2 + H based on classical 
trajectory calculations. They studied the effects of increasing 
relative translational energy and reagent vibrational excitation 
on the features of the absorption spectrum. It has been found 
that several peaks present in the spectra reflect characteristic 
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Rev. Lett. 1980, 44, 698. 
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