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The present symposium brings together research in a number of fields: the
quantum-chemical calculation of molecular potential-energy surfaces, rota-
tional-vibrational spectroscopy, methods of calculating rotational-vibra-
tional energy levels, unimolecular reactions and intramolecular dynamics.
Several aspects of the work are discussed, including some recent develop-
ments on rates and products’ quantum state distributions for unimolecular
dissociations having highly flexible transition states. The usefulness of
having improved potential-energy surfaces, particularly the bonding and
hindered rotational potentials in the dissociations, is noted. In various other
studies in this symposium a better knowledge of the surfaces would be
particularly helpful. New results on a semiclassical quantization method
are also described.

Potential-energy Surfaces, Spectroscopy and Dynamics

The papers of this Faraday Symposium illuminate particularly the interaction of research
in several fields. These areas include theoretical calculations of molecular potential-
energy surfaces, the spectroscopic study of intramolecular motion, and experimental
and theoretical studies of unimolecular processes and of intramolecular dynamics. Each
area has undergone significant recent developments, and the increasingly detailed
information that is now becoming available for each should further enhance this
interaction. The organizers of this symposium are to be congratulated for the timeliness
of their central theme.

The relation between the theoretical study of molecular potential-energy surfaces
(p.e.s.) and the experimental spectroscopic investigation of molecules has, of course, a
long history. The recent advances made by quantum chemists on calculations of the
p.e.s. are noted in this symposium by Amos et al' Several of these papers provide
examples of the ab initio calculation of these surfaces.”” To make a connection between
such calculations and spectroscopic experimental data, a calculation of the rotational-
vibrational molecular energy levels based on these surfaces is required and is discussed
here in a number of articles.'”” These include studies at higher energies where perturba-
tion-type approaches have become inadequate.

In an alternative procedure, also represented by a number of papers in this confer-
ence,” '’ parameters of the p.e.s. such as anharmonicity constants and parameters such
as Coriolis constants are estimated, instead, by a fit to the spectroscopic data. Lehmann
and McCoy,'® for example, describe in some detail the fitting of the NH; spectrum to
an effective Hamiltonian containing various resonance terms.

Theoretical studies of the dynamics of intermolecular and intramolecular energy
redistribution benefit from a detailed knowledge of these potential-energy surfaces. A
variety of such problems is treated in the present set of papers.'””'® Treatments of
chemical reactions also benefit and involve regions of the p.e.s. where the anharmonicity
is considerable. Such regions of coordinate space are only beginning to be observable
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by spectroscopic means. Examples occur in recent studies of a molecule in the process
of falling apart, using picosecond and femtosecond real-time measurements' " and
high-resolution Raman-typ¢ scattering.”’ Interesting results have been found, including
a time delay'’ in a reaction within a van der Waals’ complex, CO,-HI* — CO,H+1
and, in a CH;I photodissociation, the coupling of the H,C—1 dissociating bond with
the CH; umbrella motion.”' The products’ quantum state distribution is also known in
the former reaction for the case where the photoexcited HI™ is replaced by a HBr*.”
In the region of coordinate space important to unimolecular dissociations the main
source of information thus far has been quantum-chemical calculations but, as we shall
note later, such calculations are presently rather sparse in an important region. In each
of the above experiments‘g‘zl two p.e.s. are involved in the optical observations, and a
detailed knowledge of these p.e.s. is useiul.

Studies of the nature of highly excited vibrational states include those by stimulated
emission pumping,” e.g. for molecules such as C,H, and CH,O. They are represented
here by the work of Temps e? al.,'* who consider collisional state-to-staté processes and
find propensity rules reflecting long-range dipole-dipole interactions (large collision
cross-sections) between two CH,0 molecules. The excitation of CH and OH overtones
has provided results on energy-resolved unimolecular rate constants and spectroscopy
of excited iocal modes. One recent advance, the use of a ‘two-colour’ excitation, leading
to a ‘vibrationally mediated dissociation’, 1s described here by Likar et al.'® Until this
advance was made, dissociation via a lower overtone could only occur in a thermally
assisted way, a way which entails a non-monochromatic energy distribution of the
reacting molecule and hence involves a more complicated interpretation. In this sym-
posium Lehmann and Coy describe a new ‘microwave-detected, microwave double
resonance’ technique for the study of the energy levels of NH,.'"" Baggott et al® and
Iikar et al.'® discuss the overtone spectra. Narrow spectra have been observed for the
third CH overtone in benzene by Page et al.>*® a factor of ca. 10 narrower than that
previously found both experimentally’*” and in classical trajectory studies.” This
previous experimental work was apparently complicated by inhomogeneous line broad-
ening, as had been suspected. We return to this point later.

There are, of course, several spectroscopic studies not represented in this symposium
(it would hardly be possible to represent them all!). In the frequency domain they
include sub-Doppler studies of vibronic couplings in electronically excited benzene,”
and the observation of vibrational quantum beats in molecules such as anthracene.”

Most theoretical studies of rotational-vibrational spectra have been primarily concer-
ned with molecules at comparatively low energies. In studies at higher energies theoreti-
cal investigations of the spectral features have often been based on model Hamiltonians
containing only a few (two or three) coordinates. These include the treatment of the
CH stretch-doubly degenerate HCX bend ina 2:1 Fermi resonance in CHX; molecules
by Voth et al.,”’ Moore and coworkers,?® and Halonen ef al,” all using curvilinear
coordinates, and earlier studies by Quack and coworkers using rectilinear coordinates.”
A concise description of the advantages of the curvilinear ones for high CH overtones
is given here by Halonen et 4l 1n this use of curvilinear coordinates, Voth et al found
(for X = D) that a purely kinetic-energy coupling term, sometimes used in other work,
was inadequate to represent the spectroscopic results for the 2:1 resonance, and that a
potential-energy coupling term was also needed.?” These results further emphasize the
need for obtaining a reliable p.e.s. A similar finding on the importance of the potential-
energy term is reported in the present symposium by Halonen ef al’ for X =D and F.

In this three-coordinate CH stretch-doubly degenerate HCX bend problem the
vibrational angular momentum [ of the bend is frequently assumed to be a constant of
the motion. Inthe quantum case this approximation permits, of course, the Hamiltonian
matrix to be block-diagonalized, while in the classical case it reduces the three-coordinate

problem to a two-coordinate one when the appropriate variables are used. (E.g. 1n
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action-angle coordinates, if / is a constant of the motion the Hamiltonian does not
depend on its conjugate coordinate. The classical Hamilton’s equations of motion may
then be integrated, ! being a constant, using the two remaining coordinates and their
conjugate momenta.) |

Other articles on these few-coordinate treatments in this symposium include that by
Baggott et al.® on high CH overtones in HCN, in which there is an interaction of two
anharmonic bond-stretching modes. Using a complex coordinate method Hutchison
and Marshall'” treat the coupling of a CH overtone and a CC bond. A coupling between
a ring-vibrational mode and a torsional mode in p-flourotoluene is described by Longtel-
low and Parmenter,'® who also note the resolved spectroscopic data now becoming
available.’® They also discuss the role of this coupling in intramolecular vibrational
energy redistribution (IVR).'® A treatment of three interacting symmetric modes in NH;
is given by Botschwina.” The usefulness of few-coordinate models for treating the
positions of CH overtone lines in, for example, HCN (Baggott et al here®), HCX;
(Halonen et al’” and others>”*°) and C,H,,’" is noted by Lehmann and Coy."” An
in-plane classical-mechanical model, introduced to look for a progression seen in low
resolution for H1i, is described by Chambers et al.,'” who also discuss the interesting
‘weakly chaotic’ features of the classical-mechanical motion.

A variety of other approximate treatments of the molecular motion are described 1n
this symposium, sometimes to treat a larger number of coordinates. One such approach
for calculating the energy levels of a several-coordinate system involves an adiabatic
approximation, in which the variables are divided into ‘fast’ and *slow’, this classification
being capable of extension to different degrees of ‘slowness’. In a treatment of C,H,
here by Amos et al.,' all of the vibrations are included, the ‘fastest’ coordinates being
the two CH stretches and the slowest the torsional angle between the HCC and CCH
planes. Halonen ef al.” use both an adiabatic and a separable basis set in their treatment
of the CH stretch-doubly degenerate CHX bend Fermi resonance, and compare results
obtained from an ab initio p.e.s. and from experiment, by fitting to an effective tridiagonal
form of Hamiltonian matrix. Floppy molecules are discussed by Jensen® using a
‘non-rigid bender’ plus Morse-stretch Hamiltonian for triatomics, which is applied to
Hi and to its isotopes. Rotational-vibrational coupling for states with relatively high
angular momentum quantum numbers J are treated by Tennyson et al® using a two-step
variational procedure. They apply it to isotopes of H; and to a van der Waals’ complex,
and describe the problems arising at high J.

Another approximate procedure, a self-consistent field calculation®” of ro-vibrational
energy levels, is applied here by Carney to the lower vibrational states of H; -type
molecules.” Semiclassical evaluation of vibrational Hamiltonian matrix elements intro-
duced by Gerber and Ratner’” and that of other matrix elements, such as that of the
dipole operator by other authors,” is employed here.” Some comparison of the relative
merits of these many approaches, of others described in the symposium [e.g. ref. (5)]
and of one described below, might be a useful topic for discussion. As one might see
from the above survey the spectroscopy’” of the molecular ion Hj has aroused particular
interest.

An interesting semiclassical method for obtaining the vibrational energy levels of
triatomic molecules has recently been described elsewhere by Noid and coworkers,
and I should like to comment on it here. These authors proceed from an analytical
potential-energy surface or from a numerically given surface using a spline fit, together
with expressions for the partial derivatives for use in integrating the classical equations
of motion, calculate the Poincaré surfaces of section (S.0.S.) for these three-vibrational
coordinate systems by interpolation,’ and by this means quantize the system semiclassi-
cally. Over the years the Poincaré S.O.S. method for semiclassical quantization’’ has
proved to be reliable and straightforward. (A recent comparison with other methods

has been given for systems containing resonances.” ") One interesting feature is that now
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only one trajectory or less is needed per eigenvalue for the three-coordinate system,’*
and only ca. one per three eigenvalues for two-coordinate studies.’® These results are
a striking improvement over the early days®*® when we used for the two-coordinate
systems ca. siX trajectories per eigenvalue, together with some iterative process.

It would be desirable, of course, to combine this apparently straightforward method
of Noid’s with a treatment of the rotations, perhaps with one such as that of Tennyson
et al.,” and so treat the full ro-vibrational energy levels, even at high energies. Limitations
on the method occur, when the relevant trajectories become chaotic. If appreciable
accuracy 1s desired this behaviour is a limitation of all semiclassical trajectory methods.

However, Noid and coworkers™ have also discussed and applied a power spectral
method which uses only very short-time trajectories (a fraction of a vibrational period)
and it may alleviate this difficulty somewhat, at least for weakly chaotic trajectories. An
example of the latter is given in this symposium by Chambers et al."® in their classical
model for Hy. The usual power spectral trajectory method’’ requires, instead., many
vibrational periods, but in other respects is complementary to the new method. A nice
feature of semiclassical methods is that they can be used with arbitrary potentials. To
be effective the purely quantum methods must be such that the matrix elements can be

efiiciently evaluated, and so frequently resort is made to a polynomial expansion of the
potential. Brodersen comments on that expansion for molecules containing hydrogen.®

Unimolecular Reactions and Potential-energy Surfaces

With the introduction of short-pulse laser techniques,*' time-resolved measurements
have permitted the direct determination of energy-resolved”’ and low-angular-
momentum energy-resolved*” rate constants for unimolecular dissociations. An example
of a ‘two-colour’ photodissociation study is given in this symposium, as already noted,
by Likar et al.”” Numerous other studies (infrared multiphoton dissociation,* molecular-
beam studies of product translational energy distribution,** infrared chemiluminescence
of vibrational distributions®’) have been made, and have contributed to the richness of
data for comparison with unimolecular reaction rate theory. An example of a laser-
induced fluorescence®® determination of the quantum state distribution of the reaction
products is also given here.'® An intramolecular H-atom transfer is treated in the present
symposium by Ruf and Miller,"” and represents an interesting class of reactions.

On the theoretical side it is now practical to make RRKM-type calculations of
energy-resolved unimolecular and angular momentum-resolved rate constants ke, for a
case frequently encountered in a dissociation, namely where the transition state is rather
flexible.*® (In earlier times it was practical to treat mainly ‘loose’ and ‘tight’ transition
states.) In a flexible transition state, the partially hindered rotations of the incipient
product fragments can be highly coupled to each other and to the overall rotations. The
part of the potential~ener§y surface which plays a role in this transition state depends

upon the total energy E.*
We recall briefly this variationally implemented RRKM theory both for the rates*®

and now for the products’ quantum state distribution.*” The unimolecular rate constant
Key at a particular total energy E and total angular momentum quantum number J is

given by*®

_ Nig(RY)
hpg,

ke, (1)

where Ng;(R) is the number of quantum states of the dissociating molecule as a function
of any selected reaction coordinate R, and N,,(R?) is obtained variationally by finding
the minimum value of Ng,(R) as a function of R, thereby defining R*; pg, is the density
of ro-vibrational states of the molecule for the given E and J. Ng,;(R) is evaluated for
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these highly flexible transition states, after classifying the modes of motion of the
dissociating molecules as ‘conserved modes’ and ‘transitional modes’,*® the former being
those which do not undergo a major change in the nature of their motion on going from
the reactant to the separated fragments, while the ‘transitional modes’ do. The latter
typically consist of the bending motions which become rotations of the fragments and
of these overall rotations, to which these modes are coupled. When the ettect of total
angular momentum conservation is taken into account there remain normally six transi-
tional modes for the case of two non-linear polyatomic fragments.” Ng;(R) is given

. 4
by a convolution®
E

NEJ(R):J N.(E —€)Q,(g) de (2)
0

where N.(E —¢) is the number of quantum states of the conserved modes with an
energy less than or equal to E —¢ and {,(¢) 1s the density of states of the transitional
modes at an energy e.

In order to determine Ny, (R) in the transition-state region, {1,(¢) 1s needed, which,
in turn, requires some knowledge of the potential-energy surface (particularly the
bonding potential and the potential hindering the rotation of the fragments in the vicinity
of R*). The integral in eqn (2) is evaluated by a Monte Carlo calculation. Several
recent studies applying the theory to thermal and to energy-resolved rate constants have
been made.**"

At low E values R® is large and the calculation of the hindering potential for the
full solid-angle range for the fragment rotations is needed. With increasing energy E,
R* tends to move to shorter fragment-fragment separation distances,*®>"""* where the
fragment rotations eventually become librations, and then a knowledge of the p.e.s. 1s
needed in this region also. It seems clear that there is a real opportunity for fruitful
interaction between quantum chemists who can calculate the potential-energy surfaces
and those interested in applying such results to understand or predict the rate constants
and the products’ quantum state distributions. A first estimate for R*(E) can be made
using a rather approximate p.e.s. in the theory for ke,, and an improved surface can
then be obtained in this region of R* using more accurate guantum-chemical calculations.

Evidence for the trend of R*(E) to decrease with increasing E is found from the
behaviour of the rate constants themselves.**"°>* It would be interesting to see if other
evidence can also be obtained. One such possibility is suggested in the work of Likar
et al'® in this symposium. In their study of the photodissociation of HONO, they
consider the ratio of populations of the lambda doublet states of OH and the influence
regarding the geometry throughout the dissociation. It will be interesting to study the
ratio at low E, where deviation from planarity (R becomes larger) may be large. A
variety of effects can occur here, and the experiments at low E will be interesting.

The experimental determination of the quantum state distribution of the products
of unimolecular dissociations has been of particular interest.'™*>" Particularly at
energies insufficient to excite the reaction products vibrationally there has been good
agreement between these distributions and the results predicted from phase-space theory
(PST) in some recent studies.””** Since in PST only the long-range potential is utilized,
a knowledge of the detailed p.e.s. is not needed! However, deviations from PST appear
at higher energies.”” Deviations from PST have also been noted for the translational
energy distribution of the products in the unimolecular dissociation of ions.™

It is of particular interest that PST is successful for predicting the products’ internal
state distribution at low energies, but that it shows significant deviations for the values
of the thermally averaged rate constants.’’ Of course, the typical energy domain sampled
in the two types of experiment can differ.

Recently, we formulated a theory*’ designed to treat both the rates and the quantum
state distribution of the products. The rates were calculated using eqn (1) and (2) as
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before. For the quantum state distribution of the products, we assumed that the conserved
modes behave adiabatically from R* to oo, but that the transitional modes behaved
non-adiabatically in the region from R’ to the ‘loose transition-state’ region.*’ (The
latter modes tend to be low-frequency modes near R* and so are expected to interchange
their energy relatively easily during the separation, much as molecular rotations do in
a short-range collision.) The theoretical results for the products’ internal state distribu-
tion*” reduce to those of PST in the sub-vibrational excitation region, but show deviations
from PST at higher ener%ies. [n contrast to the above assumption, it is assumed in the®
adiabatic channel model’® that all coordinates behave adiabatically in the exit channel.

The RRKM rate constants kg, [eqn (1)] are typically less than those of PST, since
the latter neglects the effects of restricted rotation of the fragments in the transition
state. However, at sufficiently low energies, the transition state typically moves, as
already noted, to larger fragment-fragment separation distances, and then the RRKM
kg, tends to approach the PST limit [see ref. (52) for a more detailed discussion of this
point]. Extensive data on rates and on products’ quantum state distributions are
becoming available as a function of the energy E, and a knowledge of the p.e.s. in the
Important regions, given by R*(E), will be very helpful in this field.

Particularly noteworthy too, I believe, are the differences found in the products’
quantum state distribution when the photodissociation is via a u.v. excitation to a purely
repulsive state, followed immediately by dissociation, as compared with excitation to a
longer-lived state. The considerable differences in the preducts’ quantum state distribu-
tion are discussed by Likar et al.'® The time available for intramolecular energy transfer
1s much less in the direct dissociation case. Further comparisons along these lines,
together with the work referred to earlier on the direct dissociations,'” %! can be expected
to be a source of information on IVR.

Intramolecular Dynamics

In the treatment of intramolecular dynamics in actual molecules, a substantial number
of coordinates can be expected to be involved, and their number poses a major challenge.
Lehmann and Coy'® describe the time-evolution of an excited local-mode NH state,
using their five-coordinate model. Some insight into IVR has been obtained from
examination of individual two-coordinate resonances, a point illustrated here by
Hutchison and Marshall.'> Many authors have considered such resonances as a mechan-
1sm for intramolecular energy transfer. What is particularly destrable now is the develop-
ment of methods capable of treating molecules with all the vibrational and rotational
coordinates. One possibility is the RRGM method,*® which is applied here'® to treat a
model system containing many states, intended to simulate a complex molecule. Other
methods which have been or are being developed to treat this intramolecular vibrational
energy redistribution include a partitioning-type method,®’ a generalized moment method
for mean relaxation times,”’ a wave-packet method® and an artificial intelligence
method.®® An artificial intelligence method has been used to treat the related problems
of multiphoton absorption®® and the caiculation of eigenvalues.” The artifical intel-
hgence method has been applied to an 11-coordinate IVR problem.®

Coordinate Systems

We have already noted that curvilinear coordinates,"’ as well as rectilinear ones," have
been used in the treatment of vibrational Hamiltonians, both in this sympostum and
elsewhere. In the field of reaction rates or of related properties, several coordinate
systems have found use. The ‘natural collision coordinates’ which pass smoothly from
reactants to products, and the associated Hamiltonian have been used, both in their
original form™ and in a form (the ‘reaction-path Hamiltonian’)*’ which on one hand
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was an extension of the original, in that the reaction-path coordinate coeflicient in the
kinetic energy could depend on more coordinates, and on the other was an approxima-
tion, in its neglect of certain kinetic coupling terms and use of small displacements for
motion transverse to the reaction path. Another set of coordinates that has found
important use in calculations of reaction rates are the hyperspherical coordinates.”® The
first such fully three-dimensional calculation was recently reported by Hipes and Kupper-
mann.®® Their use is illustrated in this symposium by Chambers et al.'” for an in-plane
model of the H; molecule.

Hyperspherical coordinates have been used earlier to treat H-atom transfer in a
triatomic collinear heavy-light-heavy atom system.®” "> This use permitted the introduc-
tion of a vibrationally adiabatic approximation and led to excellent agreement’ '~ with
numerical quantum-mechanical reaction probabilities for the same model symmetric
systems. The results were also extended to nearly degenerate transitions.””” Another
set of coordinates, Cartesian ones, for these systems have been introduced by Ruf and
Miller,*’ to treat an intramolecular H-atom transfer. It will be interesting to compare
these results with those obtainable with (or generalizable from) the hyperspherical
coordinates which we used earlier.”

Chaos, Intramolecular Dynamics and Observables

One topic that has aroused considerable interest in the chemical physics community,
particularly since the early 1970s, and the interest of mathematicians and physicists for
a longer period, is the question of regularity of motion in classical mechanics for systems
which do not have the simplifying feature of permitting a separation of variables.” The
original interest was in questions ranging from the non-statistical distribution of stars
in certain galaxies”” (their long-time existence notwithstanding) to the questions of
stability of orbits of various heavenly bodies, and indeed the long-term stability of the
solar system itself. Each of these systems is a non-separable classical-mechanical system.

Concepts such as regularity in the motion (‘quasi-periodic’ behaviour), the famous
Kolmogorov-Arnold-Moser theorem for such motion for small perturbations from
separability (extremely small!), and a rigorous result of Sinai on an ergodic system,
have been described.”® For perturbations that are more than extremely small, the
information available has come mainly from numerical integration of the classical
equations of motion. Both quasi-periodic trajectories, which move on an N-dimensional
torus in a 2 N-dimensional phase space (and are therefore highly non-statistical) and
chaotic trajectories have been found. Their relative importance depends on the Hamil-
tonian, the energy and the initial conditions. In turn, from semiclassical theory, much
is known about the quantum behaviour of the corresponding systems when the relevant
trajectories are quasi-periodic.”® An example of a weakly chaotic system, in which the
trajectory tends to remain near some ‘vague torus’ in phase space,’”” before switching

to another ‘vague torus’,’® is described in this symposium by Chambers ef al.'” in their

calculations on Hj .

The main interest by chemical physicists in the non-separable mechanics and classical
trajectories has been many-fold: first, there was the novelty of there being new results
in a seemingly mature and well understood field; secondly was the hope that since
classical trajectories have been the principal source of relating chemical reaction cross-
sectional data obtained within molecular beams to potential-energy surfaces, and (with
the late Don Bunker and his successors) for examining the statistical or non-statistical
behaviour of isolated molecules, a deeper understanding of these aspects might develop
from the relatively new ideas; finally, there was the intriguing prospect of searching for
a possible quantum-mechanical analogue to these striking classical-mechanical concepts
on quasi-periodic and chaotic behaviour (from semiclassical arguments, the quantum-
mechanical behaviour should approach the classical behaviour in the limit of h - 0).
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There has been progress on this classical-quantum relationship, but no rIgorous
results in general. Indeed, there appears to be no rigorous definition of quantum
quasi-periodicity and so none of quantum chaos. There are various ideas, and consider-
able discussion. Concepts such as Chirikov’s overlapping resonances’® as a source of
classical chaotic behaviour, the relation between the classical-mechanical resonances
and some ‘avoided crossings’ of quantum-mechanical eigenvalues,®® and the mixing of
states via overlapping avoiding crossings have been discussed,®**' and many related or
other ideas abound, e.g. ref. (62) and (82)-(86).

It has also been realized that when the resonances causing some locally chaotic
classical behaviour occupy a relatively small region of phase space that is small in
relation to h, the corresponding quantum system may show no hint of a local chaos.?"3%8*
Another difference is that in the quantum case there may be, semiclassically speaking,
a nuclear tunnelling from one torus to another, unlike the classical case. Some caution
1s needed, therefore, in drawing conclusions about the quantum behaviour of a molecule
from that of the corresponding classical calculation. Indeed, the new data’*® on narrow
CH overtone homogenous linewidths, mentioned earlier, no longer agree with those
previously calculated from classical trajectories.”*® The latter agreed with the older
linewidths.”*® Some discussion of trajectory calculations for linewidths is given in this
symposium.'® There has been a considerable discussion of ‘quantum chaos’ in the
literature. Ultimately, when adequate methods have been applied to the quantum
treatment of real molecules and of the many coordinates frequently involved, the
behaviour of physical observables will presumably become the main goal of the theory.
In this case some of the recent debates on criteria for ‘quantum chaos’ may wane,
although the concepts evolved may prove useful in interpreting the more numerical
findings.

It is clear from the articles in this symposium that the fields being discussed are rich
In their variety, and that the results and the interaction of those in the different fields
can be expected to provide many an interesting discussion, both in this conference and

in the future.

It 1s a pleasure to acknowledge the support of this work by a grant from the National
Science Foundation.
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